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ABSTRACT Nowadays, vulnerability attacks occur frequently. Due to the information asymmetry between

attackers and defenders, vulnerabilities can be divided into known and unknown. Existing researches

mainly focus on the risk assessment of known vulnerabilities. However, unknown vulnerabilities are more

threatening and harder to detect. Therefore, unknown vulnerability risk assessment deserves the widespread

attention. To model the exploit process, directed graph models are applied to vulnerability risk assessment.

And security metrics are used to quantify the exploitability of vulnerabilities. In this paper, according to

the data source of nodes, related works of unknown vulnerability risk assessment based on directed graph

models are divided into two types. One is based on network-level data, the other is based on system-level

data. The former is to visualize the network status, while the latter is to reflect the running process of the

system. The concept and purpose of these directed graph models are given at first. Then, these models are

analyzed from three aspects, including advantages, flaws and solutions. After that, challenges and solutions

of unknown vulnerability risk assessment based on directed graph models are given. Meantime, security

metrics for unknown vulnerability risk assessment based on directed graph models are summarized and

classified. Finally, future work directions of unknown vulnerability risk assessment are discussed from the

perspective of techniques and application trends. Consequently, this paper can fill in the lack of current

survey on unknown vulnerability risk assessment based on directed graph models.

INDEX TERMS Directed graph model, risk assessment, security metric, unknown vulnerability.

I. INTRODUCTION

With the continuous expansion of network scale, current

network has the characteristics of large number of nodes,

complicated structure, diversified protocols and data enrich-

ment. Under this circumstance, network security is facing

unprecedented challenges. To improve the integrity and sta-

bility of the network, risk assessment is proposed to evaluate

the possible risks and provide a basis for network security.

Data from HACKMAGEDDON [1] shows that vulnerability

attack becomes one of the top 10 attack techniques. Directed

Graph Model (DGM) is a major method for vulnerability

risk assessment because it can visualize the network status

and provide decisions for network hardening [2]. Meantime,

DGM can reflect the running process of the system.

The associate editor coordinating the review of this manuscript and

approving it for publication was Ruilong Deng .

Vulnerability risk assessment based on directed graph

models needs to accomplish both qualitative and quantitative

tasks. For Known Vulnerability Risk Assessment (KVRA),

vulnerability information can be obtained by vulnerability

scanners, such as Nessus, Nmap, etc. Directed graphs can

be generated automatically by existing tools. Meantime, stan-

dards such as CommonVulnerability Scoring System (CVSS)

[3] can be directly used to quantify the exploitability of each

known vulnerability. However, KVRA does not consider the

situation that defenders may have less or no prior knowledge

on vulnerabilities.

To solve this problem, the technology of Unknown Vul-

nerability Risk Assessment (UVRA) is proposed and should

be given more attention because unknown (zero-day) vul-

nerabilities are harder to detect. Moreover, the threat and

loss caused by this kind of attack are far more serious than

known vulnerabilities. For UVRA, current researches often
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set a time point to divide known vulnerabilities into known

and unknown vulnerabilities because the latter is difficult to

obtain in reality [4], [5].

Due to the reason that KVRA only focuses on known

vulnerabilities, the major task of UVRA is to propose new

directed graphmodels or improve existing models to simulate

zero-day exploits. Meantime, for unknown vulnerabilities,

there is no existing standard to convert vulnerability scores.

Therefore, another major task of UVRA is to propose new

security metrics to quantify the exploitability of zero-day

vulnerabilities. In this paper, security metrics are divided

into standard and specific metrics based on their versatility.

Vulnerability risk assessment based on directed graph models

requires the quantification of nodes and paths. So, specific

metrics are further divided into three aspects, including node

metrics, path metrics and probabilistic metrics. And they will

be discussed later.

In this paper, according to the data source of nodes,

related works of UVRA based on directed graph models

are divided into two types. One is based on network-level

data, the other is based on system-level data. The concept

and purpose of these directed graph models are given at

first. Then, these models are analyzed from three aspects,

including advantages, flaws and solutions. Meantime, cor-

responding examples are given to facilitate understanding,

and security metrics for UVRA based on directed graph

models are summarized and classified. Next, challenges and

solutions of UVRA based on directed graphmodels are given.

At last, future work directions of unknown vulnerability risk

assessment are discussed from the perspective of techniques

and application trends. Directed graph models for UVRA

are often inspired or extended from the models for KVRA.

Therefore, if a directed graph model has related works on

KVRA, and this model or its extension can be applied to

UVRA, the development process of this model on KVRAwill

also be introduced.

The rest of this paper is organized as follows. In Sect. II,

a brief introduction of Unknown Vulnerability Risk Assess-

ment (UVRA) based on Directed Graph Model (DGM) is

given. In Sect. III, DGM for UVRA based on network-level

data is given. In Sect. IV, DGM for UVRA based on system-

level data is given. In Sect. V, challenges and solutions of

UVRA based on DGM are discussed. In Sect. VI, future

work directions of unknown vulnerability risk assessment

are discussed from the perspective of techniques and appli-

cation trends. Finally, the conclusion of this paper is given

in Sect. VII.

II. PRELIMINARY

Network security refers to systems that protect Internet con-

nections, such as hardware, software, and data from security

attacks [6]. Risk assessment is used to identify potential

hazards/threats, which often describes risks in a quantitative

manner and appropriately represents uncertainty [7]. The

ultimate goal of risk assessment is to improve the integrity

and stability of the network.

Vulnerability risk assessment is one of the techniques for

network security. As mentioned above, vulnerability risk

assessment can be divided into KVRA and UVRA. KVRA

only focuses on known vulnerabilities. On the basis of

KVRA,URVAconsiders the information asymmetry between

attackers and defenders, and it focuses on the risk caused

by zero-day exploits. The definitions of zero-day (unknown)

vulnerability and zero-day exploit are given as follows.

Zero-day Vulnerability [5]: The detail of a zero-day vul-

nerability is unknown except that its exploitation potentially

yields any privilege on the destination host and depends on

three assumptions:

• Network connection exists between source and destina-

tion host;

• Existing privilege on the source host;

• Destination host opens a remote access service.

Zero-day Exploit [5]: Given a network composed of a set

of hosts H, for each h ∈ H and x ∈ (serv(h) ∪ priv(h)),

a zero-day vulnerability is denoted by vx . A zero-day exploit

is the triple < vs, h, h
′ > where < h, h′ > ∈ conn and

s ∈ serv(h′), or < vp, h, h > where p ∈ priv(h). serv(h)

and priv(h) respectively denote the services and privileges of

hosts.

The commonalities of zero-day vulnerabilities must meet

one of the following conditions [8], [9]:

• Excluded by vulnerability scanners, such as Nessus,

Nmap, etc.;

• Attackers know it, however, vulnerability databases such

as National Vulnerability Database (NVD) have no

record about it.

In UVRA, directed graph models provide the qualitative

method to reflect network status. More specifically, they can

find out the possible associations between vulnerabilities in

a managed network. Moreover, they also help provide deci-

sions for security solutions and hardening [2]. The definition

of directed graph is given as follows.

Directed Graph: Directed graph G = (V ,E), where V

denotes the set of vertexes, E indicates the set of edges,

and each edge represents the correlation between vertexes.

|V | denotes the number of vertexes in G, where V =

{v1, v2, . . . , vn}. |E| indicates the number of edges in G,

where E = {(u, v)|u ∈ V , v ∈ V }.

Technologies for KVRA cannot meet the requirement of

zero-day vulnerabilities, which is mainly caused by three

reasons. First, for zero-day vulnerabilities, the information

owned by attackers and defenders is asymmetric. That is,

attackers often know the existence of a zero-day vulnerability

in advance. However, defenders will only know it after the

attack occurs. Second, directed graph models for KVRAmay

need appropriate changes to adapt UVRA. Third, existing

databases such as NVD ignore the impact of unknown net-

work attacks. Therefore, they cannot accurately evaluate the

security improvement in network hardening.

Nevertheless, directed graph models used in UVRA are

often the extension of models applied to KVRA. Meanwhile,

it has been mentioned in Sect. I that unknown vulnerabilities
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TABLE 1. Comparisons between network and system level data.

may be divided from the set of known vulnerabilities by

setting a time point. The benefit of this method is that the

information of these zero-day vulnerabilities can be used to

verify the correctness of risk assessment because they are

actually from known vulnerabilities. That is, UVRA based

on directed graph models is inspired from KVRA. Therefore,

if a directed graph model, which is used in KVRA at first, can

be applied to UVRA after appropriate extension, the develop-

ment process of both known and unknown vulnerability risk

assessment will be given to explain the changes in this model.

According to the data source of nodes, related works of

UVRA based on directed graph models are divided into two

types. One is based on network-level data, the other is based

on system-level data. Comparisons between these two data

sources are given in Table 1.

Network-level data such as vulnerability information can

be easily obtained from existing vulnerability databases.

However, system-level data such as system call comes from

the kernel of hosts and does not depend on network connec-

tivity. In other words, it is hard to build a unified database

for system-level data. Therefore, the acquisition process of

network-level data is easier than system-level data. For vul-

nerability databases such as NVD, there exists dedicated

communities or teams to provide support. However, system-

level data often comes from a managed network, which may

be only supported by the system administrator. In terms of

tamper protection, network-level data can be crawled and

parsed, so it is likely to be tampered maliciously. However,

system-level data comes from hosts, which is the underlying

data. Therefore, it is difficult to be tampered.

III. DGM FOR UVRA BASED ON NETWORK-LEVEL DATA

This section introduces directed graph models for Unknown

Vulnerability Risk Assessment (UVRA) whose nodes are

constructed by network-level data. Directed graph models

that rely on network-level data include attack graph, resource

graph and Bayesian network. Extended models of these

directed graphs will also be discussed.

The rest of this section is arranged as follows. First,

the concepts of these models are given, including the defi-

nitions and purposes. Next, the general process of applying

these directed graphs to UVRA is given, and related works of

these directed graph models will be analyzed. Finally, these

directed graph models will be discussed from three aspects,

including advantages, flaws and solutions.

A. ATTACK GRAPH (AG)

AG is used to find all attack paths that can reach the attack tar-

get by simulating the process of network attacks. In addition

FIGURE 1. An example of original AG.

to the network connectivity provided by default, to construct

an attack graph, the open services of each host in a managed

network are required. Network connectivity between hosts

belongs to the network layer of Open System Interconnection

(OSI) model. And most open services of hosts such as ftp and

http belong to the application layer of OSI model. Attackers

often use vulnerability scanners to obtain vulnerabilities from

these open services at first, and then use these vulnerabilities

to achieve attack intention.

According to the specific meaning of nodes and edges,

attack graphs are divided into state-based representation

attack graphs and logical attack graphs. In state-based rep-

resentation attack graphs (or called state-enumeration attack

graphs), each node denotes a state, and each edge indicates

the condition of state transition. In logical attack graphs, each

node represents an exploit, and each edge denotes the corre-

lation between exploits. Logical attack graphs are also called

exploit dependency attack graphs. Risk flow attack graph

and zero-day attack graph are the extended models of attack

graphs. They both belong to logical attack graphs. These

models will be analyzed in detail later. Here the definition

of attack graph is given below at first.

Attack Graph [10]: An attack graph G is a directed bipar-

tite graph G = (E ∪ C,Rr ∪ Ri), where E and C are the

sets of exploits and security conditions, and the edges Rr ⊆

C × E and Ri ⊆ E × C respectively denote require and

imply relations. More specifically, require relation denotes

that the exploit cannot be successful unless corresponding

condition is satisfied. And imply relation represents executing

the exploit will satisfy corresponding condition.

