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METHODOLOGY

Unmanned aerial platform-based 
multi-spectral imaging for �eld phenotyping 
of maize
M Zaman-Allah1* , O Vergara2, J L Araus2, A Tarekegne1, C Magorokosho1, P J Zarco-Tejada3, A Hornero3, 

A Hernández Albà4, B Das5, P Craufurd5, M Olsen5, B M Prasanna5 and J Cairns1

Abstract 

Background: Recent developments in unmanned aerial platforms (UAP) have provided research opportunities in 

assessing land allocation and crop physiological traits, including response to abiotic and biotic stresses. UAP-based 

remote sensing can be used to rapidly and cost-effectively phenotype large numbers of plots and field trials in a 

dynamic way using time series. This is anticipated to have tremendous implications for progress in crop genetic 

improvement.

Results: We present the use of a UAP equipped with sensors for multispectral imaging in spatial field variability 

assessment and phenotyping for low-nitrogen (low-N) stress tolerance in maize. Multispectral aerial images were 

used to (1) characterize experimental fields for spatial soil-nitrogen variability and (2) derive indices for crop perfor-

mance under low-N stress. Overall, results showed that the aerial platform enables to effectively characterize spatial 

field variation and assess crop performance under low-N stress. The Normalized Difference Vegetation Index (NDVI) 

data derived from spectral imaging presented a strong correlation with ground-measured NDVI, crop senescence 

index and grain yield.

Conclusion: This work suggests that the aerial sensing platform designed for phenotyping studies has the poten-

tial to effectively assist in crop genetic improvement against abiotic stresses like low-N provided that sensors have 

enough resolution for plot level data collection. Limitations and future potential uses are also discussed.
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Background
To ensure improved agricultural productivity, the devel-

opment and deployment of phenotyping technologies 

that enable monitoring of phenotypic changes of crop 

plants in the field is a critical component [1, 2]. Satel-

lite imaging technologies have become an extremely 

useful tool for collecting data useful for various agricul-

tural applications. However, the major challenges that 

limit their application in the area of crop improvement 

are the high cost and the lack of resolution for plot level 

crop data collection as well as the large revisit periods. 

�e use of manned airborne remote sensing has demon-

strated capabilities for large scale crop condition moni-

toring or for example yield and quality forecasting due 

to the high spatial and spectral resolutions of the sensors 

mounted. However in the case of breeding and except 

for big seed companies its high operating costs and the 

operational complexity involved have usually limited 

its use so far to research activities [3]. Unmanned aerial 

vehicle platforms (UAPs) equipped with sensors are 

emerging as an important, albeit affordable, component 

of precision agriculture and crop improvement [4]. �e 

use of these platforms is becoming critical in crop phe-

notyping because of their ability to rapidly phenotype 

large numbers of plots and field trials in a dynamic way 

that can assist the identification and definition of the 
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genetics behind crop yield variability. In addition, the tra-

ditional methods currently used, like visual senescence 

and plant vigor scorings deliver ranking that are variable, 

depending on the training and subjective appreciations 

of the staff devoted to that task. With optimum spatial 

and spectral resolutions, remote sensing from satellite 

and conventional aerial platforms can provide spatially 

and spectrally derived parameters for various purposes 

including crop condition [5–7], crop forecasting and 

yield predictions [8–10], disease detection and nutrient 

deficiency [11–13], and photosynthetic pigment content 

[14–16]. �is becomes extremely important with regard 

to the increasing demand to support and accelerate pro-

gress in breeding for novel traits which at the same time 

requires to accurately measure increasingly large num-

bers of plants. With improvements in spatial, spectral and 

temporal resolution of aerial remote sensing, UAPs will 

enable near real-time visual assessment for crop moni-

toring in the field yield predictions, crop status map-

ping, weed detection, and disease and nutrient deficiency 

detection. Moreover the development of these miniatur-

ized, affordable light-weight unmanned aerial platforms, 

with better flight control, have enabled the acquisition of 

high resolution images for various remote sensing appli-

cations. Preliminary reports on identification of damaged 

leaves using the normalized difference vegetation index 

(NDVI) showed a good similarity between the NDVI 

values as predicted by remote sensing using UAPs with 

that of ground truth [17]. Similarly, good potential from 

multispectral imaging sensors mounted on UAV plat-

forms for physiological condition assessment [18, 19] 

and stress detection in different crops was reported [3] 

including hyperspectral imaging. In addition, these stud-

ies reported a good relationship between the predicted 

and validated values of leaf area index (LAI) in maize 

(r2 =  0.5) plants as well as chlorophyll concentration at 

the crop level.

