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Abstract

From coffee beans flowing in a chute to cells remodelling in a living tissue, a wide variety of 

close-packed collective systems— both inert and living—have the potential to jam. The collective 

can sometimes flow like a fluid or jam and rigidify like a solid. The unjammed-to-jammed 

transition remains poorly understood, however, and structural properties characterizing these 
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phases remain unknown. Using primary human bronchial epithelial cells, we show that the 

jamming transition in asthma is linked to cell shape, thus establishing in that system a structural 

criterion for cell jamming. Surprisingly, the collapse of critical scaling predicts a counter-intuitive 

relationship between jamming, cell shape and cell–cell adhesive stresses that is borne out by direct 

experimental observations. Cell shape thus provides a rigorous structural signature for 

classification and investigation of bronchial epithelial layer jamming in asthma, and potentially in 

any process in disease or development in which epithelial dynamics play a prominent role.

One of the central unresolved mysteries of asthma is how the asthmatic airway remodels 

itself1. This remodelling is often progressive and has long been thought to be the end 

product of a cascade of cell-signalling events that are initiated in the bronchial epithelium 

and driven by repetitive inflammatory, allergic, or viral insults1. Tissue-remodelling events 

more broadly, including those underlying morphogenesis, wound repair and cancer invasion, 

have been linked to collective cellular migration2–5, often in the context of the epithelial-to-

mesenchymal transition (EMT; ref. 6). But no clear physical picture has yet emerged that 

can capture these collective biological processes and their interconnections. Here we provide 

evidence that the physical process of cell jamming and unjamming5,7–11, which has been 

missing from descriptions of tissue remodelling, might tie together at least some of them.

Primary human bronchial epithelial cells (HBECs) were derived from non-asthmatic and 

asthmatic donors, plated on a porous Transwell insert, and established in air/liquid interface 

(ALI) culture12 (Methods). Initial culture in submerged conditions causes basal cells to 

proliferate, and subsequent culture in ALI conditions inhibits any further proliferation and 

triggers differentiation of those basal cells into a mature confluent pseudostratified bronchial 

epithelial layer comprising goblet cells and ciliated cells13. Here we show that such a 

pseudostratified layer derived from non-asthmatic donors is quiescent. Cellular motions are 

relatively small, cellular rearrangements among neighbouring cells are rare, and each cell 

remains virtually caged by those immediate neighbours. Statistical analyses of these motions 

confirm that such a layer is solid-like and jammed. However, application of an apical-to-

basal mechanical stress mimicking the compressive effect of bronchospasm12,14,15 

(Supplementary Fig. 1) is sufficient to trigger large cellular motions and cooperative cellular 

rearrangements. Cells move chaotically, but the motions exhibit cooperative packs and 

swirls; such a layer is fluid-like and unjammed. We then examine the more complex process 

of progressive layer maturation, where we find an innate tendency of the maturing layer to 

transition from an immature, fluid-like, unjammed phase in which cells readily rearrange 

and flow, into a mature, solid-like, jammed phase in which cells become virtually frozen in 

place8,9,16. As compared with non-asthmatic donors, however, in the maturing layer derived 

from asthmatic donors this jamming transition is delayed substantially or disrupted 

altogether. In all these cases, the transition between unjammed and jammed phases is 

continuous; as the cell layer approaches the jamming transition, cellular motions become 

progressively slower, pack sizes become progressively larger, and pack lifetimes become 

progressively longer.

One might have expected that cell jamming would be caused by increasing mutual cell–cell 

adhesive stresses such that cells become stuck to immediate neighbours and, as a result, the 
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cellular collective rigidifies, the mutual cellular rearrangements stop, and the constituent 

cells cannot move17. Much to our surprise, direct measurements defied this expectation—in 

layers that become jammed, the adhesive stresses between a cell and its neighbours were 

attenuated, not augmented. To explain this paradox, we turned to the well-known vertex 

model, wherein a competition between cell–cell adhesive stresses and cell cortical tension 

control changes of cell shape18–20. Novel analysis of this model, including a critical scaling 

analysis, predicts that increased adhesion leads to increased fluidity, and that cell jamming 

occurs as a well-defined index of cell shape approaches a critical value. We show that the 

shape index acts as a simple structural order parameter that takes on different values on 

either side of the jamming transition. Using that shape index, we show not only that cell 

shape in the bronchial epithelial layer differs between cells derived from non-asthmatic 

versus asthmatic donors, but also that, regardless of cell origin, cell shape at the jamming 

transition matches theoretical predictions, and thus resolves the paradox. This new physical 

picture raises questions about the relationship between the epithelial-to-mesenchymal 

transition and unjamming and, conversely, between the mesenchymal-to-epithelial transition 

and jamming. Similarly, it suggests new, testable hypotheses concerning asthma aetiology 

and asthma therapy. The more fundamental significance of these findings, however, may be 

to broaden notions of jammed matter and generalize understanding of jamming mechanisms.

Compression unjams the jammed HBEC layer

Mechanical compression of the bronchial epithelium occurs during severe bronchospasm 

(Supplementary Fig. 1) and is sufficient to induce maladaptive airway remodelling even in 

the complete absence of inflammatory events14,15. Although certain cell-signalling modules 

have been identified, such as autocrine signalling through the epidermal-growth-factor-

receptor family of ligands, the physical mechanism remains unclear. To trigger these events 

we followed the protocol of ref 14; on day 16 of ALI culture we exposed the HBEC layer to 

a compressive apical-to-basal stress, P, spanning the physiologic range (0, 3, 10, 20, or 30 

cm H2O; Fig. 1 and Supplementary Fig. 1), where 3 cm H2O corresponds roughly to the 

maximal compressive stress expected to be exerted on HBECs by quiet tidal breathing, and 

30 cm H2O corresponds to that expected during severe bronchospasm21,22.

