
UNIX Security in a Supercomputing Environment

Matt Bishop*

Department of Mathematics and Computer Science
Dartmouth College

Hanover, NH 03755

ABSTRACT

The UNtxt operating system is designed for collaborative work
and not for security. Vendors have modified this operating sys-
tem (in some cases, radically) to provide levels of security
acceptable to their customers, but the versions used in super-
computing environments would benefit from enhancements
present in so-called secure versions. This paper discusses the
need for security in a supercomputing environment and suggests
modifications to the UNIX operating system that would decrease
the vulnerability of those sites to attacks. Among the issues are
additional auditing controls, changes to network programs,
improved user authentication, and better application of the prin-
ciple of least privilege.

1. Introduction

Because supercomputing facilities are used primarily for
research and development, security considerations seem out of
place or unwelcome additions that serve to hinder, not advance,
the effectiveness of such sites. However, consideration of the
nature of these facilities provides ample reasons for incorporat-
ing security mechanisms into the systems used. First are the
many forms of theft. Supercomputer time is valuable, and run-
ning unauthorized programs is a tempting goal for unauthorized
users. Because commercial, scientific, and governmental organ-
izations use supercomputers for their most time-consuming
problems, gaining illicit access to a supercomputer would pro-
vide a competitor, spy (industrial or otherwise), or other agent
the ability to see what others are doing, steal their data and/or
programs, and embarrass the users by prematurely exposing
results. Second is the issue of a non-hostile working environ-
ment: malicious people may have less-than-useful goals in
mind, such as the interruption of work by forcing the supercom-
puter to be shut down or removed from production mode for
some period of time, or the prevention of users from accessing
the supercomputer. In the worst case, they could alter data on

* l-he support of grant NAG 2-480 from the National Aeronautics and
Space Administration to Dartmouth College is gratefully ack-
nowledged.

i UNIX is a trademark of AT&T Bell Laboratories.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
0 1989 ACM 089791-341-8/89/001 l/O693 $1.50

the supercomputer, thereby causing valuable work to be
delayed, misdirected, or ruined, or alter programs to corrupt
data or other programs, as viruses do.

Since computer vulnerabilities are often transitive in that
penetrating one system allows ‘penetration of connected systems,
should a malicious person (called an uftucker or cruckert)
break into a computer on which jobs are prepared for the super-
computer, that attacker could alter the job to give him or her
access to the supercomputer; similarly, he or she could modify
results obtained from jobs run on the supercomputer to hinder
development work or research. The “supercomputing environ-
ment,” includes the supercomputer and those hosts on which
jobs (including research, development, and administrative func-
tions) are either prepared for execution on a supercomputer, or
on which the output of such a job is analyzed. Of course, not
all such machines may be under the control of the supercomput-
ing staff.

This brief survey paper critiques some security mechan-
isms in most versions of the UNIX operating system and suggests
more effective tools that either have working prototypes or have
been implemented, for example in secure UNE systems.
Although no computer (not even a secure one) is impenetrable,
breaking into systems with these alternate mechanisms will cost
more, require more skill, and be more easily detected, than
penetrations of systems without these mechanisms.

The mechanisms described fall into four classes (with
considerable overlap). User authentication at the local host
affirms the identity of the person using the computer. The prin-
ciple of least privilege dictates that properly authenticated users
should have rights precisely sufficient to perform their tasks,
and system administration functions should be compartmental-
ized; to this end, access control lists or capabilities should either
replace or augment the default UNIX protection system, and man-
datory access controls implementing multilevel security models
and integrity mechanisms should be available. Since most users
access supercomputing environments using networks, the third
class of mechanisms augment authentication and access over a
network, and provide applications layer encryption services and
authentication (where feasible). As no security is perfect, the
fourth class of mechanisms logs events that may indicate possi-
ble security violations; this will allow the reconstruction of a
successful penetration (if discovered), or possibly the detection
of an attempted penetration.

t See [39] for a discussion of “cracker” versus “hacker.”