Spectral measurements enable to derive a number of 

reflectance vegetation indices which have been intro-

duced in both field research and breeding programs for 

large-scale phenotyping and dynamic estimation of bio-

mass, greenness, nitrogen content, pigment composi-

tion, photosynthetic status, and water content [20, 21]. 

However so far their use in plant phenotyping under 

field conditions remains far more novel than their imple-

mentation under controlled (e.g. greenhouse or growth 

chamber) conditions [22].

Another critical area where aerial remote sensing can 

be useful is the characterization of spatial field variabil-

ity which results usually from crop management history, 

spatial changes in soil characteristics and elevation gra-

dients affecting water and nutrients movement. Spatial 

variability is a serious limitation to breeding efficiency 

because it creates variation of the stress level imposed 

within trials, which decreases the heritability of the 

phenotypic traits evaluated [23] and obstruct the detec-

tion of the genetic signal [24]. Spatial variability in crop 

productivity is even more evident when differences in 

resources such as soil N become limiting [25]. In low-

input management systems Verhulst et  al. [26] showed 

that standard deviation and coefficient of variation of 

NDVI values were high. Recently, Cairns et al. [27] have 

reported a very large residual and genotype × trial vari-

ances in the drought and combined drought and heat 

treatments relative to the well-watered treatment which 

resulted in reduced heritability for means estimates from 

the stressed trials. In addition, a combined analysis of the 

southern Africa regional trials of CIMMYT and partners 

also pointed out plot residual variance to be much higher 

under managed stress relative to nonstress trials [28]. 

�ese results highlight the need for measures to reduce 

the effects of field variability so as to increase the genetic 

signal to noise ratio. One way of addressing this spatial 

field variability problem is to collect soil information; 

but this has proven to be a laborious process. �erefore, 

aerial spectral imaging could be a quick and low-cost 

method for experimental field characterization.

To be relevant for breeding, plant phenotyping, should 

allow to objectively select key trait(s) under the least spa-

tial field variability conditions. �is underlines the criti-

cal need to use the “right” tools for data collection and 

for minimizing the spatial variability. To date, only few 

studies have reported attempts to use UAP’s remote sens-

ing for spatial field variation assessment and crop pheno-

typing in the field. �is work reports a proof of concept 

exercise on how a UAV-based remote sensing platform 

equipped with sensor for multispectral imaging could 

be used for experimental field spatial variability and 

maize phenotyping in the field under low-nitrogen stress 

conditions.

Results and discussion
Experimental �eld characterization

Experimental fields can be characterized using crop 

management history, spatial changes in soil character-

istics, elevation gradients affecting water and nutrients 

movement. Spatial variability in crop productivity is 

usually more evident when differences in resources such 

as soil N become limiting [25]. In low-input manage-

ment systems Verhulst et  al. [26] showed that standard 

deviation and coefficient of variation of NDVI values 

were high. �is has negative implications for the qual-

ity of data to be collected and ultimately the selection 

efficiency in crop improvement. To address this major 

constraint, collecting soil information is crucial as it 

can help understanding grain yield variation, but this 
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has proven to be a laborious process. In this work, we 

have tested aerial spectral imaging as a quick and low-

cost tool for experimental field characterization. �e 

images taken with the UAP showed differences in uni-

formity related to N-availability in the managed low-N 

fields (Figure  1a). Field 2 was the most heterogeneous 

with large number of plants rows showing high NDVI 

values and higher standard deviation and CV than field 1 

(Table 1). �is was the result of the poor performance of 

the maize planted in that area due to a disease pressure 

during the previous cropping season which resulted in 

low growth and subsequent excess of soil N available in 

some areas of the field. �is highlights the importance of 

recording crop management history, especially in man-

aged low N, as it can introduce additional spatial field 

variability. According to these results (Figures 1b, c, 2B; 