The manner in which a cell moves provides clues about mechanisms that promote or impede 

its mobility (Fig. 1a). Therefore, we began by quantifying cellular motions using their mean 

square displacement (MSD) over a given time interval, Δt, averaged over many cells in 

several optical fields (Methods). In many physical systems, the MSD increases with time as 

a power law, Δtα, where the exponent α is determined empirically. When the exponent is 

unity (α = 1), as in uncorrelated random Brownian motion, particle motions are diffusive. 

When α < 1, particle motions are sub-diffusive, as when a particle might, in time, escape the 

cage comprising its immediate neighbours only to become quickly recaged by its new 

immediate neighbours; this uncaging–recaging process thereupon repeats in a stochastic 

fashion. When α > 1, particle motions are super-diffusive, and when α = 2, as occurs in 

simple linear translation at constant velocity, motions are ballistic.

In HBECs from non-asthmatic donors in ALI culture, cellular motions were smallest when 

the compressive stress, P, was zero and increased systematically as P was increased (Fig. 1b 
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and Supplementary Movie 1). When Δt was small and P was zero, the MSD increased 

slowly with time in a sub-diffusive manner as if each cell were caged or jammed by its 

immediate neighbours. But as Δt exceeded 10min the MSD grew as Δt1.3, indicating that 

motions at longer times were slightly super-diffusive, and suggesting that each cell was 

eventually able to escape its cage and move in a persistent direction. But as P was increased 

progressively to 30 cm H2O, the MSD at the highest P increased by about two orders of 

magnitude and varied as Δt1.8. Cells in this compressed state were seen to become highly 

mobile and strongly super-diffusive (Fig. 1b).

These swirling cellular motions and their changes were visually striking (Supplementary 

Movie 1). To provide further quantitative characterization of these motions, we measured 

the fractional change of cellular position in a given time increment Δt. Much as is done 

conventionally in studies of cooperative particle motions in jammed or glassy inert 

systems23, here we chose 15% of average particle (that is, cellular) diameter as the reference 

length scale; if a region moved less than 15% of the average cellular diameter over the time 

interval Δt, we considered this as 100% overlap with the initial position, whereas if a region 

moved more than 15% of a cellular diameter, we considered this as 0% overlap (Methods). 

The average value of this overlap function over the entire optical field was defined as Q(Δt) 

(ref. 23) and the ensemble average over all sequence images, (〈Q(Δt)〉, was computed. 

Uncompressed cells and those compressed with P less than 20 cm H2O showed nearly 

perfect overlap (〈Q(Δt)〉 = 1) for as much as 144min, as if cells were immobile and jammed. 

However, for cells compressed with P of 30 cm H2O, 〈Q(Δt)〉 fell to 0.17 at 144min (Fig. 

1c), suggesting appreciable mobility and, potentially, unjamming.

The MSD and the overlap function Q are useful metrics of cellular motions. However, these 

metrics by themselves fail to distinguish uncorrelated cellular motions from the cooperative 

motions that comprise the strings, clusters, swirls or eddies that are the hallmark of the 

structurally heterogeneous dynamics and typify jammed matter close to a jamming 

transition16,24. In such systems, as the jamming transition is approached, the cooperativity of 

these motions increases and, as a result, the length scale and the timescale of these motions 

tend to grow sharply23,25,26. Therefore, from the overlap function Q(Δt) we computed the 

four-point susceptibility, χ4(Δt), which exhibits a peak whose position corresponds roughly 

to pack or swirl lifetime and whose magnitude corresponds roughly to pack or swirl size 

(Methods)4,24,27. Accordingly, after several pack lifetimes a sufficient degree of structural 

rearrangements will have occurred such that any individual cell will find itself surrounded 

by a different set of immediate neighbours, and the original pack will have become shuffled 

with its neighbours to the extent that it becomes unrecognizable. As in the well-established 

glass transition28, there is no objective cutoff that defines a jamming transition; rather, the 

transition is continuous, and jamming is said to occur when pack lifetime grows to exceed 

the laboratory measurement window, which we take here as 144 min.

In HBEC layers derived from non-asthmatic donors, χ4(Δt) revealed no peak for P less than 

20 cm H2O and time intervals less than 144 min (Fig. 1d); if a peak exists at all in these 

cases, it must be for substantially longer times. However, for P = 30 cm H2O, a well-defined 

peak in χ4(Δt) emerged, corresponding to faster-moving cooperative packs comprising 

roughly seven cells with an average pack lifetime of 42 min (Fig. 1d). Compressive stress of 
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30 cm H2O pressure was therefore sufficient to unjam the layer comprised of HBECs from 

non-asthmatic donors, whereas at lower compressive stresses the induced motions were far 

smaller, and structurally heterogenetic dynamics was not evident, as if the layer were frozen.

In cells from asthmatic donors, jamming is delayed

In submerged conditions, primary HBECs grow until confluence and, subsequently, in ALI 

culture they differentiate without further proliferation. These events recapitulate repair 

processes that are known to occur in vivo following epithelial injury or sloughing13. 

