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Abstract

We demonstrate, theoretically and empirically, that adversarial robustness can
significantly benefit from semisupervised learning. Theoretically, we revisit the
simple Gaussian model of Schmidt et al. [41] that shows a sample complexity gap
between standard and robust classification. We prove that unlabeled data bridges
this gap: a simple semisupervised learning procedure (self-training) achieves high
robust accuracy using the same number of labels required for achieving high stan-
dard accuracy. Empirically, we augment CIFAR-10 with 500K unlabeled images
sourced from 80 Million Tiny Images and use robust self-training to outperform
state-of-the-art robust accuracies by over 5 points in (i) `1 robustness against sev-
eral strong attacks via adversarial training and (ii) certified `2 and `1 robustness
via randomized smoothing. On SVHN, adding the dataset’s own extra training set
with the labels removed provides gains of 4 to 10 points, within 1 point of the gain
from using the extra labels.

1 Introduction

The past few years have seen an intense research interest in making models robust to adversarial
examples [44, 4, 3]. Yet despite a wide range of proposed defenses, the state-of-the-art in adversarial
robustness is far from satisfactory. Recent work points towards sample complexity as a possible
reason for the small gains in robustness: Schmidt et al. [41] show that in a simple model, learning
a classifier with non-trivial adversarially robust accuracy requires substantially more samples than
achieving good “standard” accuracy. Furthermore, recent empirical work obtains promising gains
in robustness via transfer learning of a robust classifier from a larger labeled dataset [18]. While
both theory and experiments suggest that more training data leads to greater robustness, following
this suggestion can be difficult due to the cost of gathering additional data and especially obtaining
high-quality labels.

To alleviate the need for carefully labeled data, in this paper we study adversarial robustness through
the lens of semisupervised learning. Our approach is motivated by two basic observations. First,
adversarial robustness essentially asks that predictors be stable around naturally occurring inputs.
Learning to satisfy such a stability constraint should not inherently require labels. Second, the added
requirement of robustness fundamentally alters the regime where semi-supervision is useful. Prior
work on semisupervised learning mostly focuses on improving the standard accuracy by leveraging
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unlabeled data. However, in our adversarial setting the labeled data alone already produce accurate
(but not robust) classifiers. We can use such classifiers on the unlabeled data and obtain useful
pseudo-labels, which directly suggests the use of self-training—one of the oldest frameworks for
semisupervised learning [42, 8], which applies a supervised training method on the pseudo-labeled
data. We provide theoretical and experimental evidence that self-training is effective for adversarial
robustness.

The first part of our paper is theoretical and considers the simple d-dimensional Gaussian model
[41] with `1-perturbations of magnitude ✏. We scale the model so that n0 labeled examples allow

for learning a classifier with nontrivial standard accuracy, and roughly n0 ·✏
2
p

d/n0 examples are
necessary for attaining any nontrivial robust accuracy. This implies a sample complexity gap in the

high-dimensional regime d�n0✏
�4. In this regime, we prove that self training with O(n0 ·✏

2
p
d/n0)

unlabeled data and just n0 labels achieves high robust accuracy. Our analysis provides a refined
perspective on the sample complexity barrier in this model: the increased sample requirement is
exclusively on unlabeled data.

Our theoretical findings motivate the second, empirical part of our paper, where we test the effect
of unlabeled data and self-training on standard adversarial robustness benchmarks. We propose and
experiment with robust self-training (RST), a natural extension of self-training that uses standard
supervised training to obtain pseudo-labels and then feeds the pseudo-labeled data into a supervised
training algorithm that targets adversarial robustness. We use TRADES [56] for heuristic `1-
robustness, and stability training [57] combined with randomized smoothing [9] for certified `2-
robustness.

For CIFAR-10 [22], we obtain 500K unlabeled images by mining the 80 Million Tiny Images
dataset [46] with an image classifier. Using RST on the CIFAR-10 training set augmented with
the additional unlabeled data, we outperform state-of-the-art heuristic `1-robustness against strong
iterative attacks by 7%. In terms of certified `2-robustness, RST outperforms our fully supervised
baseline by 5% and beats previous state-of-the-art numbers by 10%. Finally, we also match the
state-of-the-art certified `1-robustness, while improving on the corresponding standard accuracy
by over 16%. We show that some natural alternatives such as virtual adversarial training [30] and
aggressive data augmentation do not perform as well as RST. We also study the sensitivity of RST to
varying data volume and relevance.

