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Abstract—Target tracking based on unmanned aerial vehicle 

(UAV) video is a significant technique in intelligent urban 
surveillance systems for smart city applications, such as smart 
transportation, road traffic monitoring, inspection of stolen 
vehicle, etc. In this paper, a vision-based target tracking algorithm 
aiming at locating UAV-captured targets, like pedestrian and 
vehicle, is proposed using sparse representation theory. First of all, 
each target candidate is sparsely represented in the subspace 
spanned by a joint dictionary. Then, the sparse representation 
coefficient is further constrained by an L2 regularization based on 
the temporal consistency. To cope with the partial occlusion 
appearing in UAV videos, a Markov Random Field (MRF)-based 
binary support vector with contiguous occlusion constraint is 
introduced to our sparse representation model. For long-term 
tracking, the particle filter framework along with a dynamic 
template update scheme is designed. Both qualitative and 
quantitative experiments implemented on visible (Vis) and 
infrared (IR) UAV videos prove that the presented tracker can 
achieve better performances in terms of precision rate and success 
rate when compared with other state-of-the-art trackers. 
 

Index Terms—Target tracking algorithm, UAV, sparse 
representation, temporal consistency, contiguous occlusion 
constraint, smart city. 
 

I. INTRODUCTION 
ntelligent urban surveillance and smart transportation 
systems are significant Internet of Things (IoT) applications 
for smart cities [1-2]. In these applications, UAV has become 

one of the most commonly used platforms where imaging 
devices (e.g., Vis and IR cameras) are installed to capture and 
locate objects of interest, e.g., vehicle or pedestrian, with the 
aid of real-time digital signal processors (DSPs). Thus, it is a 
burgeoning topic to develop high-accuracy object location 
algorithms for urban surveillance systems. Noticeably, visual 
tracking for UAV-captured target has attracted much attention 
during the past decades and has been extensively applied to road 
traffic data monitoring, inspection of stolen vehicle, security 
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control of restricted area and suspicious human movement 
tracking [3-5]. In this paper, we focus on developing an 
intelligent target tracking algorithm to help locate UAV-
captured objects, which is robust to the typical interferences, 
like partial occlusion, illumination variation, pose change, etc., 
in UAV scenes. 
 

 
Fig.1. Frames from racer video. The ground truth of the racer is marked in 
yellow. Due to the influences of partial occlusion, illumination change, motion 
blur, scale change, background clutter and small target size, target tracking in 
UAV videos is still a hard task. 
 
Target tracking based on UAV video analysis provides a more 
intuitive sense and a more convenient operation when 
compared with other radio frequency-based, wireless-based and 
microwave-based methods, thereby making it more and more 
popular in IoT applications. Given the initial state of target in 
the first frame by hand or using automatic object detection 
algorithm, the purpose of target tracking algorithm is to predict 
the following target states in the successive frames 
automatically and precisely. It should be noticed that UAV 
video based-target tracking do suffer from occlusion, 
illumination variation, scale change, motion blur, background 
clutter, noise disturbance, low resolution and small target size, 
which may easily cause the drift problem [6] (see an example 
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shown in Fig.1). As a result, it is of great necessity for us to 
further investigate a robust target tracking algorithm to 
overcome the afore-discussed adverse factors.  
During the past decades, sparse representation (also called 
sparse coding) derived from compressive sampling has shown 
striking advantages in artificial intelligence, e.g., face or speech 
recognition [7], image denoising [8], image super-resolution [9], 
motion segmentation [10] and target detection [11], etc. The 
main problem that sparse representation concerns is to exploit 
the sparsity of a signal with a sampling frequency that is lower 
than the Shannon-Nyquist rate so as to compress the storage 
memory to a great extent. Based on this theoretical basis, the 
tracking problem is converted into constructing a sparse 
representation of target candidate using templates with online 
update. Previous work made by Zhang et al. [12] has verified 
that using sparse coding is able to facilitate tracking robustness 
to image corruptions caused by illumination variation and 
partial occlusion. Mei et al. [13] proposed an L1 tracker and it 
is the first study applying sparse representation scheme to target 
tracking problem. In their method, each target candidate is 
sparsely coded in a linear subspace composed of target and 
trivial templates. The solution of coding coefficient is obtained 
by solving an L1-regularized least square problems and the 
candidate with the smallest reconstruction error is selected as 
the tracking result. Large numbers of experiments demonstrate 
that L1 tracker can do well in videos with obvious occlusions, 
but the computing process of numerical optimization is 
computationally expensive, which makes it difficult to run L1 

tracker in real time. To alleviate this problem, a bounded 
particle resampling (BPR)- L1 tracker using minimum error 
bound and occlusion detection was proposed by Mei et al. [14] 
later. This improved L1 tracker aims at decreasing the running 
time by virtue of the minimum error bound computed from a 
linear least square equation. In addition, Bao et al. [15] 
improved the tracking precision of L1 tracker by imposing an 
L2 norm regularization on the coefficients associated with trivial 
templates and greatly increased the running speed by 
introducing an accelerated proximal gradient (APG) approach 
to solve the resulting L1 norm related minimization problem 
with guaranteed quadratic convergence. What is more, Zhang 
et al. [16] proposed a multi-task sparse (MTT) learning tracker 
that regularizes the representation problem to enforce joint 
sparsity and learn the particle representation together via 
sparsity-inducing Lp,q mixed norm. Zhang et al. further pointed 
out that L1 tracker is a special case of the MTT formulation, and 
the overall computational complexity of MTT is generally 
attractive owing to the joint learning of particle representations.  
Despite the great advantages achieved by the previous studies 
related to sparse representation-based trackers, there are still 
some important issues to be further investigated. On the one 
hand, target templates and trivial templates are mixed up to 
compose a template dictionary in these trackers. As pointed out 
by Bao et al. [15], it is highly possible for the sparse linear 
combination of trivial templates to include parts of the object. 
What is more, occlusion is simply modeled by an arbitrary 
sparse coefficient vector, but other useful properties of partial 
occlusion are ignored by most of the existing studies. Also, the 
solvers of the L1 minimizations presented in different trackers 
should be especially considered. Otherwise, the tracking results 

will converge to local optima and the tracking drift problem will 
thus occur.  
Enlightened by the afore-discussed problems, we propose a new 
sparse representation-based visual tracking method for UAV 
videos in this study. Firstly, each target candidate is linearly 
represented by a template dictionary. Different from the 
original L1 tracker, the template dictionary utilized is made up 
of positive templates (i.e., target templates) and negative 
templates (i.e., background templates) in order to enhance the 
sparsity of representation coefficient. Considering the temporal 
consistency of object appearance, an L2 regularization is 
imposed on the representation coefficient to reflect the 
similarity of appearance between the current frame and the 
previous frame. Next, a binary support vector is proposed to 
model the partial occlusion that may appear in UAV videos. On 
account of the prior knowledge that partial occlusion only 
occupies a small number of pixels and its shape is always 
continuous, an Ising model based on Markov Random Field 
(MRF) is employed to model the occlusion. To get the 
optimizations of the target representation coefficient and the 
binary support vector, an alternating algorithm involving APG 
method and graph cuts is developed. For long-term tracking, the 
tracking method is implemented under the framework of 
particle filter, and the template dictionary is also dynamically 
updated according to a metric called average cosine similarity.  
The main contributions of this paper can be summarized as the 
following aspects: 
① Target appearance is modeled by the sparse representation 
over a joint template dictionary; 
② A temporal consistency-based L2 regularization is proposed 
to constrain the representation coefficient of target;  
③ An MRF-based binary support vector is exploited to model 
the partial occlusion by considering its sparsity and continuity; 
④ The template dictionary is dynamically updated to overcome 
the appearance change of target.  
The remainder of this paper is organized as follows: Section II 
brief reviews the related work about the research results of 
target tracking in recent years; in Section III, we introduce the 
theories of our study at great length; both qualitative and 
quantitative comparisons with the state-of-the-art tracking 
methods are implemented in Section IV; besides, a discussion 
about some key details in our algorithm is made in Section V; 
lastly, a conclusion as well as the future work is summarized in 
Section VI.  

II. RELATED WORK 
The recent decades have witnessed much progress in visual 
tracking [17]. In this section, we focus on discussing the 
appearance representation problem and the mainstream trackers 
relevant to this topic.  
In general, target tracking algorithms can be categorized as 
either generative or discriminative based on their appearance 
models. Actually, there are various representation methods [18], 
the most typical representatives of which can be listed as: raw 
pixel representation, histogram representation, active contour 
representation, corner feature representation, etc. However, 
their robustness to the environmental interferences in UAV 
scenes is quite weak. Fortunately, dictionary-based sparse 
representation is found as a good choice owing to the following  
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facts: (1) it is proved to be robust to corruptions caused by 
illumination variation and occlusion; (2) the data-storage 
burden and computational burden of UAV system can be 
reduced since only few entries of the representation coefficient 
need to be recorded; (3) the templates utilized in this method 
are all extracted in the test images themselves without any 
offline trainings. Based on this consideration, dictionary-based 
sparse representation is employed in this paper.  
Generative trackers learn a model to describe the target object 
and select the most similar image patch with minimal 
reconstruction error as the tracking result. Ho et al. [19] 
designed a tracking algorithm that uses a set of learned subspace 
model to address appearance change in unstable tracking 
environment. Instead of utilizing pre-trained subspace, an 
incremental visual tracking (IVT) algorithm was proposed by 
Ross et al. [20] by learning adaptive appearance model online. 
Leveraging the spatio-temporal relationship between target and 
its surrounding background, Zhang et al. [21] proposed a dense 
spatio-temporal context (STC) learning- based tracker to 
overcome the interference of occlusion. For the same purpose, 
Wang et al. [22] introduced a probability continuous outlier 
model (PCOM) to depict the continuous outliers existing in the 
linear representation model. To cope with partial occlusion and 
pose change during object motion, Kong et al. [23] presented a 
low-rank representation (LRR)-based tracker by means of 
decomposing the object observation matrix into a low-rank 
target appearance matrix and an occlusion matrix. Integrating 
low-rank and sparse representation theory, Zhang et al. [12] 
presented a consistent low-rank sparse (CLRS) tracker that 
jointly learns the particle representation to exploit the motion 
and appearance consistency of target. For the purpose of 
dealing with rigid and nonrigid deformations, Oron et al. [24] 
designed a joint model involving appearance and spatial 
configuration of pixels so as to predict the amount of local 
distortion of target [25]. Zhang et al. [26] developed a two-layer 
CNN without training (CNT) that directly exploits local 
structural and inner geometric layout information from data 
without manual tweaking.  
Discriminative trackers regard tracking problem as a binary 
classification task that aims to find the decision boundary that 
best distinguishes the target from the background. Grabner et al. 
[27] proposed an online AdaBoost (OAB) classifier-based 
tracker integrating Haar feature, oriented histogram feature and 
local binary pattern feature. To alleviate cumulative tracking 
error, Babenko et al. [28] formulated online tracking under the 
multiple instance learning (MIL) framework where samples are 
considered in positive and negative sets. Considering sample 
importance, a weighted multiple instance learning (WMIL) 
tracker was further proposed by Zhang et al. [29]. Later, Zhang 
et al. [30] presented an online discriminative feature selection 
(ODFS) algorithm to exploit significant prior information of 
instance labels and the most correct positive instance using a 
novel formulation which is much simpler than MIL tracker. 
Owing to the rapid development of compressive sensing, a 
compressive tracking (CT) algorithm [25,31] was developed by 
training the naive Bayes classifier via features extracted from 
the multi-scale image feature space with data-independent basis. 
To mitigate the adverse effect of wrong labeling samples, Hare 
et al. [32] proposed an online structured output support vector 
machine (SVM) for robust tracking (Struck). Furthermore, 