Table 1), the UAP proved capable of capturing field vari-

ability which is extremely useful for any crop improve-

ment program. �is is in agreement with the results 

reported by Verhulst et  al. [26] who demonstrated that 

the intrinsic spatial soil characteristics could be asso-

ciated to crop performance, and that remote sensing 

technology could be used to identify areas of low pro-

ductivity. �e authors consistently demonstrated that 

plots of maize managed as no-till with residue removal 

had significantly lower mean and minimum NDVI 

values compared to plots managed as conventional till-

age. Considering that the images are geo-referenced, the 

reflectance data can be used either to design trial layouts 

which do not include the highly variable portions of the 

field or in case of harvested trials, to use them as covari-

ate when analyzing the data [23]. In addition, these data 

can be used to remove spatial variation that is not effec-

tively controlled by blocking. Another option using these 

data would be to develop management zones based on 

inherent characteristics of a location [29]. Because this 

platform can allow covering large areas in a short period 

of time (compared to manual data collection methods), 

data can be generated every season and compared to 

assess changes over time or visualize the impact of any 

management measure taken to deal with the spatial vari-

ability. �e ability to closely monitor spatial variability 

Figure 1 a Satellite view (Googlemap) of low-N fields at the CIMMYT Harare station, b Spectral reflectance of wheat plants grown at high density 

on the low-N fields prior to booting. (filled purple square and filled pink square indicate very low nitrogen and relatively higher nitrogen levels, respec-

tively). The fields were depleted of soil N for (1) 5 years and (2) 4 years by growing maize without any N application. c Multispectral images showing 

management related field variability of low-N fields at the CIMMYT Harare station planted with maize trials. A, a High variation in a poorly managed 

field and B, b well-managed field.

Table 1 Descriptive statistics for  the NDVI values at   

CIMMYT’s Harare low-N �elds, Harare, Zimbabwe

Min minimum value, Max maximum value, SD standard deviation, CV coe�cient 

of variation (%).

Field Mean Min Max SD CV (%)

2 0.3431 0.0243 0.7833 0.1060 26.91

1 0.3234 0.1201 0.4687 0.0321 6.75
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will improve the quality of data collected in trials, which 

will increase the efficiency of the breeding programs.  

Plant stress detection

Nitrogen status of field crops can be assessed using 

leaf or canopy spectral reflectance data [6, 30]. Several 

studies have found that nondestructive measurements 

of leaf or canopy reflectance can be used for detecting 

N-deficient stress in maize [31, 32], rice [33], and wheat 

[34]. Using aerial multispectral imaging with a UAP, we 

evaluated the capabilities for remotely sensing low-N 

stress in maize hybrids. NDVI data generated from mul-

tispectral imaging were used to compute a low-N stress 

index.

The stress index values decreased from 0 AN to 160 

AN (Figure 3). Data showed that this index clearly dis-

criminated between the sensitive and tolerant hybrids. 

At all the N levels, the sensitive hybrids presented a 

higher index than the tolerant ones, with the great-

est difference when no N was applied (Figure 3). This 

indicates the higher N requirement of the sensitive 

genotypes, most probably because of lower N-uptake 

efficiency. In addition, this index showed a good cor-

relation with grain yield, particularly at low N levels (0, 

10 and 20 kg ha−1 AN) (Figure 4, r = 0.79, p < 0.001). 

This is because maize N status is usually significantly 

correlated with leaf reflectance at low leaf N concen-

tration under field conditions [35] partly due to the 

fact at low N canopy biomass does not saturate NDVI 

and therefore the vegetation index remains precise 

enough. 

Our data have shown that remote sensing using a 

UAP can be used to detect subtle differences of N stress 

within a field to a resolution of a single row and yet eval-

uate an entire field (Figure  2). �is level of resolution 

together with the fast data collection that the platform 

allow, open an avenue for in-season descriptive analysis 

of plant development variables. With more exploration, 

this will permit determination of the critical growth stage 

to consider, the appropriate spectral bands for crop per-

formance analysis, and the integration of co-variate in 

statistical designs or even the integration of data in crop 

models.