Experiments with SVHN show similar gains in robustness with RST on semisupervised data. Here,
we apply RST by removing the labels from the 531K extra training data and see 4–10% increases in
robust accuracies compared to the baseline that only uses the labeled 73K training set. Swapping
the pseudo-labels for the true SVHN extra labels increases these accuracies by at most 1%. This
confirms that the majority of the benefit from extra data comes from the inputs and not the labels.

In independent and concurrent work, Uesato et al. [48], Najafi et al. [32] and Zhai et al. [55] also
explore semisupervised learning for adversarial robustness. See Section 6 for a comparison.

Before proceeding to the details of our theoretical results in Section 3, we briefly introduce relevant
background in Section 2. Sections 4 and 5 then describe our adversarial self-training approach and
provide comprehensive experiments on CIFAR-10 and SVHN. We survey related work in Section 6
and conclude in Section 7.

2 Setup

Semi-supervised classification task. We consider the task of mapping input x2X ✓R
d to label

y2Y . Let Px,y denote the underlying distribution of (x,y) pairs, and let Px denote its marginal on
X . Given training data consisting of (i) labeled examples (X,Y ) = (x1,y1),...(xn,yn)⇠Px,y and

(ii) unlabeled examples X̃= x̃1,x̃2,...x̃ñ⇠Px, the goal is to learn a classifier f✓ :X !Y in a model
family parameterized by ✓2Θ.

Error metrics. The standard quality metric for classifier f✓ is its error probability,

errstandard(f✓) :=P(x,y)⇠Px,y

�
f✓(x) 6=y

�
. (1)

We also evaluate classifiers on their performance on adversarially perturbed inputs. In this work, we
consider perturbations in a `p norm ball of radius ✏ around the input, and define the corresponding
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robust error probability,

err
p,✏
robust(f✓) :=P(x,y)⇠Px,y

�
9x02Bp

✏ (x),f✓(x
0) 6=y

�
for Bp

✏ (x) :={x02X |kx0�xkp✏}. (2)

In this paper we study p=2 and p=1. We say that a classifier f✓ has certified `p accuracy ⇠ when
we can prove that err

p,✏
robust(f✓)1�⇠.

Self-training. Consider a supervised learning algorithm A that maps a dataset (X,Y ) to parameter
✓. Self-training is the straightforward extension of A to a semisupervised setting, and consists of the

following two steps. First, obtain an intermediate model ✓̂intermediate=A(X,Y ), and use it to generate
pseudo-labels ỹi=f

✓̂intermediate
(x̃i) for i2 [ñ]. Second, combine the data and pseudo-labels to obtain a

final model ✓̂final=A([X,X̃],[Y,Ỹ ]).

3 Theoretical results

In this section, we consider a simple high-dimensional model studied in [41], which is the only known
formal example of an information-theoretic sample complexity gap between standard and robust
classification. For this model, we demonstrate the value of unlabeled data—a simple self-training
procedure achieves high robust accuracy, when achieving non-trivial robust accuracy using the labeled
data alone is impossible.

Gaussian model. We consider a binary classification task where X =R
d, Y={�1,1}, y uniform

on Y and x|y ⇠ N (yµ,�2I) for a vector µ 2 R
d and coordinate noise variance �2 > 0. We are

interested in the standard error (1) and robust error err
1,✏
robust (2) for `1 perturbations of size ✏.

Parameter setting. We choose the model parameters to meet the following desiderata: (i) there
exists a classifier that achieves very high robust and standard accuracies, (ii) using n0 examples
we can learn a classifier with non-trivial standard accuracy and (iii) we require much more than
n0 examples to learn a classifier with nontrivial robust accuracy. As shown in [41], the following
parameter setting meets the desiderata,

✏2(0, 12 ), kµk
2
=d and

kµk
2

�2
=

r
d

n0
�

1

✏2
. (3)

When interpreting this setting it is useful to think of ✏ as fixed and of d/n0 as a large number, i.e. a
highly overparameterized regime.