693

2. Local User Authentication
Threat: Some responsible administrator must authorize a user to
access facilities or resources within the supercomputing environ-
ment. When such a user accesses the facility or resource, his or
her identity determines what he or she may do, Hence accurate
identification or authentication of the user is vital.

Standard UNIX Authentication Mechanisms: The usual authenti-
cation mechanism is the password, which most UNIX systems
allow users to select subject to (usually mild) constraints. To
encourage users to change passwords periodically, some ver-
sions of the UNIX operating system Provide a mechanism to
expire passwords; others do not. However, should a password
expire, the user is forced to change it at the next successful
login because the system does not allow any command other
than the password changing command to be used

All standard versions of the UNIX operating system
encrypt user passwords using a one-way function [6,27] and
store the encrypted form in a world-readable file called the
password file. It is not possible to determine who reads (or
copies) this file.

An account may have no password; in this case, anyone
may access that account; no password will be requested. On
most systems, this requires a system administrator to reset a
field in the password file.

Problems With the Standard Mechanisms: A good password is
unguessable, easy to remember, not in a dictionary, and chosen
from a set of possible passwords large enough to discourage
exhaustive search of the set; it should also be changed periodi-
calIy. Experiments run at both MIT and Dartmouth College
[2,7,8] indicate that the current UNIX scheme is not adequate,
since approximately 30% of users’ passwords were guessed.
Having the computer generate random passwords is not much
better, since users will then write the passwords down, espe-
cially when they must remember passwords for many different
hosts. Generating passwords according to a set of rules works
reasonably well (a common method is to make the passwords
pronounceable but meaningless), but if users are assigned dif-
ferent passwords for a large number of hosts they will still often
write them down.

Implementations of a password aging mechanism should
not require the user to think of a new password instantly; as
Grampp and Morris [15] point out, “the most incredibly silly
passwords tend to be found on systems equipped with password
aging.” Further, if a user may change passwords at any time.
one need only change them to satisfy the password aging
mechanism, and then can change them back. If the mechanism
prevents a user from changing passwords more than once within
a specified interval of time, the user may not be able to change
a Poorly-chosen or compromised password. So implementation
of password aging schemes must avoid these risks.

Since the password encryption function is one-way, it
appears that obtaining the encrypted form reveals nothing about
the password. Since the password encryption routines are avail-
able in the system library, an attacker can test possible pass-
words by encrypting them and comparing the results to those
stored in the file. Such “password cracking” is actually quite
common, far simpler and more difficult to detect than repeatedly
trying to log in.

Accounts with no passwords usually run programs with
limited capabilities (such as printing the date or listing users of
the system) rather than the command interpreter. Unless there
is a very specific adminiitrative reason for such an account,

accounts without passwords should not exist, especially in an
installation where resources are as precious as in a supercom-
puting center.

Alternatives to the Standard UNIX Mechanisms: Except where it
affects the quality of the password, the source of the password
(computer or user) is not relevantt. Simple modiications to the
standard UNIX password changing program can check the pro-
posed password against the user’s name, account name, and
various dictionaries and lists of common character combinations
(such as acronyms and names not in any dictionaries); this
satisfies criterion 2, and makes meeting criterion 1 more likely
than if the checks were omitted. As an alternative, if the com-
puter is to generate passwords, the passwords can be combina-
tions of pronounceable (but meaningless) syllables separated by
non-letter characters; users may be presented with a set of
potential passwords from which they may select one, or request
another set. If the syllables were generated from a rich enough
set, this would meet criteria 1 and ~2. Both schemes are used in
various secure versions of the UNJX operating system (see for
example [14.20]).

Secure systems which generate passwords for users
sometimes use password aging mechanisms [111. However,
when users are to supply passwords, the aging mechanism
should warn them before their password expires to allow time to
think of another one.