Comparison between ground-based measurements 

and UAV-based remote sensing

NDVI

We compared the ground-measured NDVI data with 

NDVI data derived from the UAP. Data showed that the 

ground-measured NDVI ranged from 0.5 to 0.65 and 0.4 

to 0.8 at flowering and 2 weeks post-flowering, therefore 

giving an amplitude of 0.15 and 0.2 respectively (Fig-

ure 5a, b). �e UAP data although lower compared to the 

ground-measured NDVI gives a higher amplitude of vari-

ation 0.35–0.4 at the two measurement time points. In 

Figure 2 A Multispectral images of plots under different N-applica-

tion rates. a N-stressed plot and b Non-stressed plot. B Maize plants 

grown under severe N-stress (SS), mild N-stress (ms) and optimum N 

supply (C).

Figure 3 Variation of low-N stress index at 6 N application rates in 3 

tolerant hybrids (solid line) and 3 sensitive hybrids (dashed line). Plants 

were grown on an N-depleted field at CIMMYT-Harare and data were 

collected at flowering.
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addition there was a good correlation between the two as 

shown on Figure 5c (r = 0.83, p < 0.001).

Crop senescence

Leaf senescence affects the plant’s ability to fill the grains 

by reducing the grain filling duration. Crop senescence 

can be used to indirectly assess the ability of a genotype 

to maintain a higher plant photosynthetic capacity under 

N deficiency conditions.

Crop senescence index, here formulated from the 

combination of GA and GAA indices derived from 

RGB images, presented a large variation and discrimi-

nated between the tolerant and susceptible genotypes. 

Leaf senescence values decreased from 0  kg  ha−1 N to 

160  kg  ha−1 AN following a broken-stick-model (Fig-

ure 6a). Between 0 kg ha-1 N and 40 kg ha−1 N, the senes-

cence decrease following a slope of 26% while beyond 

40 N, the variation of senescence was small with a slope 

of only 2.2%. Stress conditions are known to lead to pre-

mature senescence. �e rapid reduction of senescence 

between 0 and 40 kg ha−1 N is the result of stress reduc-

tion due to N supply. Above 40 kg ha−1 N the level of N 

stress is less severe and N application will not result in a 

significant stress reduction as assessed on leaves. �e crop 

senescence index showed a good correlation with NDVI 

derived from spectral imaging from the UAP and grain 

yield (Figure 6b). �is underlines that it is possible to use 

UAP derived spectral imaging to assess leaf senescence 

in maize plants. Several differences between vegetative 

and reproductive growth might influence the induction 

and development of leaf senescence: first, although leaf 

senescence might be induced by N shortage under field 

conditions, the timing of N shortage is dependent upon 

different factors. In the field, the exploration of N sources 

in deeper soil layers might play the most important role 

for N uptake during reproductive growth [36].

In addition the variation of the leaf senescence index in 

relation to N rates show that at low N range, the slope is 

ten times higher than at high N rates and the relationship 

is stronger.

Plant leaf senescence decreased with increase in N 

application rate (Figure  6a). As a consequence of the 

delay in senescence plant photosynthetic capacity 

Figure 4 Relationship between grain yield and low-N stress index. 

Light gray circles are for data from 0 to 40 N rates and dark gray circles 

from 40 to 160 N rates. Replicated data from 10 hybrids were used 

(*P ≤ 0.05, ***P ≤ 0.001).

Figure 5 Distribution of NDVI data collected using a ground-based 

spectroradiometer (a) and the UAP (b) at two different dates. c 

Correlation between NDVI-Ground and NDVI-UAP. The dashed lines 

represent the 95% confidence intervals (**P ≤ 0.01).
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prolongs the effective leaf area duration [37]. On the 

opposite side, N deficiency accelerates leaf senescence 

rates throughout the life cycle [38]. �is has been shown 

to be important for ear and kernel initiation, contribut-

ing to define maize sink capacity [39] and maintaining 

functional kernels throughout grain filling with positive 

impact on the number of developed kernels and kernel 

final size [40]. Under low soil N conditions, the photo-

synthetic capacity is reduced due to early senescence as 

compared to high soil N. �e crop senescence index was 

20% smaller at 160 kg ha−1 AN relative to 0 kg ha−1 AN. 