3.1 Supervised learning in the Gaussian model

We briefly recapitulate the sample complexity gap described in [41] for the fully supervised setting.

Learning a simple linear classifier. We consider linear classifiers of the form f✓ = sign(✓>x).

Given n labeled data (x1,y1),...,(xn,yn)
iid
⇠Px,y, we form the following simple classifier

✓̂n :=
1

n

nX

i=1

yixi. (4)

We achieve nontrivial standard accuracy using n0 examples; see Appendix A.2 for proof of the
following (as well as detailed rates of convergence).

Proposition 1. There exists a universal constant r such that for all ✏2
p

d/n0�r,

n�n0 ) E
✓̂n
errstandard

⇣
f
✓̂n

⌘


1

3
and n�n0 ·4✏

2

r
d

n0
) E

✓̂n
err

1,✏
robust

⇣
f
✓̂n

⌘
10�3.

Moreover, as the following theorem states, no learning algorithm can produce a classifier with

nontrivial robust error without observing eΩ(n0 ·✏
2
p
d/n0) examples. Thus, a sample complexity gap

forms as d grows.

Theorem 1 ([41]). Let An be any learning rule mapping a dataset S2(X⇥Y)n to classifier An[S].
Then,

nn0
✏2
p

d/n0

8logd
) Eerr

1,✏
robust(An[S])�

1

2
(1�d�1), (5)

where the expectation is with respect to the random draw of S⇠Pn
x,y as well as possible randomization

in An.
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3.2 Semi-supervised learning in the Gaussian model

We now consider the semisupervised setting with n labeled examples and ñ additional unlabeled
examples. We apply the self-training methodology described in Section 2 on the simple learning

rule (4); our intermediate classifier is ✓̂intermediate := ✓̂n=
1
n

Pn

i=1yixi, and we generate pseudo-labels

ỹi :=f
✓̂intermediate

(x̃i)=sign(x̃>
i ✓̂intermediate) for i=1,...,ñ. We then learning rule (4) to obtain our final

semisupervised classifier ✓̂final :=
1
ñ

Pñ

i=1ỹix̃i. The following theorem guarantees that ✓̂final achieves
high robust accuracy.

Theorem 2. There exists a universal constant r̃ such that for ✏2
p

d/n0� r̃, n�n0 labeled data and
additional ñ unlabeled data,

ñ�n0 ·288✏
2

r
d

n0
) E

✓̂final
err

1,✏
robust

⇣
f
✓̂final

⌘
10�3.

Therefore, compared to the fully supervised case, the self-training classifier requires only a constant

factor more input examples, and roughly a factor ✏2
p
d/n0 fewer labels. We prove Theorem 2

in Appendix A.4, where we also precisely characterize the rates of convergence of the robust error;

the outline of our argument is as follows. We have ✓̂final = ( 1
ñ

Pñ

i=1 ỹiyi)µ+ 1
ñ

Pñ

i=1 ỹi"i where

"i ⇠N (0,�2I) is the noise in example i. We show (in Appendix A.4) that with high probability
1
ñ

Pñ

i=1 ỹiyi �
1
6 while the variance of 1

ñ

Pñ

i=1 ỹi"i goes to zero as ñ grows, and therefore the

angle between ✓̂final and µ goes to zero. Substituting into a closed-form expression for err
1,✏
robust(f✓̂final

)
(Eq. (11) in Appendix A.1) gives the desired upper bound. We remark that other learning techniques,
such as EM and PCA, can also leverage unlabeled data in this model. The self-training procedure we
describe is similar to 2 steps of EM [11].

3.3 Semisupervised learning with irrelevant unlabeled data

In Appendix A.5 we study a setting where only ↵ñ of the unlabeled data are relevant to the task,
where we model the relevant data as before, and the irrelevant data as having no signal component,
i.e., with y uniform on {�1,1} and x⇠N (0,�2I) independent of y. We show that for any fixed
↵, high robust accuracy is still possible, but the required number of relevant examples grows by a
factor of 1/↵ compared to the amount of unlabeled examples require to achieve the same robust
accuracy when all the data is relevant. This demonstrates that irrelevant data can significantly hinder
self-training, but does not stop it completely.

