
Citation: Jindo, K.; Teklu, M.G.; van

Boheeman, K.; Njehia, N.S.; Narabu,

T.; Kempenaar, C.; Molendijk, L.P.G.;

Schepel, E.; Been, T.H. Unmanned

Aerial Vehicle (UAV) for Detection

and Prediction of Damage Caused by

Potato Cyst Nematode G. pallida on

Selected Potato Cultivars. Remote

Sens. 2023, 15, 1429. https://doi.org/

10.3390/rs15051429

Academic Editors: Bin Jiang, Panos

Panagos, Vassilis George Aschonitis,

Christos Karydas, Goran Dimic and

Lachezar Filchev

Received: 15 December 2022

Revised: 24 February 2023

Accepted: 1 March 2023

Published: 3 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Technical Note

Unmanned Aerial Vehicle (UAV) for Detection and Prediction
of Damage Caused by Potato Cyst Nematode G. pallida on
Selected Potato Cultivars
Keiji Jindo 1 , Misghina Goitom Teklu 1,*, Koen van Boheeman 1, Njane Stephen Njehia 2, Takashi Narabu 2,
Corne Kempenaar 1, Leendert P. G. Molendijk 3, Egbert Schepel 4 and Thomas H. Been 1

1 Agrosystems Research, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
2 Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, NARO,

Niigata 941-0193, Japan
3 Field Crop, Wageningen University & Research, P 430, 8200 AK Lelystad, The Netherlands
4 HLBBV, Kampsweg 27, Wijster, 9418 PD Midden-Drenthe, The Netherlands
* Correspondence: misghina.goitomteklu@wur.nl

Abstract: High population densities of the potato cyst nematodes (PCN) Globodera pallida and
G. rostochiensis cause substantial yield losses to potato production (Solanum tuberosum) due to the
delay caused to tuber formation by the retardation of plant growth. It requires meticulous estimation
of the population densities by using soil sampling and applying the right combination of nematode
management to deal with the PCN problem. This study aims to assess the use of an unmanned
vehicle (UAV) in detecting and estimating the effect of ranges of densities of a PCN, G. pallida, on
four cultivated potato cultivars with resistance to PCN in a naturally infested potato field in The
Netherlands. First, the initial population density (Pi) of G. pallida was estimated by using an intensive
sampling method of collecting about 1.5 kg of soil per m2 from the center of each 3 × 5 m plot. At
harvest, the fresh tuber yield of the potato cultivars (Avarna, Fontane, Sarion, and Serresta) were
assessed. The Seinhorst yield loss model was used to investigate the relationship between Pi and
fresh tuber yield. Secondly, the spatial data of UAV with optical and thermal sensors were analyzed
to find any relationship between Pi and UAV indices. By using the classical yield loss model, all
four cultivars were found to be affected by Pi with a relative minimum fresh tuber yield m, which
ranged from 0.26 to 0.40. The maximum fresh tuber yield varied from 49.48 to 80.36 tons (ha)−1. The
density at which the fresh tuber yield started to deteriorate was in the range of 0.62–2.16 eggs (g dry
soil)−1. A regression was observed between Pi, and all UAV indices in a similar pattern to that of
the fresh tuber yield by using the Seinhorst yield loss model, except for the cultivar Avarna for the
two UAV indices (NDRE and NDVI). Unlike the tolerance limit, the relative minimum values of the
UAV indices—except the chlorophyll index—differ when compared among each other and when
compared with that of the fresh tuber yield within the same cultivar. This indicates that all indices
can be useful for detection and decision making for statutory purposes but not for estimating damage
(except the chlorophyll index).