Roughly by day 3 in ALI culture the early phase of rapid proliferation was completed and 

the maturation and differentiation of the layer then continued; cell densities varied from 

well-to-well and from donor-to-donor, ranging roughly from 4,700 to 5,300 cells mm−2 and 

averaging 5,116 ± 233 cells mm−2, but did not increase systematically with ALI day (p = 

0.37). The cell layer increasingly exhibited a well-differentiated pseudostratified phenotype 

that included goblet cells and ciliated cells, apicobasal polarization, tight junctions, and an 

increasingly tight barrier function, as reflected in progressive increases of the trans-epithelial 

electrical resistance (TEER; ref. 29). As shown previously in HBECs (refs 29, 30), we also 

found on the same ALI day lower TEER in cells from asthmatic donors compared with non-

asthmatic donors (Supplementary Fig. 2a), suggesting defective barrier function in those 

asthmatic cells. In uncompressed layers, we then examined how these differences in barrier 

function might correspond with changes in cellular jamming. Whether from non-asthmatic 

or asthmatic donors, the MSD and χ4(Δt) showed that cells were highly motile and 

unjammed on early days in ALI culture (Fig. 2a,d and Supplementary Fig. 2b and 

Supplementary Movie 2). For example, on day 3 (Fig. 2g, triangles), HBECs from a non-

asthmatic donor showed peaks in χ4(Δt) indicative of faster-moving cooperative packs 

comprising roughly 20 cells with an average lifetime of 81 min, but by days 6 (Fig. 2g, 

circles) and 8 (Fig. 2g, asterisks), χ4 (Δt) showed no peak, thus indicating that the layer had 

jammed.

Importantly, in cells from asthmatic donors compared with those from non-asthmatic donors 

this transition to the jammed phase in ALI culture was substantially delayed. For example, 

cells from a representative non-asthmatic donor jammed by day 6 (Fig. 2a–c,g and 

Supplementary Movie 2), whereas cells from a representative asthmatic donor became 

jammed only by day 14 (Fig. 2d–f,h and Supplementary Movie 3). On days 10 (Fig. 2h, 

circles) and 6 (Fig. 2h, triangles), HBECs from an asthmatic donor showed peaks in χ4(Δt) 

indicative of faster-moving cooperative packs comprising approximately 26 and 12 cells 

with lifetimes of 72 and 90 min, respectively, but by day 14 (Fig. 2h, asterisks) showed no 

peaks in χ4(Δt), thus indicating that the layer had jammed. This delayed jamming transition 

correlated well with delayed increases of TEER in cells from asthmatic donors compared 

with cells from non-asthmatic donors. For example, in cells from a representative non-

asthmatic donor (Supplementary Fig. 2 and Supplementary Movie 2), TEER progressively 

increased to 370 Ω cm2 by day 6 as cells jammed, and continued to increase to 700 Ω cm2 

until day 14, indicating that the early jamming transition corresponded to a rapid increase of 

barrier integrity. However, in cells from a representative asthmatic donor, TEER reached 

only 421 Ω cm2 even on day 21 (Supplementary Fig. 2 and Supplementary Movie 3). 

Moreover, this delay in the spontaneous jamming transition was not donor specific, but was 
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consistently observed in cells obtained from multiple asthmatic donors compared with those 

from non-asthmatic donors acquired from the same source (The University of North 

Carolina, Methods; Supplementary Fig. 3). Whereas cells from all non-asthmatic donors (n 

= 5) became jammed between day 4 and 10 (Supplementary Fig. 3, blue circles), cells from 

asthmatic donors (n = 4) mostly remained unjammed as late as day 14 (Supplementary Fig. 

3, red circles)

Together, these systematic changes in cooperative cellular motions establish that HBEC 

layers in ALI culture express spatially heterogeneous dynamics of the kind that in inert 

systems has been taken as being the signature of matter that is close to a jamming 

transition23,26,27. As shown below, all the epithelial systems studied here existed in the 

vicinity of a jamming transition28. It is already known that asthmatic HBECs exhibit an 

aberrant injury response and compromised differentiation31, and here we demonstrate, 

further, that maturation of the airway epithelial layer coincides in time with the transition 

from an unjammed to a jammed condition, and that this transition is appreciably delayed in 

layers derived from asthmatic compared with non-asthmatic donors (Fig. 2).

Jamming and the adhesion paradox

In these collective cellular systems, what mechanical factors might promote cell jamming? 

Results from inert particulate matter32,33 suggest that plausible mechanisms would include 

increased mutual crowding and increased mutual adhesion4,9,16,17. As regards mutual 

cellular crowding34, we found no corresponding differences in the case of the marked 

hypermobility in cells from asthmatic versus non-asthmatic donors (Figs 1 and 2 and 

Supplementary Movies 1, 2 and 3). As regards mutual adhesion, we hypothesized that just as 

increased particle–particle adhesion promotes jamming in close-packed inert collective 

systems7, so too increased cell–cell adhesion would promote jamming in the confluent 

living cellular layer17. Superficially at least, such a notion would help to explain why 

maturing HBEC layers derived from non-asthmatic donors tend to jam more rapidly than do 

those from asthmatic donors (Fig. 2 and Supplementary Fig. 3), and would be consistent 

with the observations that HBEC layers from asthmatic compared with non-asthmatic 

donors exhibit decreased TEER, increased permeability30 and modestly diminished 

expression of E-cadherin35. We rejected this hypothesis, however, based on the 

experimental evidence described below.