Many secure versions of the UNIX operating system use a
“shadow password file” [14,18,26] in which the encrypted
password is placed in an alternate unreadable file, prevents pass-
word cracking without attempting to log in, since all systems
should record failed login attempts, this increases visibility of
password crackers. Modifications to the Iogin program enable
the security officer to allow the login but to a restricted account
(to allow security officers to trace the connection [16,39]), or to
disable the attacked account.

Other authentication methods may be used in place of, or
in conjunction with, passwords. The challenge-response proto-
col [38] requires the computer to generate some number or
string (the challenge), and the user to perform some operation
on it (the response). The challenge varies from instance to
instance, so even if an attacker obtains one challenge and its
corresponding response, subsequent challenges will be different;
to prevent the relationship between challenges and responses
from being deduced, the response is usually the output of some
cryptographic function of the challenge. This usually requires
some physical hardware (such as a calculator-like device) to
obtain the response, so both knowing another user’s password
and access to the appropriate hardware are necessary for imper-
sonation; further, the challenge is issued from a satellite com-
puter that is both physically secure and inaccessible to users of
the main computer. Pass algorithms [171 work similarly, but
implementations do not use external devices, so if the algorithm
is not changed frequently it may be possible to deduce the rela-
tionship between the challenge and the response. Although in
their infancy, biometric techniques may be used to authenticate

t The impact may be very subtle. :[n [27], Robed Morns and Ken
‘lY~ernpsar describe a random Password generator that appeared to
cheese passwords from a set of 36s possible passwords. Ttying each
possible password would take 112 years. Unfortunately, it did so by
generating characters sequentially using a pseudoraudom number gen-
erator, so the actual number of potential passwords was 215 - and try-
ing all of those would have taken only 42 minutes!

694

individuals [25,28] but some of these techniques are subject to
replay attacks.

Recomrnenduriom: UNIX systems in supercomputing envlron-
ment should use a two-tier method of authentication that cannot
be disabled. The 8rst is the password; either users should be
allowed to select their own passwords, which are checked
before being accepted by the computer. or the computer should
generate a set of possible passwords and allow the user to select
one (or request another set). The encrypted passwords should
be kept in a shadow password file, and password aging should
be used. The second tier uses another authentication method to
require the user to demonstrate that he or she is not an intruder
who knows the real user’s password, such as a challenge-
response protocol requiring an external device to obtain the
reponse from the challenge. Users who fail to give a correct
account name and password at the first level should still be
forced to complete the second, so they cannot determine
whether the failure was a bad account name, an invalid pass-
word, or an erroneous response. Further, some action deemed
appropriate by the site security officer should be taken for
repeated failures to log in to a specific account.

3. Access Control, Integrity, and Least Privilege

Threats: Access control mechanisms regulate the ability to
access resources such as files, devices, and processes. If the
access control mechanisms are inadequate, users may be able to
modify or alter data they should not have access to, or may not
be able to access data they are authorized to.

Standard UNIX Access Control Mechanism: Standard UNIX sys-
tems use a simplification of the traditional access control list.
Each object is assigned a uer and a group identification (typi-
cally, the user identification is that of the owner of the object,
and the group identification is either that of the owner or of
some related object). Three sets of permissions are associated
with each object, one corresponding to the user (owner), one to
the group, and one to all others; each set consists of distinct
read, write, and execute permissions. When someone tries to
access the object, if that person has the same user identification
as the object, the user permissions are checked, if not, and if
that person has the same group identification as the object, the
group permissions are checked; otherwise, the set of permis-
sions for all others is checked. No access control checking of
any kind is done to the privileged user root (also called the
superuser).

The setuid mechanism enables processes to assume
privileges of another user. For example, the program to read
electronic mall may write a log record into a file in one of two
ways. Either the file must be writable by all users (meaning
they can change the log), or the log file must be writable only
by its owner, and the mail reading program must be setuid to
the owner of the log file. Whenever that program is executed,
the UNIX operating system will change its user identification to
that of the owner of the log file. A similar mechanism (called
setgid) works for altering the group identification of a running
program (and actually would be used in the above example).

Many automatic tools ensure consistency of the UNIX file
system and repair inconsistencies when found.