AG is first officially applied to vulnerability risk assess-

ment in [11], and an example of original AG is given in Fig. 1.

Each node denotes the state of a host, where Sg indicates the

goal state to reach. And Si shows the state before reaching the

goal, where i = 1, 2, . . . , n. Each edge represents the condi-

tion required for state transition. Although this work is the

basis of vulnerability risk assessment based on attack graph,

there still exists several problems, which are summarized as

follows:

• Poor scalability and analysis complexity;

• Ignorance of the dependency between vulnerabilities,

which may cause misleading results;

• The probability of measuring the success of a state tran-

sition depends on expert knowledge, in other words, this

quantitative method is subjective.

To solve the poor scalability and analysis complexity

of [11], in literature [12], the assumption of monotonicity is

used to obtain a concise, scalable graph-based representation,
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which indicates that the successful application of another

exploit will never invalid the precondition of a given exploit.

In literature [13], [14], the problem of ignoring the depen-

dency between vulnerabilities in [11] is solved by apply-

ing Bayesian network to attack graph. This model is called

Bayesian Attack Graph (BAG). However, the general quan-

tization method is not given in [13], [14], but it can be

founded in [10]. The example of KVRA based on BAG will

be introduced in Sect. III-C. The graph generation complexity

of method proposed in [14] is O(N 3), where N means the

number of branches. Marginal Probabilities (MP) computing

complexity is O(2n), where n indicates the number of vari-

ables. Genetic Algorithm (GA) complexity is O(GN logN ),

where G represents the number of generations, and N means

the population size. In literature [10], Common Vulnerabil-

ity Scoring System (CVSS) is introduced to quantify the

exploitability of vulnerabilities, which tries to solve the sub-

jectivity problem of quantification in [11].

Besides Bayesian network, in literature [15], another prob-

abilistic directed graph model, called Hidden Markov Model

(HMM), is used to construct probabilistic mapping between

network observation and attack status. The definition of

HMM is given after (2). The exploitability of each vulner-

ability (Dvi ) is calculated by (1):

Dvi = AV × AC × Au (1)

where AV denotes Attack Vector , AC indicates Attack

Complexity, and Au represents Authentication. AV , AC and

Au are the base metrics of CVSS. The probability distribution

matrix of state transition is given in (2):

A = {aij} =











Ij
∑N

p=1 Ip
, if Si

vi
→ Sj

0, otherwise

(2)

where Ij denotes the weight that state Si is converted to Sj via

exploiting vulnerability vi. The complexity of method in [15]

is O(N 2T ), where N indicates the length of hidden states set,

and T represents a constant.

Hidden Markov Model [15]: A HMM (λ) is a probabilis-

tic model of time series, which is determined by probability

matrix of state transition (A), probability matrix of observa-

tions (B), and probability vector of initial states (π). And it

can be defined as λ = (A,B, π), where

• Q = {q1, q2, . . . , qN }, V = {v1, v2, . . . , vM }, where

Q is a set of all possible states, V is a set of all possible

observations, N indicates the number of possible states,

and M represents the number of possible observations.

• I = {i1, i2, . . . , iT }, O = {o1, o2, . . . , oT }, where I is

a state sequence, O is the corresponding observation

sequence, and T represents the length of sequence.

• A is a probability matrix of state transition.

A = [aij]N×N , (3)

aij = P(it+1 = qj|it = qi), (4)

where i = 1, 2, . . . ,N, and j = 1, 2, . . . ,N. aij is

a probability of converting from state qi at time t to

state qj at time t + 1.

• B is a probability matrix of observations.

B = [bj(k)]N×M , (5)

bj(k) = P(ot = vk |it = qj), (6)

where k = 1, 2, . . . ,M, and j = 1, 2, . . . ,N. bj(k)

is a probability of generating observation vk under the

condition of state qj at time t.

• π is a probability vector of initial state.

π = (πi), (7)

πi = P(i1 = qi), (8)

where i = 1, 2, . . . ,N. πi is a probability of being in

state qi at time t = 1.

In literature [16], the problem of ignorance on the depen-

dency between vulnerabilities in [11] is also taken into con-

sideration. Different from the idea of applying probabilis-

tic directed graph models to attack graph, a model called

Risk Flow Attack Graph (RFAG) is proposed to model net-

work security by risk flow. The definition of RFAG is given

below.

Risk Flow Attack Graph [16]: A RFAG can be defined as

a tuple RFAG = {N ,E, τ, v,C,F}, where

• N = Ns ∪Ng ∪Nm stands for the set of nodes, where Ns
indicates the initial capabilities of attackers, Ng repre-

sents the ultimate goal an attacker aims to achieve, and

Nm denotes the multi-set of nodes ηi for which ∃ε1, ε2 ∈

E|[(ηi ∈ pre(ε1) ∧ (ηi ∈ post(ε2))], pre() and post()

respectively stand for the set of pre- and post-conditions.

Each element in the node set has a value of true or false.

• E ⊂ (Ns × Nm) → (Nm × Ng) is the set of edges, which

represents exploits in network.

• τ ⊆ N × N. An ordered pair (Npre,Npost ) ∈ τ if there

exists an exploit edge ε ∈ E that Npre ∈ pre(ε)∧Npost ∈

post(ε).

• v : E → Vuls is a mapping from an edge to its

corresponding vulnerability. In a RFAG, an edge ε ∈

E represents an exploit which is related to a certain

vulnerability Vul(ε). The metrics of the vulnerability will

help determine the risk capacity and risk flow on edge.

• C is the risk capacity set of constants defined on E.

The value of risk capacity c(ε) is given by the CVSS

base score of the vulnerability related to ε, that is,

c(ε) = Calc(Vul(ε)|Tmetric(AV ,AC,Au,C, I ,A)) and

c(ε) ∈ [0, 10]. According to CVSS specifications, c(ε)

defines the maximum risk brought to the system once the

correlated vulnerability is exploited.

• F is the risk flow set defined on E. Given an edge

ε ∈ E, fe ∈ F denotes the amount of risk flow on

edge ε, which indicates the actual risk when an exploit

take place.
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In this work, the attack payoff and effort values of each

path are calculated by (9) and (10):

payoff (p) =
∑

ε∈p

[1 − (1 − CI )(1 − II )(1 − AI )] (9)

where CI denotes Confidentiality Impact , II indicates

Integrity Impact , and AI represents Availability Impact . They

are also the base metrics of CVSS. p means an attack path.

effort(p) =
∑

ε∈p

[20(AV ∗ AC ∗ Au)] (10)

where AV denotes Attack Vector , AC indicates Attack

Complexity, and Au represents Authentication.

If risk assessment depends on two or more factors, com-

prehensive evaluation method can be used to obtain more

accurate result. First, a single-factor evaluation matrix should

be calculated, which denotes the fuzzy relationship between

risk factors and the final risk severity. Then, each factor will

be assigned a weight to form a vector A = {a1, a2, . . . , an},

where 0 < ai < 1, and
∑n

i=1 ai = 1. At last, the final

evaluation result B is computed by (11):

B = A× R (11)

where A is a weight vector, and R represents a single-factor

evaluation matrix. The complexity of [16] is O(Nch · Ns · P),

where Ns indicates source nodes, Nch means the children

nodes of Ns, and P represents paths.

The idea of attack graph with risk flow to model network

security is also applied to industrial Internet of Things (IoT).

In literature [17], attack graph is applied to industrial IoT to

solve two problems, including the quantification and finding

on attack paths. Graph generation complexity of this work

is O(nep · np), where nep represents the number of elements

in the set of attack instances, and np denotes the number of

elements of the reachable precursor property. Attack reward

IMP (or called attack payoff in [16]) is calculated by (12):

IMP(e) = 10.41 ∗ [1 − (1 − CI )(1 − II )(1 − AI )] (12)

where e represents the edge of an attack path. The equation

to compute attack cost EXP (or called attack effort in [16])

is the same as (10). Equation (13), (14) and (15) are used to

calculate the maximum loss flow:

lc(e) = IMP(e) − EXP(e) (13)

where lc(e) represents the difference between IMP(e) and

EXP(e).

dm(p) =
∑

p∈P

lf − (14)

where dm indicates the max flow loss in the preceding attack,

p denotes an attack path, and lf − represents the potential loss

to next node.

γ =
dm(p)

∑

e∈p lc(e)
(15)

FIGURE 2. KVAR based on AG.

FIGURE 3. An example of MP graph.

where γ represents the ratio of dm to the sum of loss capacity

in the preceding attack. The impact of time measurement

group and environment measurement group on quantization

is not taken into consideration in this work.

The process of Known Vulnerability Risk Assessment

(KVRA) based on Attack Graph (AG) can be summarized as

Fig. 2. Common vulnerability scanners used for vulnerability

risk assessment include Nessus, Nmap, etc. Detailed vulner-

ability information can be obtained from NVD.

In the early stage, attack graphs are generated by manual

construction. This method leads to high error rate and poor

scalability. In the previous studies [18], [19], Finite State

Machine (FSM) is widely used in risk assessment, which is

a kind of state-based representation attack graph. FSM can

represent the transition between a limited number of states.

However, it is not currently applied to unknown vulnerabili-

ties, so it is not analyzed in detail here.

Nowadays, some tools support generating attack graphs

automatically, such as MulVAL, TVA, Cauldron, NetSPA,

etc. They are compared in Table 2.Multiple Prerequisite (MP)

graph is a kind of attack graphs.MP graph contains three node

types, and an example of MP graph is shown in Fig. 3.

First, each state node indicates the access level of attacker

on a specific host. Second, each prerequisite node denotes

an accessibility group or a credential. Third, each vulner-

ability instance node represents a specific vulnerability on

a particular port. Each edge in MP graph indicates the

VOLUME 7, 2019 168205
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TABLE 2. Attack graph generation tools.

TABLE 3. Development process of KVRA based on AG.

relationship between nodes. These three node types are

respectively represented as circles, rectangles and triangles

in Fig. 3.

Comparisons of above works are shown in Table 3. From

Table 3, it can be discovered that in KVRA based on attack

graph, the elimination of cycles is often implemented by

the assumption of monotonicity. In addition, the applica-

tion of vulnerability risk assessment is gradually shifting

from traditional network to enterprise network and industrial

IoT. For example, the size of an enterprise network deter-

mines the complexity of assigning corresponding permissions

and services to each host. In this condition, the vulnera-

bilities generated by the improper configuration of hosts

may be exploited by attackers. Vulnerability risk assess-

ment based on attack graph can visualize the network con-

dition. Further, it provides the decision for optimal network

hardening.

Researches mentioned above make a great contribution

to network security, but they do not consider the attacks

caused by unknown vulnerabilities. To solve this problem,

an extended model of attack graph, called zero-day attack

graph [4], [5], is proposed to compose with both known and

zero-day exploits. Each path in this model is called zero-

day attack path. A zero-day attack path is a multi-step attack

path that includes one or more zero-day exploits [20]. The

definition of zero-day attack graph is given below.

Zero-day Attack Graph [5]: Given the set of exploits of

zero-day vulnerabilities E0 and their pre- and post-conditions

C0, the set of exploits of known vulnerabilities E1 and their

pre- and post-conditions C1, let E = E0 ∪ E1, C = C0 ∪ C1,

and extend pre(.) and post(.) to E → C (as the union of

relations). The directed graph G =< E ∪ C, {< x, y >: (y ∈

E ∧ x ∈ pre(y)) ∨ (x ∈ E ∧ y ∈ post(x))} > is called a

zero-day attack graph.