It was reported that leaf senescence could explain 47% of 

genotypic variation in nitrogen use efficiency in the field 

experiments [41].

Relationship with grain yield

Yield data showed large genetic variation between the 10 

hybrids within and among the N treatments. Grain yield 

ranged from 1.94 to 8.63 t ha−1 at 0 and 160 kg ha−1 N, 

respectively (Table  2). At 0  kg  ha−1 AN application, the 

yield of low N susceptible hybrids was more than 1.4  t 

less than that of the tolerant ones. Besides, the yield dif-

ferences were larger at low N application rates. �is is 

mostly because the differences in growth are more pro-

nounced when N is less available to plants. �e strong 

relationship between the low-N stress index and grain 

yield (Figure  4) suggest that the genotypic yield differ-

ences were partly due to differences in senescence, with 

genotypes having higher yield showing less senescence 

as compared to those with lower yield. As reported in 

many studies, there was a significant negative correla-

tion between grain yield and senescence [42, 43]. Over-

all, there was a good correlation between NDVI and grain 

yield (Table  3). �e correlation was stronger under low 

N conditions (0–10  kg  ha−1) as compared to sufficient 

N conditions (Table 3). �e same trend was observed at 

flowering and 2  weeks after flowering. Previous works 

have shown an association between NDVI values and 

crop biomass accumulation, leaf area index, leaf chlo-

rophyll levels, and photosynthetically active radiation 

absorbed by the canopy [20, 44], to a large extent because 

N uptake and NDVI are highly correlated [45]. �is has 

in turn been associated with crop yield [20, 46]. How-

ever, this association varies significantly depending on 

the developmental stage and growth conditions. In most 

instances, when the leaf area index reaches high values, 

the association becomes weaker because of saturation 

effect on NDVI. �ese studies demonstrate that many 

factors can potentially affect the detection of genetic 

variation for vegetation indices, especially with remote 

sensing methods. �ese factors include the type of stress 

tolerance that is being investigated. Moreover the stage 

of growth to obtain the desired genetic variation would 

Figure 6 a Variation of crop senescence under various N rates and 

b relationship with NDVI extracted from multispectral images taken 

with the UAP. Replicated data from 10 hybrids and 6 N-application 

rates were used (**P ≤ 0.01). The dashed lines represent the 95% 

confidence intervals.

Table 2 Descriptive statistics for the Grain yield values (t ha−1) in 10 maize hybrids grown under 6 N application rates

N-application rate (Kg ha−1 AN)

0 10 20 40 80 160

Minimum 1.940 2.741 3.373 3.372 5.133 5.284

Maximum 3.896 4.602 5.818 4.998 7.530 8.630

Mean 2.801 3.538 4.654 4.240 6.274 6.821

Std. error 0.129 0.114 0.139 0.120 0.176 0.240
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differ whether the data are collected in a low N stress 

trial like in the present study or under other different 

stress conditions, such as for example early (planting and 

emergence) or terminal (i.e. during reproductive stage) 

drought stress trial.

Regarding crop senescence index, the correlation with 

grain yield followed the same trend as NDVI (Table  3). 

�e correlation was stronger under low N conditions 

(0–10  kg.ha−1) as compared to sufficient N conditions. 

N deficiency is known to accelerate leaf senescence rate 

[38] which was shown to be important for ear and kernel 

initiation, contributing to define maize sink capacity [39] 

and maintaining functional kernels throughout grain fill-

ing [40].

Conclusions
�e use of UAP for field spatial variability and field-based 

crop phenotyping is novel, but is expected to become an 

important tool for improving efficiency in crop breed-

ing. Currently, most of the limitations in the deployment 

of these platforms in breeding are related to the cost of 

sensors, spatial resolution of imagery, data processing, 

management and complexity of operation. �e results of 

the current study suggest that remote sensing from UAP 

has a great potential for field and crop trait characteriza-

tion under field conditions. To date, only few studies have 

been carried out attempting to use UAP’s remote sensing 

for spatial field variation assessment and crop phenotyp-

ing in the field. Our results showed that, this type of plat-

form can be used in low N stress detection/senescence 

as well as for estimating final yield in maize. However, to 

effectively deploy this type of platform in a breeding pro-

gram, there is need to measure its breeding value through 

selection indices and to have a well-designed data pro-

cessing and management plan.