Problems with the Standard Mechanism: The first problem is
the lack of granularity in access control. To grant access to a
file only to some subset of users of the system is either to make
that subset a group (which requires a system administrator) and
set the file’s group identitication appropriately, or to give the
users in that subset access to an account by which the file is

owned. Neither method is acceptable in pm&e. Hence when
a subset of users of the system must access a file, its owner
usually gives that access permission to all users. Thus the
mechanism fails to support the principle of least privilege [36].

The existence of an omnipotent user also violates this
principle, because once an attacker has gained access to that
account he or she can do anything. The setuid mechanism
makes access to other accounts all too easy if not programmed
with care, because programs using that mechanism often fail to
do adequate checking.

The only mechanism to check the integrity of files is a
checksumming program that is not cryptographic and hence
easy to evade, Further, the checksum program must be run
manually.

Alternatives to the Standard UNIX Mechanisms: Some secure
versions of the UNLX operating system implement standard
access control lists, either providing them as an alternative to
the simplification used by standard UNIX systems [14] or replac-
ing the standard mechanism entirely [20]. They also provide
mandatory access controls along the lines of the Bell-LaPadula
model [4]: each object is assigned a secwity late1 and a set of
compartments. A subject may read (or execute) an object at a
lower or equal security level if the object’s set of compartments
is a subset of the subject’s set of compartments, and the discre-
tionary access controls on the object allow the action. A sub-
ject may write (or delete) an object at a higher or equal security
level if the object’s set of compartments is a subset of the
subject’s set of compartments, and the discretionary access con-
trols on the object allow the action. (How this is done varies
from system to system.) By judicious selection of security lev-
els, sets of compartments, and setting of the access control lists,
users (and the system administrator) can control access to any
granularity required, thus these mechanisms enable enforcement
of the principle of least privilege.

Almost all versions of secure UNIX have modified or
eliminated the notion of the superuser, especially by partitioning
the superuser functions among several users [11,14,20]. In
some cases these users are not permitted to log in, but must act
in single-user mode; in others, they must access restricted com-
mand interpreters to perform their function. This eliminates the
problem of system administrators logging in as the superuser
and acting in ways that do not require privileges.

Some systems restrict the setuid privilege in various ways
such as by removing it when a setuid file is written to, or
requiring the use of a trusted path to activate the privilege (this
prevents a Trojan horse from creating a setuid file and thereby
steal privileges). This does not eliminate the danger of a care-
less programmer causing problems, but such danger is
ameliorated by the restrictions the mandatory access controls
place on the setuid program. Other versions simply replace
setuid programs with trusted servers [26].

In the wake of computer viruses, integrity control has
become prominent. Several systems implement aspects of
Biba’s integrity model [5], in which each object is assigned an
integrity level and a set of integrity compartments (these. may
be different than the correspondiig levels and compartments for
the mandatory access control mechanism). Subjects may read
(or execute) objects at a higher or equal integrity level, if the
object’s set of integrity compartments is a subset of the
subject’s set of integrity compartments, and the discretionary
access controls on the object allow the action; a subject may
alter (or delete) objects at a lower or equal integrity level if the
object’s set of integrity compartments is a subset of the

695

subject’s set of integrity compartments, and the discretionary
access controls on the object allow the action. The system
administrators are free to use, or not use, any of the imple-
mented aspects.

Recommendations: The discretionary access control mechanism
should be access control Lists. perhaps with the standard
simplification being used should the user attempting access not
be named in the list associated with the object. The superuser
functions should be split over multiple accounts (each with less
privilege), and the system should use a mandatory access con-
trol mechanism to limit the effects of penetrations. If setuid
and setgid programs are to be present, they should lose their
privileged setting when any process writes to them. The setuid
and setgid privilege should be granted only through a trusted
path, so no user would unknowingly surrender privileges.
Finally, a multilevel integrity mechanism should be in place.
However, the aspects of the multilevel mechanism to be used
should be at the discretion of the system administrator, and he
or she should be able to activate (or deactivate) them on a per-
user bar&t.