Next, the way to apply attack graph to UVRA will be pre-

sented. Then, related works on vulnerabilities risk assessment

based on AG will be given.

FIGURE 4. UVRA based on AG.

1) APPLYING AG TO UVRA

Unknown Vulnerability Risk Assessment (UVRA) based on

attack graph is shown in Fig. 4. Compared with Fig. 2,

it can be discovered that both KVRA and UVRA based on

AG contain three steps, including information acquisition,

graph generation, and vulnerability quantification.

The first step can be implemented with security tools,

including vulnerability scanners like Nessus, and security

sensors like Intrusion Detection System (IDS)/Intrusion Pre-

vention System (IPS). The purpose of this step is to obtain

necessary information as input to construct attack graph,

including services and privileges of hosts, connectivity and

vulnerability information.

Different from KVRA, the second step of UVRA based

on AG is setting a time point to divide known vulnerabili-

ties into known vulnerabilities and zero-day vulnerabilities

because zero-day vulnerabilities are difficult to obtain in

reality [4], [5]. For example, if the time point is set

as 2018/12/31, vulnerabilities before 2018/12/31 are used

as known vulnerabilities, and vulnerabilities after this time
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TABLE 4. Previous works on the classification of security metrics.

point are regarded as zero-day vulnerabilities. Except for this

method, in literature [21], suspicious activities whose signa-

tures are not defined previously in Snort IDS/IPS are regarded

as zero-day exploits. The former focuses on software or web

applications, and the latter focuses on network packets.

The second difference between KVRA and UVRA based

on AG is that for unknown vulnerabilities, there is no existing

standard to convert vulnerability scores. Zero-day vulnerabil-

ities are hard to measure because the process of discovering

and exploiting vulnerabilities is less predictable [4]. To solve

this problem, novel network security metrics are proposed,

such as k-zero day safety [4], [5]. Further analysis of these

related works will be introduced later.

In the domain of vulnerability risk assessment, security

metrics are important because they are used to quantify the

exploitability of vulnerabilities.

For known vulnerabilities, two kinds of scores need to

be calculated, including individual score and cumulative

score [22], [23]. Individual score represents intrinsic prob-

ability of an exploit being executed. It can be obtained by

existing standards, such as CVSS, Common Configuration

Scoring System (CCSS) [24] and Common Weakness Scor-

ing System (CWSS) [25]. CVSS score is used in most current

studies to measure the probability that a vulnerability is suc-

cessfully exploited [10], [17], [26], [27].

Besides CVSS, in literature [28], a metric suite for attack

graph is proposed, which is given in Table 4. In literature [29],

to overcome shortcomings of path metrics, a complimentary

suite of attack graph-based security metrics is proposed,

including the Shortest Path (SP), the Number of Paths (NP)

and the Mean of Path Lengths (MPL). In literature [30],

model-based quantitative network security metrics based on

attack graph are divided into five aspects. In literature [31],

a systematic classification of existing security metrics based

on network reachability information is proposed. Although

these works make the contribution on the classification of

security metrics, which are summarized in Table 4, the clas-

sification of security metrics for UVRA is still a blank.

Therefore, the supplementary work is made in our paper,

which can be seen in Table 7.

In literature [32], the calculation formulas of topol-

ogy metrics (connectivity, cycle, and depth) are given

below:

Connectivity metric = 10(1 −
w− 1

d − 1
) (16)

where w is the number of subgraphs in the graph, and d

indicates the total number of nodes in the graph.

Cycles metric = 10(1 −
c− 1

d − 1
) (17)

where c represents the number of cycles in the graph.

Depth metric =
10

wd

w
∑

i

ci(1 −
si

ci − 1
) (18)

where ci means the number of nodes in different subgraphs,

and si denotes the depth of each subgraph. In order to consider

these three metrics comprehensively, the combined score is

given as follows:

Combined score = 10

√

∑n
i=1(si)

2

∑

102
(19)

where n is the number of considered metrics, and si indicates

the individual score of each metric.

In literature [10], a probabilistic metric called cumu-

lative score is first proposed. The relationship between

exploits is first divided into two categories, including con-

junctive and disjunctive [22]. After that, hybrid relationship

is also taken into consideration. The definition of cumulative

score is given below, which denotes the overall probabil-

ity that an attacker can successfully reach and execute an

exploit.

Cumulative Score [10]: Given an acyclic attack graph

G(E ∪ C,Rr ∪ Ri), and any individual score assignment

function p : E ∪ C → [0, 1], the cumulative score function

P : E ∪ C → [0, 1] is defined as:
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FIGURE 5. Network configuration and AG.

• P(e) = p(e) ·
∏

c∈Rr (e)
P(c)

• P(c) = p(c), if Ri(c) = φ; otherwise, P(c) = p(c) ·

⊕e∈Ri(c)P(e)where the operator⊕ is recursively defined

as ⊕P(e) = P(e) for any e ∈ E and ⊕(S1 ∪ S2) =

⊕S1 +⊕S2 −⊕S1 · ⊕S2 for any disjoint and non-empty

sets S1 ⊆ E and S2 ⊆ E.

An example of network configuration and Attack Graph

(AG) is shown in Fig. 5. Both host1 and host2 provide

secure shell (ssh) service, and they are in the intranet. host0

represents an attacker who wants to penetrate into the intranet

from the external network, so as to obtain the root privilege

of host2. In this attack graph, ovals represent conditions,

and rectangles denote exploits. Each condition represents a

system state, and each exploit between hosts is reflected as a

transition between system states. The decimals in rectangles,

which are calculated by the base metrics of CVSS, represent

the individual scores (or called exploitability) of vulnera-

bilities. Decimals next to rectangles denote the cumulative

score of vulnerabilities. In Fig. 5, the exploitability of ssh and

local_bof are respectively 0.4 and 0.1, where bof represents

buffer overflow. The cumulative scores of node ssh(1, 2) and

user(2) can be calculated as follows:

• P(ssh(1, 2)) = P(ssh(0, 1) × p(user(1)) = 0.4 × 0.4 =

0.16

• P(user(2)) = P(ssh(1, 2))+P(ssh(0, 2))−P(ssh(1, 2))×

P(ssh(0, 2)) = 0.16 + 0.4 − 0.16 × 0.4 = 0.05

However, for zero-day vulnerabilities, there is no exist-

ing standard to convert them into scores. They are hard to

measure because the process of discovering and exploiting

vulnerabilities is less predictable [4]. To solve this problem,

a novel network security metric called k-zero day safety is

proposed [4], [5]. The definition of k-zero day safety is given

below.

k-Zero Day Safety [4]: Given the set of zero-day exploits

E0, the definition can be that:

• a relation≡v⊆ E0×E0 such that e ≡v e
′ indicates either

e and e′ involve the same zero-day vulnerability, or e =<

vs, h1, h2 > and e′ =< vp, h2, h2 > are true, and

exploiting s yields p. e and e′ are said distinct if e ≡/ v e
′;

FIGURE 6. Network configuration and zero-day attack graph.

• a function k0d(.) : 2E0 × 2E0 → [0, ∞] as

k0d(F,F ′) = max({|F ′′| : F ′′ ⊆ (F△F ′),

(∀e1,e2 ∈ F ′′)(e1 ≡/ v e2)}),

where |F ′′| denotes the cardinality, max(.) indicates the

maximum value, and F△F ′ represents the symmetric

difference (F \ F ′) ∪ (F ′ \ F); and

• for an asset a, k = k0d(a) is used for min({k0d(q ∩

E0, φ) : q ∈ seq(a)}), where min(.) denotes the minimum

value. For any k ′ ∈ [0, k), a is regarded as k ′-zero day

safe.

This metric can be regarded as a node metric. The reason

is that the core of this metric is to calculate the number of

vulnerabilities (that is, nodes in the zero-day attack graph),

which are required for compromising a network asset. For

example, Fig. 6 shows network configuration and corre-

sponding zero-day attack graph.

In Fig. 6, host2 and host3 are located in the intranet,

and they only provide ssh service. host1 is located in the

demilitarized zone (that is, the space between two firewalls).

The firewall1 allows traffic to and from host1. The firewall2

allows traffic to and from host2, but only allows connections

from host3. host0 is an attacker in the external network who

tries to obtain the root privilege of host3. For known vul-

nerabilities, both vulnerability scanner and attack graph will

lead to the same conclusion that the network configuration

in Fig. 6 is secure [20]. However, for zero-day vulnerabilities,

there are two attack paths for attackers to reach the target (that

is, the root privilege of host3) in Fig. 6, which are described

by red dotted lines. One is obtaining the user privilege of

host1 at first, and then the attacker uses the host2 as a Jump

Server to indirectly attack host3 by ssh service. The other

is that the attacker uses the ssh service of host2 and host3

to directly attack host3 after achieving the user privilege of

host1.

Here the network asset A = {< root, 3 >}. The left

attack path contains three distinct zero-day vulnerabilities.
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According to the definition, exploits of < vssh, 0, 1 >, <

vssh, 1, 2 > and < vssh, 2, 3 > in the right attack path will

be counted as one exploit because they involve the same

zero-day vulnerability (ssh). So, it can be discovered that

k0d(A) = 2, where k0d() is the function to calculate k-zero

day safety.

Although this metric makes a great contribution to evalu-

ating zero-day attacks, it has following problems at the same

time:

• This metric simply calculates the number of vulnerabil-

ities required for destroying network assets. Meantime,

the correlation between vulnerabilities and the impact

of known vulnerabilities on UVRA are not taken into

consideration;

• It is difficult to determine exact value of k;

• It assumes the existence of a complete attack graph,

however, this assumption is difficult to establish in large

networks [20].

In order to solve these problems, existing researches

mainly focus on two aspects:

• Improving the calculation ability of k-zero day safety;

• Improving the metric system of k-zero day safety.

In literature [20], the exact value of k is obtained by calcu-

lating the lower bound and upper bound of k . Corresponding

processes to calculate these two bounds are respectively sum-

marized as Fig. 7 and Fig. 8.

In Fig. 7, Ci denotes the set of initial conditions, E
∗ indi-

cates the set of known and zero-day exploits, l is an integer

representing the desired lower bound of k , cg means the goal

condition, C denotes the set of conditions, E indicates the

set of exploits, Cnew represents the set of newly satisfied

conditions, π (c) means the mapping which associates each

condition with a set of attack paths leading to it, e ∈ E ,

c represents the pre- or post-condition of an exploit, and G

denotes the partial zero-day attack graph.

In Fig. 8, Rr and Ri respectively denote require and imply

relations. More specifically, require relation denotes that the

exploit cannot be successful unless corresponding condi-

tion is satisfied. And imply relation represents executing the

exploit will satisfy corresponding condition. zdu(c) indicates

the number of required exploits for reaching initial condi-

tions, zdu(e) means the number of distinct zero-day vulner-

abilities in an edge, and u represents the upper bound of k .

The efficiency of graph generation is improved by using

on-demand method and reusing the partial attack graphs that

have been generated in the decision process. This method

can apply to large networks because it spends less than 20s

to build an attack graph of nearly 90,000 nodes. Processing

time and percentage of nodes are used as performancemetrics

of algorithms. The shortcoming is that they all focus on

improving the computational efficiency of k-zero day safety,

but no one considers the correlation between vulnerabilities.

The future development of this model is to improve the

approximate algorithm for ranking the partial solutions.