Henriques et al. [33] discussed the circulant structure of the 
kernel matrix in SVM using fast Fourier transform algorithm.  
To sum up, the afore-discussed related work is summarized in 
Table I. 
 

Table I. Summary of the related trackers. 
Type Name Characteristic 

Generative 
trackers 

Ho’s method Learned subspace model 
IVT Online low-dimensional subspace learning 

PCOM Probability continuous outlier model 
STC Dense spatio-temporal context learning 
LRR Low-rank representation 

CLRST Joint sparse representation with low-rank 
constraint 

 Oran et al. Joint model of appearance and spatial 
configuration of pixels 

 CNT Two-layer convolutional neural networks 
without offline trainings 

Discriminativ
e trackers 

OAB Online AdaBoost feature selection 
MIL Online multiple instance learning 

WMIL Bag probability function combining the 
weighted instance probability 

ODFS Online discriminative feature selection 
CT Multi scale-based compressive feature 

Struck online structured output SVM 
Henriques’s 

method Circulant structure of SVM 

III. THEORY 
In this section, we focus on introducing the detailed theories of 
our algorithm, including target appearance model, solving 
method of optimization, particle filter framework as well as 
template update.   
A. Target Appearance Model  
In light of the theory of image sparse coding, a target is linearly 
spanned in the feature sub-space made up of template dictionary. 
Since occlusion is a fundamental factor in UAV tracking 
problem, an occlusion term is added to the target appearance 
model in this work. Thus, the appearance model proposed can 
be simply formulated as 

 Y=Dα+S+ε (1) 
where, Y stands for the target; D and α represent the template 
dictionary and representation coefficient, respectively; S is a 
binary support vector that denotes the occlusion; ε means the 
reconstruction error. For a more intuitive presentation, the core 
idea of our target appearance mode can be summarized using 
Fig.2. In the following sections, we would like to introduce the 
constraints imposed on α and S which make the reconstruction 
of target appearance more accurate. 

 
Fig.2. Schematic diagram of the proposed appearance model using sparse 
representation. 
 
1) Sparse Representation  
In light of the sparse representation theory, a target image patch 
Yp∈Rq  (q denotes the total pixel number of this patch) that is 
stacked into a column vector can be estimated by the 
homogenous positive templates and their corresponding 
representation coefficients [34] with a non-negativity constraint 
as     
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										Yp≅α1dp
1+α2dp

2+…+αNpdp
Np 

																																											= $dp
1,dp

2,…,dp
Np% $α1,α2,…,αNp%

T
      (2) 

													=Dpαp,	 									 s.t., αp≥0 
where, Dp= $dp

1,dp
2,…,dp

Np%∈Rq×Np  and 

αp= $α1,α2,…,αNp%
T
∈RNp refer to the target dictionary and its 

representation coefficient vector; Np  means the number of 
positive templates in Dp. Ideally, the coefficient vector αp  is 
sparse, indicating that there are few non-zero entries in αp. As 
for the non-negativity constraint, a real target can almost always 
be represented by the positive templates dominated non-
negativity coefficients as the templates that are most similar to 
the tracking target are positively related to the target [13].  
Suppose that the object of interest is manually selected in the 
first frame, the positive templates are initialized by randomly 
cropping image patches in a circle region around the object 
center, and the sampling region Ωp is described as  

 
Ωp= '$xp,yp% |0<*+xp-x0,

2
+ $yp-y0%

2
<r1-   (3) 

where, $xp,yp% is the center of target template; +x0,y0, is the 
center of object cropped in the first frame; r1 is the radius of 
sampling region.  
Similarly, a background image patch Yn∈Rq  can also be 
sparsely coded by the linear combination of negative templates 
and the corresponding representation coefficient as 

 									Yn≅α1dn
1+α2dn

2+…+αNndn
Nn 

																											=+dn
1,dn

2,…,dn
Nn,+α1,α2,…,αNn,

T
 

=Dnαn  s.t., αn≥0 
  (4) 

where, Dn=+dn
1,dn

2,…,dn
Nn,∈Rq×Nn  and 

αn=+α1,α2,…,αNn,
T∈RNn  refer to the background dictionary 

and its representation coefficient vector; Nn is the number of 
negative templates in Dn. 
Similar to the positive templates, the negative templates are 
initialized by randomly drawing samples within a doughnut-
shaped image region Ωn	away from the object center, whose 
inner radius and external radius are denoted as r2 and r3: 

 
Ωn= '+xn,yn,|r2<*(xn-x0)2++yn-y0,

2
<r3- (5) 

where, +xn,yn, is the center of background template.                                                                                                                                                                                                     
By integrating both the target and background dictionaries, a 
randomly sampled target candidate Y∈Rq  can be sparsely 
represented by a joint template dictionary D as  

 Y≅Dpαp+Dnαn=+Dp,Dn,+αp;αn,=Dα, s.t. α≥0 (6) 

where, D=+Dp,Dn,∈Rq×N  and α=+αp;αn,∈RN  stand for the 
joint template dictionary and the joint representation coefficient, 
respectively; N=Np+Nn means the total number of templates.  
In our algorithm, once a target candidate is sampled from the 
current frame, it is directly coded using the joint dictionary D, 
rather than coded by Dp and Dn respectively. We argue that the 
joint representation coefficient can be sparser when this joint 
dictionary is employed. Specifically speaking, if an image patch 
is the target, it can only be sparsely represented by Dp, i.e., there 
are few non-zero entries in αp with αn being a zero-vector, vice 

versa. Fig. 3 gives an intuitive illustration of the above-
discussed sparse representation model.  
 

 
Fig.3. Schematic diagram of the sparse representation model. 
 
Now, the preliminary appearance model using sparse 
representation can be formulated as follows 

 Y=Dα+ε, s.t. α≥0 (7) 
Equivalently, the sparse representation of target candidate Y 
can be written as the minimum error reconstruction error with a 
regularized L1 minimization function as 

 min
α

1
2
‖Y-Dα‖2

2+λ‖α‖1, s.t. α≥0 (8) 

where, ‖∙‖1  denotes L1 norm; ‖∙‖2  denotes L2 norm; λ  is a 
constant that controls the sparsity of α. 
 
2) Temporal Consistency 
To further constrain the optimization function proposed in 
Eq.(8), temporal consistency is taken into consideration in 
object representation. As mentioned in the previous work made 
by Zhang et al. [12], object appearance will not change 
obviously during the two adjacent frames. Motivated by this, 
we thus point out that the sparse representation coefficients 
calculated in the current frame and the previous frame should 
also be similar to each other. Here, we compare the 
representation coefficient of target candidate α with that of the 
tracking result in the previous frame α0  via L2 norm, i.e., 
Δα=‖α-α0‖2.  
To embed the temporal consistency proposed above to the 
optimization function, we modify Eq.(8) as follows 

 min
α

1
2
‖Y-Dα‖2

2+λ‖α‖1+γ‖α-α0‖2
2, s.t. α≥0 (9) 

where, γ is a constant that controls the value of Δα. 
It is worth noting that there are two special cases where the 
temporal consistency term should be set to invalid (λ=0): 
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① We start to compute Δα from the third frame, so this term is 
invalid in the second frame;  
②  The update of positive dictionary will cause significant 
difference of the representation coefficients between adjacent  
frames, so this term is set to be invalid once the update occurs. 
Since negative templates almost have no influence on the 
coding coefficient of target, which will be demonstrated in 
Section V.A.2, we do not make additional settings for λ when 
negative templates are updated..   
 