In the confluent intact epithelial layer, tugging (tensile) stress transmitted across the cell–cell 

junction overwhelmingly dominates compressive stress4,36. As shown below, each cell tugs 

on immediate neighbours, but rarely pushes. Tugging stress exerted across the cell–cell 

junction can exist only to the extent that it is supported by cell–cell adhesive stress, there 

being no other mechanism to transmit tensile stress across a cell–cell junction. As such, we 

can logically equate tugging stress transmitted across the cell–cell junction to adhesive 

stress. To measure this adhesive stress within the intact cellular layer, we first used 

Monolayer Traction Microscopy to map local tractions that each cell exerts on its substrate, 

and then used Monolayer Stress Microscopy in the same layer to map intercellular stresses 

that each cell exerts on its immediate neighbours4,8,36 (Methods). We plated primary 

HBECs obtained from non-asthmatic donors or from asthmatic donors (Fig. 3) on 
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apolyacrylamide gel (Young’s modulus = 1.2 kPa, thickness = 100 µm); an important 

difference here compared with ALI culture conditions in Transwells described above is that 

plating HBECs on a gel precludes establishing an ALI culture. Hence, we resort to 

polyacrylamide only as a matter of necessity. Nonetheless, these HBECs showed 

cooperative fluctuations comparable to those described above for cells in ALI culture 

(Supplementary Fig. 4a,b). On day 3 after seeding, HBECs from three asthmatic donors 

showed peaks in χ4(Δt) indicative of cooperative packs comprising approximately 80, 20 

and 70 cells with lifetimes of 20, 30 and 40 min, respectively, but HBECs from non-

asthmatic donors showed no peaks in χ4(Δt), thus indicating that the layers had jammed 

(Supplementary Fig. 4c,d). In a representative layer derived from a non-asthmatic donor, 

tractions exerted by HBECs on the substrate fluctuated markedly in time and in space (Fig. 

3a) on a scale comparable to but somewhat larger than the size of a cell. The intercellular 

stress was heterogeneous and predominantly tensile (Fig. 3c); in all experimental repetitions, 

stress averaged over the entire cell field was variable but tensile (average tension: 315 ± 283 

Pa; n = 5). In the HBEC layers derived from asthmatic versus non-asthmatic donors, r.m.s. 

tractions exerted on the substrate were not statistically different, but tended to be larger (Fig. 

3b,g; 114 ± 88 Pa versus 24 ± 7 Pa; p = 0.22). However, intercellular tensions exerted by 

each cell on its neighbours were larger by a factor 1.5 to 5 (Fig. 3d,h; 792 ± 171 Pa versus 

257±82 Pa;p = 0.02). In both non-asthmatic and asthmatic HBECs, cells moved in packs, 

with regions of high tension (Fig. 3c,d) that spanned many cells (Fig. 3e,f), indicating that 

fluctuations in tension were cooperative over distances comparable to many cell diameters. 

To quantify the spatial extent of this stress cooperativity we measured the spatial 

autocorrelation function of tugging stress (tension), C(R), as a function of cell separation 

distance, R (Methods). In every case the tension correlation C(R) decayed over several 

hundred micrometres, but with faster spatial decay in cells derived from asthmatic versus 

non-asthmatic subjects (Fig. 3i; the correlation values C(R) at 14µm were 0.29 ±0.02 and 

0.48 ±0.03 in asthmatic and non-asthmatic HBEC layers, respectively; p = 0.003). HBECs 

derived from asthmatic versus non-asthmatic donors bear higher but more localized 

intercellular tension.

On the basis of these observations we cannot determine if buildup of intercellular adhesive 

stresses might promote unjamming or, conversely, if unjamming might promote build-up of 

intercellular adhesive stresses. We can say, however, that unjamming coexists with the 

amplification of local adhesive intercellular stresses, not with their attenuation (Fig. 3). This 

finding is counterintuitive, but is in concert nevertheless with comprehensive recent findings 

of others establishing by direct measurements that cell-cell adhesive stress is not attenuated 

by reducing the expression of E-cadherin37.

Cell jamming, mutual adhesion and perimeter

To shed light on this paradox we turned to the vertex model of the cellular layer18–20 

(Supplementary Equations 1 and 2 in the Supplementary Information), which represents the 

projection of each cell in two-dimensions by an irregular curved polygon with a shape index, 

 where P and A are the cell perimeter and projected area, respectively 

(Supplementary Fig. 7). The model proposes that the mechanical energy associated with 

each cell is a function of three contributions: an energy associated with cell area and 
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attributable to area compressibility; an energy associated with cell perimeter attributable to 

the stiffness and contractility of the apical actomyosin ring; and an energy associated with 

interfaces of cell–cell contact, including the effects of adhesion molecules such as cadherins 

and associated actomyosin interactions, which, together, are expressible as a net line 

tension14,20,38,39. Whereas the first two contributions are always positive, the line tension 

decreases with increasing cell–cell adhesion or decreasing actin–myosin contractility, and 

therefore can be positive or negative18,39. These physical effects compete to generate a 

preferred cell shape, characterized by its preferred perimeter, p0. In the vertex model cells 

can exchange places with immediate neighbours, but any such structural rearrangement 

requires changes in cell shapes. The change in energy required to complete such a structural 

rearrangement defines an energy barrier (Supplementary Fig. 7). Analysing this model, we 

find a scaling collapse in which the average energy barrier to structural rearrangements, Δε, 

exhibits two critical branches,f+ and f−, as a function of the parameter p0, with a crossover 

between them19 at a critical value of p0 denoted by 

Here r is the reciprocal of perimeter stiffness (Supplementary Information), β and Δ are 

critical scaling exponents. Importantly,  is a critical shape index derived from the 

analysis of critical scaling behaviour; it is a pure number that rests on no adjustable model 

parameters or curve fitting to data19 (Supplementary Information). As the argument of f± 

becomes small, one branch approaches a finite energy barrier height, thus implying solid-

like behaviour with a finite shear modulus of the cellular collective. However, the other 

branch approaches a vanishing energy-barrier height and a vanishing shear modulus, thus 

implying no barrier to rearrangements and, therefore, unjammed fluid-like behaviour of the 

cellular collective. The former branch is predicted to prevail when  and the latter 

when .