Compared with [20], in literature [4], a new heuristic

algorithm, which computes k-zero day safety as the shortest

FIGURE 7. Obtaining the lower bound of k .

FIGURE 8. Obtaining the upper bound of k .

path in a directed acyclic graph, is proposed for efficiently

computing the metrics in special cases. This work relies on

the assumption that both conjunctive relationship between

conditions and the similarity between zero-day exploits are

mostly limited to each host or each small group of hosts. The

problem of determining the value of k is converted to finding

the shortest path in the set of zero-day exploits.

To improve the security metric system of zero-day vulner-

ability, in literature [33], network diversity is modeled as a

security metric so as to evaluate the robustness of networks

against potential zero-day attacks.
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In literature [34], tolerance is defined as a metric to cap-

ture the required zero-day attack effort. However, they only

consider individual zero-day weakness under different targets

and ignore the multiple zero-day exploits.

Inspired from k-zero day safety, in literature [9], three

security metrics are proposed to improve the metric system of

k-zero day safety, including k-zero day safety of a zero-day

vulnerability, length of the k-zero day safety, and exploitabil-

ity of k-zero day safety. Length of the k-zero day safety can

be divided into node metrics because it indicates the zero-

day attack path which includes the minimum number of zero-

day vulnerabilities. k-zero day safety can be divided into

probabilistic metrics because it represents the exploitability

level of each attack path. In this work, the impact of known

vulnerabilities on evaluating the risk of zero-day attacks is

taken into consideration, and the risk of zero-day attacks can

be differentiated. The formulas used in risk assessment are as

follows:

Exploit(Path) =
1

PL
×

PL
∑

i=1

Exp(Vi) (20)

where Exp(Vi) denotes the exploitability of vulnerability Vi,

and PL represents the length of the k-zero day safety path.

Equation (20) means the exploitability of each attack path

which leads to the attack goal.

Prob(vul) =
1

PL
×

1

KZS
×
Exploit(KPath)

10
(21)

whereKZS indicates the k-zero day safety, andKPath denotes

k-zero day safety path. Equation (21) represents the probabil-

ity of exploiting each vulnerability.

Risk(Vi) = Probability(Vi) × Impact(Vi). (22)

In (22), Impact(Vi) = 6.4. Exploitability of each zero-day

vulnerability is set as 10. Therefore, the shortcoming of their

work is that the exploitability and impact of each zero-day

vulnerability are set to a constant value, which cannot reflect

the actual situation well.

2) DISCUSSION ON AG FROM ADVANTAGES, FLAWS AND

SOLUTIONS

Attack graph is a powerful tool to access network security

and provide decision for network hardening. It can be used to

identify undesirable activities caused by attackers.Meantime,

it can also help security administrators understand whether

given critical resources can be compromised through multi-

step attacks. The advantage of attack graph is that it can be

automatically generated by tools.

However, as a qualitative model, attack graph also has

some flaws. First, attack graph only reflects whether a man-

aged network is secure or not, it cannot quantify the threat

level of network. Second, attack graph may include cycles,

which is inconvenient to use security metrics to quantify

later. Third, attack graph cannot deal with the uncertainty of

network attacks.

Zero-day attack graph fixes the flaw that only considering

known exploits. In this model, both known and zero-day

exploits are considered. However, in terms of complexity,

zero-day attack graph is comparable to traditional attack

graph. The reason is that the number of added zero-day

exploits (which depends on the number of remote services

and privileges) on each host should be comparable to the

number of known vulnerabilities [4]. That is, vulnerabilities

depend on the size of the network. As the network density

becomes larger, there is a greater likelihood of vulnerabilities

in the network [35].

The assumption of monotonicity is often used to eliminate

the cycles in attack graphs. Besides this method, in litera-

ture [23], cycles are divided into three types. The first type

is that cycles can be removed directly. The second type is that

cycles can be broken. The third type is that cycles can neither

be removed or broken. This method is complex in practice.

To address the uncertainty of network attacks, Bayesian

network is often applied to constructing attack graph, and the

corresponding content will be given in Sect. III-C.

B. RESOURCE GRAPH (RG)

Resource Graph (RG) is used to reflect the strategy that may

be chosen by attackers to reach the final condition (that is,

a critical network asset) with the least effort. Each node

in resource graph indicates a zero-day exploit [33]. Each

edge represents the dependency between zero-day exploits.

Resource graph focuses on remote access services, such as

http, rsh and ssh. These services all come from the application

layer of OSI model. The definition of resource graph is given

below.

Resource Graph [33]: Given a network composed of a set

of hosts H, a set of resources R with the resource mapping

res(.) : H → 2R, a set of zero-day exploits E = {<

r, hs, hd > |hs ∈ H , hd ∈ H , r ∈ res(hd )} and the collection

of their pre- and post-conditions C, a resource graph is a

directed graph G(E ∪ C,Rr ∪ Ri), where Rr ⊆ C × E

and Ri ⊆ E × C are the pre- and post-condition relations

respectively.

1) APPLYING RG TO UVRA

Resource graph is similar to attack graph in information

acquisition and graph generation. The reason is that resource

graph is syntactically equivalent to attack graph, but resource

graph aims at identifying zero-day attacks rather than known

vulnerabilities. Network diversity is used to evaluate risk

assessment, which is inspired by bio-diversity. Network

diversity can be regarded as a kind of node metrics, which

is the same as k-zero day safety. However, different from k-

zero day safety, network diversity focuses on remote access

resources.

It is a common belief that greater diversity in software

and services may help to improve the network security [4].

Network diversity is modeled as a security metric for eval-

uating the robustness of networks against potential zero-day

attacks [33].
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FIGURE 9. Network configuration and resource graph.

An example of network configuration and resource graph

is given in Fig. 9 [33]. In Fig. 9, host0 is an attacker in

the external network and aims to own the user privilege of

host3, host1 and host2 provide rsh service, host3 provides

ssh service, firewall1 allows the access to host1 but blocks

to host2, firewall2 allows the access from host1 or host2 to

host3. Fig. 9 shows three attack paths for attacker to obtain

the user privilege of host3, which are described by dotted

lines.

A networkG consists of a set of hostsH = {h1, h2, . . . , hn}

and resource types R = {r1, r2, . . . , rm}. The equations used

for computing metrics (d1, d2, d3) [33] are given as follows:

r(G) =
1

∏n
1 pi

pi
, d1 =

r(G)

t
(23)

where t =
∑n

i=1 |res(hi)|, and pj =
|{hi:rj∈res(hi)}|

t
(1 ≤

i ≤ n, 1 ≤ j ≤ m). r(G) denotes the effective richness of

resources in network, and d1 computes the number of distinct

resources inside a network and applies similarity-sensitive

bio-diversity metric to take similarity between different

resource types into consideration. For example, in Fig. 9,

H = {host0, host1, host2, host3} and R = {firewall, rsh, ssh},

t = 2+2+2+1 = 7, and p2 = 2+2+2+0
7

. Theway to calculate

{p1, p3} is the same as p2. In this way, d1 can be calculated.

d2 =
minq∈seq(cg)|R(q)|

minq′∈seq(cg)|q
′|

(24)

whereC represents the set of security conditions, cg indicates

the goal condition and cg ∈ C , for each c ∈ C and q ∈ seq(c),

R(q) denotes {r : r ∈ R, r appears in q}, and min(.) returns

the minimum value in a set. This metric is based on the least

attack effort required for compromising important resources,

and considers the causal relationship between resources. For

example, in Fig. 9, the red dotted line contains three exploits,

but two exploits contain the same resource (rsh). So d2 of this

attack path is 2
3
.

d3 =
p′

p
(25)

where p represents the conditional probability of cg being

satisfied if all initial conditions are true, and p′ denotes the

minimum value of p when some edges are deleted from Rs

FIGURE 10. The impact of reusing an exploit.

(that is, edges from resources types to resource instances).

This metric reflects the average attack effort required for

compromising critical assets. For example, Fig. 10 shows the

impact of reusing an exploit (http), which is described by

the dotted lines on the right-hand side of Fig. 10. In Fig. 10,

d3 = 0.0049
0.056

.

Except for external factors, such as lack of data sets that

can represent real network, the main limitations of their work

are given as follows:

• Their proposedmodel relies on the availability and accu-

racy of inputs;

• Their work focuses on modeling diversity without con-

sidering the impact of other factors, such as the cost on

maintenance;

• They assume that the probabilities of all assets on con-

taining zero-day vulnerabilities are the same.

Based on this work, a new probabilistic model [36] is

proposed for addressing the limitations of original d3 metric.

For example, invalid result will return during simulation,

and once exploits are considered to be partially ordered,

the attack likelihood will not necessarily be the lowest when

all resources are assumed to be distinct [33]. The core idea

of this new probabilistic model is to add a new parent node

to exploits with the same resource type. An example of

redesigned model is shown in Fig. 11. The left-hand side

of Fig. 11 is from Fig. 10. The right-hand side of Fig. 11

represents the idea of resigning model for d3. The limitation

of their work is the high complexity of analyzing a resource

graph.

In order to model different resources and the causal rela-

tionship among resources, the concept of resource graph

is extended, and a labeled directed graph called extended

resource graph is proposed [37]. The definition of extended

resource graph is given as follows.

Extended Resource Graph [37]: Given a network com-

posed of

• a set of hosts H,

• a set of services S, with the service mapping serv(.) :

H → 2S ,
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FIGURE 11. An example of redesigned model.

• the collection of service pools SP = {sp(s)|s ∈ S},

• and the labelling function v(.) : E → SP, which

satisfies ∀hs ∈ S, ∀h′
s ∈ S, v(< s, hs, hd >) = v(<

s, h′
s, hd >) (meaning all exploits with common service

and destination host must be associated with the same

service instance)

Let E be the set of zero-day exploits {< s, hs, hd > |hs ∈

H , hd ∈ H , s ∈ serv(hd )}, and Rr ⊆ C × E and Ri ⊆ E × C

be the collection of pre and post-conditions in C. The labeled

directed graph< G(E∪C,Rr∪Ri), v > is called the extended

resource graph.

In an extended resource graph, each pair represents a

security-related condition, and each row below the rectangle

indicates different hardening option, which is available for

the condition. Each exploit node includes the information of

a service running on the destination host and source host.

The limitation of their work is that all service instances

are assumed to have the same probability to be exploited.

Therefore, they improve this work by considering the uneven

distribution of services along an attack path [38].

2) DISCUSSION ON RG FROM ADVANTAGES, FLAWS AND

SOLUTIONS

Resource Graph (RG) and traditional AG are closely

related. The reason is that RG is syntactically equivalent

to AG. For this reason, RG can be constructed by exist-

ing tools in Table 2, which are originally used to construct

traditional AG.

However, the limitations of resource graph are the exis-

tence of cycles and high complexity of analyzing a resource

graph, which are the same as traditional attack graph and

zero-day attack graph. The solutions of these two problems

can refer to the methods mentioned in attack graph. Mean-

time, this model only focuses on remote access resources

(such as services or applications that are reachable from other

hosts in the network), and the availability and accuracy of

inputs are required during the process of forming a resource

graph.

In the future, initial exploits of client-side applications,

insider attacks and user mistakes should be considered when

modeling resource graph.

C. BAYESIAN NETWORK (BN)

Bayesian Network (BN) is a Directed Acyclic Graph (DAG),

which is also called belief network. Nodes represent random

variables {x1, x2, . . . , xn}, and edges denote conditional inde-

pendences between variables. Each node has a corresponding

Conditional Probability Table (CPT), which is used to quan-

tify the effect of the parent node on child node. Data source

of nodes in BN comes from software vulnerabilities and open

services. They belong to the application layer of OSI model.