Keywords: nematode management; precision agriculture; drones; pest and disease

1. Introduction

Potato cyst and root-knot nematodes cause yield and quality damage to cultivated
potatoes (Solanum tuberosum) by impairing plant growth and deforming tubers, respec-
tively [1,2]. Potato cyst nematodes cause yield losses mainly via growth retardation of the
potato plant at low to medium population densities, which is traditionally called the first
mechanism of growth reduction [3,4], which is characterized by a delay of flowering and
tuber setting without any further symptoms at Pi < 64 eggs (g dry soil)−1. The second
mechanism is characterized by the disturbance of mineral content and water uptake of
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the plant that is caused by mechanical damage to the root system by large numbers of
invading nematodes. This is occasionally accompanied by early flowering and tubers
setting, which can be observed at Pi > 64 eggs (g dry soil)−1. At very high densities, that is,
Pi > 128 eggs (g dry soil)−1, on very rare occasions, early senescence of plants is observed.
Root-knot nematodes do not cause any yield reductions at densities encountered in the
field in spring but can infect and deform the potato tubers produced, causing quality
damage. For decades, the two species of potato cyst nematodes (PCN: Globodera pallida
and Globodera rostochiensis) have been quarantine pests of potatoes worldwide, both in
temperate and tropical countries [5–7]. It is reported that these nematodes originally came
from the Andean region in South America after co-evolving with potatoes, and they were
later introduced to Europe in the 19th century [8,9]. Recently, PCN has also been reported
in the potato-growing areas of the highlands of Africa [10] and Asia [7]. Yield reduction in
heavily infested fields can range from 40% to 80% with an average of 60% [11].

Detecting the presence or absence of PCN is an obligatory but costly and time-
consuming task in seed potato production, as this nematode is a regulated quarantine
pest. This involves intensive monitoring, sampling, transport, storage, and processing of
soil samples in well-equipped laboratories [12]. According to Hillnhütter et al. [13], soil
processing costs for checking the presence of sugar beet nematode in Germany and for soy-
bean cyst nematode in the U.S.A is EUR 61 and USD 60, respectively. In The Netherlands,
both statutory and voluntary soil sampling are performed for PCN, including, if required,
species determination. The latter costs approximately EUR 100.

In The Netherlands, which is the biggest exporter of seed potatoes worldwide, aerial
government flights were used in the spring season to visually identify infestation foci before
the closing of the canopy as an extra routine survey by the Dutch plant protection service
(NVWA) for statutory soil sampling. Data show that over 90% of statutory soil samples
come from uninfected areas in The Netherlands. As visible detection of PCN densities
below 10 eggs (g dry soil)−1 already presents a challenge, only very large infestations
are detected; however, an infestation may have already been present for over 20 years.
Knowing whether a field is infested or not, and when yes, with what species, allows farmers
to utilize customized management scenarios (resistance, nematicides, fallow, non-host, etc.)
in planned rotation to control PCN. Furthermore, it is important to detect PCN infestations
as early as possible to prevent spread within the field (secondary infestations) and between
fields as a result of soil adhering to machinery.

Therefore, the development of early detection methods based on spectral imaging
by using unmanned vehicles (UAVs) could be a valuable addition to current physical
sampling methods for detecting and locating the presence of PCN in a farmer’s field or
even estimating its population density, if feasible. Table 1 below provides several examples
of using UAVs to detect and estimate the damage caused by potato diseases in general.

Table 1. Several other studies on the utilization of unmanned vehicles (UAV) for the detection of the
damage caused by potato diseases [14–16].

Research Question Technology Utilized References

Detecting potato Y-virus in seed potatoes Hyperspectral images [14]
Assessment of potato late blight disease Red-Green-Blue (RGB) images [15]

Detecting Erwinia bacteria and potato Y-virus RGB very high-resolution imagery [16]

Based on this context, there exists an urgent need to explore a site-specific approach for
the detection and management of PCN [17]. While a better understanding of the nematode
taxonomy in the rhizosphere is important [18], utilization of state-of-the-art technology,
such as sensors, poses an attractive tool also to detect and predict nematode infestation and
the yield loss caused. Thus far, little information is known about aerial sensor applications
for detecting PCN, while studies of other crops, including sugar beet and coffee infested
with root-knot nematodes, have been conducted [19,20]. According to Joalland et al. [19],
several variables measured by UAV are suitable for monitoring the tolerance of sugar
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beet to beet cyst nematode as expressed by canopy height, spectrally inferred chlorophyll
content, biomass, and canopy temperature. Moreover, they mentioned that multivariate
analysis was a strong tool to identify the genetic backgrounds of the sugar beet cultivars
and their ability to tolerate nematode infections by using a diversity of spectral indices.