4 Semi-supervised learning of robust neural networks

Existing adversarially robust training methods are designed for the supervised setting. In this section,
we use these methods to leverage additional unlabeled data by adapting the self-training framework
described in Section 2.

Meta-Algorithm 1 Robust self-training

Input: Labeled data (x1,y1,...,xn,yn) and unlabeled data (x̃1,...,x̃ñ)

Parameters: Standard loss Lstandard, robust loss Lrobust and unlabeled weight w

1: Learn ✓̂intermediate by minimizing
nP

i=1

Lstandard(✓,xi,yi)

2: Generate pseudo-labels ỹi=f
✓̂intermediate

(x̃i) for i=1,2,...ñ

3: Learn ✓̂final by minimizing
nP

i=1

Lrobust(✓,xi,yi)+w
ñP

i=1

Lrobust(✓,x̃i,ỹi)

Meta-Algorithm 1 summarizes robust-self training. In contrast to standard self-training, we use a
different supervised learning method in each stage, since the intermediate and the final classifiers

have different goals. In particular, the only goal of ✓̂intermediate is to generate high quality pseudo-labels
for the (non-adversarial) unlabeled data. Therefore, we perform standard training in the first stage,
and robust training in the second. The hyperparameter w allows us to upweight the labeled data,
which in some cases may be more relevant to the task (e.g., when the unlabeled data comes form a
different distribution), and will usually have more accurate labels.
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4.1 Instantiating robust self-training

Both stages of robust self-training perform supervised learning, allowing us to borrow ideas from
the literature on supervised standard and robust training. We consider neural networks of the form
f✓(x)=argmaxy2Yp✓(y |x), where p✓(· |x) is a probability distribution over the class labels.

Standard loss. As in common, we use the multi-class logarithmic loss for standard supervised
learning,

Lstandard(✓,x,y)=�logp✓(y |x).

Robust loss. For the supervised robust loss, we use a robustness-promoting regularization term
proposed in [56] and closely related to earlier proposals in [57, 30, 20]. The robust loss is

Lrobust(✓,x,y)=Lstandard(✓,x,y)+�Lreg(✓,x), (6)

where Lreg(✓,x) := max
x02Bp

✏ (x)
DKL(p✓(· |x)kp✓(· |x

0)).

The regularization term2 Lreg forces predictions to remain stable within Bp
✏ (x), and the hyperparam-

eter � balances the robustness and accuracy objectives. We consider two approximations for the
maximization in Lreg.

1. Adversarial training: a heuristic defense via approximate maximization.

We focus on `1 perturbations and use the projected gradient method to approximate the regular-
ization term of (6),

Ladv
reg (✓,x) :=DKL(p✓(· |x)kp✓(· |x

0
PG[x])), (7)

where x0
PG[x] is obtained via projected gradient ascent on r(x0) = DKL(p✓(· | x) k p✓(· | x

0)).
Empirically, performing approximate maximization during training is effective in finding classifiers
that are robust to a wide range of attacks [29].

2. Stability training: a certified `2 defense via randomized smoothing.

Alternatively, we consider stability training [57, 26], where we replace maximization over small
perturbations with much larger additive random noise drawn from N (0,�2I),

Lstab
reg (✓,x) :=Ex0⇠N (x,�2I)DKL(p✓(· |x)kp✓(· |x

0)). (8)

Let f✓ be the classifier obtained by minimizing Lstandard + �Lstab
robust. At test time, we use the

following smoothed classifier.

g✓(x) :=argmax
y2Y

q✓(y |x), where q✓(y |x) :=Px0⇠N (x,�2I)(f✓(x
0)=y). (9)

Improving on previous work [24, 26], Cohen et al. [9] prove that robustness of f✓ to large random
perturbations (the goal of stability training) implies certified `2 adversarial robustness of the
smoothed classifier g✓.