The model constructed by applying the BN to attack graph

is called Bayesian Attack Graph (BAG). Detailed analysis of

this model will be carried out with an example. Meantime,

the extended models of BN, including Dynamic Bayesian

Networks (DBN), Bayesian Decision Network (BDN), and

Fuzzy Probability Bayesian Network (FPBN) will also be

analyzed in detail when introducing the development process

of BN. Here the definition of BN is given below at first.

Bayesian Network [39]: Given a set of random variables

X = {x1, x2, . . . , xn} in a Bayesian network, the joint prob-

ability of all variables is given by a chain rule with the

following equation:

P(x1, x2, . . . , xn) =

n
∏

i=1

P(xi|Pa(xi)), (26)

where Pa(xi) indicates that the specific value of the variable

is in the parent node xi. Bayesian network, also known as

Bayesian belief network, is based on Bayes theory. The theo-

rem equation is given as follows:

P(X | Y ) =
P(X )P(Y | X )

P(Y )
, (27)

where P(X | Y ) represents the posterior probability, P(X )

denotes the prior probability, P(Y | X ) means the probability

that event Y occurs under the condition of event X, and

P(Y ) represents the probability that event Y occurs without

condition limitation.

In literature [40], to provide a more compact representation

of attack paths, the concept of Bayesian Attack Graph (BAG)

is first proposed and applied to probabilistic analysis of risk

assessment. However, the formal definition of BAG is not

given, which can be found in [14]. Vulnerability risk assess-

ment based on BAG is shown in Fig. 12. And the definition

of BAG is given after Fig. 12. This model depends on two

assumptions. First, given a node Xi, each parent node of Xi
can independently influence the state of Xi. Second, once

reaching a compromised state, an attacker will never need

backtrack (that is, the assumption of monotonicity mentioned

in attack graph). The local conditional probability distribution

at node i is computed by (28):

p(xi = 1|pai) = 1 −
∏

j

(1 − p(xi = 1|xj)) (28)

where xi = 1 is a true state, which denotes a host with a

compromised state, and pai indicates the parent node of xi
in BAG.

Bayesian Attack Graph [14]: Let S be a set of attributes

and A be the set of atomic attacks defined on S. A Bayesian

Attack Graph is a tuple BAG = (S, τ, ε,P), where
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FIGURE 12. Vulnerability risk assessment based on BAG.

• S = Ninternal ∪ Nexternal ∪ Nterminal . Nexternal denotes

the set of attributes Si for which ∄a ∈ A|Si =

post(a). Ninternal denotes the set of attributes Sj for which

∃a1, a2 ∈ A|[Sj = pre(a1) and Sj = post(a2)]. Nterminal
denotes the set of attributes Sk for which ∄a ∈ A|Sk =

pre(a).

• τ ⊆ S × S. An ordered pair (Spre, Spost ) ∈ τ if

Spre 7→ Spost ∈ A. Further, for Si ∈ S, the set Pa[Si] =

Sj ∈ S|(Sj, Si) ∈ τ is called the parent set of Si.

• ε is a set of decomposition tuples of the form < Sj, dj >

defined for all Sj ∈ Ninternal ∪ Nterminal and dj ∈

{AND,OR}. dj is AND if Sj = 1 ⇒ ∀Si ∈ Pa[Sj], Si = 1.

dj is OR if Sj = 1 ⇒ ∃Si ∈ Pa[Sj], Si = 1.

• P is a set of discrete conditional probability distribu-

tion functions. Each attribute Sj ∈ Ninternal ∪ Nterminal
has a discrete local conditional probability distribution

(LCPD) representing the values of Pr(Sj|Pa[Sj]).

An example of applying Bayesian network to calculate the

probability that an attacker can reach each state (condition)

is shown in Fig. 13. To calculate the conditional probability

distributions p(Xi | pai) [41], which represent the probabili-

ties that an attacker reaches security state Xi when given the

observations of the set of preconditions pai. Two possible

cases should be considered, including logical AND and logi-

cal OR, which are similar to the idea of cumulative score in

attack graph. They belong to probabilistic metrics, and their

calculation formulas are given respectively in (29) and (30):

p(Xi | pai) =

{

0, ∃Xj ∈ pai | Xj = F
∏

j:Xj
pvj , otherwise

(29)

p(Xi | pai) =

{

0, ∀Xj∈pai | Xj=F

1−
∏

j:Xj
(1−pvj ), otherwise

(30)

where pvj denotes the probability that an attacker successfully

exploits a vulnerability vj.

For example, the probability of node user(2) in Fig. 13

belongs to the logicalOR case. So the probability of this node

is:

• P(user(2)) = 1 − (1 − P(rsh(0, 2))(1 − P(rsh(1, 2)) =

P(rsh(0, 2)) + P(rsh(1, 2)) − P(rsh(0, 2)) ×

P(rsh(1, 2)) = 1 − (1 − 0.675)(1 − 0.9) = 0.675 +

0.9 − 0.675 × 0.9 = 0.9675

FIGURE 13. Unconditional probabilities for BAG with compromised
evidence of node trust(1, 2).

Different from [40], in literature [42], the probabilities of

successful exploits are assigned to nodes rather than edges.

The advantage of this method is that it can effectively com-

bine the standard measurement such as CVSS to quantify

the exploitability of each node. Moreover, in literature [42],

Dynamic Bayesian Network (DBN), which can incorporate

temporal factors into attack graph-based security metrics,

is used to capture the evolving nature of vulnerabilities.

In literature [43], DBN is also used to perform dynamic

risk assessment. Their work has strong subjectivity because

CPTs in their model are based on expert knowledge. Fuzzy

comprehensive evaluation methods can be used to improve

the objectivity of risk assessment. The definition of DBN is

given below.

Dynamic Bayesian Network [44]: A Dynamic Bayesian

Network (DBN) is an extended model of Bayesian Network

and models probability distributions over semi-infinite col-

lection of random variable variables, Z1,Z2, . . .. Variables

are typically partition into Zt = (Ut ,Xt ,Yt ) to separately

represent the input, hidden and output variables of a state-

space model. The index t is increased by one every time a new

observation arrived. The observation represents something

has changed, which makes a model of a discrete-event system.

DBN is defined to be a pair, (B1,B→), where B1 is a BN

which defines the prior P(Z1), and B→ is a two-slice tempo-

ral Bayesian network (2TBN) which defines P(Zt |Zt−1.) by

means of a Directed Acyclic Graph (DAG) as follows:

P(Zt |Zt−1) =

N
∏

i=1

P(Z it |Pa(Z
i
t )) (31)

where Z it is the ith node at time t, which could be a component

of Xt ,Yt or Ut , and Pa(Z
i
t ) are the parents of Z

i
t in the graph.

The nodes in the first slice of a 2TBN do not have any

parameters associated with them, but each node in the second

slice of the 2TBN has an associated conditional probability

distribution (CPD), which defines P(Z it |Pa(Z
i
t )) for all t > 1.

In literature [45], Bayesian network is used to capture the

uncertainty in attack structures, attacker actions and alerts.

To capture the uncertainty in attack structure, CVSS metrics

such as Access Complexity (AC) and Exploitability (E) are

used to derive the CPT parameters.
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FIGURE 14. Local observation model.

TABLE 5. Inference algorithms.

To capture the uncertainty in attacker actions, an Attack

Action Node (AAN) is proposed. Attack action exists if the

state of an AAN is true, otherwise, the probability of vul-

nerability exploit is 0. However, the correctness of evaluation

depends on the reliability of security sensors.

A Local Observation Model (LOM) is used to model

the uncertainty in alerts, which is shown in Fig. 14. More

specifically, a pair of nodes, including ActualState node and

Observation node, are introduced to Bayesian network. The

Observation node is the direct child of the ActualState node.

The ActualState node cannot observe itself, but can obtain an

inference of its own state through theObservation node. If the

Observation node obtains the true state based on evidence,

the posterior probability of the ActualState node will be

refreshed by computing P(ActualState|Observation = True).

This model relies on the reliability of evidence from secu-

rity sensors. Common inference algorithms are summarized

in Table 5.

In literature [46], Bayesian decision network is proposed

to yield scalability, and integrate the risk assessment and

outcome. The premise of using this model is to generate

Bayesian attack graph of the network at first. CVSS metrics

are used to calculate the exploitability of each single vulner-

ability, and the equation is given in (32).

Exploitability = 2 ∗ AV ∗ AC ∗ AU (32)

where AV denotes Attack Vector , AC indicates Attack

Complexity, and AU represents Authentication. Time factors

may have an impact on the probability of exploits. There-

fore, besides the base metrics of CVSS (AV , AC and AU ),

the temporal metrics of CVSS, including Exploitability (E),

Remediation Level (RL), and Report Confidence (RC) are

also used in this work. The formula of Temporal Probability

(TP) is given in (33).

TP = (E ∗ RL ∗ RC) ∗ Exploitability (33)

With the consideration of temporal metrics of CVSS,

Equation (29) and (30) are changed to (34) and (35). The

definition of Bayesian decision network is given after (35).

p(Xi | pai) =

{

0, ∃Xj ∈ pai | Xj = F
∏

j:Xj
TPvj , otherwise

(34)

p(Xi | pai) =

{

0, ∀Xj ∈ pai | Xj = F

1 −
∏

j:Xj
(1 − TPvj ), otherwise

(35)

Bayesian Decision Network [46]: This model represents

a decision network which combines a Bayesian network with

additional node types for actions and utilities. Bayesian deci-

sion network contains three types of nodes. First, chance

nodes, which denote random variables. Second, decision

nodes, which indicate points where the decision maker has

a choice of actions. Third, utility nodes, which represent the

utility function of agent.

The utility node represents the expected utility (EU) asso-

ciated with each action given the evidence as defined by

EU (A|E) =
∏

i

P(Oi|E,A)U (Oi|A) (36)

where E is the available evidence, A is an action with pos-

sible outcome states Oi, U (Oi|A) is the utility of each of the

outcome states, given that action A is taken, and P(Oi|E,A)

is the conditional probability distribution over the possi-

ble outcome states, given that evidence E is observed and

action A is taken.

In addition to the applications on traditional network secu-

rity, Bayesian network is also used in security risk assess-

ment of Industrial Control Systems (ICSs). In literature [47],

a novel model called Fuzzy Probability Bayesian Network

(FPBN) is proposed to evaluate dynamic risk assessment of

ICSs. To solve the problem of limited historical data, fuzzy

probabilities (that is, the set of p̃ in the definition) are used in

their model instead of crisp probabilities (that is, the set of p

in the definition) in standard Bayesian network. Both expert

knowledge and evidence are required for risk assessment

in this model. To reduce the impact from noise evidences,

a noise evidence filter is embedded in the inference algorithm.

The definition of FPBN is given below.

Fuzzy Probability Bayesian Network [47]: Here BN is

defined as BN =< x, gx 7→x , p >, where

• x = (x1, x2, . . . , xℓ(x) ) is a set of ℓ(x) nodes in total.

• gx 7→x is an ℓ(x) × ℓ(x) incidence matrix that describes

the relationship between the nodes, it is expressed as

gx 7→x =















x1 x2 · · · xℓ(x)
g1,1 g1,2 · · · g1,ℓ(x)
g2,1 g2,2 · · · g2,ℓ(x)
...

...
. . .