Integrated approaches with existing methods of nematode detection and sensing
technologies are often proposed for robust diagnosis and implementation of site-specific ne-
matode management [21,22]. However, little scientific work has been conducted regarding
PCN in potato or other nematode–crop interactions.

The aim of this study is, therefore, to explore and, if possible, to develop an easy, rapid,
and robust method for detecting the presence of PCN that satisfies statutory requirements
and, if possible, uses spatial coverage to determine the extent of the infestation and connect
it to a yield loss model for farmers. To this end, we investigate the use of UAV to identify the
presence of and damage caused by PCN population density in potato crops. We compare
the damage observed by using UAVs with classical and well-established models of yield
loss in applied quantitative nematology. A flow chart detailing the techniques we employed
to achieve some of our objectives is provided below.

2. Materials and Methods
2.1. Study Site

In 2019, an experiment was conducted to try to measure the tolerance of four potato
cultivars to PCN, Globodera pallida (G. pallida). The infected field was located in West-
erbork, (52050′16.74. N 6037′50.36 S, Kampsweg 27, 9418PD Wijster) close to Witteveen,
Drenthe, The Netherlands. The size of the field was 33 m in width and 100 m in length. For
every 30 m row, a 10 m buffer zone was created to avoid contamination from the next plot
(Seen in the Supplemental Material of Figure S1). The field was then further divided by
using a plot with a 3 × 5 m grid to obtain 23–25 plots for each cultivar in an attempt to
obtain a complete range of population densities. The sandy soil consisted of 2% clay, 13%
silt, and 80% sand. The main soil chemical properties were pH: 5.0; total organic carbon:
2.7%; total N: 4900 kg/ha; available K: 267 kg/ha; CaCO3: <0.2%. Annual precipitation
and annual mean temperature for the region are 829 mm/year and 13 ◦C, respectively.
More detailed climate information can be seen in the Supplemental Material of Table S1
including daily temperature (mean, maximum, and minimum) and relative air humidity
(mean, maximum, and minimum). Within each plot (3 × 5 m), there were four rows of
potato cultivated, and the samples for estimating the Pi were taken from the central square
meter of each plot.

2.2. Sampling and Estimating Initial Population Densities (Pi)

Before the start of the tolerance experiment in 2019, pre-sampling was carried out
twice in 2017 and in 2018 to monitor the population densities of G. pallida. This was
conducted mainly to assess the presence and map the location of the range of population
densities needed to estimate the yield loss parameters by using the Seinhorst model [2,23].
At the start of the experiment in April 2019, a third sampling was carried out to determine
the initial population densities Pi before planting. Samples were taken from an area of
1m2 (0.75 × 1.33 m) at the center of each plot, as seen in the Supplemental Material of
Figure S2. Subsequently, 23–25 Pi’s were mapped per cultivar. A bulk sample per plot
consisted of 60 cores, which were approximately 25 g each, down to a depth of 21 cm. The
bulk soil sample was thoroughly and homogeneously mixed. The soil was dried; then, the
cysts were extracted. For determining the content, cysts were soaked for 12 h in water, then
crushed, and the number of eggs was estimated by using a stereo microscope.

2.3. Potato Cultivars

Four potato cultivars—Sarion, Seresta, Avarna, and Fontana, each of which had
different sources of resistance to PCN—were tested for their tolerance to G. pallida.
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2.4. Field Management (Planting to Harvest)

The potato cultivars were planted on 8 May 2019, with about eight plants per m2. The
space between the ridges of each plot was 75 cm. The spacing within the ridges was 30 cm.
A fertilizer application of 110 kg/ha of Patentkali: (30% Potassium and 10% Magnesium)
was applied on February 26. Later, 25 cubic meters/ha of pig slurry and 130 kg/ha of
calcium ammonium nitrate (27%N) were applied on the 1st of April and the 17th of June,
respectively. Haulm killing was carried out on 3 October 2019, and tubers were harvested
on 23 October 2019. Tubers were cleaned, and their fresh weight in tons (ha)−1 was recorded
at the end of October 2019. More information about the methodology has been described
in a previous study [2].

