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Abstract

Streptococcus suis (S. suis) is an important bacterial pathogen, that causes serious infec-

tions in humans and pigs. Although numerous virulence factors have been proposed, their

particular role in pathogenesis is still inconclusive. The current study explored putative pep-

tides responsible for the virulence of S. suis serotype 2 (SS2). Thus, the peptidome of highly

virulent SS2, less prevalent SS14, and rarely reported serotypes SS18 and SS19 were com-

paratively analyzed using a high-performance liquid chromatography-mass spectrometry

method (LC-MS/MS). Six serotype-specific peptides, 2,3,4,5-tetrahydropyridine-2,6-dicar-

boxylate N-acetyltransferase (DapH), alanine racemase (Alr), CCA-adding enzyme (CCA),

peptide chain release factor 3 (RF3), ATP synthase subunit delta (F0F1-ATPases) and

aspartate carbamoyltransferase (ATCase), were expressed moderately to highly only in the

SS2 peptidome with p-values of less than 0.05. Some of these proteins are responsible for

bacterial cellular stability; especially, Alr was highly expressed in the SS2 peptidome and is

associated with peptidoglycan biosynthesis and bacterial cell wall formation. This study indi-

cated that these serotype-specific peptides, which were significantly expressed by virulent

SS2, could serve as putative virulence factors to promote its competitiveness with other

coexistences in a particular condition. Further in vivo studies of these peptides should be

performed to confirm the virulence roles of these identified peptides.

Introduction

Streptococcus suis (S. suis) is an important bacterial pathogen, that causes arthritis, meningitis,

pneumonia, septicemia, endocarditis, and polyserositis in the pig. In addition, it is a zoonotic

pathogen responsible for severe streptococcal infection in humans especially people with a
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history of exposure to diseased pigs or consumption of contaminated pork. Meningitis, sepsis,

arthritis, endocarditis, and endophthalmitis are the main clinical syndromes with consequences

of loss of hearing and vestibular dysfunction [1]. Formerly, S. suiswas divided by its capsular

polysaccharide into 35 serotypes [2] and then was later re-classified into 29 serotypes [3–5]. S.
suis serotype 2 (SS2) is the most prevalent in humans and pigs worldwide, while some other S.
suis serotypes such as SS14 have much less frequently caused human infections [6]. More than

1,600 cases of streptococcal infection were reported worldwide including in Europe, Asia,

North America, South America, Australia, and New Zealand [6–9]. Since the large outbreak in

China in 2005, Thailand and Vietnam appear to be endemic areas for this pathogen [10,11].

Regarding virulence factors, it is challenging to address the particular mechanism since S. suis
strains possess very high-diversity [12]. Over 100 putative virulence factors have been described

and some have been widely studied and are known for S. suis pathogenesis, such as capsular

polysaccharide (CPS), suilysin (SLY), enolase (Eno), muramidase-released protein (MRP), fac-

tor H binding protein (Fhb), and extracellular protein factor (EF) [13–17]. The particular roles

of these recognized and unrevealed virulence factors in the host pathogenesis would be useful to

know. Hence, many researchers have managed to investigate these unknown factors. Over

recent decades, proteomic techniques have been used to explore the microbial proteins and pep-

tides expressed by bacterial pathogens, such as Salmonella enterica and Staphylococcus aureus.
As for the techniques capable of identifying the putative virulence factors, the proteome of S.
suis has also been studied to consolidate their particular roles of putative virulence factors in the

host as well [18–21]. Various putative virulence factors of SS2 have been proposed such as, acet-

aldehyde-CoA/alcohol dehydrogenase (adhE), catabolite control protein A (Ccp A), leucyl ami-

nopeptidase (LAP), enolase (Eno), and endopeptidase [19,22–24]. According to our previous

work, peptidomics analysis revealed the role of the ABC-type phosphate transport system

(SSU05_1106) and 30S ribosomal protein S2 (rpsB) in the survival of S. suis in a growth medium

supplemented with 5% sheep blood [18], since some bacteria or yeast are adaptive or responsive

to different environments or growth conditions [25–28].