Methodology
Experimental set up

To address the relevance of UAV-based remote sens-

ing platforms for field crop phenotyping, we set up two 

experiments at the CIMMYT-Harare research sta-

tion (−17.725787 S, 31.016457 E) on 5-years nitrogen 

depleted fields referred here as managed low-N fields. 

�e average Nitrate–N concentration of the managed 

low-N fields (using the spectrophotometric method) 

was 8 mg kg−1 soil. �e first experiment focused on the 

characterization of the field site for spatial variability. 

�e field was sown with a single wheat variety (Triticum 

aestivum L. cv. SC-Stallion). �e planting was done dur-

ing the winter season 2012 under controlled irrigation to 

ensure that germination and growth were homogenous. 

�e second experiment focused on assessing N-response 

of maize (Zea mays L.) hybrids. A total of 10 hybrids were 

used, 5 hybrids were classified as low-N tolerant and 5 

hybrids as low-N susceptible based on previous multi-

location experiments. Six N fertilization levels were used: 

0, 10, 20, 40, 80 and 160 kg ha−1 of Ammonium Nitrate 

(AN). Except in the case of 80 and 160  kg  ha−1 of AN, 

where a split application was used (50% at knee-high and 

50% prior to anthesis), N fertilization was performed at 

knee-high stage. �e experiment was a split-plot design 

with hybrids as main plots and N levels as subplots, repli-

cated three times in a randomized complete block design. 

�e experiment was planted on the 23rd December 2013 

as 2 rows per plot. �e rows were 75 cm apart and 4 m 

long with 17 planting stations per row. To reduce border 

effects, 2-row plots of a commercial variety were planted 

on all sides of each treatment. Single super phosphate 

fertilizer (14% P2O5: 7% K2O) was applied to all the plots 

at a rate of 400 kg ha−1, to supply the crop with phospho-

rous and potassium. Hand weeding was used to control 

weeds.

Unmanned aerial platform

�e experiment was conducted using an unmanned 

aerial vehicle-based remote sensing platform (Figure  7) 

developed by Airelectronics (Madrid, Spain) in collabo-

ration with the University of Barcelona, the QuantaLab 

at the Institute for Sustainable Agriculture (IAS-CSIC), 

the Crop Breeding Institute-Zimbabwe and CIMMYT. 

�e UAP is a fixed-wing platform controlled by an auto-

pilot system that enables autonomous navigation, based 

on coordinates set in the flight plan designed with U-See 

1.190 software (Airelectronics, Madrid, Spain). It has an 

automatic GPS waypoint navigation and altitude control.

�is platform has the capability of flying at a wide range 

of altitudes and is capable of carrying a payload of up to 

1.5 kg and flying for 30 min. It can cover up to 40 ha for a 

30 min flight at an altitude of 150 m above ground level.

Imagery acquisition and data collection

UAP

Images were collected from the wheat experiment to 

assess spatial variability 1 week prior to booting and for 

the whole N-response trial on two dates (anthesis and 

Table 3 Coe�cients of  correlation between  grain yield 

(GY) and  (1) NDVI extracted from  multispectral images 

taken with  the UAV-platform (NDVI-UAP) and  (2) leaf 

senescence index

NS: P > 0.05, * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001.