2.5. Data Analysis and Modelling

In this study, two datasets originating from the field measurement and the UAV flight
(one flight) were used. The chart flow of the data collection is presented in Figure 1.
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Figure 1. The flow chart of the techniques used in assessing the relationship between explanatory
variable Pi in eggs (g dry soil)−1, and measured dependent variables (fresh tuber yield, normalized
difference vegetation index (NDVI), normalized difference red edge (NDRE), weighted difference
vegetative index (WDVI), chlorophyll, and canopy temperature).

2.5.1. The First Dataset

In the first dataset, the Pi and the potato fresh tuber yield have been included. The
fresh tuber weight, which is expressed as “potato yield”, was recorded from each plot. The
relationship between Pi and fresh tuber yield was described by using the Seinhorst model
for assessing yield loss (Equation (1)). The three important parameters—the tolerance limit
(T), which is the nematode density beyond which the yield starts to decline and which is
measured in eggs (g dry soil)−1; the relative minimum fresh tuber yield (m), which is the
ratio of the fresh tuber yield at a very high density to that of the control (Pi = 0); and the
maximum fresh tuber yield (Ymax) yield at Pi = 0 eggs (g dry soil)−1 in tons (ha)−1—were
estimated by using the least square methods in non-linear regression analysis. The standard
errors of the parameters were estimated from the Hessian matrix, and the goodness of
fit of the model was described by the coefficient of determination adjusted for degrees
of freedom. The starting parameter values for the non-linear regression analysis were
obtained from the data.

y = Ymax×
(

m + (1−m ) 0.95Pi/T−1
)

when Pi > T (1)

y = 1 when Pi ≤ T

where:
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y = fresh tuber yield in tons (ha)−1;
Ymax = yield at Pi = 0 in tons (ha)−1;
m = relative minimum yield when Pi→ ∞;
T = tolerance limit, the densityin number of eggs (g dry soil)−1 above which yield starts
to decline.

2.5.2. UAV Data Collection

The second dataset was collected on 18 July 2019 via a multispectral sensor mounted
on the UAV of the Aurea Imaging Company, which is located at Nijverheidsweg 16b,
3534AM, Utrecht, The Netherlands. The flight altitude was approximately 75.6 m. The
camera was a “multiSPEC 4C”, which provides data based on four different bands: near-
infrared red (NIR), red edge, red, and green. The bands were as follows: Blue (475 nm
center, 32 nm bandwidth), Green (560 nm center, 27 nm bandwidth), Red (668 nm center,
14 nm bandwidth), and near-infrared (842 nm center, 57 nm bandwidth). By using these
bands, normalized difference vegetation (NDVI), weighted difference vegetation (WDVI),
normalized difference red edge (NDRE), and red-edge chlorophyll index (chlorophyll) were
measured with the following equations [24–26].

NDVI : (NIR − Red)/(NIR + Red) (2)

WDVI : NIR− 1.8× RED (3)

NDRE : (NIR − RE)/(NIR + RE) (4)

Chlorophyll : (NIR/Red)− 1 (5)

Additionally, thermal measurement was recorded by using a thermal sensor with
Altum’s thermal band of long wavelength infrared (LWIR) loaded on the UAV. The cen-
tral wavelength and bandwidth of the thermal band are 11 µm (micrometer) and 6 µm,
respectively. More details can be found at the following link: https://support.micasense.
com/hc/en-us/categories/360000931673-Altum, accessed on 28 February 2023. Based on
the G.P.S. points of the field, we matched the two datasets between field data per plot and
the UAV data, which is in the sub-plot of 3.6 m2 (=1.5 m × 2.4 m). This procedure was
performed via QGIS (version 3.10.1). The statistical test was conducted by using the R
packages “agrocolae,” “car,” “devtools”, and “multicomp”.

The relationship between Pi and canopy temperature was established by using a
logistic model Equation (6), as previously described by Teklu et al. [2,23]. The same
procedure of the least squares method in non-regression analysis was used to estimate the
parameter values, their standard errors, and the goodness of the fit as in that of Equation (1).

Ccpt = Mcpt · Pi/
(

Pi + Mcpt/acpt
)

(6)

where
Ccpt = Canopy temperature (◦C);
acpt = Maximum rate of canopy temperature increase;
Mcpt = Maximum canopy temperature reached (◦C);
Pi = Initial population density in number of eggs (g dry soil)−1.