In the present study, peptides of highly virulent SS2, less prevalent SS14, and rarely reported

serotypes SS18 and SS19 were cultured in a growth medium without blood supplement and

comparatively analyzed by a high-performance liquid chromatography-mass spectrometry

(LC-MS/MS) method. The modified extraction method for S. suis serotyping with matrix-assis-

ted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was cho-

sen since this method provides high quality and quantity of the extracted peptides [29]. The

objective of this study was to explore the putative peptides in the peptidomes of SS2, SS14, SS18,

and SS19 that are possibly involved in the virulence of S. suis, especially highly virulent SS2.

Materials and methods

Bacterial strains

The highly virulent S. suis serotype 2 (SS2) and the less prevalent S. suis serotype 14 (SS14),

originally isolated from some diseased pigs were ATCC 700794 and 13730, respectively. The

rarely reported S. suis serotypes, isolated from some healthy pigs, were S. suis serotype 18

(SS18) NT77 and S. suis serotype 19 (SS19) 42A, respectively. These four references S. suis
serotypes were cultured on Columbia blood agar (Difco Laboratories, Detroit, MI, USA) with

5% (v/v) sheep’s blood at 37˚C for 24 h. A GasPak Anaerobic System (Mitsubishi Gas Chemi-

cal Co., Inc., Tokyo, Japan) was used to generate the anaerobic condition. The 16S rRNA gene

was sequenced to confirm the S. suis serotype. The primers used for sequencing were F1 and

R13 primers [30], the accession numbers of SS2, SS14, SS18, and SS19 are LS483418.1,

AF009489.1, AF009493.1, and AF009494.1, respectively. Then, the bacterial colonies were
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cultured in a Todd–Hewitt broth (THB) (Difco Laboratories, Detroit, MI, USA) and preserved

with 20% glycerol at −80˚C for further study.

Preparation of peptidome

S. suis serotypes SS2, SS14, SS18, and SS19 were individually cultured on Columbia blood agar

(Difco Laboratories, Detroit, MI, USA) with 5% (v/v) sheep’s blood at 37˚C in the anaerobic

condition for 24 h. The bacterial peptides were extracted according to a previous study [29].

Briefly, all colonies of S. suis grown on the blood agar plate were collected. The bacterial pep-

tides were then denatured with 70% (v/v) ethanol and centrifuged at 11,000 g for 5 min and

then the supernatant was discarded. A mixture of 5% (v/v) trifluoroacetic acid (TFA) with

absolute acetonitrile (ACN) was added. The suspension was dissolved before centrifugation at

150 g for 30 min. The ACN was removed and the sample was resuspended with 0.1% (v/v) for-

mic acid. A Lowry assay was used to determine the peptide concentration [31].

LC-MS/ MS

An HCTUltra PTM Discovery System (Bruker Daltonics Ltd., Bremen, Germany) coupled

with an UltiMate 3000 LC System (Dionex Ltd., Camberley, UK) was used to analyze peptides

in the samples. The peptide samples were separated on a nanocolumn (PepSwift monolithic

column 100 μm i.d. x 50 mm) using reversed-phase high-performance liquid chromatography

(HPLC). Two eluents were used. Eluent A was 0.1% formic acid and eluent B was 50% ACN in

water containing 0.1% formic acid. An eluent B gradient in the range of 4 to 70% was used to

elute peptides at a constant flow rate of 1,000 nL/min for 7.5 min. A CaptiveSpray was used to

generate electrospray ionization at 1.6 kV. Nitrogen as a collision gas was used with a flow rate

of 50 L/h. The collision-induced-dissociation product ion mass spectra were obtained. Posi-

tive-ion mode at 2 Hz over the (m/z) range 150–2200 was used to collect Mass spectra (MS)

and MS/MS. The collision energy was adjusted to 10 eV as a function of the m/z value. All

samples were triplicated before being analyzed by LC-MS.

Peptidomics data analysis

The hypothetical peptides derived from MS/MS were simultaneously analyzed and quantified

using the DeCyder MS Differential Analysis Software (DeCyderMS, GE Healthcare). The pro-

tein identification was performed by matching the analyzed MS/MS signal data with the Uni-

prot database using the Mascot software (Matrix Science, London, UK). The search

parameters were taxonomy (Streptococcus suis), enzyme (NoCleave), variable modifications

(oxidation of methionine residues), mass values (monoisotopic), protein mass (unrestricted),

peptide mass tolerance (1.2 Da), fragment mass tolerance (± 0.6 Da), peptide charge state (1+,

2+ and 3+), and missed cleavages (3). The full sequence of the main fragmentation series of

the MS/MS spectra was determined using the Mascot software. The level of peptide expres-

sions was illustrated by a Hierarchical clustering heat map using Multiple Experiment Viewer

version 4.9.0, Mev [32]. The distributions of differentially expressed peptides among pepti-

domes of four reference S. suis serotypes were displayed using Venn Diagrams with jvenn [33].