5 Experiments

In this section, we empirically evaluate robust self-training (RST) and show that it leads to consistent
and substantial improvement in robust accuracy, on both CIFAR-10 [22] and SVHN [53] and with
both adversarial (RSTadv) and stability training (RSTstab). For CIFAR-10, we mine unlabeled data
from 80 Million Tiny Images and study in depth the strengths and limitations of RST. For SVHN, we
simulate unlabeled data by removing labels and show that with RST the harm of removing the labels is
small. This indicates that most of the gain comes from additional inputs rather than additional labels.
Our experiments build on open source code from [56, 9]; we release our data and code at https:
//github.com/yaircarmon/semisup-adv and on CodaLab at https://bit.ly/349WsAC.

Evaluating heuristic defenses. We evaluate RSTadv and other heuristic defenses on their perfor-
mance against the strongest known `1 attacks, namely the projected gradient method [29], denoted
PG and the Carlini-Wagner attack [7] denoted CW.

2 Zhang et al. [56] write the regularization term DKL(pθ(· | x
0) k pθ(· | x)), i.e. with pθ(· | x

0) rather than
pθ(· |x) taking role of the label, but their open source implementation follows (6).
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Model PGMadry PGTRADES PGOurs CW [7] Best attack No attack

RSTadv(50K+500K) 63.1 63.1 62.5 64.9 62.5 ±0.1 89.7 ±0.1

TRADES [56] 55.8 56.6 55.4 65.0 55.4 84.9

Adv. pre-training [18] 57.4 58.2 57.7 - 57.4† 87.1
Madry et al. [29] 45.8 - - 47.8 45.8 87.3
Standard self-training - 0.3 0 - 0 96.4

Table 1: Heuristic defense. CIFAR-10 test accuracy under different optimization-based `1 attacks
of magnitude ✏=8/255. Robust self-training (RST) with 500K unlabeled Tiny Images outperforms
the state-of-the-art robust models in terms of robustness as well as standard accuracy (no attack).
Standard self-training with the same data does not provide robustness. †: A projected gradient attack
with 1K restarts reduces the accuracy of this model to 52.9%, evaluated on 10% of the test set [18].
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Cohen et al.

(a)

Model `1 acc. at
✏= 2

255

Standard
acc.

RSTstab(50K+500K) 63.8 ± 0.5 80.7 ± 0.3

Baselinestab(50K) 58.6 ± 0.4 77.9 ± 0.1

Wong et al. (single) [50] 53.9 68.3
Wong et al. (ensemble) [50] 63.6 64.1
IBP [17] 50.0 70.2

(b)

Figure 1: Certified defense. Guaranteed CIFAR-10 test accuracy under all `2 and `1 attacks.
Stability-based robust self-training with 500K unlabeled Tiny Images (RSTstab(50K+500K)) outper-
forms stability training with only labeled data (Baselinestab(50K)). (a) Accuracy vs. `2 radius,
certified via randomized smoothing [9]. Shaded regions indicate variation across 3 runs. Accuracy
at `2 radius 0.435 implies accuracy at `1 radius 2/255. (b) The implied `1 certified accuracy is
comparable to the state-of-the-art in methods that directly target `1 robustness.

Evaluating certified defenses. For RSTstab and other models trained against random noise, we
evaluate certified robust accuracy of the smoothed classifier against `2 attacks. We perform the
certification using the randomized smoothing protocol described in [9], with parameters N0=100,
N=104, ↵=10�3 and noise variance �=0.25.

Evaluating variability. We repeat training 3 times and report accuracy as X ± Y, with X the
median across runs and Y half the difference between the minimum and maximum.

5.1 CIFAR-10

5.1.1 Sourcing unlabeled data

To obtain unlabeled data distributed similarly to the CIFAR-10 images, we use the 80 Million Tiny
Images (80M-TI) dataset [46], of which CIFAR-10 is a manually labeled subset. However, most
images in 80M-TI do not correspond to CIFAR-10 image categories. To select relevant images, we
train an 11-way classifier to distinguish CIFAR-10 classes and an 11th “non-CIFAR-10” class using a
Wide ResNet 28-10 model [54] (the same as in our experiments below). For each class, we select
additional 50K images from 80M-TI using the trained model’s predicted scores3—this is our 500K
images unlabeled which we add to the 50K CIFAR-10 training set when performing RST. We provide
a detailed description of the data sourcing process in Appendix B.6.