To test further the prediction that cells in late ALI days were approaching a jammed state, 

we measured the shape index p for cells in HBEC layers as a function of ALI day in non-

asthmatic and asthmatic HBECs (Methods); the median of p is denoted p ̄. Data indicate 

highly significant differences in p ̄ between ALI days, between cells derived from healthy 

versus asthmatic donors, and often between the observed value of p̄ and the critical value 

3.81 for jamming (Fig. 4 and Supplementary Fig. 5). However, as ALI day progressed, the 

structural parameter p̄ progressively approached  (Fig. 4a and Supplementary Fig. 5). Note 

that because p̄ is a measure of cellular structure, not cellular dynamics or intercellular 

stresses, it is independent of measurements of MSD, χ4 and cellular stresses. As such, the 

behaviour in Fig. 4 independently validates the critical behaviour as jamming is approached, 

and implies that cells in the jammed state are unable to surmount the mechanical energy 

barriers that increase as cell–cell adhesion decreases (Supplementary Fig. 7). Importantly, in 

asthmatic compared with non-asthmatic HBECs, the approach of p̄ to  is appreciably 

delayed. Moreover, after application of mechanical compressive stresses similar in 

magnitude to those expected during bronchospasm, the HBECs layer becomes unjammed 

and, as predicted from the vertex model, p̄ substantially exceeds  (Supplementary Fig. 6).
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Even for cells within the same epithelial layer, an important feature of the observed values 

of p for individual cells is their striking variability (Fig. 4 and Supplementary Fig. 5), which 

is much larger than measurement errors attributable to identification of cell boundaries 

derived from phase-contrast images. Geometry imposes some constraints on this variability; 

p, and therefore p̄, have no upper limit, but can never be smaller than the shape index for a 

circle, roughly 3.54. In the limit of vanishing active force fluctuations, as described here, the 

vertex model predicts the variability to be highly skewed19 and to increase away from the 

critical point. Interestingly, the former of these predictions is borne out by observations, but 

the latter is not (Supplementary Fig. 5). As such, we suspected that active force fluctuations 

may contribute to the observed variability.

Therefore, we next incorporated small but non-negligible active-force fluctuations into the 

vertex model (Supplementary Information). Not surprisingly, increased force fluctuations 

are seen to work in concert with increased adhesion to unjam the cellular collective, 

providing another path to unjamming (Supplementary Movie 4). Cells in jammed model 

tissues fluctuate but do not change places with immediate neighbours, whereas structural 

rearrangements occur frequently in the unjammed tissue. Interestingly, such rearrangements 

cease and the model tissue becomes jammed when the shape index p ̄ approaches the same 

critical value of 3.81, regardless of the magnitude of the active fluctuations. This finding 

would explain why active HBECs still jam at p̄ =3.81, and suggests that the observed 

variability in p near the critical point might be attributable to active-force fluctuations. If 

true, then it may be possible in the future to estimate the properties of these active forces by 

comparing shape fluctuations predicted by active-vertex behaviour versus experimental 

observations. Another open question is the extent to which p ̄ can be used as a structural 

order parameter in other tissue types; finding that p̄ is experimentally close to 3.81 is 

sufficient for an interpretation of a jammed state in our HBECs, which are isotropic in the 

plane. We expect that this analysis and this shape index may be useful for other isotropic 

tissues, but that it may fail in interesting and potentially predictable ways for anisotropic 

tissues, such as in the endothelial layer under shear flow40.

The vertex model is therefore seen to capture essential features of collective cellular 

behaviour, especially the existence and properties of a jamming transition. Specifically, in 

some conditions each cell becomes frozen in place relative to immediate neighbours, as if 

caged, whereas in other conditions each cell readily exchanges places with immediate 

neighbours and, as a result, the integrated tissue continuously remodels. Concerning rates of 

cellular motion and rearrangement, across the transition there exist qualitative as well as 

quantitative differences in rates of cellular motion and rearrangement. The vertex model also 

predicts precisely how cell rearrangements across this transition—as independently assessed 

by dynamic metrics of jamming—are marked by changes in a specific index of cell shape 

(Fig. 4). Nevertheless, interesting theoretical questions remain unanswered. In the vertex 

model, for example, propulsive stresses are not taken explicitly into account. Theories based 

directly on self-propelled particles, by contrast, show that propulsive forces help to unjam 

particulate systems3,41,42, but in such systems jamming is driven by mutual crowding rather 

than by changes in mutual adhesion or line tension. As such, they do not account for the 

changes of cell shape reported here, and they predict a transition that is therefore of a 
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fundamentally different kind (Supplementary Information)43. For that reason, addition of 

propulsive stresses to the vertex model would help to resolve the questions of the extent to 

which propulsive stresses might alter the nature of the transition or the centrality of the 

critical shape parameter,  (refs 20,39,44–46).