4. Network Privacy and Authentication

Threats: As most users communicate with supercomputing
environments over networks, authenticating their identity and
providing tools for private communication with the computer
and with other users enables accurate identification of those
entitled to use specific resources and allows work done on the
supercomputer, and its results, to be private. The very general
problem of authorization and secrecy in networks is discussed
elsewhere [21,40]; the discussion here is confined to tools
speciiic to the UNIX operating system and to the 4.2 and 4.3
Berkeley Software Distribution’s user-level network tools.

Standard Berkeley UNIX Network Tools:

Network software based on the Berkeley 4.2 distribution
allows users to designate specific users on specific remote hosts
as “trusted;” when someone tries to log in remotely, if the user
and remote host are trusted no password is requested. Simi-
larly, the system administrator may also designate hosts as
“trusted” for all users, so if a user has an account with the
same name on a remote host which the system administrator has
listed as trusted, no password will be requested. Once logged
in, the remote user is treated just like a local user; that is, no
additional constraints are applied.

The only encryption program on standard UNIX systems
implements “a one-rotor machine along the lines of the German
Enigma, but with a 256-clement rotor” [9].

Electronic mail allows users to correspond with one
another, and is available on all standard UNIX systems.

Problems With the Standard Mechanisms: Permitting users (or
system administrators) to disable password checking is a useful
convenience, but it can have catastrophic consequences unless
site administration is very strict [35]. All hosts that trust a
compromised computer are themselves compromised, because
access to the latter implies access to all the former. Further, if
different security and integrity levels and compartments are sup-
ported, the user’s security clearance should be a function of the

t The rule against “reading down” would most likely not be applied to
all users because. as Gasser points out. it “is probably more suited to
containing errors” than threats to security [13, p. 701. But the rule
against “writing up” would he.

host from which he or she is connecting to the supercomputing
environment.

Methods of breaking the standard UNIX encryption pro-
gram are very widely known [34].

Electronic mail as supplied provides neither privacy nor
authentication. While the body of letters may be encrypted
using the program described above, the result must be expanded
(to seven bit characters) to comply with the intemet mail proto-
col [33]. Further, it is not possible to determine whether the
named sender did in fact send the letter without an out-of-band
mechanism (such as a telephone cab.)

Alternatives to the Standard Berkeley UNIX Network Tools:
Many sites only allow system administrators to designate hosts
as trusted. Others allow users to designate those hosts under
the administration’s control as trusted, but no others (for exam-
ple, at the NAS Project. the computer “prandtl.nas.nasa.gov”
could he trusted, but “icefloe.dartmouth.edu” could not. since it
is not under NAS control). Still others restrict this ability to
unprivileged users; administrative or superuser accounts may not
use this feature.

Many sites have implemented alternate encryption pro-
grams, most of them based on the Data Encryption Standard
[29,30]. These are believed to be considerably harder than the
UNIX crypt(l) program to break, in any case, quick methods of
breaking them are not widely known.

Currently several RFCs describe a proposed standard for
privacy-enhanced electronic mail, and prototype implementa-
tions have successfully exchanged secure, authenticated mail
messages [19,22-241. Problems include a lack of available
software and no existing supporting key management structure;
Development of both is currently in progress.
Recommendations: The “trusted host” mechanism described
above should be eliminated. Instead, all remote connections
should require using the local user authentication mechanisms;
further, if different security or integrity levels and compartments
are supported, system administrators should be able to restrict
the levels and compartments which users may access based on
the identity of the remote computex.

The UNM encryption program crypt(l) should be
scrapped and implementations of better cryptosystems supplied,
and when a suitable key management scheme is adopted, secure
electronic mail should be made available to the user community.