The particular protein annotation was acquired using UniProtKB/Swiss-Prot entries (http://

www.uniprot.org/ accessed on 29 July 2020). Furthermore, the identified proteins were classi-

fied by the PANTHER classification system version 17.0 (http://www.pantherdb.org/ accessed

on 26 February 2023) [34]. STITCH 5.0 (http://stitch.embl.de/ accessed on December 10,

2022) was used to determine the relationships between identified proteins of four reference S.

suis serotypes [35].
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Statistical analysis

The significantly different peptide peaks were evaluated using a Student’s t-test and one-way

analysis of variance (ANOVA), incorporated into the DeCyder MS Differential Analysis Soft-

ware. The statistical significance level was set at a p-value of less than 0.05. The Pearson corre-

lation was used for Hierarchical clustering heat map.

Results

Identified peptides

Various sizes of peptides (n = 229) in the range 360–3,700 Da were derived from the pepti-

domes of all four reference S. suis serotypes. A total of 187 peptides of SS18 were identified, fol-

lowed by 185 peptides of SS14 and SS19, and 184 peptides belonging to SS2 as shown in the

jvenn (Fig 1). Even though each S. suis serotype had almost 200 identified peptides, all four ref-

erence S. suis serotypes shared as many as 116 peptides in common. In terms of the protein

class [34], the identified peptides mainly belong to the metabolite interconversion enzymes

(38.9%), followed by the translational proteins (33.4%), RNA metabolism proteins (11.1%),

and transporters (7%) (Fig 2). The complete list of peptides is provided in the supporting

information (S1 Table). Four peptides, methionyl-tRNA formyltransferase (fMet), 4-hydroxy-

tetrahydrodipicolinate reductase (HTPA reductase), hydroxyethylthiazole kinase (TH kinase),

and ribonuclease Y (RNase Y), were solely identified in SS14. Three peptides only derived

from SS18 were ribosome-binding factor A (RbfA), UvrABC system protein B (UvrB), GTPase

Obg (GTP-binding protein Obg) while four peptides specifically derived from SS19 were ser-

ine/threonine transporter (SstT), deoxyribose-phosphate aldolase (DERA), SsrA-binding pro-

tein (Small protein B) and phosphoenolpyruvate carboxylase (PEPC) as shown in Table 1.

Virulent SS2 and SS14 shared five peptides in common while rarely reported serotypes

SS18 and SS19 co-expressed the same seven peptides (Table 2). We noted that six unique pep-

tides were found only in the peptidome of highly virulent SS2. These were 2,3,4,5-tetrahydro-

pyridine-2,6-dicarboxylate N-acetyltransferase (DapH), alanine racemase (Alr), CCA-adding

enzyme (CCA), peptide chain release factor 3 (RF3), ATP synthase subunit delta (F0F1-AT-

Pases) and aspartate carbamoyltransferase (ATCase), as shown in Fig 1 and Table 3.

Peptide expression

In this study, the identified peptide expression was relatively measured using the DeCyder MS

Differential Analysis Software and Mev. A gradient of peptide expression was visualized using

a Hierarchical clustering heat map with 2 dimensions. The row-wise dimension is the identi-

fied proteins and the column-wise dimension is the S. suis serotypes. The green color demon-

strates the down-regulated and the red color demonstrates the up-regulated peptides across

four reference S. suis serotypes. In terms of the expression level across identified peptides, SS14

and SS19 were relatively more correlated than SS18 while the expression of the SS2 peptide

was distantly correlated with the rest of the S. suis serotypes. SS2 and SS18 relatively expressed

peptides at the highest and lowest levels, respectively. Glycerol-3-phosphate dehydrogenase