...

gℓ(x),1 gℓ(x),2 · · · gℓ(x),ℓ(x)















x1
x2
...

xℓ(x)

(37)
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TABLE 6. Development process of KVRA based on BN.

The definition of incidence matrix element gi,j is

gi,j =

{

1, node xi is the parent of node mj

0, otherwise
(38)

• p = (p1, p2, . . . , pℓ(x) ) is a set of conditional probability

tables, pi is the conditional probability table of node xi.

Fuzzy Probability Bayesian Network (FPBN) is defined as

FPBN =< x, gx 7→x , p̃, v >, where

• x = (x1, x2, . . . , xℓ(x)) is a set of nodes, xi represents

an ICS event with three states T (true), F (false) and U

(unknown):

xi =











T event of node xi happens

F event of node xi does not happen

U unknown

(39)

There are four types of nodes in the FPBN: attack node

a, function node f , incident node e, and asset node z. The

event of an attack node means that an attacker launches

an attack a. The event of a function node indicates that

the system function f fails. The event of an incident node

implies that a hazardous incident e happens. The event

of an asset node marks a damage of the asset z.

• gx 7→x is an ℓ(x) × ℓ(x) incidence matrix. It describes

the relationship between the nodes, which is the same as

standard BN.

• p̃ = (p̃1, p̃2, . . . , ˜pℓ(x) ) is a set of conditional probability

tables, and p̃i is the fuzzy conditional probability table

of node xi.

• v = (v1, v1, . . . , vℓ(x)) is a set of loss, vi is the loss of

node xi. If xi is an asset node, the loss vi is the value of

that asset; otherwise vi = 0. There are three types of

assets in ICSs: humans, environment, and properties.

Development process of Known Vulnerability Risk

Assessment (KVRA) based on Bayesian Network (BN) is

summarized in Table 6. Although works mentioned above

make a certain contribution to network security, they only

focus on known vulnerabilities. Next, the way to apply BN

to unknown vulnerability risk assessment and related works

will be introduced.

1) APPLYING BN TO UVRA

In unknown vulnerability risk assessment, nodes in BN rep-

resent possible states, and edges denote state transitions.

Each node has a Conditional Probability Table (CPT) that is

used to quantify the effect of the parent node on child node.

FIGURE 15. An example of Bayesian network.

The prior probability and conditional probability of nodes

are subjective because they come from vulnerability database

with manual evaluation. To make an objective assessment,

evidence from security sensors can be used to update the

probability of the compromised node. Meantime, the prob-

abilities of nodes that have relationships (parent nodes and

child nodes) will also be updated.

For example, in Fig. 15, if node p1 is true, the probability

of node p3 being true is 0.9, and P(p3 = T |p1 = T ) = 0.9.

If evidences from security sensors such as IDSs confirm the

fact that p3 = T , the posterior probability of P(p1 = T |p3 =

T ) can be calculated.

In literature [45], zero-day vulnerability is first mentioned

in the domain of using Bayesian network for network security

analysis, but the technology of unknown vulnerability risk

assessment is not given.

In literature [48], Bayesian network is used to estimate

the likelihood of acquiring critical software vulnerabilities

and exploits. This model contains 13 states (nodes) and

17 activities (edges). Besides vulnerability databases, data

of the activities in this Bayesian network contains previ-

ous empirical studies and a survey with 58 individuals who

discover critical software vulnerabilities. The possibility of

each state being true depends on the likelihood of its related

activities (or steps) being true. Meantime, the latter relies on

the characteristics of software and resources of an attacker.

The advantage of this model is that it can be used to support

enterprise decision making. The limitations of this model

mainly include three aspects. First, this work only focuses

on exploiting the root/administrator permissions of the victim

host through remote access. Second, this model only consid-

ers software programs required to be compiled. Third, skills

and resources of attackers will impact the decision result.

An example of the model proposed in [48] is shown

in Fig. 16. The number in this figure indicates an activity

(edge), and the letter indicates a state (node). Equation (40)
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FIGURE 16. An example of BN for software exploit.

and (41) are required to calculate P1 and P2.

P1 = P(X ≤ Tw|X ∈ LI (2, 9, 855)) (40)

where Tw denotes work days for discovering a zero-day vul-

nerability, LI indicates linear interpolation.

P2 = P(X ≤ M |X ∈ EXP(1.32 ∗ 10−5)) (41)

where M represents money (United States dollar) for pur-

chasing a zero-day vulnerability, and EXP indicates expo-

nential distribution. Equation (42) and (43) respectively

denote the formula of linear interpolation and exponential

distribution.

LI (X ) = y0 +
y1 − y0

x1 − x0
(X − x0) (42)

f (x) =

{

λe−λx , x > 0

0, x ≤ 0
(43)

In literature [48], when Tw = {2, 9, 855}, the likelihood of

discovering a zero-day vulnerability PD = {5%, 50%, 95%},

and P3 = P4 = 1. If Tw = 50 ∈ [9, 855], M = 7000, and

λ = 1.32∗10−5. The calculation process of vulnerability risk

assessment in Fig. 16 is given as follows:

• P1 = 50% + 95%−50%
855−9

∗ (50 − 9) = 52.2%

• P2 = 1.32 ∗ 10−5e−1.32∗10−5∗7000 = 8.8%

• PA = P1 = 52.2%,PB = P2 = 8.8%

• PR = PAP3 ∪PBP4 = 52.2% ∗ 1+ 8.8% ∗ 1− 52.2% ∗

1 ∗ 8.8% ∗ 1 = 56.4%

If PAP3 and PBP4 are regarded as S1 and S2 respectively,

which can be founded in the definition of attack graph, it can

be clearly discovered that the idea of the cumulative score in

attack graph is applied to calculating PR. The future work of

this model is to consider other types of vulnerabilities.

To investigate the possibility of improving the tolerance

for Industrial Control Systems (ICSs) with zero-day attack by

defending against knownweakness, in literature [34], amodel

called Bayesian Risk Network (BRN) is proposed. In this

model, nodes represent different meanings, including target

nodes, attack nodes and requirement nodes. Edges represent

correlation between nodes. Data source of nodes in BRN

comes from the ICS Top 10 Threats and Countermeasures,

and Common Cybersecurity Vulnerabilities in ICSs. They

belong to the application layer of OSI model.

To measure the minimum effort required for zero-day

exploits to compromise a system, tolerance is defined as a

probabilistic metric. Then, Bayesian network is used to ana-

lyze the zero-day threat propagation across ICSs. Attackers

can choose a known or zero-day weakness at each step to

propagate the risk. If the exploitability of the chosen weak-

ness and its previous exploited target are obtained, the prob-

ability of successful exploit can be computed. The definition

of Bayesian Risk Network is given below.

Bayesian Risk Network [34]: Let B =< N ,PT ,PE ,PR,PT0 >

be a Bayesian Risk Network, where
• N = T ∪ε∪R, including target nodes, attack nodes and

requirement nodes.

• PT = {PT1 , . . . ,PTn} includes conditional proba-

bilities of all non-root target nodes given their par-

ents such that PTx denotes P(Tx |
⋃

T ′
x∈pa(Tx )

ET ′
xTx

),

where P(Tx |
⋃

T ′
x∈pa(Tx )

ET ′
xTx

) = 1 −
∏

T ′
x∈pa(Tx )

(1 −

P(Tx |ET ′
xTx

)) by noisy-OR operator. P(Tx |ET ′
xTx

) is the

probability of Tx given the weakness used at ET ′
xTx
.

• PE = {PET ′
1
T1

, . . . ,PET ′
nTn

} includes conditional proba-

bility distribution for all attack nodes such that PET ′
xTx

denotes P(ET ′
xTx

|T ′
x).

• PR = {PR1 , . . . ,PRn} includes decomposition of all

requirement nodes such that PRx denotes P(Rx |pa(Rx)),

where P(Rx |pa(Rx)) =
∑

R′
x∈pa(Rx )

P(Rx |R
′
x), and

P(Rx |R
′
x) is the assigned proportion of R

′
x in Rx .

• PT0 is the prior probability distribution of the root node

T0.

• P(Tx) is the unconditional probability of Tx ∈ T , which

can be obtained by:

P(Tx)

=























∑

ET ′
xTx

PTx
∑

T ′
x
PET ′

xTx
P(T ′

x), if ωz /∈ �(ET ′
xTx

)
∑

ET ′
xTx

PTx
∑

T ′
x
PET ′

xTx
P(T ′

x)

+P(Tx |ET ′
xTx

= ωz)
∑

T ′
x
PET ′

xTx
P(T ′

x), otherwise

(44)

P(Tx) is obtained by its parent node P(T
′
x) recursively

until it hits the root T0 whose probability distribution

is known.
∑

ET ′
xTx

denotes ET ′
xTx

is marginalized. PTx ,

PRx and PET ′
xTx

are given by PT , PR and PE respectively.

P(Tx |ET ′
xTx

= ωz) equals to the uncertain exploitability

of the zero-day exploit ωz at Tx .

• P(Rx) denotes the unconditional probability of Rx inR

given its parents R′
x and P(Rx) =

∑

R′
x
PRx

∏

R′
x∈pa(Rx )

P(R′
x), where pa(Rx) are marginally independent.

An example of Bayesian risk network with no control

deployed is given in Fig. 17 [34]. White ovals denote tar-

get nodes, grey ovals indicate attack nodes, and blue ovals

represent requirement nodes. The exploitability of weak-

ness {w1,w2,w3,w4,w5} is {80%, 60%, 70%, 80%, 60%}.

w means the weight of corresponding target node.
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FIGURE 17. Bayesian risk network with no control deployed.

FIGURE 18. Bayesian risk network with control deployed.

There are two cases in Fig. 17. Conditional Probability

Tables (CPTs) with white color denote the case with no zero-

day exploit, and the risk is 30.94%. CPTs with yellow color

indicate the case that zero-day exploit z1 exists in the network,

and the exploitability is set to 80%. Under this circumstance,

the risk rises from 30.94% to 34.29%.

Compared with Fig. 17, in Fig. 18, the exploitability of

z1 is set to 100%. And control is deployed to combat w1,

which decreases half exploitability ofw1 (from 80% to 40%).

Under this circumstance, the risk decreases from 34.29% to

26.70%, which is also lower than the first case in Fig. 17.

In other words, with the implementation of reasonable con-

trol, the tolerance of the system against zero-day exploits can

be improved.

Although tolerance and k-zero day safety are different,

they are similar. More specifically, they are both looking for

a value to indicate the condition that the systems (or other

network assets) can be compromised. It is worth noting that

the idea of calculating logical OR node in Bayesian attack

graph is applied to calculating the compromised probability
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of target node T3. The future development of this graph

model is to cancel the assumption that the exploitability

of each weakness will always decrease 50% under control

deployed.

2) DISCUSSION ON BN FROM ADVANTAGES, FLAWS AND

SOLUTIONS

The advantages of Bayesian network mainly include

three aspects. First, Bayesian network provides a causal-

consequence relationship between random variables, which

is similar to attack graph. Second, Bayesian network is a

directed acyclic graph and provides a more compact repre-

sentation with all attack path information. In other words,

Bayesian network shows better scalability in medium and

large networks. Third, Bayesian network provides a form of

reasoning partial belief under uncertain conditions.

However, Bayesian network also exists flaws. For example,

Bayesian network includes boundary constraints on proba-

bility of state values of the variables. To solve this problem,

fuzzy probabilities can be used to replace the crisp probabili-

ties in standard Bayesian networks. Meantime, it is important

to investigate whether the BN models used for problems

associated with insiders are applicable for Industrial Control

System (ICS) environments, especially for a control room

with an operator [34].