5. Logging and Auditing

Threat: Since no system is completely secure. at some point a
successful penetration may take place. Records of unsuccessful
penetration attempts may provide information useful to system
security or to determinin g if specific accounts have been
compromised.
Standard UNIX L.ogging and Auditing Facilities: Most versions
of the UNIX operating system log connect time and job execution
for accounting purposes; specific programs (such as daemons)
log changes of account, connections from other sites, and failed
login attempts. There is no unified logging and auditing
scheme, however, so the information logged varies from pro-
gram to program.

A checksummin g program exists on standard versions of
the UNIX operating system.

Problems with the Standard Mechanisms: Although adequate
for accounting purposes, the lack of unity in the design of log-
ging and auditing mechanisms make them inadequate for secu-

696

rity monitoring purposes, since critical files (such as the pass-
word file) can be altered without a trace, and information is
kept on the computer where it may be altered or erased by
nonexpert attackers.

There is no scheme to check the integrity of system files
automatically. Further, since the checksum program is not cryp-
tographic, changes to files can be made transparent to it.
Alternatives to the Standard UNIX Mechanisms: Secure versions
of the UNIX operating system provide extensive logging and
auditing facilities [1,11,14,18,20,26]. These facilities log events
such as file accesses including, among other things, attempted
file accesses, process creation and termination, and file creation
and deletion. Each log entry should contain the user
identification. relevant process or file identification information,
the event being logged, and information about that event.
Entries for file accesses should identify the user and process
(command) requesting the access, how access is desired (read,
write, execute, change something in the mode. etc.), the wall
clock time of the attempt, and the disposition (was access
granted or not). Entries for process creation and deletion should
indicate the user, the wall clock time, the file executed, the
disposition (was the execution begun), and the process from
which execution was attempted. This information should be
stored off-line on a computer not accessible to users of the
monitored computer and not connected to a network; thii audit
computer should also have tools capable of analyzing the data
and printing it in readable form.

A mechanism to mark files as critical to the system and
not changeable should be available, and these files should be
checksummed periodically (or randomly) using some crypto-
graphic checksumming scheme. This can then be checked
against precomputed checksums; again, this should be done on
the audit machine mentioned above.

Monitoring all users and all file accesses may be quite
expensive, so the system administrator should have the ability to
enable the logging facilities for specific users, tiles, and events.
For example, the password file should be monitored since it is
so critical to the security of the system, but transient files pro-
duced by a compiler need not be monitored. If done on a selec-
tive basis, this type of monitoring should not adversely impact
system performance [32].

More sophisticated monitoring tools may aid in the detec-
tion of successful or attempted penetrations. Intrusion detection
systems [12,25] analyze statistical characteristics of users, or
apply rules gleaned from earlier audit records, to detect
anomalies in system use; since these may indicate an intruder,
the intrusion detection system reports these to a systems
administrator. Prototypes cause little or no change in the moni-
tored system’s response time [25,37], and at least one prototype
has been developed for UNIX systems [3]. Preliminary results
indicate that such a tool appears to be useful in deteoting pene-
trations.
Recommendations: UNM systems used in a supercomputing
environment should have extensive logging capabilities of the
nature outlined above built into their kernels. Ideally, all events
should be logged; since the intrusion detection model postulates
the availability of such information, they can be integrated into
the system with a minimum of changes when in the future
implementations become available. The ability to activate log-
ging when an attack or penetration is suspected will enable sys-
tem administrators to examine one specific area of risk without
burying themselves (or the audit machine) in audit records; they
CCUI then determine what should be audited. A mechanism to

check specific files for unauthorized alterations should also be
present.

6. Conclusion

This paper presented a brief overview of some security
mechanisms in conventional UNIX systems, discussed their
deficiencies, described tools that improve or augment their
effectiveness, and recommended changes to increase the
difficulty of an attacker trying to penetrate undetectably a com-
puter within the supercomputing environment. Supercomputer
manufacturers offering versions of the UNM operating system are
aware of these needs, and at least one supplies a system
enhanced with many of the features described above [lo].