[NAD(P)+] and DNA-directed RNA polymerase subunit beta were highly expressed across all

four S. suis serotypes. Since six identified peptides were exclusively expressed in SS2 (Table 3),

no intensity of these six identified peptides was expressed in SS14, SS18, and SS19. The top two

highly expressed peptides of SS2 were 2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-acetyl-

transferase and alanine racemase (Fig 3). Likewise, some unidentified peptides in some S. suis
serotypes demonstrated no intensity as shown in Fig 3.
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Discussion

Peptide identification

The massess of Peptide of highly virulent SS2, less prevalent SS14, and rarely reported sero-

types SS18 and SS19 extracted using the modified peptide extraction method followed by the

LC-MS/MS analysis were in the range 360–3,700 Da. The peptide masses derived by the cur-

rent technique provide a smaller range than the peptide mass of a previous study collected by

MALDI-TOF-MS in the range of 2–20 kDa [29]. Various ranges of peptide masses mainly

depend upon the different mass analyzers. The identified peptides were rather evenly distrib-

uted by either serotype (200 peptides each) or serotype grouping (2, 3, 4 serotypes in common)

as shown in Fig 1. Additionally, the number of peptides as putative virulence factors was

appropriate particularly to differentiate between virulent and non-virulent serotypes. Among

all identified peptides, most peptides (n = 116) were commonly found across four S. suis sero-

types. The number of co-identified proteins derived from peptidomes of virulent serotypes

was five while that of serotype-specific proteins of virulent SS2 and SS14 were six and four,

respectively. Therefore, the modified extraction method together with the LC-MS/MS analysis

as a comparative peptidomics analysis is a suitable tool for identifying putative virulence fac-

tors of S. suis.
Most identified peptides (38.9%) from the peptidome of S. suis belong to the metabolite

interconversion enzymes (Fig 2). This protein class converts one small molecule into another

Fig 1. Distribution of peptides identified in peptidomes of SS2, SS14 SS18, and SS19.

https://doi.org/10.1371/journal.pone.0287639.g001
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as opposed to the enzymes working on DNA, RNA, or a protein [34]. Approximately 33.4% of

the identified peptides are translational proteins involved in the translation of mRNA to pro-

tein, while only 11.1% of the identified proteins are RNA metabolism proteins. This involves

RNA processing or metabolism. The least number of identified peptides belong to the trans-

porter protein (7%), which acts as a substance delivery system across the plasma membrane.

More than 100 peptides were commonly expressed by all four S. suis serotypes e.g. the pep-

tide of muramidase-released protein (MRP). However, MRP was previously proposed as a vir-

ulent factor of S. suis [36]. This contradictory finding was justified by some previous studies

suggesting that MRP might be unpredictably involved in S. suis pathogenesis rather than being

a true virulence factor [16,37] and no correlation between the presence of virulence genes and

pathogenicity could be observed [38]. Likewise, some other proteins, proposed as virulence

factors of S. suis pathogenesis, were also identified in both virulent and non-virulent serotypes

in the present study, such as enolase (Eno), phosphoribosylamine-glycine ligase (PurD) [16],

Fig 2. Proteins classes of the identified peptides in peptidomes of SS2, SS14, SS18, and SS19.

https://doi.org/10.1371/journal.pone.0287639.g002
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and 30S ribosomal protein S2 (RpsB) [18]. The contradictory candidates of virulence factors

proposed in previous studies could be specific to either the host or the culture condition.

SS2 and SS14 are the top two serotypes that accounted for S. suis infection in humans at the

rates of 74.7 and 2.0%, respectively [6]. Therefore, peptides, commonly shared among these

two virulent serotypes in the present study, are perhaps required for being virulent serotypes

(Table 2). Some of these proteins are associated with the bacteria’s vital activities, such as phos-

phoribosyl formylglycinamidine cyclo-ligase (PurM), which is responsible for adenine and thi-

amine biosynthesis. The non-virulent strain Burkholderia pseudomallei was deficient in PurM

[39]. Moreover, the Holliday junction ATP-dependent DNA helicase (RuvA) proteins, are

reported to be essential for DNA helicase activity in E. coli [40]. The cell division protein

(DivIB) is also responsible for bacterial cell division [41]. It is clearly shown that co-identified

proteins derived from peptidomes of virulent serotypes are essentially responsible for the

building blocks of bacterial DNA.