3. Results and Discussion
3.1. The Relationship between Pre-Plant Nematodes Densities (Pi) and Yield

The relationship between Pi and fresh tuber yield can be seen in Figure 2. While
Figure 2A–D represent the absolute value of the potato yield of each cultivar, Figure 2E
shows the relative value across the four varieties. The result of the parameter values
of the Seinhorst yield model can be seen in Table 2. In all four cultivars, the yield was
significantly (p < 0.0001) affected by increasing Pi. Estimated yield loss ranged from 40
to 74%. Three cultivars—Avarna, Fontana, and Seresta—had similar tendencies and were

https://support.micasense.com/hc/en-us/categories/360000931673-Altum
https://support.micasense.com/hc/en-us/categories/360000931673-Altum
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not significantly different compared to each other based on m values (Figure 2E), except
cv. Sarion, which had the lowest relative minimum yield (m = 0.60) of the four varieties
(Table 2). The tolerance limit T of all tested cultivars ranged from 0.62 to 2.16 eggs (g dry
soil)−1, and no significant difference could be discerned between the cultivars (Table 2).
Although cv. Sarion had a lower maximum yield, Ymax, (Table 2), it was not statically
significant compared to the other cultivars.
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Table 2. The output parameter values (Equation (1)) of four potato cultivars: Avarna, Fontane,
Sarion, and Seresta, where m = relative minimum yield; T = tolerance limit in eggs (g dry soil)−1;
Ymax = maximum yield in tons per ha at Pi = 0 eggs (g dry soil)−1; sem = standard error of relative
minimum yield; seT = standard error of tolerance limit; seYmax = standard error of maximum yield;
R2 = coefficient of determination; df = degrees of freedom. * Significantly different parameter values
compared to cv. Sarion at 5% level of significance. LSD = least significant difference.

Cultivarsm T Ymax sem seT seYmax R2 df LSDm LSDT LSDYmax

Avarna 0.40 0.62 73.92 0.09 0.31 11.92 0.48 21 0.26 1.63 25.78

Fontane 0.26 0.76 80.36 0.09 0.42 17.07 0.56 22 0.25
* 1.68 35.64

Sarion 0.60 2.16 49.48 0.09 1.58 4.65 0.44 23 - - -

Serresta 0.31 1.33 58.51 0.09 0.62 7.48 0.59 22 0.26
* 1.59 17.73

3.2. Correlation Matrix

The correlation matrix allows us to observe the relationship between two variables
(Figure 3). The order of the matrix is arranged based on the hierarchical clustering method,
which implies that a variable is ordered in the proxy to a similar variable. The blue
coefficients represent a positive correlation, while the red coefficients represent a negative
correlation. A positive correlation is shown between fresh tuber yield tons (ha)−1 and
UAV indices of WDVI, chlorophyll, NDVI, and NDRE. By contrast, a negative correlation
is seen between Pi, eggs (g dry soil)−1, and the UAV indices. The same tendency can be
observed between Thermal (the mean value of canopy temperature) and the UAV indices
mentioned above. Moreover, it should be highlighted that the order of variable Pi and
eggs (g dry soil)−1 is a proxy to the variable of thermal data, followed by the result of the
hierarchical clustering. The more severe the biotic stress caused by the population densities,
the more stomatal closure happens. Therefore, we will elaborate on the relationship of Pi
and thermal canopy temperature for the following three main reasons. (i) This is a measure
that cannot be observed visually compared to the other indices. (ii) It is the only single
variable with a positive correlation coefficient with Pi. (iii) It is more closely clustered to Pi
in the hierarchy of correlation matrix.
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(normalized difference vegetation index (NDVI), weighted difference vegetation (WDVI), normalized
difference red edge (NDRE), red-edge chlorophyll index (Chlorophyll), and the thermal sensor
(Thermal)). The significance level of the Pearson correlation is α = 0.05. The blue number represents a
positive correlation, while the red number represents a negative correlation.