NDVI-UAP Crop senescence index

All N application rates 0.63*** −0.74***

0 and 10 kg ha−1 AN 0.72*** −0.74***

80 and 160 kg ha−1 AN NS −0.44**
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2  weeks after anthesis). �ey were acquired using the 

ADC-Lite multispectral camera mounted on the UAV 

platform near midday under cloud-free conditions. �e 

ADC-Lite is a specialized light weight agricultural mul-

tispectral camera (ADC-Lite, Tetracam, Inc., Chats-

worth, CA, USA) with a 3.2 megapixel Complementary 

Metal Oxide Semiconductor (CMOS) sensor. �e cam-

era’s sensor has a ground resolution of 60 mm per pixel 

and 123  ×  92  m Field of View at an altitude of 150  m 

above ground level. �e camera is optimized to simul-

taneously capture Green, Red and NIR channels with 

bands approximately equal to Landsat �ematic Map-

per TM2 (520–600  nm), TM3 (630–690  nm) and TM4 

(760–900 nm) and has a lens focal length of 8.0 mm. �e 

UAP followed a flight plan made of 6 waypoints covering 

the entire field at an altitude of 150 m above terrain and 

a velocity of 45 km h−1. �e images (2048 × 1536 pixels) 

were taken at the rate of one every 5 s.

Hand-held instruments

Different ground-based sensors were used to collect data. 

A leaf chlorophyll meter (Minolta SPAD-502, Spectrum 

Technologies Inc, Plainfield, IL, USA) a spectroradiom-

eter provided with an active sensor (GreenSeeker hand-

held crop sensor, Trimble, USA) as well as a conventional 

digital camera (Cyber-shot DSC-WX80, Sony, Japan) 

were used to measure spectroradiometrical leaf canopy 

(NDVI) and RGB (red/green/blue) image derived vegeta-

tion indices, respectively, as detailed in the data proces-

sion section.

Image data processing

Color infra-red multispectral images

A radiometric calibration was performed after applying 

a channel decomposition, which consists of demosaic-

ing the infrared color filter array (CFA) to reconstruct 

each G-R-NIR sample from the undersampled ones. 

�e imagery was synchronized through the GPS posi-

tion and triggering time recorded for each image, with-

out the usage of any additional inertial units. For this 

study, only absolute positions were used to generate the 

ortho-rectified mosaics, following by the steps of image 

registration, calibration and blending.

�e multispectral images acquired by the UAP ena-

bled identification of each individual row (Figure 2) and 

the extraction of maize plant reflectance values. For each 

row, a region of interest (ROI) was established manu-

ally in the center of the row based on visual detection 

of the edges/soil to extract reflectance values (Figure 2a) 

using only vegetation pixels. �e image reflectance data 

extracted from each treatment field, coinciding with each 

flight time, were subsequently used to compute the veg-

etation indices used in the analysis.

�e Normalized Difference Vegetation Index, 

NDVI = (R800 − R670)/(R800 + R670), [45] was calcu-

lated from the imagery and compared with the ground-

measured NDVI, then used to compute a nitrogen stress 

index to assess whether the effects of low-N stress on 

maize could be captured effectively by the platform. �e 

nitrogen stress index was calculated as:

where NDVIi is the NDVI value at a given N application 

rate i and NDVIm the average NDVI value at 160 kg ha−1 

(used here as a reference).

RGB images

�e RGB images from the digital camera were analyzed 

using the open source Breedpix 0.2 software designed for 

the digital photographs processing. �is software ena-

bled the extraction of RGB vegetation indices in relation 

to different properties of color [47]. �e procedures for 

calculating the vegetation indices are described in [48]. 

Basically, the green fraction (GF), corresponds to the 

proportion of green pixels in an image, where a pixel is 

considered green if its hue is within the range 60–180°. 

�e greener fraction (GGF) was aimed at quantifying the 

fraction of fully functional green cover, excluding yellow-

ish pixels that correspond to senescent leaves, and was 

calculated as the proportion of pixels whose hue is within 

the range 80–180°. Image analysis was used to define an 

index of crop senescence:

NSI(NDVI) = 1 − NDVIi/NDVIm

Figure 7 a Fixed-wing UAV-based remote sensing platform (UAP) equipped with ADC-Lite, Tetracam camera and a Miricle thermal camera (not 

used in this study). b The UAP flying over a maize field.
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where CGF is the crop green fraction and CGGF the crop 

greener fraction.

Statistical analysis

�e NDVI and yield data were subjected to classical sta-

tistical analysis to obtain (1) descriptive statistics mean, 

minimum, maximum, standard deviation and coefficient 

of variation and (2) correlation coefficients using Graph-

Pad Prism (GraphPad Software Inc., San Diego, CA, 

USA, 1996).
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