For the fact that SS2 is a highly virulent serotype in both humans and pigs, insight into the

SS2-specific protein (Table 3) could shed some light on S. suis pathogenesis and its virulence

factor candidates. 2,3,4,5-Tetrahydropyridine-2,6-dicarboxylate N-acetyltransferase, encoded

by the dapH gene and ATP synthase subunit delta (F0F1-ATPases) were found in SS2 pepti-

dome. These two enzymes involve L-lysine biosynthesis [42] and ATP synthases [43], required

by bacterial cells. Despite no evidence as a virulence factor in some other bacteria, these two

peptides are supposed to be candidates for the SS2 virulence factor since they are among six

proteins solely identified in the SS2 peptidome (Fig 1 and Table 3).

Identification of Alanine racemase (Alr) only in the peptidome of SS2 (Fig 1 and Table 3)

suggested that SS2 possibly better replicates and persists in the host tissue than other serotypes.

Since Alr is an enzyme responsible for the conversion of L-alanine to D-alanine (Fig 4A), it is

essential for peptidoglycan biosynthesis followed by bacterial cell wall formation [44]. This

enzyme function could enhance the cell wall integrity of S. suis to withstand the environmental

harshness in the host tissue. The inhibition of Alr results in the decreased interspecies compet-

itiveness of Streptococcus mutants and the pathogenicity of Aeromonas hydrophila [45,46].

Moreover, this enzyme has been suggested as a potential antimicrobial drug target as well [44].

Thus, we suggest that Alr is presumably significant for the virulence of SS2.

The CCA-adding enzyme or tRNA nucleotidyl transferase is a unique enzyme that plays a

significant role in tRNA integrity. As tRNAs are critically important for translation, the defec-

tive tRNA must be eliminated to prevent serious consequences to the cells [47]. The CCA-add-

ing enzyme acts by adding a degradation tag to nonfunctional tRNA so that the defective

Table 1. Identified proteins derived from peptidomes of SS14, SS18, or SS19.

S. suis Gene Protein

SS14 fmt methionyl-tRNA formyltransferase

dapB 4-hydroxy-tetrahydrodipicolinate reductase

thiM hydroxyethylthiazole kinase

rny ribonuclease Y

SS18 rbfA ribosome-binding factor A

uvrB UvrABC system protein B

obg GTP-binding protein Obg

SS19 sstT serine/threonine transporter SstT

deoC deoxyribose-phosphate aldolase

smpB SsrA-binding protein

ppc phosphoenolpyruvate carboxylase

https://doi.org/10.1371/journal.pone.0287639.t001
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tRNA is subsequently eliminated [48]. According to our study, the CCA-adding enzyme is

identified as an SS2-specific protein, considering that this highly virulent serotype exclusively

encodes this enzyme to control the integrity of protein synthesis. Hence, we assume that the

CCA-adding enzyme is one of the factors that strengthen the stability of SS2 cells.

Peptide chain release factor 3 or Release factor 3 (RF3) is another SS2-specific protein

responsible for the integrity of protein synthesis during the elongation step of the bacterial

translation [49] as shown in Fig 4B. This protein is encoded by prfC; the deletion of prfC leads

to miscoding that affects both the quantity and quality of synthesized proteins in Escherichia
coli [49]. Furthermore, this protein also plays an important role in S. suis to leverage the anti-

microbial effect. The prfC-deleted strain of S. suis becomes more sensitive to streptomycin

because of errors in the protein synthesis while wild-type S. suis is resistant to streptomycin

[49–52]. In the present study, RF3 is solely identified in the SS2 peptidome (Fig 1 and Table 3).

Thus, RF3 could significantly support the integrity of synthesis of SS2 proteins. With the sig-

nificant primary role of RF3 in the construction of initial protein substances strengthening

both structural and non-structural proteins, we assume that RF3 enables the highly virulent

SS2 to survive under variable conditions including the presence of streptomycin.