3.3. Relationship between Field Data and UAV Data

Figure 4 shows that the higher the Pi, the higher the canopy temperature. Stomata
closure due to abiotic and biotic stress is one of the defense mechanisms of plants, and
it triggers the rise of the canopy temperature [27]. Thus, infrared thermography can be
useful in investigating the spatiotemporal heterogeneity of stomatal conductance for plant
pathogens [28]. Our result reflects that monitoring this index by using a UAV during the
cropping season allows us primarily to detect the presence of the nematode infection under
the field conditions, and it could support farmers in management by preventing the spread
of the nematode. The maximum rate of canopy temperature increase ranges from 46.78
of the cv. Seresta to 64.29 of the cv. Sarion (Table 3). The maximum canopy temperature
ranging from 29.99 ◦C in the cv. Avarna to 31.11 ◦C in the cv. Seresta was measured. No
statistical significance could be decerned when the cv. Sarion was compared with all the rest
of the cultivars. This was also evident in the overlapping of the model values in Figure 4E.
Generally, mean canopy temperature increased with Pi and reached a maximum when Pi
was very large, that is, >50 eggs (dry soil)−1.

Table 3. The output parameter of the logistic model by using Equation 6 of four potato culti-
vars: Avarna, Fontane, Sarion, and Seresta, where acpt = maximum rate of canopy temperature
increase; Mcpt = maximum canopy temperature reached (◦C); seacpt = standard error of maximum
rate of canopy temperature; seMcpt = standard error of maximum canopy temperature reached (◦C);
R2 = coefficient of determination; df = degrees of freedom. Parameter values are not significantly
different compared to cv. Sarion at 5% level of significance. LSD = least significant difference.

Cultivars acpt Mcpt seacpt seMcpt R2 df LSDacpt LSDMcpt

Avarna 47.12 29.99 12.1 0.62 0.45 20 0.963 0.071
Fontane 52.55 30.2 16.6 0.72 0.32 22 1.026 0.075
Sarion 64.29 30.4 27.1 0.86 0.2 23 - -
Seresta 46.78 31.11 13.9 0.77 0.39 20 1.006 0.076

The magnitude of the canopy temperature gradient measured by the UAV-thermal
sensors under stress conditions is affected by varied factors such as the type of crop,
the time of the flight, and the experimental design of the comparative study for stress
assessment. While Melandri et al. [29] mentioned that the difference in average canopy
temperature between the control and the stressed rice plants was 3–4 ◦C, another work [30]
reported a more than 10 ◦C increase in the temperature (between 27.1 ◦C and 38.9 ◦C) of
the maize canopy recorded by the thermal sensors under different water stress conditions.
Regarding the relationship between canopy temperature and sweet potato that was affected
by beet cyst nematodes, Joalland et al. [19] demonstrated that the average temperature
difference between susceptible and tolerant cultivars was 24.7± 0.1 ◦C versus 23.8± 0.1 ◦C.
This temperature difference was also observed in our study in the maximum temperature
reached by the four cultivars (Table 3).

Indeed, the accuracy of the canopy temperature estimation by the thermal sensor still
needs to be explored. It should also be noted that the canopy temperature taken by UAV
data varies by many factors, such as the flight altitude [31] and local conditions (e.g., air
temperature) [29]. Further study should be conducted by several UAV flights during a
cropping season by considering different aspects (e.g., soil, plant, and climate conditions)
and the spatial dimensions of the infected spot.
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Table 4 shows the output parameters of the relationship between Pi and UAV indices:
weighted difference vegetation (WDVI), red-edge chlorophyll index (chlorophyll), normal-
ized difference in red edge (NDRE), and normalized difference vegetation index (NDVI)
of the four potato cultivars compared to the output parameters of the fresh tuber yield
by using Equation (1). As can be seen in Table 4 of the relationship between Pi and UAV
indices, (Pi~WDVI and Pi~Chlorophyll content index) are similar. The same holds true
for the relationship between (Pi~NDRE and Pi~NDVI), which are also similar. Therefore,
we prefer to show the relationship between Pi and WDVI in Figure 5 and the relationship
between Pi and NDVI in Figure 6. The relationship between Pi~NDRE and Pi~Chlorophyll
is provided in the Supplementary Figures S3 and S4. As can be seen in Table 4, comparisons
were performed between the output parameters (relative minimum UAV values and the tol-
erance limit) of the UAV indices and that of the fresh tuber yield per cultivar. The minimum
UAV indices of all the variables, except the relative minimum chlorophyll content indices,
were significantly different from that of the relative minimum fresh tuber yield. Only in one
case of the cv. Sarion, the chlorophyll content index observed was significantly different.
Similarly, except in the cv. Sarion (chlorophyll content index), in all other cultivars, the
relative minimum UAV value of the indices increased significantly as compared to that of
the relative minimum value of the fresh tuber yield.