The emerging physical picture

It has been argued recently that a wide variety of living collective systems evolve 

spontaneously towards the neighbourhood of a critical phase transition47–49. In the particular 

case of the airway epithelial cellular layer, cellular motions (Figs 1 and 2), cellular forces 

(Fig. 3) and cellular shapes (Fig. 4) all provide strong evidence that a critical jamming 

transition occurs in these tissues. Our findings thereby suggest a new physical picture of 

airway epithelial remodelling, maturation and repair, in which epithelial cells migrate 

collectively in conditions close to a jamming transition17. When effective energy barriers are 

small or non-existent, the tissue is readily able to explore new configurations as the system 

remodels into new states, some of which might be adaptive and others maladaptive9,16,17. 

But, as energy barriers increase, the tissue becomes locked into a jammed state.

The bronchial epithelium is subject to repeated mechanical perturbations through the action 

of spontaneous breathing, and is subject to injury through exposure to harmful 

environmental pollutants, viruses, allergens, reactive oxygen species, or inflammatory 

mediators. Here we put forward the hypothesis that in non-asthmatic subjects these external 

factors can cause the cellular collective to unjam, explore various possible configurations, 

and then resettle into an adaptive quiescent, jammed, solid-like state; by so doing they effect 

self-repair in that remodelled state. Importantly, we have not yet determined the molecular 

mechanisms that impact the jamming transition, and we expect that there could be many. 

Nevertheless, the observations reported here establish a simple and easily measured 

structural index that quantifies the proximity of the layer to a jamming transition, and 

suggests that perhaps molecular mechanisms can be investigated and categorized by how 

they affect jamming.

Bronchial epithelial cells and their mechano-sensitivity are increasingly understood to play a 

major role in airway remodelling in asthma, but just how these events are linked to asthma 

pathobiology has remained unclear1,12,14,15,21,34,50–52. In cells from asthmatic compared 

with non-asthmatic donors in ALI culture, we show that the transition from a hypermobile, 

unjammed, fluid-like phase to a quiescent, jammed, solid-like phase is delayed substantially 

or disrupted altogether. Whether this delay arises from layer injury, immaturity, or 

dysmaturity, the prolonged or sustained hypermobile fluid-like phase defines an 

unanticipated maladaptive phenotype which, to our knowledge, comprises the first known 

instance—in any disease—where pathobiology is linked to the recent discovery of cellular 

jamming and unjamming4,17,53,54. It remains to be determined if these processes and their 

downstream effects might be favourably impacted by bronchodilators, corticosteroids, or 

other therapeutic interventions.

Park et al. Page 10

Nat Mater. Author manuscript; available in PMC 2015 December 01.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Methods

Methods and any associated references are available in the online version of the paper.

Methods

Culture of primary human bronchial epithelial cells

We used primary human bronchial epithelial cells (HBECs) derived from ten non-asthmatic 

and nine asthmatic donors from two distinct sources. Primary HBECs at passage 1 were 

purchased from Lonza or provided by S. Randell at the Marsico Lung Institute/Cystic 

Fibrosis Research Center at the University of North Carolina, Chapel Hill. Human lungs 

unsuitable for transplantation, including three cases of fatal asthma and one with asthma in 

the medical social history, were obtained under protocol #03–1396 approved by the 

University of North Carolina at Chapel Hill Biomedical Institutional Review Board. 

Informed consent was obtained from authorized representatives of all organ donors. All non-

asthmatic lungs were from non-smokers with no history of chronic lung disease. HBECs 

from all donors were cultured as previously described12. Passage 2 HBECs were plated at a 

density of 125,000 cells cm−2 on 12-Transwell plates with polyester membranes with 0.4 µm 

pores (Corning) coated with 50 ng ml−1 of type 1 rat tail collagen (BD Biosciences). Cells 

were cultured for five to seven days under submerged conditions until confluence. Once 

cells reached confluence, submerged condition was switched to the ALI condition by 

removing medium from the apical surface. The ALI culture was maintained for another 16–

18 days, unless described otherwise. By 10–11 days in ALI culture, cells from all donors 

produced a substantial amount of mucus at the apical surface.

Exposure of HBECs to compressive mechanical stress

On day 16 of ALI culture, when HBECs had matured into a well-differentiated phenotype of 

confluent bronchial epithelium similar to that existing in vivo13, we exposed cells to apical-

to-basal compressive stress spanning the physiologic ranges (0, 3, 10, 20, or 30 cm H2O) for 

three hours as previously described14,21,52, along with appropriate time-matched controls. 

For the comparison of cells from non-asthmatic versus asthmatic donors, we used cells on 

different ALI day, as indicated in Figs 2 and 4, during the course of ALI culture.

Measurement of cellular velocities in ALI culture

At 18 h after application of compressive stress, time-lapse phase-contrast images of HBECs 

in ALI culture were acquired on an inverted optical microscope (Leica, DMI 6000B) 

equipped with a heated (37°C), CO2-controlled (5%), humidified chamber. For each 

condition and each donor, two to three wells were imaged at six different positions in each 

well at 3-min intervals for 150 min. In each region comprising roughly 1,200–1,500 well-

differentiated cells, we mapped cellular motions within the pseudostratified layer in time and 

in space. Using phase-contrast images obtained in an apical focal plane, instantaneous 

cellular velocities were mapped by particle imaging velocimetry (PIV; refs 10,16) in which 

the cross-correlation window size was 64 × 64 pixels (pixel size of 0.44 µm). For each data 

set, the spatial distribution of cellular migration velocities was mapped based on a running 

boxcar average of instantaneous velocities throughout 150-min periods. Cellular trajectories 
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were computed by integration of the instantaneous velocity field obtained from the PIV, 

with interpolation of each displacement point to the nearest grid point. These trajectories 

closely approximate cellular motions4,8,10,16,55; to achieve accuracy comparable to 

individual cell tracking, we chose a grid spacing (3.5 µm) substantially smaller than the size 

of a single cell (15–20 µm).