3) Occlusion Model 
In UVA videos, the object of interest (usually, vehicles or 
pedestrians) is easily corrupted by partial or full occlusions 
generated by shadow or plant, and this often leads to 
unpredictable tracking errors. In this paper, we try to address 
the partial occlusion problem.  
Let us define a binary support vector S∈{0,1}q, in which the 
non-zero entries stand for the occlusion pixels.  
We regard those non-zero entries as outliers in the image patch 
of target candidate that cannot be fitted into the linear 
representation of dictionary templates, so Eq.(9) needs to be 
improved using a projection operator ΦS(∙) in related to the 
proposed binary support vector S as 

 min
α

1
2
‖ΦS(Y-Dα)‖2

2 +λ‖α‖1+γ‖α-α0‖2
2, s.t. α≥0 (10) 

where, the projection operator is defined as  
 ΦS(xi)= 4

xi,  if Si=0		 
0,  others     (11) 

For UAV videos, we have two pieces of fundamental prior 
knowledge of the partial occlusion: ①  it occupies a small 
number of pixels; ② it should be continuously distributed in the 
image patch of target. Motivated by MRF [35], we can model 
the partial occlusion via Ising model. First, the binary support 
vector S is mapped back to its matrix form S*∈{0,1}m×n (m and 
n are the width and height of each sample image). Then, we 
consider a graph GS*=(V,E), where V is the set of vertices 
representing all the q=m×n pixels in S* and E denotes the set of 
edges connecting spatially or temporally neighboring pixels. 
Based on the assumptions made above, an energy function of 
GS* can be formulated as  

 Ψ+GS*,=7μit+Sit
*,+ 7 υit,kl8Sit

*-Skl
* 8

(it,kl)∈Eit∈V

 (12) 

where, μit∈{0,1}  denotes the unary potential of vertex Sit
* ; 

υit,kl > 0 denotes the degree of dependency between Sit
* and Skl

* . 
Since we treat Sit

* = 1 as the occlusion pixel in the image patch 
of target candidate, the unary potential μit is defined as  

 μit+Sit
*,= 4υit,  if Sit

*=1    
0,  others    

 (13) 

where, υit>0 penalizes Sit
*=1. In this study, both υit,kl and υit are 

set as constants because the vertices and edges in S* can be 
approximately seen as isotropic. As a result, the energy function 
in Eq.(12) can be simply rewritten as  

 Ψ+GS*,=η7Sit
*

it∈V

+ς 7 8Sit
*-Skl

* 8
(it,kl)∈E

  (14) 

where, η and ς are two positive constants that represent υit,kl 
and υit, respectively.  

To make our occlusion model simpler and clearer, we further 
rewrite Eq.(14) as [36] 

 Ψ+GS*,=η‖S‖1+ς‖ΘS‖1 (15) 
where, S is the column vector form of S* and Θ is the node-edge 
incidence matrix of GS*. 
 
4) Optimization Function 
Based on the models proposed from Section III.A.1- Section 
III.A.3, we can obtain the optimization function of our 
appearance model that comprehensively considers the sparse 
representation, temporal consistency as well as partial 
occlusion. And, its final mathematical expression is given as  

 min
α,S∈{0,1}

1
2
‖ΦS(Y-Dα)‖2

2+λ‖α‖1+ 

γ‖α-α0‖2
2+η‖S‖1+ς‖ΘS‖1 , s.t. α≥0 

(16) 

As can be seen from Eq.(16), the following task for us is to 
estimate the optimal solution of α and S. We just present the 
optimization function of model here, and the detailed algorithm 
that solves Eq.(16) will be discussed in the next section.  
 

B. Solution of Optimization Model  
Through observing the optimization function formulated in 
Eq.(16), we find that it is nonconvex and there are both discrete 
and continuous variables in it. Since it is hard to solve α and S 
at the same time, we choose to adopt an alternating algorithm 
that separates Eq.(16) over α and S into two independent steps. 
1) Estimation of Sparse Representation Coefficient  
Given an estimate of the binary support vector S; , the 
optimization problem in Eq.(16) turns to be an L1-regularized 
problem over α: 

 min
α

1
2
‖ΦS; (Y-Dα)‖2

2 +λ‖α‖1+γ‖α-α0‖2
2, s.t. α≥0 (17) 

Considering the non-negativity constraint is inconvenient for 
solution, we use an additional term  1R+(α) that is defined as 
Eq.(18) to replace it.  

 1R+= < 0,
+∞,  

if α≥0
others (18) 

Here, we further decompose Eq.(17) as the following two 
functions:  

 f(α)=
1
2
‖ΦS;(Y-Dα)‖2

2+γ‖α-α0‖2
2  (19) 

 g(α)=λ‖α‖1+1R+(α) (20) 
As can be observed from Eqs.(19-20), Eq.(17) is divided into 
two parts: 1) the first part f(α) is composed of two L2 norms, 
and they are both differentiable; 2) the second part g(α) is an L1 
constraint term, and it is a non-smooth but convex function. 
Wang et al. [37] stated that this kind of minimization problem 
can be solved by APG method with quadratic convergence.  
For f(α), its gradient function ∇f(α) is computed as  

 ∇f(α)=MT(Mα-C)+2γα (21) 
where, M=ΦS;(D)  and C=ΦS;(y) . Then, we prove that the 
gradient of f(α) is Lipchitz continuous, since for any α1,α2∈RN. 

 											‖∇f(α1)-∇f(α2)‖ 
        =>+MT(Mα1-C)+2γα1,															
− +MT(Mα2-C)+2γα2,>	
        =>MTM(α1-α2)+2γ(α1-α2)>	
        ≤>MTM(α1-α2)>+‖2γ(α1-α2)‖ 

(22) 
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≤ $>MTM>
2
+2γ% ‖α1-α2‖	

Thus, the Lipchitz constant of f(α) is L=>MTM>
2
+2γ.   

Lastly, the optimal solution of α can be worked out by the APG 
framework [38], and the detailed steps are listed in Algorithm 
1. 
 

Algorithm 1. Steps of computing the optimal solution of α using APG 
1. Initialize a0=a-1=0∈RN, t0=t-1=1; 
2. For i=0,1,2,…, iterate until convergence 
(1) bi+1=ai+

ti-1-1
ti

(ai-ai-1); 

(2) ai+1=arg min
α

L
2
@α-bi+1+ ∇f(bi+1)

L
@

2

2
+G(α)=max <0,bi+1- ∇f(bi+1)+λ

L
A; 

(3) ti+1=
1+*1+4ti

2

2
. 

 
2) Estimation of Binary Support Matrix  
Using the methods introduced in Section III.B.1, the sparse 
representation coefficient αB can be regarded as a fixed constant. 
Hence, we rewrite the optimization function in Eq.(16) as the 
following form: 

 				 min
S∈{0,1}

1
2
‖ΦS(Y-DαB)‖2

2+η‖S‖1+ς‖ΘS‖1 

											= min
S∈{0,1}

1
2
7(Y-DαB)i

2(1-Si)+η7Si
i

+ς‖ΘS‖1
i

 

= min
S∈{0,1}

7 (η-
1
2
(y-DαB)i

2)Si
i

+ς‖ΘS‖1+ζ 

(23) 

where, ξ= 1
2
∑ (y-DαB)i

2
i  is a constant in the case that αB	 is fixed. 

Referring to [22], Eq.(23) is now the standard form of the first-
order MRF with binary labels so that it can be well solved by 
maxflow/mincut method in graph cuts [39-40].    
We can easily infer that Si  tends to be 1 if η< 1

2
(y-DαB)i

2 , 
indicating that the value of η highly depends on the linear span 
residual over D. As a matter of fact, η cannot be too small since 
the partial occlusion usually occupies a relatively small number 
of pixels in the UAV image. That is to say, a too small η will 
lead the occlusion to be filled with the image patch, thus 
resulting in a low-energy optimization function. To get a 
balance, we empirically update η as η=max{η,4.5σr

2} in each 
frame, where σr

2 represents the variance of the residual (y-DαB)i
2.  

     
C. Implementation of long-term tracking 
In Section III.A and Section III.B, we have built up the 
appearance model of our tracker as well as the solution 
algorithm. Now, we concentrate on constructing a long-term 
tracking framework based on particle filter and dynamic 
template update.  
1) Framework of Particle Filter 
Particle filter is a Bayesian sequential importance sampling 
technique aiming for state estimation in a dynamic system, and 
it is widely used in non-linear and non-Gaussian tracking 
problems [23].  
Let us define the object state in the k-th frame as a multi-
dimensional state vector Xk . Assume that 
Y1:k-1={Y1,Y2,…,Yk-1} is the available observations of target 
from the first frame to the (k-1)-th frame, p(Xk|Y1:k-1) denoting 
the predicting distribution can be thus recursively computed as  

 p(Xk|Y1:k-1)=E p(Xk|Xk-1)p(Xk-1|Y1:k-1)dXk-1  (24) 

where, p(Xk|Xk-1) represents the state transition model. 
In the k-th frame, the observation Yk , which is the target 
candidate in Section III, is available and the posterior 
estimation of target state can be updated according to the 
Bayesian theorem as 

 p(Xk|Y1:k)=
p(Yk|Xk)p(Xk|Y1:k-1)

p(Yk|Yk-1)
 (25) 

where, p(Yk|Xk) is the observation likelihood that measures the 
similarity between the candidate patch and the templates. In our 
study, the observation likelihood of a particle, which can be 
understood as the sampled candidate target mentioned in 
Section 3.1, is defined as the joint reconstruction error: 

 p(Yk|Xk)=e-β+εp-κεn, (26) 
where, εp=>Yk-αpDp>2

 and εn=‖Yk-Dnαn‖2   represent the 
positive and negative reconstruction errors, respectively; β and 
κ are constants which are set empirically.  
Suppose that P particles are generated in each frame according 
to the transition model p(Xk|Xk-1), and the particle state with the 
maximal approximate posterior probability is selected as the 
optimal tracking result: 

 Xk
*=arg max

Xk
p(Xk|Y1:k) (27) 

   
2) Template Update 
The update of templates, especially the positive templates, is an 
important task in visual tracking. We state that a time-invariant 
template dictionary will easily result in drifts, as the object 
appearance only remains constant in a short period and always 
undergoes remarkable changes due to the influence of shape 
and illumination variations in UAV videos [41]. On the 
contrary, if we update the positive templates too often, minor 
tracking errors will be accumulated, which will eventually 
cause serious tracking failures. Therefore, the entries in the 
dictionary need to dynamically update with a suitable strategy. 
Note that we focus on the update scheme of positive templates 
in this work. As for the negative templates, we simply remove 
the templates in the previous and add the new templates from 
the last frame [42]. 
Before introducing the scheme of template update, we propose 
an index called average cosine similarity to judge whether the 
target appearance changes. Given the newly selected candidate 
target YkF  in the current frame and the current positive 
dictionary Dp= <dp

1,dp
2,..,dp

NpA, the average cosine similarity ΔkGGG 
is defined as  

																																	∆k=
1

Np
7 arccos<YkF ,dp

i >

Np

i=1

 
 

       (28)  

where, arccos<∙> denotes calculating the arc-cosine value of 
the inner product of two vectors. If ΔkGGG≥τ (τ is a pre-defined 
threshold), we judge that the target appearance has changed and 
we need to update the positive templates in this frame.                           
Another problem needs to be handled is to allocate different 
weights to the templates so that we can decide which template 
to be replaced when ΔkGGG≥τ. Directly, the sparse coefficient of 
positive templates αp  can be applied as the template weight. 
Considering the sparsity of αp  may lead to a degenerate 
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updating effect, an iterative approach as ζi←ζi*exp(αpi
)  is 

designed, where the weight of each template is initialized as 
ζi=1/P. One more point should be noted is that the update of 
template cannot be implemented when large numbers of 
occlusion pixels exist. That is to say, the update mechanism can 
be started only in the case that ones(S)≤δ, where ones(∙) means 
counting the non-zero entries in a vector and δ=round(ξ∙q) (ξ is 
a pre-defined threshold). For fear of the case that the newly 
added template plays a dominate role in the dictionary, we 
assign the median value of the whole weights to the new 
template. In addition, the maximum weight is set to be a 
constant ω  to prevent skewing. To sum up, the complete 
procedure of template update is listed in Algorithm 2, and the 
parameter settings of τ, ξ and ω will be discussed in Section 
IV.E. 
    