5.1.2 Benefit of unlabeled data

We perform robust self-training using the unlabeled data described above. We use a Wide ResNet
28-10 architecture for both the intermediate pseudo-label generator and final robust model. For
adversarial training, we compute xPG exactly as in [56] with ✏= 8/255, and denote the resulting

3We exclude any image close to the CIFAR-10 test set; see Appendix B.6 for detail.

6



model as RSTadv(50K+500K). For stability training, we set the additive noise variance to to �=0.25
and denote the result RSTstab(50K+500K). We provide training details in Appendix B.1.

Robustness of RSTadv(50K+500K) against strong attacks. In Table 1, we report the accuracy of
RSTadv(50K+500K) and the best models in the literature against various strong attacks at ✏=8/255
(see Appendix B.3 for details). PGTRADES and PGMadry correspond to the attacks used in [56] and [29]
respectively, and we apply the Carlini-Wagner attack CW [7] on 1,000 random test examples, where
we use the implementation [34] that performs search over attack hyperparameters. We also tune a PG
attack against RSTadv(50K+500K) (to maximally reduce its accuracy), which we denote PGOurs (see
Appendix B.3 for details).

RSTadv(50K+500K) gains 7% over TRADES [56], which we can directly attribute to the unlabeled
data (see Appendix B.4). In Appendix C.7 we also show this gain holds over different attack radii.
The model of Hendrycks et al. [18] is based on ImageNet adversarial pretraining and is less directly
comparable to ours due to the difference in external data and training method. Finally, we perform
standard self-training using the unlabeled data, which offers a moderate 0.4% improvement in
standard accuracy over the intermediate model but is not adversarially robust (see Appendix C.6).

Certified robustness of RSTstab(50K+500K). Figure 1a shows the certified robust accuracy
as a function of `2 perturbation radius for different models. We compare RSTadv(50K+500K)
with [9], which has the highest reported certified accuracy, and Baselinestab(50K), a model
that we trained using only the CIFAR-10 training set and the same training configuration as
RSTstab(50K+500K). RSTstab(50K+500K) improves on our Baselinestab(50K) by 3–5%. The
gains of Baselinestab(50K) over the previous state-of-the-art are due to a combination of better
architecture, hyperparameters, and training objective (see Appendix B.5). The certified `2 accuracy
is strong enough to imply state-of-the-art certified `1 robustness via elementary norm bounds. In
Figure 1b we compare RSTstab(50K+500K) to the state-of-the-art in certified `1 robustness, showing
a a 10% improvement over single models, and performance on par with the cascade approach of [50].
We also outperform the cascade model’s standard accuracy by 16%.

5.1.3 Comparison to alternatives and ablations studies

Consistency-based semisupervised learning (Appendix C.1). Virtual adversarial training (VAT),
a state-of-the-art method for (standard) semisupervised training of neural network [30, 33], is easily
adapted to the adversarially-robust setting. We train models using adversarial- and stability-flavored
adaptations of VAT, and compare them to their robust self-training counterparts. We find that the VAT
approach offers only limited benefit over fully-supervised robust training, and that robust self-training
offers 3–6% higher accuracy.

Data augmentation (Appendix C.2). In the low-data/standard accuracy regime, strong data aug-
mentation is competitive against and complementary to semisupervised learning [10, 51], as it
effectively increases the sample size by generating different plausible inputs. It is therefore natural
to compare state-of-the-art data augmentation (on the labeled data only) to robust self-training. We
consider two popular schemes: Cutout [13] and AutoAugment [10]. While they provide significant
benefit to standard accuracy, both augmentation schemes provide essentially no improvements when
we add them to our fully supervised baselines.

Relevance of unlabeled data (Appendix C.3). The theoretical analysis in Section 3 suggests that
self-training performance may degrade significantly in the presence of irrelevant unlabeled data; other
semisupervised learning methods share this sensitivity [33]. In order to measure the effect on robust
self-training, we mix out unlabeled data sets with different amounts of random images from 80M-TI
and compare the performance of resulting models. We find that stability training is more sensitive
than adversarial training, and that both methods still yield noticeable robustness gains, even with only
50% relevant data.