Quantifying spatially heterogeneous dynamics of cellular motions

As a metric of cellular motions, mean square displacements (MSD) were computed as a 

function of time interval, Δt:

where ri (t) indicates the position of cell i at time t and 〈…〉 denotes the average over all 

time t, and all cells. The cellular self-diffusion coefficient defined as Ds = 

limΔt→∞MSD(Δt)/(4Δt) was then computed. To quantify the dynamics of cellular motions, 

we computed the self-overlap order parameter27:

where N is the number of cells and w = 1 if |ri (t + Δt) – ri (t)| <0.15dc (where dc is average 

cell diameter) and w = 0 otherwise. To quantify the size and lifetime of these cooperative 

fluctuations as proposed in ref. 24 proposed, spatially heterogeneous cellular dynamics in 

each sample were quantified by the four-point susceptibility χ4, approximated by

where N is the number of cells and 〈…〉 denotes the ensemble average taken over all 

sequences of images and all time, t. This measure approximates the four-point susceptibility, 

χ4(Δt), and possesses several useful attributes4,27, such as quantitative measures of the size 

of cooperatively moving cell packs and their associated rearrangement times.

Measurement of mechanical stresses within the HBEC layer

To measure mechanical stresses within the layer plane, we seeded HBECs on a 

polyacrylamide gel (Youngs modulus = 1.2 kPa, thickness = 100 µm). Gel preparation and 

seeding protocols were similar to published protocols4,10,54. Briefly, we deposited a 

polydimethyl siloxane (PDMS) membrane with a rectangular opening (8×8 mm) on the gel. 

After coating the gel with type 1 collagen (BD Biosciences), we seeded HBECs derived 

from non-asthmatic and asthmatic subjects. We then removed the PDMS membrane and 

allowed HBECs to grow to confluence for three days. Fluorescence and phase-contrast 

images were acquired at 10-min intervals for 2 h. Local gel displacements were quantified 

from an image of embedded fluorescent markers at each experimental time point and a 

reference image obtained after trypsinization. Local migration velocities and gel 
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displacements were obtained by the PIV method10,16 using a cross-correlation window size 

of 32 ×32 pixels (pixel size of 0.88 µm). To obtain substrate tractions, we used the numerical 

procedure from Fourier-Transform Traction Microscopy10,56. To obtain layer stresses, we 

used the numerical procedure from Monolayer Stress Microscopy4,36,54. Briefly, we 

computed a map of the tractions exerted by the cells on their substrate using gel 

displacements. From these tractions, we obtained the distribution of intercellular stresses 

within the cellular sheet. At each point in the cellular sheet, we computed the two principal 

stress components σmax and σmin and their corresponding, mutually perpendicular, principal 

orientations. We then computed the local tension within the cellular sheet, defined as σ̄ = 

(σmax + σmin )/2. The boundary edge of the patterned cellular sheet was taken to be zero 

stress4,36. After recovery of a stress map, an area near the edge (∼1 mm) was cropped from 

the map (Fig. 3a – d).

Calculation of the spatial autocorrelation function of tension

To quantify the spatial extent of stress cooperativity, we computed the spatial 

autocorrelation function of intercellular tension4:

where δσ̄ i is the local departure of the tension at position Ri from its spatial mean 〈σ̄〉, var(σ̄) 

is the variance of those departures, and the |Ri – Rj | =R denotes equality within a uniform 

bin width of 20 µm, within which there are N points.

Quantification of cell shapes in ALI culture

Time-lapse phase-contrast images of HBECs in ALI culture were acquired as described 

above. For each condition and donor, 130 cells were manually traced using ImageJ software 

(National Institutes of Health) from four different fields of view, and the shape index 

, where P and A are the cell perimeter and projected area, was computed for each 

traced cell. The median of this shape parameter p ̄ was computed. With a’bootstrap’ 

method57, the data were uniformly randomly sampled with replacement 105 times, from 

which the distribution of the resulting medians was used to determine confidence intervals 

and p-values.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. In a confluent layer of well-differentiated HBECs, compressive stress mimicking 
bronchospasm, as in asthmatic bronchospasm, provokes the transition from a solid-like jammed 
phase to a fluid-like unjammed phase

a, Speed maps (left panels) showed compressive stress at a magnitude of 30 cm H2O 

induced hypermobility of HBECs on ALI day 16. Within any optical field the migration 

speed was spatially heterogeneous but increased strongly with increasing P. Colour scale is 

shown at the bottom of the left panels. The size of vectors (right panels) increased with 

increasing P and showed large-scale dynamic heterogeneity. Vector scale is shown at the 

bottom of the right panels. b, As P was progressively increased to 30 cm H2O (red filled 
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circles), the mean square displacement, MSD, and the self-diffusion coefficient Ds increased 

(inset; Ds = limΔt→∞ MSD(Δt)/(4Δt)), and the system became strongly super-diffusive. 