 Algorithm 2: Steps of template update 
Input: the positive template set Dp= <dp

1,dp
2,..,dp

NpA, the newly selected 
target YkF , the representation coefficient of positive template αp and three 
pre-defined thresholds τ, ξ and ω. 
Initialize the weight of each template as ζi=1/P;  
1. Update the weights: ζi=ζi*exp(αpi

);  

2. Compute the average cosine similarity as ∆k= 1
Np
∑ arccos<YkF ,dp

i >Np
i=1 ; 

3. if ∆k≥τ and ones(S)≤δ 
4.  i0=arg min

1≤i≤Np
(αpi

); 

5.  Tp(:,i0)←YkF ; 
6.  ζi0

←median(ζ); 
7. end if 
8. Normalize ζ=ζ/sum(ζ) so that sum(ζ)=1; 
9. Adjust ζ to guarantee max(ζ)=ω in order to prevent skewing; 
10. Normalize the new positive dictionary Dp; 
Output: the updated template Dp. 

 

D. Summary of the Proposed Algorithm 
To sum up the theories presented in Section III.A – III.C, we 
conclude this sparse representation-based target tracking into 
three main procedures: state sampling, optimization of energy 
function and template update. To give a clearer and more 
detailed explanation, a summary of our algorithm is listed in 
Algorithm 3. 
 

Algorithm 3: Summary of the proposed tracker 
1. Input: a manually cropped ground truth of target in the first frame; 
2. Initialize: a joint dictionary including both positive and negative 
templates D=(Dp,Dn) and the state variable X1; 
3. for k = 2 to the last frame do 
4.   Do the particle sampling in the affine parameter space; 
5.   for i = 1 to the last particle do  
6.     Crop and normalize the image patch of candidate target Yi;  
7.     Initialize: λ=10-4,γ=10-3,S;=0;  
8.     Iterate:  
9.       Compute αB using APG: αB←arg min

α

1
2
‖ΦS;(Y-Dα)‖2

2+λ‖α‖1+γ‖α-
α0‖2

2, s.t.  α≥0; 
10.     Update η: η=max{η,4.5σr

2};  
11.     Compute S;  using graph cuts: S;←arg min

S∈{0,1}
∑ $η-i

1
2
(y-DαB)i

2%Si+ς‖ΘS‖1; 
12.    Until convergence  
13.  end for 
14.  Resample via the weight p(Xk|Yk); 
15.  Update the dictionary templates; 

16.  Output: Xk
*=arg max

Xk
p(Xk|X1:k). 

17. end for 

IV. EXPERIMENTAL RESULTS 
In this experimental section, we validate the accuracy and 
effectiveness of our tracker by qualitative and quantitative 
comparisons with other state-of-the-art tracking algorithms.  

A. Datasets 
To evaluate the tracking ability of the presented algorithm, 18 
groups of challenging UAV videos are compiled to be the 
datasets in the following experiments. One half of the selected 
datasets are Vis videos and the other half are IR videos. On the 
other hand, these videos can be classified with 10 attributes 
according to different factors existing in UAV videos [26]: 
illumination variation (IV), scale variation (SV), occlusion 
(OCC), deformation (DEF), motion blur (MB), fast motion 
(FM), in-plane rotation (IPR), out-of-plane rotation (OPR), 
background clutters (BC) and low resolution (LR), which are 
summarized in Table II. All the video sequences, except the 
sequence pedestrian captured by our own mid-wave IR detector, 
can be downloaded from VIVID [43], TB-50 & TB-100 [44] 
and VOT2015 [45] databases. 
 
Table II. Database categorized with 10 attributes.  

  I
V 

S
V 

OC
C 

D
EF 

M
B 

F
M 

IP
R 

OP
R 

B
C 

L
R 

V
is 

Egtest01 √ √    √ √  √ √ 
Egtest02  √ √  √   √   
Egtest03   √  √ √  √   
Egtest04 √ √      √ √  
Human   √ √    √ √  
Racer  √ √ √ √ √  √  √ 
Park   √ √       
Suv   √    √  √  

Truck  √ √   √ √ √  √ 

I
R 

Pktest01   √        
Pktest02 √  √    √    
Pktest03 √  √       √ 
Pktest04 √  √    √    
Pktest05   √        

Horse  √  √    √   
Rhino  √  √    √ √ √ 

Pedestria
n  √ √ √       

Quadroc
opter    √  √ √ √   

Total number 5 8 13 7 3 5 6 9 5 5 

B. Baselines 
We choose 9 state-of-the-art visual tracking algorithms, 
including IVT [20], L1 [13], PCOM [22], CT [25,31], MTT [16], 
WMIL [29], OFDS [30], STC [21] and CNT [26], to compare 
with our proposed tracker. All these compared algorithms 
utilized are downloaded from their publicly available source 
codes provided by the relevant references. For fair comparisons, 
the tracking initializations are the same for all the algorithms, 
and the specific parameters of each tracker are set as their 
default values provided by the public codes.  
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C. Evaluation Criteria 
In our experiments, two extensively used metrics: center 
location error εc and overlap score φ are chosen to evaluate the 
tracking precision rate and success rate.  
εc  is defined as the Euclidean distance between the central 
location of tracked object and the manually labeled ground truth 
[12], which can be formulated as 

 
εc=*(xt-x0)2+(yt-y0)2 

(29) 

where, +xt,yt, and +x0,y0, stand for the center coordinates of 
the tracking result and the ground truth.  
Given a tracked bounding box St and a corresponding ground 
truth bounding box Sg, φ which takes both the size and the scale 
of object into account is defined as 

 
φ=
8St∩Sg8
8St∪Sg8

∈[0,1] 
(30) 

where, |∙| means counting the pixel number in the image region 
decided by the bounding box; ∩  and ∪  represent the 
intersection and union operators.  
Apparently, a satisfactory tracking result has a small value of εc 
and a large value of φ at the same time.  

D. Implementation Details 
In this paper, all the experiments are implemented using Matlab 
2012b on a PC with 2.60 GHz INTEL CPU and 4.0 GB installed 
memory (RAM). All the images are converted to grayscale 
when executing the codes, and the initial state of the target, i.e., 
the center coordinate and the size, is given manually in the first 
frame.  
 

Table III. Summary of parameter settings. 
Parameter Meaning Value Setting 

λ L1 regularization 
parameter 10-4 

γ L2 regularization 
parameter  10-3 

τ Threshold of average 
cosine similarity 35° 

ξ Occlusion threshold 0.1 
ω Weight threshold 0.3 
P Particle number 600 

r1 Radius of positive 
Sampling region 4 

r2 Inner radius of negative 
Sampling region 8 

r3 
External radius of 
Negative sampling 

region 
30 

Np Number of positive 
templates 10 

Nn Number of negative 
templates 15 

β Reconstruction error 
coefficient 50 

κ Reconstruction error 
coefficient 0.7 

 
All the parameters mentioned in the proposed algorithm as well 
as their meanings and default values are listed in Table III, and 
the settings of some key parameters are discussed in Section 
IV.E. 

E. Parameter Setting 
As known to all, the selection of key parameters always has a 
great influence on the final results of target tracking. Thus, it is 
of great necessity for us to make a parameter analysis before 
running the proposed algorithm.  
Here, we focus on studying the L1 regularization parameter λ 
and the L2 parameter regularization γ, the threshold of average 
cosine similarity τ, the weight threshold ω and the occlusion 
threshold ξ. In our experiments, 3168 frames of test images 
selected from TB50 & TB100 database are used as training data. 
The targets are all moving vehicles or pedestrian, which match 
the target types in our study. Average overlap score φ  is 
employed to evaluate the tracking performances corresponding 
to different parameter settings.  
Since λ  and γ  are two correlated parameters, we put them 
together to implement the sensitivity analysis. They are both 
parameterized by a discrete set 
Λλ,γ=K10-7,5×10-7,10-6,5×10-6,...,100L, and the performances of 
different (λ,η) are evaluated by φ.  
For each λi∈Λ with different η, 15 average overlap scores can 
be obtained; for each ηi∈Λ with different λ, 15 average overlap 
scores can be obtained also. That is to say, what we need to do 
is to find an optimal combination (λ,η) that achieves the highest 
φ among all the 15×15 groups of combinations.  
To make the statistical result more intuitive, we separately 
analyze the two parameters as follows: 
Given a fixed λi∈Λ, we record the highest φ among the 15 
scores with different η . For different λ , we obtain the 
corresponding results shown in Fig. 4(a). It is clear that φ gets 
the highest value when λ=10-4.     
Similarly, given a fixed ηi∈Λ, we record the highest φ among 
the 15 scores with different λ, and the corresponding statistical 
result is presented in Fig. 4(b). As can be seen, φ reaches top 
when γ=10-3. 
Using the same way of sensitivity analysis, τ, ω	 and ξ  are 
parameterized by three discrete sets: Λτ={5,10,15,…,85,90}, 
Λω={0.05,0.1,0.15,0.2,...,1}  and 
Λξ={0,0.05,0.1,0.15,…,0.9,0.95,1} . The related φ  values are 
recorded and the τ-φP , ω-φP  and ξ-φP  relationship curves are 
drawn in Figs.(5-7). Observing the global maximum of each 
curve, φ  reaches the highest point when τ=35∘ , ω=0.3  and 
ξ=0.1. 
 