Table 4. The output parameter values according to (Equation (1)) describing the relationship be-
tween Pi and UAV indices: weighted difference vegetation (WDVI), red-edge chlorophyll index
(chlorophyll), normalized difference in red edge (NDRE), normalized difference vegetation index
(NDVI), and fresh tuber yield of four potato cultivars: Avarna, Fontane, Sarion, and Seresta, where
m = relative minimum value of the measured UAV indices; T = tolerance limit in eggs (g dry soil)−1;
Ymax = maximum value of the measured UAV indices when Pi = 0 eggs (g dry soil)−1; sem = standard
error of relative minimum UAV indices; seT = standard error of tolerance limit; seYmax = standard
error of the maximum value of the measured indices; R2 = coefficient of determination; df = degrees
of freedom. LSD = least significant difference. * Significantly different parameter values of UAV
indices compared to the parameter values of the fresh tuber yield at 5% level of significance.

Cultivars Variable m T Ymax sem seT seYmax R2 N df LSDm LSDT

Avarna FTWYield 0.40 0.62 73.92 0.09 0.31 11.92 0.48 24 21 - -
Avarna WDVI 0.69 0.75 0.72 0.07 0.38 0.07 0.46 23 20 0.24 * 1.35
Avarna Chlorophyl 0.60 0.62 26.31 0.08 0.32 3.29 0.45 23 20 0.26 1.37
Avarna NDRE 0.95 1.05 0.59 0.04 1.11 0.02 0.06 23 20 0.20 * 1.99
Avarna NDVI 0.94 0.69 0.93 0.02 0.44 0.02 0.29 23 20 0.20 * 1.51
Fontane FTWYield 0.26 0.76 80.36 0.09 0.42 17.07 0.56 25 22 - -
Fontane WDVI 0.56 1.54 0.69 0.05 0.77 0.05 0.74 25 22 0.20 * 1.42
Fontane Chlorophyl 0.49 2.91 21.85 0.09 1.54 1.30 0.73 25 22 0.25 1.45
Fontane NDRE 0.80 2.70 0.58 0.03 1.30 0.01 0.72 25 22 0.19 * 1.40
Fontane NDVI 0.86 3.65 0.92 0.03 2.09 0.01 0.70 25 22 0.18 * 1.50 *
Sarion FTWYield 0.60 2.16 49.48 0.09 1.58 4.65 0.44 26 23 - -
Sarion WDVI 0.35 1.91 0.67 0.06 0.72 0.05 0.77 26 23 0.22 * 1.51
Sarion Chlorophyl 0.26 1.47 25.58 0.06 0.48 2.25 0.82 26 23 0.21 * 1.47
Sarion NDRE 0.62 3.26 0.60 0.04 0.99 0.02 0.88 26 23 0.19 1.45
Sarion NDVI 0.68 3.28 0.93 0.03 1.03 0.02 0.87 26 23 0.19 1.45

Serresta FTWYield 0.31 1.33 58.51 0.09 0.62 7.48 0.59 25 22 - -
Serresta WDVI 0.42 2.27 0.67 0.07 1.15 0.06 0.74 23 20 0.23 1.32
Serresta Chlorophyl 0.31 3.17 22.90 0.11 1.86 2.33 0.71 23 20 0.29 1.42
Serresta NDRE 0.62 5.62 0.58 0.11 4.20 0.02 0.74 23 20 0.29 * 1.62
Serresta NDVI 0.70 5.89 0.93 0.08 3.94 0.03 0.78 23 20 0.25 * 1.52
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Figure 5. Relationship between the Pi, eggs (g dry soil)−1 and the WDVI index of four potato cultivars
according to Seinhorst Yield model Equation (1). ((A) Avarna. (B) Fontane. (C) Sarion. (D) Serresta.)
(E) Relative WDVI of all the cultivars combined.