Many of the recommended tools are similar to, or identi-
cal to, parts of commercial secure versions of the UNIX operating
system designed to meet criteria outlined in the Trusted Com-
puter System Evaluation Criteria [31]. However, those criteria
should be followed only if dictated by site (or administrative)
policy. Instead administrators of supercomputing environments
should implement those recommendations they believe will be
most effective within their specific environment. In this way
they can achieve that delicate balance between security and the
user-friendliness their user community requires.

References

1 Addison, K., Baron, L., Copple, M., Cragun, D., Hospers,
K., Jordan, P., Lechner, M., Manley, M. and Schaufler, C.,
“Computer Security at Sun Micvrosystems, Inc.“, Tenth
National Computer Security Conference Proceedings,
216-219 (September 1987).

2. Baldwin R., private communication, July 1987.
3. Bauer. D. S. and Koblentz. M. E.. ‘ ‘NDM - A Real-Tie

4.

5.

6.

7.

8.

9.

10.

Intrusion Detection Expert System”, Proceedings of the
Summer 1988 USENlX Conference, 261-273 (June 1988).
Bell, D. and LaPadula, L.. “Secure Computer Systems:
Unified Exposition and MULTICS Interpretation”,
Technical Report MTR-2997, MITRE Corporation,
Bedford, MA, July 1975.

Biba, K. J., “Integrity Considerations for Secure Computer
Systems’ ‘, ESD-TR-76-372 (NTIS AD-A0393324), Air
Force Electronic Systems Division, Hanscom Air Force
Base, MA.

Bishop, M., “An Application of a Fast Data Encryption
Standard Implementation”, Computing Systems, 1. 3
(Summer 1988) 221-254.

Bishop, M. and Bryant, E.. “Is Your Password Obvious?“.
Kiewit Comments, 19, 4 Dartmouth College (February-
March 1988) 1.

Bishop, M., “Bishop Continues UNIX Security Research”,
Kiewit Comments, 20, 4 Dartmouth College (February-
March 1989) 2.

UNIX User’s Reference Manual, 4.3 Berkeley Sofware
Distribution, Virtual VAX-11 Version, Computer Systems
Research Group, Computer Science Division, EECS,
University of California, Berkeley, Berkeley, CA 94720,
November 1986. as reprinted by the USENlX Association.

“UNICOS Security Administration Reference Manual”,
SR-2062A, Cray Research, Inc., Mendota Heights, MH,
March 1989.

697

11. Cummings, P. T.. Fullam, D. A., Goldstein M. J.,
Gosselin, M. J., Picciotto, J., Woodward, J. P. L. and
WYM, J., “Compartmented Mode Workstation: Results
Through Prototyping”. Proceedings of the I987
Symposium on Security and Privacy, 2-12 (April 1987).

12. Denning, D. E., “An Intrusion-Detection Model”, IEEE
Transactions on Software Engineering, SE13, 2 (February
1987) 222.

13. Gasser, M., Building a Secure Computer System, Van
Nostrand Reinhold Company Inc., New York City, NY,
1988.

14. Gligor, V. D., Chandersekaran. C. S., Chapman, R. S..
Dotterer, L. J., Hecht, M. S., Jiang, W., Johri, A.,
Luckenbaugh, G. L. and Vasudevan, N., “Design and
Implementation of Secure Xenix”, IEEE Trunsuctions on
Soware Engineering, SE-13, 2 (February 1987) 208-221.

15. Grampp, F. T. and Morris, R. H., “The UNIX System:
UNJX Operating System Security”, AT&T Bell
Laboratories Technical Journal, 63, 8, part 2 (October
1984) 1649-1672.

16. Hanson, S. and E&edge, M., “Intruder Isolation and
Monitoring”, Proceedings of the UNIX Security Workshop,
Portland, OR, 63-64 (August 1988).

17. Haskett, J. A., “Pass-Algorithms: A User Validation
Scheme Based on Knowledge of Secret Algorithms”,
Communications of the ACM, 27, 8 (August 1984) 777-
781.

18. Hecht, M. S., Johri, A., Ad&am, R. and Wei, T. J.,
“Experience Adding C2 Security Features to UNIX”.
Proceedings of the Summer 1988 USENIX Conference,
133-146 (June 1988).