 
Fig.4. Effects of λ and γ on φP: (a) λ-φP relationship curve; (b) γ-φP relationship 
curve. 
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Fig.5. (a) τ-φP  relationship curve; (b)  ω-φP  relationship curve; (c) ξ-φP 
relationship curve. 

 

F. Qualitative Comparison  
To present an intuitive comparison of tracking performance, we 
show the tracking results of our tracker as well as other 9 state-
of-the-art trackers over 9 Vis UAV videos and 9 IR UAV videos 
in Figs.(6-7), respectively. 
In general, our tracker gets the most satisfactory performances 
in different UAV scenes. We find it does well in dealing with 
remarkable scale, deformation and rotation changes in Egtest01, 
Egtest02, Horse and Quadrocopte videos, which demonstrates 
that the dictionary-based sparse representation is effective in 
addressing appearance variations. Owing to the contiguous 
occlusion constraint, the presented tracking algorithm is also 
robust to various shapes of partial occlusions in Egtest03, 
Human, Park and Suv sequences. Notably, the dictionary used 
in our algorithm involves background templates, thereby 
making it effective in addressing the background clutters in 
Egtest 04 and Rhino videos. In addition, the challenges 
generated from fast motion (see Egtest03, Racer and Truck 
videos) is overcome by adjusting the translation parameters of 
particle filter framework. 
As for other algorithms, CNT and STC also achieve relatively 
promising results in most sequences, but we notice that the size 
of STC’s bounding box is not so stable (see Suv and Pktest01 
videos). IVT and L1 are generative trackers which focus on 
setting up appropriate object appearance models, so these two 
trackers are quite good in coping with videos with appearance 
changes, like Egtest01 and Human. CT ,WMIL and ODFS 
regard the tracking problem as a binary classification, but we 
find that they are easy to drift when remarkable changes of 
environmental factors and object appearance occur. What is 
more, the tracking result of PCOM degrades when encountering 
illumination changes and occlusion interferences. As a whole, 
MTT gets the worst tracking performance since it loses the 
target in most of the videos.  

G.  Quantitative Comparison 
In this part, relevant experimental results of one-pass evaluation 
(OPE) [48] on the basis of precision rate and success rate are 
reported. Based on the two evaluation criteria discussed in 

Section IV.C, we further introduce two plots to test the 
quantitative performances of the 10 trackers:  
 

 
Fig. 6. Tracking results of 10 trackers on 9 Vis UAV videos delineated by 
different colors. Frame numbers are overlayed in yellow. 

 

 
Fig. 7. Tracking results of 10 trackers on 9 IR UAV videos delineated by 
different colors. Frame numbers are overlayed in yellow. 
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Table IV. The average location center error and overlap score of the overall performance. The red fonts indicate the best 
performances; the green fonts indicate the second-best ones and the blue fonts indicate the third-best ones. 

 IVT L1 PCOM CT MTT WMIL ODFS STC CNT Ours 
εcP  58.807 50.666 66.274 93.638 74.497 79.571 68.537 41.432 22.099 4.813 
φP 0.408 0.521 0.264 0.333 0.085 0.265 0.322 0.458 0.609 0.709 

① Precision Plot is defined as the percentage (precision rate) of 
those frames whose center location errors are shorter than a 
given threshold;  
② Success Plot is defined as the percentage (success rate) of 
those frames whose overlap scores are higher than a given 
threshold. Usually, we choose the success rate with the 
threshold set as 0.5 for tracking evaluation.  
 
1) Overall Performance 
Fig.8 reports the overall performance of the 10 trackers in terms 
of precision and success plots over 18 UAV videos. In addition, 
Table IV lists the average location error εcP  and the average 
overlap score φ, which are calculated as the average εc value 
and φ value of all the frames, respectively. 

 
Fig.8. Overall performance over 18 UAV videos: (a) precision plot of OPE; (b) 
success plot of OPE. 

 
Intuitively, the proposed tracker ranks first in both precision 
rate and success rate while MTT ranks last. In the precision plot, 
our designed tracking algorithm achieves the εcP  of 4.813 pixels 
while the second-best tracker CNT gets the εcP  of 22.099 pixels, 
which is about 4.5 times greater than our method. CT gets a 
poor performance in precision rate, which is approximately 18 
times behind that of the proposed tracker. As a whole, ODFS, 
IVT, L1, PCOM and STC are at the same level (40-60 pixels) 
whereas the average location center errors of MTT and WMIL 
are larger than 70 pixels, but smaller than 90 pixels. 
In the success plot, our method and CNT method still occupy 
the top two positions, the average overlap scores of which are 
0.709 and 0.609 respectively. However, we notice that MTT 
falls down to the last and its φ value is only 12% of our method. 
The performances of PCOM and WMIL, whose φ values are 
between 0.2 and 0.3, are also not satisfactory. The rest trackers, 
especially ODFS, IVT and L1, achieve the modest φ values that 
match their performances in precision rate.   
To sum up, the proposed method and CNT method get the most 
accurate and robust tracking results while the tracking abilities 
of CT and MTT are the weakest among all. 
 
2) Attribute-based Performance 
To further analyze the effectiveness and robustness in different 
environments, the precision and success plots are drawn in 
Fig.9 and Fig.10 according to the 10 attributes introduced in 
Table II. Besides, statistical results of εcP  and φ of each attribute 
are revealed in Table V and Table VI. 

Illumination variation: We test 5 videos (Egtest01, Egtest04, 
Pktest02, Pktest03, Pktest04) characterizing in having obvious 
illumination change. As a whole, L1 tracker and our method 
rank top two in this attribute. L1 achieves the best precision rate 
while our tracker achieves the top performance in success rate. 
Noticeably, CNT only 8% falls behind our tracker in φ, which 
proves its effectiveness in illumination variation to some degree. 

 
Fig.9. The precision plots of videos with different attributes. The number in 
the title stands for the number of sequences belonging to the attribute.  

 
Fig.10. The success plots of videos with different attributes. The number in 
the title stands for the number of sequences belonging to the attribute.  

      
Scale Variation: Our method and CNT tracker outperform 
other state-of-the-art methods in both εcP  and φ. It is striking that 
STC method degrades steeply when addressing sequences with 
scale variation, which further validates the observation 
mentioned in Section IV.F that the update of scale factor is 
easily affected by the surrounding environment. In our opinion, 
the particle filter framework that takes scale factor into the 
affine parameter helps overcome the effect of scale change. To 
this end, discriminative tracking algorithms, like WMIL, CT 
and ODFS, are comparatively weaker in this aspect. 
Occlusion: Similar to SV, the proposed tracker and CNT 
tracker also occupies the first two rankings in OCC. Despite the 
inaccuracy in target scale, STC still gets the third place in εcP . 
This is probably because εcP  measures the shift between the 
bounding box center and the ground truth center meanwhile the  
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Table V. Statistical results of εcP . The red fonts indicate the best performance; the green fonts indicate the second-best ones and the 
blue fonts indicate the third-best ones. 

 IVT L1 PCOM CT MTT WMIL ODFS STC CNT Ours 
IV 32.545 3.019 55.096 60.136 51.051 58.109 32.762 13.211 4.008 3.321 
SV 81.703 76.744 79.653 90.904 101.347 56.989 79.262 60.761 29.404 5.498 

OCC 67.075 61.668 63.671 113.793 70.663 94.373 85.687 49.871 26.141 4.799 
DEF 87.808 67.254 86.166 130.492 120.493 72.611 82.572 85.551 40.186 6.258 
MB 144.346 143.088 87.332 189.596 91.379 94.332 191.893 109.504 65.393 7.981 
FM 88.519 56.424 78.175 92.367 71.073 13.556 93.7345 92.909 55.131 7.844 
IPR 34.972 13.935 65.912 42.806 45.644 27.803 40.375 22.158 8.967 5.001 
OPR 74.321 66.827 69.962 99.938 78.883 69.399 97.998 51.789 30.695 5.771 
BC 37.354 6.153 74.267 47.722 71.554 68.807 41.885 6.704 5.326 4.673 
LR 67.592 41.943 62.604 88.263 74.639 24.137 81.111 72.578 44.542 5.879 

Ave. 71.623 53.705 72.283 95.601 77.672 58.011 82.728 56.503 30.979 5.701 

Table VI. Statistical results of φ. The red fonts indicate the best performance; the green fonts indicate the second-best ones and the 
blue fonts indicate the third-best ones. 

 IVT L1 PCOM CT MTT WMIL ODFS STC CNT Ours 
IV 0.442 0.671 0.304 0.314 0.074 0.242 0.328 0.531 0.645 0.711 
SV 0.352 0.447 0.203 0.334 0.071 0.339 0.346 0.369 0.532 0.668 

OCC 0.394 0.508 0.269 0.315 0.101 0.242 0.386 0.289 0.646 0.730 
DEF 0.368 0.463 0.192 0.311 0.026 0.332 0.333 0.402 0.539 0.669 
MB 0.216 0.372 0.227 0.256 0.064 0.326 0.140 0.328 0.446 0.634 
FM 0.357 0.540 0.213 0.385 0.116 0.444 0.297 0.302 0.438 0.641 
IPR 0.483 0.598 0.223 0.406 0.148 0.340 0.359 0.426 0.652 0.691 
OPR 0.397 0.511 0.234 0.312 0.085 0.305 0.280 0.427 0.568 0.694 
BC 0.424 0.674 0.201 0.351 0.087 0.249 0.348 0.494 0.622 0.720 
LR 0.397 0.591 0.236 0.272 0.093 0.325 0.273 0.378 0.466 0.680 