Amount of unlabeled data (Appendix C.4). We perform robust self-training with varying amounts
of unlabeled data and observe that 100K unlabeled data provide roughly half the gain provided by
500K unlabeled data, indicating diminishing returns as data amount grows. However, as we report in
Appendix C.4, hyperparameter tuning issues make it difficult to assess how performance trends with
data amount.
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Model PGOurs No attack

Baselineat(73K) 75.3 ± 0.4 94.7 ± 0.2

RSTadv(73K+531K) 86.0 ± 0.1 97.1 ± 0.1

Baselineat(604K) 86.4 ± 0.2 97.5 ± 0.1
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Figure 3: SVHN test accuracy for robust training without the extra data, with unlabeled extra (self-
training), and with the labeled extra data. Left: Adversarial training and accuracies under `1 attack
with ✏=4/255. Right: Stability training and certified `2 accuracies as a function of perturbation
radius. Most of the gains from extra data comes from the unlabeled inputs.

Amount of labeled data (Appendix C.5). Finally, to explore the complementary question of the
effect of varying the amount of labels available for pseudo-label generation, we strip the labels of all
but n0 CIFAR-10 images, and combine the remainder with our 500K unlabeled data. We observe that
n0=8K labels suffice to to exceed the robust accuracy of the (50K labels) fully-supervised baselines
for both adversarial training and the PGOurs attack, and certified robustness via stability training.

5.2 Street View House Numbers (SVHN)

The SVHN dataset [53] is naturally split into a core training set of about 73K images and an ‘extra’
training set with about 531K easier images. In our experiments, we compare three settings: (i) robust
training on the core training set only, denoted Baseline*(73K), (ii) robust self-training with the core
training set and the extra training images, denoted RST*(73K+531K), and (iii) robust training on all
the SVHN training data, denoted Baseline*(604K). As in CIFAR-10, we experiment with both
adversarial and stability training, so ⇤ stands for either adv or stab.

Beyond validating the benefit of additional data, our SVHN experiments measure the loss inherent in
using pseudo-labels in lieu of true labels. Figure 3 summarizes the results: the unlabeled provides
significant gains in robust accuracy, and the accuracy drop due to using pseudo-labels is below 1%.
This reaffirms our intuition that in regimes of interest, perfect labels are not crucial for improving
robustness. We give a detailed account of our SVHN experiments in Appendix D, where we also
compare our results to the literature.

6 Related work

Semisupervised learning. The literature on semisupervised learning dates back to beginning of
machine learning [42, 8]. A recent family of approaches operate by enforcing consistency in the
model’s predictions under various perturbations of the unlabeled data [30, 51], or over the course
of training [45, 40, 23]. While self-training has shown some gains in standard accuracy [25],
the consistency-based approaches perform significantly better on popular semisupervised learning
benchmarks [33]. In contrast, our paper considers the very different regime of adversarial robustness,
and we observe that robust self-training offers significant gains in robustness over fully-supervised
methods. Moreover, it seems to outperform consistency-based regularization (VAT; see Section C.1).
We note that there are many additional approaches to semisupervised learning, including transductive
SVMs, graph-based methods, and generative modeling [8, 58].

Self-training for domain adaptation. Self-training is gaining prominence in the related setting of
unsupervised domain adaptation (UDA). There, the unlabeled data is from a “target” distribution,
which is different from the “source” distribution that generates labeled data. Several recent ap-
proaches [cf. 27, 19] are based on approximating class-conditional distributions of the target domain
via self-training, and then learning feature transformations that match these conditional distributions
across the source and target domains. Another line of work [59, 60] is based on iterative self-training
coupled with refinements such as class balance or confidence regularization. Adversarial robustness
and UDA share the similar goal of learning models that perform well under some kind of distribution
shift; in UDA we access the target distribution through unlabeled data while in adversarial robustness,
we characterize target distributions via perturbations. The fact that self-training is effective in both
cases suggests it may apply to distribution shift robustness more broadly.
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Training robust classifiers. The discovery of adversarial examples [44, 4, 3] prompted a flurry of
“defenses” and “attacks.” While several defenses were broken by subsequent attacks [7, 1, 6], the
general approach of adversarial training [29, 43, 56] empirically seems to offer gains in robustness.
Other lines of work attain certified robustness, though often at a cost to empirical robustness compared
to heuristics [36, 49, 37, 50, 17]. Recent work by Hendrycks et al. [18] shows that even when pre-
training has limited value for standard accuracy on benchmarks, adversarial pre-training is effective.
We complement this work by showing that a similar conclusion holds for semisupervised learning
(both practically and theoretically in a stylized model), and extends to certified robustness as well.