Aspartate carbamoyltransferase or Aspartate transcarbamylase (ATCase), encoded by pyrB,

is the first enzyme that plays a vital role in bacterial pyrimidine biosynthesis, resulting in nucle-

otides cytosine, thymine, and uracil. These are essential building blocks of DNA and RNA

[53,54] as shown in Fig 4C. This enzyme is necessary for bacterial viability while the absence of

pyrB could lead to bacterial cell death ofHelicobacter pylori [55]. The ATCase was only identi-

fied in the peptidome of SS2 (Fig 1 and Table 3) with a moderate expression in the present cul-

ture condition. This indicates that this enzyme is relevant to SS2 virulence as SS2 is capable of

Table 2. Co-identified proteins derived from virulent (SS2 and SS14) and rarely reported (SS18 and SS19) peptidomes of S. suis.

S. suis Gene Protein

SS2 and SS14 purM phosphoribosylformylglycinamidine cyclo-ligase

rpmH 50S ribosomal protein L34

ruvA holliday junction ATP-dependent DNA helicase RuvA

mnmA tRNA-specific 2-thiouridylase MnmA

divIB cell division protein DivIB

SS18 and SS19 dtd D-aminoacyl-tRNA deacylase

rplF 50S ribosomal protein L6

atpC ATP synthase epsilon chain

SSU05_0620 nucleotide-binding protein

glyA serine hydroxymethyltransferase

lacB galactose-6-phosphate isomerase subunit LacB

scpA segregation and condensation protein A

https://doi.org/10.1371/journal.pone.0287639.t002

Table 3. Identified proteins derived from peptides only expressed in the peptidome of highly virulent SS2.

Gene Protein (Amino-Acid Length) Function

dapH 2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-acetyltransferase (232) lysine biosynthesis

alr alanine racemase (367) D-alanine biosynthesis

cca the CCA-adding enzyme (403) tRNA binding

prfC peptide chain release factor 3 (514) protein biosynthesis

atpH ATP synthase subunit delta (177) proton-transporting ATP synthase activity

pyrB aspartate carbamoyltransferase (307) catalytic Activity

https://doi.org/10.1371/journal.pone.0287639.t003
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Fig 3. Hierarchical clustering and heat map of differentially expressed peptides in peptidomes of SS2, SS14, SS18, and SS19. Six peptides, identified only in

the peptidome of SS2, in the rectangular frame were closely clustered and expressed at high to moderate levels. Two arrows specify the common peptides highly

expressed across all four SS peptidomes. The green color indicates the down-regulated and the red color indicates up-regulated peptides across different

serotypes.

https://doi.org/10.1371/journal.pone.0287639.g003
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modulating the level of this enzyme depending on the growth condition as ATCase was not

expressed at all in the growth medium with the blood supplement.

We note that the protein expression of virulent S. suis was directly affected by the culture

condition or particularly the growth medium. In our previous work using a growth medium

supplemented with 5% sheep blood, the virulent-specific proteins expressed by SS2 and SS14

were the ABC-type phosphate transport system (SSU05_1106) and 30S ribosomal protein S2

(RpsB). These proteins are associated with the molecule transport system across the cell mem-

brane and protein synthesis [18]. Whereas in the present study where S. suis was cultured in

the absence of blood with the same extraction technique and peptidomics analysis, the viru-

lent-specific proteins expressed by SS2 and SS14 were associated with genetic material and

protein synthesis (Table 2). Virulent S. suis replicating under host-simulated conditions (blood

supplement) dedicates its resources to responding to the host immune system (i.e. white blood

cells), particularly by the first line of defense at the cell membrane. Whereas virulent S. suis cul-

tured in the absence of blood is less defensible to the host immune system, the resource was

used for the synthesis of genetic material for cell replication. No matter how different the

Fig 4. STITCH 5.0 elucidates the association of three identified peptides derived solely from SS2 peptidome including, Alanine racemase (Alr), responsible for

the conversion of L-alanine to D-alanine, essential for peptidoglycan biosynthesis and bacterial cell wall formation (4A), Peptide chain release factor 3 (prfC)

responsible for specifying the fidelity of protein synthesis, interact directly with the ribosome (4B), and ATCase (pyrB) with pyrimidine biosynthesis; nucleotides

cytosine, thymine, and uracil (4C). The grey thick lines represent the highest edge confidence scores (0.900) indicating the high strength of the protein interactions at

the functional level.

https://doi.org/10.1371/journal.pone.0287639.g004
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culture condition is, the virulent S. suis is still necessary to express genes responsible for pro-

tein synthesis.