Bayesian risk network is an extended model of Bayesian

network, which can be used to improve the safety of Industrial

Control Systems (ICSs). Thismodel is constructed at the level

of assets rather than states and attributes. The advantage of

BRN is that it can model zero-day exploits with the limi-

tation of details about them (such as pre-requisites or post-

conditions) [34].

However, there are three types of nodes in this model, and

the probability calculation methods are different according to

the node type. That is, the complexity of analyzing a Bayesian

risk network is high. Moreover, this work only considers

individual zero-day weakness at different targets. Meantime,

it does not consider the cost of deploying control solution

[8]. To further verify the validity of this model, the case that

one attack path contains multiple zero-day exploits needs to

be considered. In addition, the cost (mainly includes human

resource, time, and money) of each solution should also be

given.

Looking forward to future development, attacks from

insiders also need to be considered to verify whether this

model can address both internal and external issues as well

as social engineering attacks, collusion attacks, etc.

IV. DGM FOR UVRA BASED ON SYSTEM-LEVEL DATA

This section introduces directed graph models for unknown

vulnerability risk assessment whose nodes are constructed by

system-level data. Due to the lack of related works, only the

system call is discussed in this section. Directed graphmodels

that rely on system-level data include System Object Depen-

dency Graph (SODG) and Object Instance Graph (OIG).

The rest of this section is arranged as follows. First,

the concepts of these models are given, including the defi-

nitions and purposes. Next, the general process of applying

these directed graphs to UVRA is given, and related works

of these models will be analyzed. Finally, these directed

graph models will be discussed from three aspects, including

advantages, flaws and solutions.

A. SYSTEM OBJECT DEPENDENCY GRAPH (SODG)

In literature [49], a model called System Object Dependency

Graph (SOGD) is proposed to reveal zero-day attack paths.

Nodes in SODG represent system objects, such as files, pro-

cesses and sockets. Edges in SODG indicate the dependency

between system calls. Labels on edges represent when the

system calls occur. The definition of SODG is given below.

System Object Dependency Graph [49]: If the system call

trace for the i− th host is denoted as
∑

i, then the SODG for

the host is a directed graph G(Vi,Ei), where:

• Vi is the set of nodes, and initialized to empty set ∅;

• Ei is the set of directed edges, and initialized to empty

set ∅;

• If a system call syscall ∈
∑

i, and dep is the dependency

relation parsed from syscall, where dep ∈ {(src →

sink), (sink → src), (src ↔ sink)}, src and sink are

OS objects (mainly a process, file or socket), then Vi =

Vi∪{src, sink}, Ei = Ei∪{dep}. dep inherits timestamps

start and end from syscall;

• If (a → b) ∈ Ei and (b → c) ∈ Ei, then c transitively

depends on a.

1) APPLYING SODG TO UVRA

To build a complete SODG of a managed network, each

host should construct its own SODG at first. System calls

are parsed to generate nodes and edges in each SODG. The

auditing of system calls on each host is performed at first to

filter the useless information. Then, system call traces from

individual hosts are sent to the analysis machine after filter-

ing. Next, to obtain the complete SODG, different SODGs

should be connected together if and only if there is at least one

same directed edge that appears in different graphs simultane-

ously. Since it is difficult to discover zero-day vulnerabilities

alone, zero-day attacks are identified by calculating the risk

probability of Suspicious Intrusion Propagation Paths (SIPPs)

[49]. SIPPs can be divided into path metric, and the definition

of SIPPs is given below.

Suspicious Intrusion Propagation Paths [49]: If the network-

wide SODG is denoted as ∪G(Vi,Ei), where G(Vi,Ei)

denotes the per-host SODG for the i− th host, then the SIPPs

are s subgraph of ∪G(Vi,Ei), denoted as G(V
′,E ′), where:

• V ′ is the set of nodes, and V ′ ⊂ ∪Vi;

• E ′ is the set of directed edges, and E ′ ⊂ ∪Ei;

• V ′ is initialized to include trigger nodes only. And

trigger nodes come from SODGobjects that are involved

in the alert from security sensors (such as IDSs);

• For ∀obj′ ∈ V ′, if ∃obj ∈ ∪Vi where (obj → obj′) ∈ ∪Ei
and start(obj → obj′) ≤ lat(obj′), then V ′ = V ′ ∪{obj}
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FIGURE 19. An example of SODG.

and E ′ = E ′ ∪ {(obj → obj′)}. lat(obj′) maintains the

latest access time to obj′ by edges in E ′;

• For ∀obj′ ∈ V ′, if ∃obj ∈ ∪Vi where (obj → obj′) ∈ ∪Ei
and end(obj′ → obj) ≥ eat(obj′), then V ′ = V ′ ∪ {obj}

and E ′ = E ′ ∪ {(obj′ → obj)}. eat(obj′) maintains the

earliest access time to obj′ by edges in E ′.

The use of SODG for UVRA appears in [49] at first. This

work exists two main flaws. First, as shown in Fig. 19, SODG

may exist cycles. Second, this work assumes that both pre-

knowledge and common features at OS-level can be obtained,

which is hard to accomplish in reality. The existence of cycles

will lead to the complexity of risk assessment.

2) DISCUSSION ON SODG FROM ADVANTAGES, FLAWS

AND SOLUTIONS

The advantage of this model is that it identifies zero-day

attacks by paths rather than single exploit. The reason is that

individual zero-day exploit is hard to detect in reality.

The flaw of this graph model is the existence of cycles,

which will lead to the difficulty of quantification. Meantime,

the readability of SODG will become worse with the growth

of network scale.

A model called object instance graph is proposed to solve

the problems of SODG. This model will be introduced next.

B. OBJECT INSTANCE GRAPH (OIG)

To solve the problem of SODG that it may exist cycles,

in literature [50], a model called object instance graph is

proposed. Each node in object instance graph indicates an

object instance, and each edge represents the dependency

relation between nodes. The definition of object instance

graph is given below.

Object Instance Graph [50]: If the system call trace in a

time window T [tbegin, tend ] is denoted as
∑

T and the set of

system objects (mainly processes, files or sockets) involved

in
∑

T is denoted as OT , then the object instance graph is a

directed graph GT (V ,E), where:

• V is the set of nodes, and initialized to empty set ∅;

• E is the set of directed edges, and initialized to empty set

∅;

• If a system call syscall ∈
∑

T is parsed into two system

object instances srci, sinkj, i, j ≥ 1, and a dependency

relation depc: srci → sinkj, where srci is the i
th instance

of system object src ∈ OT , and sinkj is the j
th instance

of system object sink ∈ OT , then V = V ∪ {srci, sinkj},

E = E ∪ {depc}. The timestamps for syscall, depc, srci,

FIGURE 20. An example of object instance graph.

FIGURE 21. The infection propagation model.

and sinkj are respectively denoted as t_syscall, t_depc,

t_srci, and t_sinkj. The t_depc inherits t_syscall from

syscall. The index i and j are determined before adding

srci and sinkj into V by:

- For ∀srcm, sinkn ∈ V , m, n ≥ 1, if imax and jmax are

respectively the maximum indexes of instances for

object src and sink, and;

- If ∃srck ∈ V , k ≥ 1, then i = imax , and t_srci stays

the same; Otherwise, i = 1, and t_srci is updated

to t_syscall;

- If ∃sinkz ∈ V , z ≥ 1, then j = jmax + 1; Otherwise,

j = 1. In both cases t_sinkj is updated to t_syscall;

If j ≥ 2, then E = E ∪ {deps : sinkj−1 → sinkj}.

• If a → b ∈ E and b → c ∈ E, then c transitively

depends on a.

1) APPLYING OIG TO UVRA

Object instance graph relies on SODG. The process of apply-

ing SODG to UVRA can be founded in the previous section.

Object instance graph eliminates the cycles in SODG by

creating corresponding number of object instances according

to the frequency that an object being called.

An example of object instance graph is given in Fig. 20.

From Fig. 20, it can be clearly discovered that the cycle exists

in Fig. 19 is eliminated. The infection propagation model is

shown in Fig. 21, which contains two different cases.

First, when there are instances from different timestamps

of the same object (file 1), if an instance of the previous
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FIGURE 22. Merging different instance nodes of the same object.

timestamp (node B) is infected, the instance of the latter

timestamp (node C) must also be infected.

Second, if an instance of the previous timestamp (node B)

is not infected, the instance of the latter timestamp (node C)

may be infected by other object (node A). Contact infection

rate τ denotes the probability that node C gets infected when

node A is infected, and intrinsic infection rate ρ indicates

the probability that node C gets infected when node A is not

infected.

To eliminate the assumption that all pre-knowledge and

common features at OS-level can be obtained in [49],

Bayesian network is applied to object instance graph because

it canmodel cause-and-effect relations, and incorporate intru-

sion evidences from various security sensors. In this work,

Local Observation Model (LOM) is used to incorporate evi-

dences, which has been introduced in Fig. 14. The future

development of this graph model is to solve the problem that

some attack paths cannot be revealed when attack time span

exceeds the analysis time period.

2) DISCUSSION ON OIG FROM ADVANTAGES, FLAWS AND

SOLUTIONS

The advantage of this model is that Bayesian network can be

applied to this model for calculating the probability of nodes

being infected.

Scalability is one of the defects of this model, because

multiple object instances will be generated if system objects

are called frequently. To solve the problem of scalability,

besides the pruning operations already mentioned in [50],

another way is to merge different instance nodes of the same

object. These instance nodes do not include evidences from

security sensors, and nodes whose compromised probabilities

are lower than the threshold should also be excluded. Mean-

time, these nodes that can be merged only have one child

node. After merging, the representation is < tstart , tend >:

(pid : ppid : pcmd), where tstart denotes the start time of

merging, tend indicates the end time of merging, pid means

process ID, ppid represents the ID of parent process, and

pcmd is process command. An example of this idea is given

in Fig. 22. Nodes in the dotted line on the left-hand side of

Fig. 22 are required to be merged. The node in the dotted box

on the right-hand side of Fig. 22 is the merging result. As can

be seen from Fig. 22, this idea simplifies the graph on the

basis of retaining the information in the original version.

In addition, when some attack activities evade system

calls, or the attack time span exceeds the analysis time period,

the constructed instance graphs may not capture the complete

zero-day attack paths. Genetic algorithm can be used to solve

this problem because it is highly suited to NP-complete prob-

lems, such as searching through all attack paths [51].

V. CHALLENGES AND SOLUTIONS

The technology of Unknown Vulnerability Risk Assessment

(UVRA) based on directed graph models is still in the devel-

opment stage, and many problems are urgently required to

be solved. Meantime, the common challenges of mentioned

directed graph models for UVRA can be summarized into

following aspects:

• Obtaining zero-day vulnerabilities. Zero-day vulnerabil-

ities are difficult to obtain, current researches often set

a time point to divide known vulnerabilities into known

and unknown vulnerabilities [8], [21]. For example, set-

ting the time point to 2018/12/31, vulnerabilities before

2018/12/31 are used as known vulnerabilities, and vul-

nerabilities occur after this time point are regarded as

zero-day vulnerabilities;

• Generating directed graphs effectively. At present,

the directed graphs given in the existing research results

are based on a managed network with a small number of

hosts. With the growth of network scale, the complexity

of attack graph generation will increase;

• Proposing better security metrics. The application scope

of current security metrics is limited. Security metrics

for Unknown Vulnerability Risk Assessment (UVRA)

based on Directed Graph Models (DGMs) are cate-

gorized in Table 7, where CVSS denotes Common
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Vulnerability Scoring System, CCSS indicates Common

Configuration Scoring System, CWSS represents Com-

mon Weakness Scoring System, SP indicates Shortest

Path, and SIPPs denotes Suspicious Intrusion Propaga-

tion Paths. Better security metrics are required to obtain

more accurate exploitation, which depends on compre-

hensive considerations of vulnerabilities, assets, etc.;

• The improvement of directed graph models and risk

assessment methods. The applications of existing mod-

els have certain limitations. Further improvement on the

theoretical system of unknown vulnerability risk assess-

ment based on directed graphs is required.