The tolerance limit of the UAV indices, except for the NDVI indices of the cv. Fontane,
is not significantly different within cultivars compared to the tolerance limit of fresh
tuber yield.

The voluntary, intensive sampling method AMI 100, which detects a central population
density of 100 cysts (kg soil)−1 with 90% probability, detects approximately 100 cysts ×
250 eggs/cyst × 2 non-host years (×0.5)/1000 g of soil = about 10 eggs (g soil)−1. This
density and higher densities, which are normally detected when statutory soil sampling is
conducted, falls within the range of the exponential effect of Pi on the thermal temperature,
as shown in Figure 4, and should be detectable also considering that the whole field is
unaffected, except for the hotspot. Therefore, our finding provides an important insight
into the potential use of the UAV thermal canopy temperature method for detecting PCN
infestations for statutory use. Then, the localized hotspot, instead of the whole field, can be
point-sampled to establish the presence of PCN, as well as other diseases which might have
the same effect on the plant. Supplemental Table S2 presents more information about the
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traditional sampling methods for nematode detection. On the other hand, it becomes clear
that density estimation does not seem to be a feasible option when looking at the response
curve of Figure 4, and that for advisory purposes, traditional sampling remains required.
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Figure 6. Relationship between the Pi, eggs (g dry soil)−1 and mean NDVI index of four potato
cultivars according to Seinhorst yield model Equation (1). ((A) Avarna. (B) Fontane. (C) Sarion. (D)
Serresta.) (E) Relative NDVI of all the cultivars combined.

A clear regression was observed between Pi and UAV indices in all cultivars except cv.
Avarna for both (NDRE and NDVI) indices. However, the relative minimum UAV index
values except that of (the relative minimum chlorophyll content index) were significantly
different from that of fresh tuber yield. This implies that predicting damage by using UAV
indices (WDVI, NDRE, NDVI) cannot be justified using our data, even though the tolerance
limit was not significantly different (in most cases, it is partly due to the higher standard
error when measuring the Pi). This also concurs with the literature, as some of the indices
are proven to be bad predictors of actual fresh tuber yield, such as by using NDVI [32],
although also incidentally, a good prediction was reported [33].
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The use of the chlorophyll content index for estimating damage is promising, as both
the relative minimum chlorophyll content index and its tolerance limit are not significantly
different, except in one case of the cv. Sarion. However, a confirmation of this finding is
required with more data and times series measurements in the future.

4. Conclusions

Our study shows that using UAV indices, which were recorded 2.5 months before the
harvest, could determine the presence of the potato cyst nematode G. pallida. The data from
the thermal sensor showed a positive correlation with increasing Pi, eggs (g dry soil)−1 and
significant increases at densities >10 eggs (g dry soil)−1. This is another confirmation that
thermal sensor data, which monitors the plant canopy temperature under heavy nematode
infestation, trigger the stomata to close and increase the canopy temperature. The negative
correlation between Pi and UAV indices except (the cv. Avarna for NDRE and NDVI) were
also confirmed by using a classical yield loss model that describes the effect of the Pi on
fresh tuber yield at harvest. Based on the current observations, only the chlorophyll content
index might be useful to estimate the effect of Pi on yield, which is comparable to that of
the effect observed by estimating fresh tuber yield.

If the efficacy of using UAV indices to determine the presence of PCN were confirmed,
it would be theoretically possible to assume an equivalent detection probability of 90%
to that of the intensive sampling method, AMI 100, in The Netherlands. Additional
information regarding the size of the infestation detected by the thermal sensor could
be linked to the actual size of the infestation. Then, this technique might provide new
avenues to feeding advisory systems. Further work should aim to confirm the results, the
detection with an acceptable level of variation, and the prediction of the effect of Pi on yield
by using chlorophyll content indices. Additionally, future studies should investigate the
effect of potato development stages on the growth index response by using UAV data as a
time-series over the growth period. A more comprehensive approach that combines various
types of datasets, such as microclimate [30], soil properties [34], plant phenotyping [35],
and existing molecular methods [36,37], could lead to more precise and robust monitoring.

Supplementary Materials: The following supporting information can be downloaded at:
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