Peptides expression

Studying the magnitude of the protein expression is an effective way to recognize which pro-

teins are required, synthesized, and regulated by living microorganisms. Although the same

peptides were identified, the level of expression can be different. Considering SS19 as a non-

virulent serotype in the current study, it appeared that peptides expressed by SS14 and SS19

clusters are more correlated than those expressed by SS18 (Fig 3). SS2 is distantly clustered

from the rest of the S. suis serotypes since there are five SS2-specific proteins with high to mod-

erate levels of expression (Fig 3). The distinctive peptidomics-based phylogeny of SS2 was

compatible with our previous study using MALDI-TOF-MS to differentiate 32 reference

strains of S. suis [29].

Remarkably, SS2 and SS18 relatively express peptides at the highest and lowest levels, respec-

tively. As mentioned in an earlier paragraph (Table 3), SS2 not only possesses several serotype-

specific peptides supporting its existence but also expresses these proteins at a high level (Fig 3).

Interestingly, the glycerol-3-phosphate dehydrogenase [NAD(P)+] and DNA-directed RNA

polymerase subunit beta were highly expressed across all four S. suis serotypes. This finding wis

compatible with the fact that the anaerobic condition was used to culture all S. suis serotypes

and the glycerol-3-phosphate dehydrogenase [NAD(P)+] being necessary for growth in anaero-

bic condition [56]. The DNA-directed RNA polymerase subunit beta was involved in biofilm

formation of Enterococcus faecalis [57] and was indicated as a virulence factor of SS2 for pene-

trating the blood–brain barrier in an in vitro co-culture model. However the serotype range in

this study was limited to SS2 [58]. Considering the present study all S. suis serotypes were cul-

tured in the absence of blood and expressed the DNA-directed RNA polymerase subunit beta at

the high level. This observation might justify some primary role of this enzyme aside from it

being associated with crossing the blood–brain barrier in a culture model.

Let us consider six SS2-specific peptides with a high level of expression, yet without protein

expression or sharing with SS14, SS18, and SS19 at all (Fig 3 and Table 3). The top two highly

expressed peptides of SS2 are Alanine racemase and 2,3,4,5-tetrahydropyridine-2,6-dicarboxy-

late N-acetyltransferase. These outcomes elucidate that SS2 mainly dedicated its resources to

the peptidoglycan biosynthesis forming the bacterial cell wall [44] and L-lysine biosynthesis

[42]. These activities are considered to be useful and potentially supportive of SS2 virulence.

Similarly, the CCA-adding enzyme and peptide chain release factor 3 with a moderate level of

expression are responsible for controlling the integrity of protein synthesis and then strength-

ening cell stability [48,49] (Fig 3). For the last two peptides, the ATP synthase subunit delta

and the Aspartate carbamoyltransferase were expressed at a moderate level. These two

enzymes were moderately engaged in ATP synthases [43] and bacterial pyrimidine biosynthe-

sis [53]. Altogether, virulent SS2 prioritizes its resource to strengthen the cell wall followed by

producing genetic material and energy production. This could promote its competitiveness for

coexistence with some other bacteria.

A practical or advantageous application of this study is the comparison of protein expres-

sion within and between studies. The hierarchical clustering heatmap allows researchers to

interpret the identified peptides or proteins more meaningfully. In the case where limited

numbers of peptides were identified, the expression levels could relatively distinguish between

them and explain the discrepancy. Furthermore, if possible, the comparison of protein expres-

sion could be extended across some other studies as researchers agree on a single standard of

the unit of protein expression.
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Conclusions

This present study comparatively elucidated peptidomes of highly virulent SS2, less prevalent

SS14, and rarely reported serotypes SS18 and SS19. The six peptides consisting of 2,3,4,5-tetra-

hydropyridine-2,6-dicarboxylate N-acetyltransferase (DapH), Alanine racemase (Alr), CCA-

adding enzyme (CCA), Peptide chain release factor 3 (RF3), ATP synthase subunit delta

(F0F1-ATPases) and Aspartate carbamoyltransferase (ATCase), identified only in peptidomes

of SS2 are suggested to be associated with its virulence factor. Further study on the inhibition

of these peptides should be performed to confirm their significance for S. suis virulence or

pathogenesis.
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