19. Kent, S. and Linn, J.. “Privacy Enhancement for Internet
Electronic Mail: Part II -- Certificate-Based Key
Management”, RFC 1114. August 1989.

20. Kramer, S., “Linus IV - An Experiment in Computer
Security”. Proceedings of the 1984 Symposium on Security
and Privacy, 24-32 (April 1984).

21. Leiner, B. M., “Policy Issues in Interconnecting
Networks”, Technical Report 89.25, Research Institute for
Advanced Computer Science, Moffett Field, CA, June
1989.

22. Linn, J., “Privacy Enhancement for Internet Electronic
Mail: Part I -- Message Encipherment and Authentication
Procedures”, RFC 1113, August 1989.

23. Lii, J. and Kent, S. T., “Privacy for DARPA-Internet
Mail”, Twerfth Nation01 Computer Security Cor@erence
Proceedings, (to appear) (1989).

24. Iii, J., “Privacy Enhancement for Internet Electronic
Mail: Pert IIX -- Algorithms, Modes, and Identifiers”, RFC
1115, August 1989.

25. Lunt, T. F.. “Automated Audit Trail Analysis and Intrusion
Detection: A Survey”, Eleventh National Computer
Security Conference Proceedings, 65-73 (October 1988).

26. Miller, G.. Sutton, S., Matthews, M., Yip, J. and Thomas,
T., “Integrity Mechanisms in a Secure UNIX: Gould
UTx/32S”, AIAAIASISIDODCI Second Aerospace
Computer Security Conference, 19-26 (December 1986).

27. Morris, R. and Thompson, K., “Password Security: A Case
History”, con~~~unications of the ACM, 22, 11 (November
1979) 594-597.

28. ‘*Guidelines on Evaluation of Techniques for Automated
Personal Identification”, FIPS FUB 48. National Bureau of
Standards, Washington, DC, April 1977 .

29. “Data Encryption Standard”, FIPS PUB 46, National
Bureau of Standards, Washington, DC, January 1977.

30. “DES Modes of Operation”, FIPS PUB 81, National
Bureau of Standards, Washington, DC, 1981.

31. “Trusted Computer System Evaluation Criteria”, DOD
5200.28-STD. National Computer Security Center, Fort
Meade, MD, December 1985.

32. Picciotto, I., “The Design of an Effective Auditing
Subsystem”, Proceedings of the 1987 Symposium on
Security and Privacy, 13-22 (April 1987).

33. Postel, J., “Simple Mail Transfer Protocol”, RFC 821,
August 1982.

34. Reeds, J. A. and Weinberger, P. J.. “The UNIX System:
File Security and the UNIX System Crypt Command’ ‘,
AT&T Bell Laboratories Technical Journal, 63, 8, part 2
(October 1984) 1673-1683.

35. Reid, B.. “Reflections on Some Recent Widespread
Computer Break-ins”, Communications of the ACM, 30. 2
(February 1987) 103-105.

36. Saltzer, 3. and Schroeder, M., “The Protection of
Information in Computer Systems”, Proceedings of the
IEEE, 63, 9 (September 1975) 1278-1308.

37. Sebring, M. M., Shellhouse, E., Hanna, M. E. and
Whitehurst, R. A., “Expert Systems in Intrusion Detection:
A Case Study”, Eleventh National Computer Security
Conference Proceedings, 74-811 (October 1988).

38. Spender, J., “Computer Securi.ty and User Authentication:
Old Problems, New Solutions”, AIAAIASISIDODCI Second
Aerospace Computer Security Co@erence, 126-132
(December 1986).

39. Stall. c.. “Stalking the Wily Hacker”, Communications of
the ACM, 31, 5 (May 1988) 484-497.

40. Voydock, V. L. and Kent, S. T., “Security Mechanisms in
High-Level Network Protocols”‘, ACM Computing Surveys,
15, 2 (June 1983) 135-171.

698