Error bars in the inset represent the standard deviation. c, When P was less than 20 cm H2O, 

the relative overlap of each cell with its initial position was nearly perfect for time intervals 

(Δt) of less than 144 min, as quantified by the ensemble average, 〈Q(Δt)〉, close to 1. When 

P was 30 cm H2O (red filled circles), the overlap decreased to 0.17. d, The four-point 

susceptibility χ4(Δt) is approximated by N[〈Q(Δt)2〉 – 〈Q(Δt)〉2], where N is the number of 

cells. When movements are cooperative, χ4(Δt) exhibits a peak whose position corresponds 

roughly to pack lifetime, and whose magnitude corresponds roughly to pack size. When 

pressure was 30 cm H2O (red filled circles), χ4(Δt) showed a peak indicative of cooperative 

packs of faster-moving cells with a pack lifetime of 45 min and a pack size of approximately 

70 cells.
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Figure 2. In HBECs over the course of ALI culture, a spontaneous phase transition occurs from 
a hypermobile, unjammed, fluid-like phase into a quiescent, jammed, solid-like phase, which was 
delayed in cells from asthmatic donors

a–c, Speed maps (left panels) and vector maps (right panels) showed that HBECs from a 

representative non-asthmatic donor were hypermobile on an early ALI day (a; day 3), but 

spontaneously became quiescent on later ALI days (b, day 6; and c, day 8). Colour and 

vector scales are shown at the bottom of c. d–f, Speed maps (left panels) and vector maps 

(right panels) showed that HBECs from a representative asthmatic donor were hypermobile 

until later ALI days (d, day 6; and e, day 10) and became quiescent on ALI day 14 (f). 
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Colour and vector scales are shown at the bottom of f. g, Four-point susceptibility χ4(Δt) for 

HBECs from a non-asthmatic donor showed peaks indicative of cooperative packs of faster-

moving cells with a lifetime of 81 min with a corresponding pack size of approximately 20 

cells on ALI day 3 (blue triangles), whereas peak was undetectable either on ALI day 6 

(blue circles) or 8 (blue asterisks). Inset: MSD. h, Four-point susceptibility χ4(Δt) for 

HBECs from an asthmatic donor showed peaks indicative of cooperative packs of faster-

moving cells with lifetimes of 72 and 90 min with corresponding pack sizes of 

approximately 26 and 12 cells on ALI day 10 (red circles) and 6 (red triangles), respectively, 

whereas peak was undetectable on ALI day 14 (red asterisks). Inset: MSD.
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Figure 3. In HBECs derived from asthmatic donors compared with those from non-asthmatic 
donors, tractions and intercellular stresses are greater but the spatial correlation of tension 
decays faster

a,b, Colour maps of tractions exerted by HBECs derived from a non-asthmatic donor (a; N2 

in g–i) and an asthmatic donor (b; A2 in g–i) on their substrates. Colour scale is shown to 

the right of b. c,d, Colour maps of intercellular stresses exerted across cell–cell junctions for 

donors N2 (c) and A2 (d) show packs of high tension that span many cell diameters. Colour 

scale is shown to the right of d. e,f, Phase-contrast maps of HBEC layers on polyacrylamide 

gels for donors N2 (e) and A2 (f). g, In cells derived from asthmatic donors (red: A1, A2, 

A3) versus non-asthmatic donors (blue: N1, N2), root mean square (r.m.s.) tractions were 

not statistically different, but tended to be larger (r.m.s. traction: 114±88 Pa versus 24±7 Pa; 

variance: 7,821 versus 53; p = 0.22). h, Intercellular tensions were larger by a factor of 1.5 

to 5 in cells derived from asthmatic (red) versus non-asthmatic donors (blue; tension: 792 

±171 Pa versus 257±82 Pa; variance: 29,426 versus 6,787; p = 0.02). i, Spatial 

autocorrelation function, C(R), of tension as a function of cell separation distance, R, shows 

that the tension correlation decayed over several hundred micrometres in all cases, but 

extended to shorter distances in cells derived from asthmatic (red symbols) versus non-

asthmatic donors (blue symbols), thus confirming that intercellular stresses were larger in 

magnitude but more highly localized in the HBECs derived from asthmatic donors 
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compared with non-asthmatic donors (C(R) at 140 µm in asthmatic versus non-asthmatic 

HBEC layers: 0.29±0.02 versus 0.48±0.03; variance: 0.0004 versus 0.0009; p = 0.003). The 

r.m.s. tractions, intercellular tensions and spatial autocorrelation in g–i were averaged across 

three to five experimental repeats for each donor. Error bars in g,h represent the standard 

error.
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Figure 4. With increasing maturation of HBECs in ALI culture, cell perimeter, as expressed by 

the non-dimensional parameter p̄, decreases systematically towards the critical value  (3.81) 
predicted to occur at jamming by the vertex model together with the theory of critical scaling 
exponents

a, Over the course of maturation in ALI culture, HBECs from a representative non-asthmatic 

donor (Fig. 2 and Supplementary Movie 2) approached the jammed state, and the median 

ratio of perimeter to the square root area of cells systematically approached the jamming 

threshold . In HBECs from a representative asthmatic donor (Fig. 2 and Supplementary 

Movie 3), however, the approach of p ̄ to  was considerably delayed. Over time, and in 

both cases, p̄ systematically approached the jamming threshold of 3.81. Inset: p̄ for 

representative non-asthmatic and asthmatic donors plotted with the same axis of ALI days to 

allow comparison of the jamming transition timing. Boxplot shows median and quartiles. 

Whiskers are maximum and minimum data points. b, Simulated tissues with input 

parameters of target cell-shape index p0 =4.2, corresponding to a fluidized state (top panel), 

and p0 =3.813, corresponding to a jammed tissue (bottom panel).
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