Sample complexity upper bounds. Recent works [52, 21, 2] study adversarial robustness from a
learning-theoretic perspective, and in a number of simplified settings develop generalization bounds
using extensions of Rademacher complexity. In some cases these upper bounds are demonstrably
larger than their standard counterparts, suggesting there may be statistical barriers to robust learning.

Barriers to robustness. Schmidt et al. [41] show a sample complexity barrier to robustness in a
stylized setting. We observed that in this model, unlabeled data is as useful for robustness as labeled
data. This observation led us to experiment with robust semisupervised learning. Recent work also
suggests other barriers to robustness: Montasser et al. [31] show settings where improper learning
and surrogate losses are crucial in addition to more samples; Bubeck et al. [5] and Degwekar and
Vaikuntanathan [12] show possible computational barriers; Gilmer et al. [16] show a high-dimensional
model where robustness is a consequence of any non-zero standard error, while Raghunathan et al.
[38], Tsipras et al. [47], Fawzi et al. [15] show settings where robust and standard errors are at odds.
Studying ways to overcome these additional theoretical barriers may translate to more progress in
practice.

Semisupervised learning for adversarial robustness. Independently and concurrently with our
work, Zhai et al. [55], Najafi et al. [32] and Uesato et al. [48] also study the use of unlabeled data in
the adversarial setting. We briefly describe each work in turn, and then contrast all three with ours.

Zhai et al. [55] study the Gaussian model of [41] and show a PCA-based procedure that successfully
leverages unlabeled data to obtain adversarial robustness. They propose a training procedure that at
every step treats the current model’s predictions as true labels, and experiment on CIFAR-10. Their
experiments include the standard semisupervised setting where some labels are removed, as well as
the transductive setting where the test set is added to the training set without labels.

Najafi et al. [32] extend the distributionally robust optimization perspective of [43] to a semisupervised
setting. They propose a training objective that replaces pseudo-labels with soft labels weighted
according to an adversarial loss, and report results on MNIST, CIFAR-10, and SVHN with some
training labels removed. The experiments in [55, 32] do not augment CIFAR-10 with new unlabeled
data and do not improve the state-of-the-art in adversarial robustness.

The work of Uesato et al. [48] is the closest to ours—they also study self-training in the Gaussian
model and propose a version of robust self-training which they apply on CIFAR-10 augmented with
Tiny Images. Using the additional data they obtain new state-of-the-art results in heuristic defenses,
comparable to ours. As our papers are very similar, we provide a detailed comparison in Appendix E.

Our paper offers a number of perspectives that complement [48, 55, 32]. First, in addition to
heuristic defenses, we show gains in certified robustness where we have a guarantee on robustness
against all possible attacks. Second, we study the impact of irrelevant unlabeled data theoretically
(Section 3.3) and empirically (Appendix C.3). Finally, we provide additional experimental studies of
data augmentation and of the impact of unlabeled data amount when using all labels from CIFAR-10.

7 Conclusion

We show that unlabeled data closes a sample complexity gap in a stylized model and that robust self-
training (RST) is consistently beneficial on two image classification benchmarks. Our findings open
up a number of avenues for further research. Theoretically, is sufficient unlabeled data a universal
cure for sample complexity gaps between standard and adversarially robust learning? Practically,
what is the best way to leverage unlabeled data for robustness, and can semisupervised learning
similarly benefit alternative (non-adversarial) notions of robustness? As the scale of data grows,
computational capacities increase, and machine learning moves beyond minimizing average error, we
expect unlabeled data to provide continued benefit.
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Reproducibility. Code, data, and experiments are available on GitHub at https://github.com/
yaircarmon/semisup-adv and on CodaLab at https://bit.ly/349WsAC.
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