Ave. 0.383 0.537 0.230 0.325 0.086 0.314 0.309 0.411 0.555 0.683 

tracked object of STC does not drift far away from the real 
target too much. It can be concluded from Fig.9(c) and Fig.10(c) 
that the target appearance model constructed by generative 
methods may be more robust to occlusion than that constructed 
by discriminative method, since the former (e.g., CNT, IVT and 
L1) rank ahead of the latter (e.g., WMIL, CT and ODFS) in both 
precision rate and success rate. As far as we are concerned, 
generative approaches use more complicated mathematical 
models that take occlusion inferences into consideration to 
represent the target appearance whereas the running efficiency 
is sacrificed. We particularly point out that IVT projects the 
target pixels onto a PCA orthogonal space and weighs the 
similarity using Mahalanobis distance, therefore this method is 
not so sensitive to partial occlusion. 
Deformation & Motion Blur: The proposed joint dictionary-
based sparse coding method forms a global representation, 
thereby equipping it to account for DEF. CNT tracker encodes 
the geometric layout information with multiple simple cell 
feature maps [26], which also contributes to its robustness to 
DEF. Thus, the two trackers get the best performances in DEF 
attribute. On the other hand, our method provides a much more 
promising performance in MB, owing to its selection of 
template dictionary involving background templates. By 

contrast, L1 and MTT which also use sparse coding, but ignore 
the influence of background degrade strikingly, even less than 
half of ours in terms of φ.       
Fast Motion & Rotation: The candidate sampling strategy 
does influence the tracking accuracy in FM attribute. Since the  
variance of translation parameters of our particle filter are set to 
be large, our method still achieves satisfactory ranks in FM. 
Noteworthily, WMIL also achieves high values of εcP  (only falls 
behind ours by 5.7 pixels on average) and φ (17% smaller than 
L1 tracker) owing to its greedy strategy for updating the tracker 
location. As can be seen from the plots shown in Fig.9(f-g) and 
Fig.10(f-g), our method, CNT, L1 and STC receive the highest 
four rankings, mainly because of their complex appearance 
representation models and the effective sampling strategies.   
Background clutter: The hybrid template dictionary designed 
in our method provides useful information to locate the position 
of target from the background clutters. For CNT, the 
background context information is updated online and pooled 
in each frame [26], which is quite beneficial to overcome the 
adverse influence of clutters. Also, L1 tracker takes the trivial 
templates into consideration, so the drift generated by 
background clutter can be alleviated to a certain degree. 

Table VII. Statistical results of εcP  for each model. 
 IV SV OCC DEF MB FM IPR OPR BC LR Ave. 

Model A 3.321 5.498 4.799 6.258 7.981 7.844 5.001 5.771 4.673 5.879 5.701 

Model B 45.887 75.765 70.968 87.405 108.73
7 103.91 70.401 78.430 65.158 83.076 78.973 

Model C 36.155 57.749 69.423 79.901 103.87
9 81.193 64.346 63.493 55.914 68.867 68.092 

Model D 8.227 13.127 8.431 13.431 19.949 20.126 12.493 14.041 11.082 14.009 13.491 
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Table VII. Statistical results of φP for each model. 
 IV SV OCC DEF MB FM IPR OPR BC LR Ave. 

Model A 0.711 0.668 0.730 0.669 0.634 0.641 0.691 0.694 0.720 0.680 0.683 
Model B 0.330 0.306 0.342 0.294 0.292 0.301 0.322 0.322 0.337 0.317 0.317 
Model C 0.476 0.441 0.361 0.345 0.341 0.411 0.429 0.429 0.486 0.478 0.424 
Model D 0.659 0.595 0.629 0.580 0.543 0.571 0.593 0.593 0.641 0.597 0.601 

PCOM performs poorly in scenes with background clutters, 
because the background pixels are easily mistaken as the 
principle component while the pattern on the real target is 
categorized to be outliers.  
Low resolution: Naturally, the low resolution attribute in UAV 
videos may make it hard to exploit effective hand-crafted 
features from the target, thereby decreasing the tracking 
accuracy greatly. As for the precision rate, the εcP  value of our 
method outperforms the second place WMIL and the third place 
L1 by 75.1% and 85.7%, respectively. In regard to the success 
rate, the superiority of WMIL is replaced by CNT, but WMIL 
still gets a relatively promising result (32.5% on average).  

H. Ablation Experiment 
As described in Section III.A.4, the proposed tracker can be 
regarded as the following optimization problem, which is called 
as Model A in this section. 
Model A: Complete model 
	 min
α,S∈{0,1}

1
2
‖ΦS(Y-Dα)‖2

2 +λ‖α‖1+γ‖α-α0‖2
2+η‖S‖1+ς‖ΘS‖1			      

                                     s.t. α≥0                                       (31) 
Based on the function of each part in Eq.(31), Model A can be 
further divided into three sub-parts: 
Model B: Basic sparse representation mode 

 min
α

1
2
‖Y-Dα‖2

2+λ‖α‖1, s.t. α≥0  (32) 

Model C: Temporal consistency constraint-based sparse 
representation model 

 min
α

1
2
‖Y-Dα‖2

2+λ‖α‖1+γ‖α-α0‖2
2 , s.t. α≥0 (33) 

Model D: Continuous occlusion constraint-based sparse 
representation model 

 
min

α,S∈{0,1}

1
2
‖ΦS(Y-Dα)‖2

2+λ‖α‖1+ η‖S‖1+ς‖ΘS‖1,  

s.t. α≥0 
(34) 

To verify the impact of each part on the proposed tracker, the 
above four models are utilized to implement the tracker on the 
18 test videos, respectively. To be fair, Model B and Model C 
are solved by APG method and Model D is solved by The 
alternating algorithm involving APG method and graph cuts. 
Besides, all the relevant parameters are set as the default values 
listed in Table II. 
In Table VII and Table VIII, we make a statistic in terms of 
average center location error εcP  and average overlap score φP  to 
show the attribute-based performance for each model. 

As for Model A, it is quite clear that it is far superior than other 
models in all types of attributes, which demonstrates the 
superiority of combination of sparse representation, temporal 
consistency and contiguous occlusion constraint. By contrast , 
Model B is weak at dealing with all the attributes because the 
constraint in this basic model is the simplest. However, the 
tracking precision improves to some degree when the temporal 
consistency constraint is added to Model B. For Model C, its εcP  
decreases about 13.7% and its φP  increases about 33.7% on 
average when compared with Model B, but the improvement in 
OCC, DEF and MB is still not so remarkable. This is because 
the test videos belonging to these three attributes all suffer from 
partial occlusions, but Model C lacks occlusion related 
constraint. On the other hand, Model D with sparsity constraint 
and contiguous constraint does achieves much significant 
improvement in tracking accuracy. As can be seen, its average 
εcP  is approximately 2.36 times larger than Model A, but is only 
17.0% and 19.8% of Model B and Model C. The condition of φP 
is also satisfactory, which is almost the same with Model A, but 
89.5% and 41.7% greater than Model B and Model C. This fact 
demonstrates the effectiveness of integrating  sparsity and 
contiguous occlusion constraints together, especially in treating 
OCC. 
To sum up, we can get the following conclusions from this 
ablation experiment: 
① The basic sparse representation model is far insufficient to 
get accurate tracking results in all types of UAV scenes; 
②  The temporal consistency model is able to improve the 
tracking precision to a certain degree when the target 
appearance changes, but it is almost useless in addressing UAV 
videos with partial occlusions; 
③ The contiguous occlusion constraint model is effective in 
overcoming the influence caused by OCC. When it is combined 
with the basic sparse representation model, it can achieve 
satisfactory tracking precision in most cases; 
④ It is the combination of the above three models that 
contributes to the success of the complete tracking model to get 
satisfactory tracking performance in UAV videos.  

I. Execution Efficiency  
We aim to analyze the execution efficiency of the proposed 
algorithm by both theoretical analysis and comparative test. 
Firstly, the time complexity of our tracker is given; then, the 
running speed of each tracker is tested in a quantitative way.  
 

Table IX Average execution time and frame frequency of each tracker over the 18 UAV videos utilized in Section IV.F. The red 
font indicates the best performance; the green font indicates the second best one and the blue font indicates the third best one. 

 IVT L1 PCOM CT MTT WMIL ODFS STC CNT Ours 
T/s 0.161 0.164 0.012 0.101 0.159 0.100 0.052 0.066 3.030 1.538 

Fr/fps 6.21 6.09 83.33 9.90 6.28 10.00 19.23 15.15 0.33 0.65 
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1) Time Complexity 
The most time-consuming part of our algorithm is the iterations 
implemented in Algorithm 1. For α step, the iteration of APG 
stops when ‖αi-α*‖<ϵ, where α* is one minimizer of Eq.(16) 
and ϵ is a convergence threshold. According to Bao et al.’s 
analysis [15], this α  step achieves ϵ- optimality within 
K=O+√L/ϵ,  iterations. For S step, the binary optimization 
problem is solved by graph cut based maxflow/mincut strategy 
using Boykov-Kolmogorov (BK) algorithm [46]. Based on the 
previous study made Boykov et al. [47], the trivial upper bound 
on the number of augmentations for BK algorithm is the cost of 
the minimum cut |C| (C={S,T}, where S and T are two disjoint 
subsets of graph), which results in the worst case complexity 
O+NnNe

2|C|, (Nn and Ne are the numbers of nodes and edges 
in the graph, respectively). Thus, the time complexity of 
Algorithm 1 can be computed as O $max+K,NnNe

2|C|,%.  
With respect to Algorithm 2, it is obvious that its time 
complexity is O(1) because there are no iterations in it. 
Algorithm 3 is the whole procedures of our tracking algorithm 
with the total frame number and the total particle number set as 
N and P, respectively. This means the total iteration number of 
Algorithm 1 and Algorithm 2 is NP. As a result, the time 
complexity of the proposed algorithm can be denoted as 
O UNP∙ $max+K,NnNe

2|C|,%V. 
 