Combining existing researches and prospect for future

development, possible solutions for the above challenges are

given as follows:

• Due to the difficulty of obtaining zero-day vulnerabil-

ities, the method that dividing them from known vul-

nerabilities by setting a time point will be continuously

used in the future. Another possible approach is when

dividing zero-day vulnerabilities from known vulnera-

bilities, the time for fixing a vulnerability should also be

considered as a classification indicator;

• The growth of network nodes inevitably increases the

time complexity for generating attack graphs. One solu-

tion is to use the idea of distributed attack graph genera-

tion [52] to overcome the state space explosion problems

with the growth of hosts and vulnerabilities in amanaged

network;

• Not only the inherent characteristic of the vulnerability

(exploitability), but also time and environmental factors

of securitymetrics should be considered to obtain amore

accurate risk assessment. When multiple security met-

rics are used to quantify network security risks, fuzzy

comprehensive risk assessment can be used to determine

the severity of the risk. The successful application of

bio-diversity in risk assessment reflects the possibility of

integration between different scientific research fields.

Some methods regard alerts from security sensors as

evidences to dynamically update the exploitability of

corresponding nodes, so the accuracy of risk assessment

can be indirectly enhanced by improving the reliability

of security sensors;

• To obtain a better model, fusion between directed graph

models is an existing method (such as Bayesian attack

graph which is the fusion product of attack graph and

Bayesian network) and ongoing approach.

VI. DISCUSSION

Unknown Vulnerability Risk Assessment (UVRA) focuses

on zero-day vulnerabilities. A typical zero-day attack may

last for 310 days on average [53]. To protect against zero-

day attacks, various methods are proposed. These methods

are classified as statistics, signatures and behavior tech-

niques [54]. In order to meet the future trend, the classifi-

cation needs to be further expanded. The following content

introduces the future work directions of UVRA from the

perspective of techniques and application trends.

A. MAIN TECHNIQUES FOR URVA

The main techniques for UVRA are listed as follows, includ-

ing current popular techniques and methods that will play an

important role in the future. Their defects at the current stage

will be analyzed, which can be regarded as the future work

directions of UVRA.

1) STATISTICAL-BASED TECHNIQUES

Zero-day detection based on statistical techniques relies on

static attack profile and manual modifications of detection

settings. For example, Nessus is a vulnerability scanner,

which is often used in vulnerability risk assessment. The prin-

ciple of Nessus is to compare the defects of hosts with the vul-

nerability features stored in the vulnerability database. The

list of hosts that need to be scanned is manually configured

by users. If the defects match the vulnerability features, they

will be regarded as vulnerabilities. Therefore, this method is

not suitable for real-time detection and defense.

2) SIGNATURE-BASED TECHNIQUES

As mentioned before, suspicious activities whose signatures

are not defined previously in Snort IDS/IPS are regarded

as zero-day exploits. A signature is a sequence of bytes at

specific locations within the executable, a regular expression,

a hash value of binary data, or any other formats created

by malware analyst which should accurately identify mal-

ware instances [55]. This kind of method relies on previous

malware signatures, which means unknown malware without

known signatures will not be detected.

3) BEHAVIOR-BASED TECHNIQUES

Methods based on behaviors assume that malware can be

detected by observing the malicious behaviors exhibited by

malware during runtime [55]. Compared with signature-

based techniques, behavior-based methods focus on observ-

ing malware actions instead of previously known signatures.

Therefore, behavior-based methods have a better perfor-

mance on malware variants with similar behaviors but differ-

ent structures. However, their flaws are the high false positive

rate and worse performance on mimicry attacks.

4) GRAPH THEORY

This method is the core content of our paper. It can be clearly

discovered that the advantage of this method is to visual-

ize the network status by graphs. Each path represents the

strategy that attackers may use to achieve the goal. However,

the probability that each attack path being adopted by attack-

ers cannot be known by only using the knowledge of graph

theory. Among the current researches of UVRA based on

directed graph models, most of them use both directed graphs

and security metrics to complete qualitative and quantitative

tasks.
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TABLE 7. The classification of security metrics for UVRA based on DGMs.

5) SECURITY METRICS

In UVRA, security metrics are used to quantitatively evaluate

the probability that network systems will be exploited when

facing attacks. Security metrics are often used in conjunction

with graph models, which is the main theme of our paper.

The previous classification work of security metrics can be

seen in Table 4. However, there is a gap in the previous

work to classify the security metrics for UVRA. Therefore,

the supplementary work is made in our paper, which can be

seen in Table 7.

6) PROBABILITY THEORY

The original purpose of proposing probability theory is

to analyze the frequency of events. These events can be

repeated, such as throwing a coin and observing whether the

coin falls to the front or the back. However, some events

cannot be repeated. For example, supposing the probability of

a host being exploited is p, and assuming the threshold to be

reached for an emergency fix is q. If p > q, the host requires

to be repaired immediately. Otherwise, it does not need to do

that. The former is called the frequentist probability, which

is directly related to the frequency of events. The latter is

called the Bayesian probability, which involves the level of

certainty. Bayesian theory enables us to infer the uncertainty

of network attacks. The combination of Bayesian theory and

graph theory is Bayesian network.

7) ARTIFICIAL INTELLIGENCE

Artificial intelligence (AI) can be simply regarded as using

computer science to simulate human thinking. It has been

called one of the three cutting-edge technologies (genetic

engineering, nanoscience, and artificial intelligence) of the

world in the 20th century. And it is also considered to be one

of the cutting-edge technologies (space, energy, and artificial

intelligence) of the world in the 21th century.

AI will play a vital role in vulnerability risk assessment.

Methods for vulnerability risk assessment can be divided into

three steps [56].

The first step is manual vulnerability assessment. This

method is time costing and depends on expert knowledge

deeply.

The second step is assistive vulnerability assessment,

which is the stage of most current researches. This method

requires the help of vulnerability scanners or frameworks to

find the most relevant security weakness. Therefore, the lack

of flexibility and compatibility will be the inherent defects of

this method. And the dependency on expert knowledge still

exists.

The third step is fully automated vulnerability assessment,

which is based on the technology of artificial intelligence.

Compared with the first and second step, this method can

produce expert-level decisions without the help of human

beings, which will reduce the costs on time and economic.

However, this technology is still in the development stage,

and further researches on automated vulnerability mitigation

techniques that can actually protect computing platforms are

still required [56].

B. APPLICATION TRENDS OF UVRA

Unknown Vulnerability Risk Assessment (UVRA) focuses

on traditional network at first. However, devices connected

to the network are no longer just hosts, they show a trend of

diversification. The result is that existing UVRA techniques

may lose their power on these devices, such as intelligent

robots, vehicles, etc. Therefore, it is important to correctly

grasp the application trends of UVRA. Due to the variety of

application scenarios, the following content only focuses on

the future work directions of UVRA on Industrial Internet of

Things (IIoT), robots and vehicles.

1) IIoT

Nowadays, the era of Internet of Things (IoT) is coming. The

number and types of devices connected to IoT are far beyond

traditional networks. In other words, there are more vulner-

abilities in IoT than traditional networks. Moreover, with a

constant growth of attack surfaces and capabilities, network

systems will suffer from more serious attacks. Therefore,

UVRA is a key technology to keep IoT security. Industrial

IoT (IIoT) is an application of IoT on industry, with the aim

of improving the overall operational efficiency in industrial

management [57]. Events that exploiting the vulnerabilities in

the devices of IIoT happen frequently recent years. The future

work directions on applying UVRA to IIoT are as follows:

• New security metrics to quantify vulnerabilities in IIoT.

The cost and return on patching a vulnerability should

be considered;

• New assessment frameworks and specific vulnerability

database for IIoT. Due to the difficulty to update the

underlying light weight operating system, many vulner-

abilities in IoT devices cannot be expected to be patched

and upgraded. Therefore, new assessment frameworks
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should be able to provide risk mitigation strategies to

improve security;

• New risk vectors that satisfy the form of International

IoT Asset Classification (IIoTAC) and Key IoT Cyber

Risk Factors (KIoTCRF) [58];

• New methods to solve the low attack path quantification

degree and complex path finding.

2) ROBOTS

With the rise of AI technology, different types of intelligent

robots are constantly being connected to the network. How-

ever, robots are typically not created with security as a main

concern [59]. Therefore, the existence of vulnerabilities in

robots is an inevitable fact. At present, researches on the

vulnerability risk assessment of robots are lacking. In order

to achieve an effective vulnerability risk assessment, the fol-

lowing points can be the future work directions:

• New security metrics to quantify vulnerabilities in

robots. A novel security metric called Robot Vulnera-

bility Scoring System (RVSS) [59] is proposed to evalu-

ate the severity caused by corresponding vulnerabilities.

This metric is an improvement of CVSS. However, there

is almost no relevant metric for zero-day vulnerabilities

in robots;

• New assessment framework and specific vulnerabil-

ity database for robots. Due to the difference between

robot and conventional vulnerabilities on features, some

reported robot vulnerabilities are difficult to be classi-

fied by existing standards.Moreover, the severity assess-

ment of robot vulnerabilities is also quite different from

conventional vulnerabilities.

3) VEHICLES

Besides robots, vehicles also connect to the network and

become network/physical systems, which are the core com-

ponent of Intelligent Transportation System (ITS). Vulnera-

bilities in vehicles can cause the loss of property, even the

personal safety of users. However, the research on assessing

the impact of network/physical attacks on road users and sys-

tem operators is lacking [60]. Although literature [60] takes a

step forward in the vulnerability risk assessment of vehicles,

it only finishes the qualitative work of vulnerabilities. The

future work directions on vulnerability risk assessment of

vehicles are listed as follow:

• Trying to apply Bayesian network to in-vehicle network.

The reason is that there is a high degree of uncertainty

about the impact of security breaches on the in-vehicle

network [60]. Bayesian network can infer uncertainty

and visualize attack paths;

• Proposing novel security metrics to quantify vulnerabil-

ities in vehicles. A common idea is to improve existing

standards to adapt new application scenarios.

VII. CONCLUSION

Directed graph models for unknown vulnerability risk assess-

ment are formed by enumerating possible attack paths

(or called attack strategies) from the perspective of attack-

ers. They play an important role on risk assessment and

decision making for administrators. In this paper, the con-

cepts and definitions of directed graph models are given at

first. Then, these models are analyzed from three aspects,

including advantages, flaws and solutions. Next, correspond-

ing examples are given to facilitate understanding. After

that, challenges and solutions of unknown vulnerability risk

assessment based on directed graph models are given. Mean-

time, Security metrics for unknown vulnerability risk assess-

ment based on directed graph models are summarized and

classified. At last, future work directions of UVRA are dis-

cussed from the perspective of techniques and applications.

At present, the survey of unknown vulnerability risk assess-

ment based on directed graph models is relatively lacking,

so our work is valuable.
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