2) Execution Time  
To fairly test the execution efficiency of each tracker, we record 
the average execution time T for running a frame on average 
and compute the corresponding average frame frequency Fr in 
Table IX.   
As we can see, discriminative approaches, e.g., PCOM, ODFS, 
WMIL and CT, all achieve satisfactory running speeds. It is 
worth noting that PCOM gets the most promising average 
running time (0.012s) and frame frequency (83.33 fps) among 
all the 10 algorithms. On the other hand, generative approaches, 
especially those particle filter-based trackers, are comparatively 
much weaker in this aspect. Generally, the average frame 
frequency of IVT, L1 and MTT is approximately 6fps, which is 
only 7% of PCOM. We argue that this is because the iterative 
computations of particle filter that hugely increase the running 
time. STC gets the second place in this comparison, mainly 
owing to its fast convolution operation implemented in Fourier 
domain. Through the statistical results presented in Table IX, 
we must admit that our method does suffer from the poor 
running efficiency which only 0.65 fps on average. According 
to our analysis, not only the iterations in particle filter, but also 
the iterations in APG algorithm, that improve the computational 
cost. CNT also depends on the convolution operation, but it is 
slowest one among all, the average running time of which is 
about 2 times longer than ours. This is because the convolution 
in spatial domain is time-consuming and this high 
computational load is also amplified manyfold by particle filter.   
Although the execution efficiency of our method is not so 
superior, we still believe that it can be alleviated and improved 
by the following two aspects that is of expectation in the future: 
① introduce the mechanism of multi-task sparse learning [16] 
to compute the solutions of particles all at once;  

② exploit other more efficient solution algorithms to replace 
APG approach; 3) transplant the Matlab code to GPU platform 
which can address each particle in parallel.  
We argue that the real-time running of the proposed method is 
promising, since the frame frequency may be increased by 600 
times, if the procedure of particle filter can be implemented in 
parallel by GPU.      

V. DISCUSSION 
To further demonstrate the reasonability of the details designed 
in our proposed algorithm, we make a discussion about the 
construction of joint dictionary and the penalties.  

A. Discussion about Joint Dictionary  
In this part, we focus on proving two detailed conclusion 
mentioned in Section III: 1) Using joint dictionary 
representation can improve the sparsity of coefficient; 2) 
Negative templates will not affect the coding of positive image 
patch. In our discussion, the 18 UAV videos in Section IV as 
well as their ground truth image patches are employed as test 
data.  
1) Advantage of Joint Dictionary 
The ground truth Y is coded by a joint dictionary D1=WDp,DnX 
containing both positive and negative templates and the single 
dictionary D2=Dp  containing only positive templates, 
respectively, which can be expressed as  

 
min

α1

1
2
‖Y-D1α1‖2

2 

min
α2

1
2
‖Y-D2α2‖2

2 

(35) 

 

(36) 

where, Dp and Dn are sampled around Y in each frame, and the 
two coefficients α1 and α2 can be computed using APG method.  
Since L1 norm is an extensively used metric to evaluate the 
sparsity of vector, we define the change ratio of sparsity γs as  

 
γs=

‖αY‖1-‖αZ‖1

‖αZ‖1
×100% (37) 

Obviously, γs > 0 if α1 is sparser than α2. Here, the γs value is 
calculated for each frame and we record the average value of γs 
of each video, which is written as γs . Table X reports the 
statistical result of γs. 
It is clear that the γs values of all the videos are positive, which 
directly demonstrates that the representation coefficient using 
joint dictionary is sparser than the one using single dictionary. 
Moreover, the average value of γs  is approximately 31.6%, 
meaning that the sparsity is improved 31.6% on average by 
means of this strategy.   
2) Effect of Negative Templates 
When the positive templates are fixed and the negative ones are 
changed, we aim to demonstrate the following two facts: ① the 
coding coefficient corresponding to positive templates will not 
have obvious difference; ② the coding coefficient 
corresponding to negative templates always remains 0.   
As introduced in Section III, the positive and negative templates 
are randomly sampled in region Ωp with a sampling radius r1 
and Ωn with an inner radius r2 and an external radius r3. For 
changing the negative dictionary, we fix r1 to a get a group of  
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Table X. Statistical result of γs (%). 

 Egtest01 Egtest02 Egtest03 Egtest04 Human Racer Park Suv Truck 
γs 24.19 13.87 5.73 49.48 9.89 31.24 22.13 18.91 15.68 

 Pktest01 Pktest02 Pktest03 Pktest04 Pktest05 Horse Rhino Pedestrian Quadrocopter 
γs 25.86 27.96 28.88 41.51 62.19 26.58 71.84 64.98 28.05 

Ave. 31.60 
 

Table XI. Statistical result of ∆p(°). 
 Egtest01 Egtest02 Egtest03 Egtest04 Human Racer Park Suv Truck 

∆p 1.4943 1.2121 2.9484 1.3436 2.0517 1.3029 1.6128 1.0560 2.5627 

 Pktest01 Pktest02 Pktest03 Pktest04 Pktest05 Horse Rhino Pedestrian Quadrocopter 
∆p 2.4062 2.1683 2.0843 1.7628 1.8568 1.5953 2.3025 2.4062 2.1683 

Ave. 1.9075 
 

Table XII. Statistical results of ‖αn1‖1
GGGGGGGG and ‖αn2‖1

GGGGGGGG. 

 Egtest01 Egtest02 Egtest03 Egtest04 Human Racer Park Suv Truck 

‖αn1‖1
GGGGGGGG 0.0835 0.0442 0.0483 0.0445 0.0342 0.0872 0.0853 0.0604 0.0501 

‖αn2‖1
GGGGGGGG 0.0821 0.0458 0.0511 0.0461 0.0343 0.0861 0.0855 0.0609 0.0489 

 Pktest01 Pktest02 Pktest03 Pktest04 Pktest05 Horse Rhino Pedestrian Quadrocopter 

‖αn1‖1
GGGGGGGG 0.0457 0.0185 0.0735 0.0039 0.0470 0.0873 0.0094 0.0305 0.0897 

‖αn2‖1
GGGGGGGG 0.0433 0.0192 0.0729 0.0031 0.0471 0.0867 0.0102 0.0308 0.0914 

Ave. 
‖αn1‖1
GGGGGGGG. 0.0524 

‖αn2‖1
GGGGGGGG. 0.0525 

positive templates and change r2 and r3 to get two groups of 
different negative templates for each frame. By this means, a 
positive dictionary Dp with r1=4 and two negative dictionaries 
with different sampling radii: Dn1  ( r2=8,	r3=30 ) and Dn2 
(r2=30,	r3=52) are the generated.  
Then, the ground truth of target Y is coded by D1=[Dp,Dn1] and 
D2=[Dp,Dn2] using Eqs.(35-36), and two corresponding coding 

coefficients α1= Uαp1
αn1
V  and α2= Uαp2

αn2
V are obtained. 

Here, two statistical experiments are implemented below: 
① the cosine similarity ∆p between αp1

 and αp2
 is computed to 

judge whether the coding coefficient corresponding to positive 
templates have obvious difference. For each frame, ∆p  is 
computed as        

 ∆p=arccos 〈αp1
,αp2

〉 (38) 

Here, the average value of ∆p of each video, denoted as ∆p, is 
counted and the statistical result is reported in Table XI. As can 
be seen clearly, the ∆p values of the 18 videos are all smaller 
than 3°, and the average value of ∆p is only 1.9075°. We argue 
that this cosine similarity is quite small when compared with 
the threshold τ=35°  in Algorithm 1 which represents 
remarkable appearance change. Based on this consideration, it 
is convincing that the coding coefficient corresponding to 
positive templates almost keep unchanged when Dn varies.  
② Based on the discussion above, the two coding coefficients 
corresponding to negative templates are denoted as αn1 and αn2. 
It should be noted that αn1  and αn2  cannot be a perfect zero 
vector due to the inevitable coding error. In other words, αn1 

and αn2 should be very sparse vectors if the conclusion is true. 
Therefore, L1 norm is employed to evaluate the sparsity again. 
To be specific, ‖αn1‖1 and ‖αn2‖1 are calculated for each frame 
and the average values ‖αn1‖1GGGGGGGG and ‖αn2‖1GGGGGGGG  are calculated for 
each test video. Table XII shows the related statistical results.  
From Table XII, we can get two points: firstly, the L1 norms of 
coding coefficients corresponding to negative templates are 
quite small (10-3~10-2), indicating that they tend to be zero-
vectors; secondly, for a real target, the change does not affect 
the coding coefficients corresponding to negative templates, 
since  ‖αn1‖1GGGGGGGG and ‖αn2‖1GGGGGGGG are almost the same.     
 

B. Discussion  about Penalty 
According to the experimental results presented in Section IV.G, 
our tracker achieves outstanding improvement in tracking 
precision when compared with other state-of-the-art ones. 
However, we do admit that there are some penalties in other 
aspects:   
1) Time cost: As can be seen from Table IV, our tracker and 
CNT achieve the top two performances in terms of overall εc 
and φ. By contrast, their frame frequencies are the lowest. This 
phenomenon indicates that high tracking precision always leads 
to high time cost. As for our algorithm, the most time-
consuming part is the K=O+√L/ϵ, iterations in Algorithm 1. 
Moreover, this procedure is repeated P times due to the particle 
filter scheme.   
2) Hardware cost: Our final aim is to realize this tracking 
algorithm on UAV system, so we need to transplant it to 
hardware platform. Typically, FPGA+GPU or FPGA+DSP 
architecture is applied in UAV surveillance system, in which 
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FPGA is good at implementing convolution operations while 
GPU/DSP is utilized for float-point calculations. Actually, most 
of the procedures of our algorithm can only be implemented in 
GPU or DSP, and only template sampling can be done in FPGA. 
To this end, the resource of FPGA is wasted, thus a more 
advanced DSP or GPU is needed to get real-time running. That 
is to say, the core frequency of DSP should be higher and there 
should be more parallel cores in DSP or GPU. It results in two 
further penalties: ① the price of system will improve; ② the 
power consumption will be higher.     

VI. CONCLUSION 
This paper proposes a sparse representation-based target 
tracking algorithm aiming at locating the target of interest, e.g., 
pedestrian or vehicle, in UAV videos. First of all, the target 
candidate is linearly represented by the sub-space spanned by a 
joint dictionary and the coefficient is constrained by an L1 
regularization. Considering the temporal consistency, an L2 
regularization is imposed on the representation coefficient 
further. To overcome the adverse effect of partial occlusion 
extensively existing in UAV videos, a contiguous occlusion 
constraint with MRF-based binary support vector is developed 
to model the occlusion. Through our sparse representation 
model, the tracking problem is cast as an optimization problem 
which can be solved by an alternating algorithm involving APG 
and graph cuts. Finally, we implement the tracking algorithm 
under the framework of particle filter and select the particle 
with the maximal approximate posterior probability as the 
tracking result. Experimental results show that the proposed 
algorithm performs well in terms of accuracy and robustness. 
Our future work will focus on optimizing the codes and 
transplanting our algorithm to hardware devices, like FPGA and 
GPU, to make the real-time running come true.  

REFERENCES 
[1] Hu, L., & Ni, Q. (2018). IoT-driven automated object detection algorithm 
for urban surveillance systems in Smart Cities. IEEE Internet of Things Journal, 
5(2), 747-754. 
[2] Yao, Y., Sun, Y., Phillips, C., & Cao, Y. (2018). Movement-Aware Relay 
Selection for Delay-Tolerant Information Dissemination in Wildlife Tracking 
and Monitoring Applications. IEEE Internet of Things Journal. 
[3] Lu, H., Li, Y., Mu, S., Wang, D., Kim, H., & Serikawa, S. (2017). Motor 
anomaly detection for unmanned aerial vehicles using reinforcement learning. 
IEEE Internet of Things Journal. 
[4] Cao, Y., Wang, G., Yan, D., & Zhao, Z. (2015). Two algorithms for the 
detection and tracking of moving vehicle targets in aerial infrared image 
sequences. Remote Sensing, 8(1), 28. 
[5] Yuan, X., Kong, L., Feng, D., & Wei, Z. (2017). Automatic feature point 
detection and tracking of human actions in time-of-flight videos. IEEE/CAA 
Journal of Automatica Sinica, 4(4), 677-685. 
[6] Zhang, S. (2005, March). Object tracking in unmanned aerial vehicle (uav) 
videos using a combined approach. In Acoustics, Speech, and Signal Processing, 
2005. Proceedings. (ICASSP'05). IEEE International Conference on (Vol. 2, pp. 
ii-681). IEEE. 
[7] Liu, X., Lu, L., Shen, Z., & Lu, K. (2018). A novel face recognition 
algorithm via weighted kernel sparse representation. Future Generation 
Computer Systems, 80, 653-663. 
[8] Geng, L., Ji, Z., Yuan, Y., & Yin, Y. (2018). Fractional-order sparse 
representation for image denoising. IEEE/CAA Journal of Automatica 
Sinica, 5(2), 555-563. 
[9] Yang, J., Wright, J., Huang, T. S., & Ma, Y. (2010). Image super-resolution 
via sparse representation. IEEE transactions on image processing, 19(11), 2861-
2873. 

[10] Lai, T., Wang, H., Yan, Y., Chin, T. J., & Zhao, W. L. (2017). Motion 
segmentation via a sparsity constraint. IEEE Transactions on Intelligent 
Transportation Systems, 18(4), 973-983. 
[11] Yuan, Z., Lu, T., & Tan, C. L. (2017). Learning discriminated and 
correlated patches for multi-view object detection using sparse coding. Pattern 
Recognition, 69, 26-38. 
[12] Zhang, T., Liu, S., Ahuja, N., Yang, M. H., & Ghanem, B. (2015). Robust 
visual tracking via consistent low-rank sparse learning. International Journal of 
Computer Vision, 111(2), 171-190. 
[13] Mei, X., & Ling, H. (2009, September). Robust visual tracking using ℓ 1 
minimization. In Computer Vision, 2009 IEEE 12th International Conference 
on (pp. 1436-1443). IEEE. 
[14] Mei, X., Ling, H., Wu, Y., Blasch, E., & Bai, L. (2011, June). Minimum 
error bounded efficient ℓ 1 tracker with occlusion detection. In Computer 
Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on (pp. 1257-
1264). IEEE. 
[15] Bao, C., Wu, Y., Ling, H., & Ji, H. (2012, June). Real time robust l1 tracker 
using accelerated proximal gradient approach. In Computer Vision and Pattern 
Recognition (CVPR), 2012 IEEE Conference on (pp. 1830-1837). IEEE. 
[16] Zhang, T., Ghanem, B., Liu, S., & Ahuja, N. (2012, June). Robust visual 
tracking via multi-task sparse learning. In Computer vision and pattern 
recognition (CVPR), 2012 IEEE conference on (pp. 2042-2049). IEEE. 
[17] Salti, S., Cavallaro, A., & Di Stefano, L. (2012). Adaptive appearance 
modeling for video tracking: Survey and evaluation. IEEE Transactions on 
Image Processing, 21(10), 4334-4348. 
[18] Li X, Hu W, Shen C, et al. A survey of appearance models in visual object 
tracking[J]. ACM transactions on Intelligent Systems and Technology (TIST), 
2013, 4(4): 58. 
[19] Ho, J., Lee, K. C., Yang, M. H., & Kriegman, D. (2004, June). Visual 
tracking using learned linear subspaces. In Computer Vision and Pattern 
Recognition (CVPR), 2004 IEEE Conference on (pp. 782-789). IEEE. 
[20] Ross, D. A., Lim, J., Lin, R. S., & Yang, M. H. (2008). Incremental 
learning for robust visual tracking. International journal of computer vision, 
77(1-3), 125-141. 
[21] Zhang, K., Zhang, L., Liu, Q., Zhang, D., & Yang, M. H. (2014, 
September). Fast visual tracking via dense spatio-temporal context learning. 
In European Conference on Computer Vision (pp. 127-141). Springer, Cham. 
[22] Wang, D., & Lu, H. (2014). Visual tracking via probability continuous 
outlier model. In Proceedings of the IEEE conference on computer vision and 
pattern recognition (pp. 3478-3485). 
[23] Kong, X., Chen, Q., Xu, F., Gu, G., Ren, K., & Qian, W. (2015). Motion 
object tracking based on the low-rank matrix representation. Optical Review, 
22(5), 786-801. 
[24] Oron, S., Bar-Hillel, A., Levi, D., & Avidan, S. (2015). Locally orderless 
tracking. International Journal of Computer Vision, 111(2), 213-228. 
[25] Zhang, K., Zhang, L., & Yang, M. H. (2014). Fast compressive tracking. 
IEEE Transactions on Pattern Analysis & Machine Intelligence, (1), 1-1. 
[26] Zhang, K., Liu, Q., Wu, Y., & Yang, M. H. (2016). Robust visual tracking 
via convolutional networks without training. IEEE Transactions on Image 
Processing, 25(4), 1779-1792. 
[27] Grabner, H., & Bischof, H. (2006, June). On-line boosting and vision. In 
Computer Vision and Pattern Recognition, 2006 IEEE Computer Society 
Conference on (Vol. 1, pp. 260-267). IEEE. 
[28] Babenko, B., Yang, M. H., & Belongie, S. (2011). Robust object tracking 
with online multiple instance learning. IEEE transactions on pattern analysis 
and machine intelligence, 33(8), 1619-1632. 
[29] Zhang, K., & Song, H. (2013). Real-time visual tracking via online 
weighted multiple instance learning. Pattern Recognition, 46(1), 397-411. 
[30] Zhang, K., Zhang, L., & Yang, M. H. (2013). Real-time object tracking via 
online discriminative feature selection. IEEE Transactions on Image Processing, 
22(12), 4664-4677. 
[31] Zhang, K., Zhang, L., & Yang, M. H. (2012, October). Real-time 
compressive tracking. In European conference on computer vision (pp. 864-
877). Springer, Berlin, Heidelberg. 
[32] Hare, S., Golodetz, S., Saffari, A., Vineet, V., Cheng, M. M., Hicks, S. L., 
& Torr, P. H. (2015). Struck: Structured output tracking with kernels. IEEE 
transactions on pattern analysis and machine intelligence, 38(10), 2096-2109. 
[33] Henriques, J. F., Caseiro, R., Martins, P., & Batista, J. (2012, October). 
Exploiting the circulant structure of tracking-by-detection with kernels. 
In European conference on computer vision (pp. 702-715). Springer, Berlin, 
Heidelberg. 
[34] Li, Z., Li, J., Ge, F., Shao, W., Liu, B., & Jin, G. (2016). Dim moving target 
tracking algorithm based on particle discriminative sparse representation. 
Infrared Physics & Technology, 75, 100-106. 



>IEEE Internet of Things Journal < 16 

[35] Li, S. Z. (2009). Markov random field modeling in image analysis. 
Springer Science & Business Media. 
[36] Zhou, X., Yang, C., & Yu, W. (2013). Moving object detection by 
detecting contiguous outliers in the low-rank representation. IEEE Transactions 
on Pattern Analysis and Machine Intelligence, 35(3), 597-610. 
[37] Wang, P., Chen, Q., & Shao, N. (2016, September). Moving object 
detection via low-rank total variation regularization. In Applications of Digital 
Image Processing XXXIX (Vol. 9971, p. 997132). International Society for 
Optics and Photonics. 
[38] Wang, B. X., Zhao, B. J., Tang, L. B., Wang, S. G., & Wu, J. H. (2014). 
Robust visual tracking algorithm based on bidirectional sparse representation. 
[39] Kolmogorov, V., & Zabih, R. (2002, May). What energy functions can be 
minimized via graph cuts?. In European conference on computer vision (pp. 65-
81). Springer, Berlin, Heidelberg. 
[40] Boykov, Y., Veksler, O., & Zabih, R. (2001). Fast approximate energy 
minimization via graph cuts. IEEE Transactions on pattern analysis and 
machine intelligence, 23(11), 1222-1239. 
[41] Li, Y., Li, P., & Shen, Q. (2014). Real-time infrared target tracking based 
on ℓ 1 minimization and compressive features. Applied optics, 53(28), 6518-
6526. 
[42] Du, D., Lu, H., Zhang, L., & Li, F. (2015, September). Visual tracking via 
guided filter. In Image Processing (ICIP), 2015 IEEE International Conference 
on (pp. 1781-1785). IEEE. 
[43] http://vision.cse.psu.edu/data/vividEval/datasets/datasets.html 
[44] http://cvlab.hanyang.ac.kr/tracker_benchmark/datasets.html 
[45] http://www.votchallenge.net/vot2015/dataset.html 
[46] https://vision.cs.uwaterloo.ca/code/ 
[47] Boykov Y, Kolmogorov V. An experimental comparison of min-cut/max-
flow algorithms for energy minimization in vision[J]. IEEE Transactions on 
Pattern Analysis & Machine Intelligence, 2004 (9): 1124-1137. 
[48] Wu, Y., Lim, J., & Yang, M. H. (2013). Online object tracking: A 
benchmark. In Proceedings of the IEEE conference on computer vision and 
pattern recognition (pp. 2411-2418). 
 


