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Abstract

The ant colony optimization algorithm is an effective way to solve the problem of unmanned vehicle path planning.

First, establish the environment model of the unmanned vehicle path planning, process and describe the

environmental information, and finally realize the division of the problem space. Next, the biomimetic behavior of the

ant colony algorithm is described. The ant colony algorithm has been improved by adding a penalty strategy. This

penalty strategy can enhance the utilization of resources and guide the ants to explore other unknown areas by using

the worse value in the search history to enhance the volatility of the pheromone.
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1 Introduction
Unmanned vehicle path planning explores a feasible

path in the known or unknown environment by sensing

the surrounding environment. Path planning problem

not only simply expresses the search of a route from the

start point to the end point but also presents an optimal

path among all reachable paths [1]. When generating the

best path, there are several related issues to consider,

such as security, obstacles, and computation time. Due

to its importance, many researchers have conducted a

large path planning algorithms. In the literature [2], the

paper proposes a drone route planning based on particle

swarm optimization algorithm. The corresponding mu-

tation and fine adjustment of the inactive particles are

carried out to ensure the particle group has strong vital-

ity in the evolution process. In the literature [3], the au-

thor obtains the best path for each UAV in parallel by

genetic algorithm. According to the dimensions of path

planning, genetic coding, etc., new genetic operators are

introduced to select appropriate chromosome pairs for

crossover operations. In the literature [4], Fan et al. pro-

posed a kind of manual market method of infeasible

path correction strategy for the differential evolution al-

gorithm mutation factor to improve the effectiveness of

the algorithm to find the shortest path.

The ant colony optimization algorithm, which is de-

rived from the study of ant group behavior, simulates a

bionic intelligent optimization algorithm based on the

cooperation between ant colonies. When ants are for-

aging, they will leave exogenous hormone, and others

can recognize the intensity of pheromone. And ants tend

to move toward higher pheromone concentrations. That

can be said as a kind of positive feedback phenomenon

of the ant group during the foraging process [5]. It is be-

cause of this positive feedback mechanism that the ant

colony can search for food more quickly. This algorithm

has strong global search ability, can perform parallel and

distributed computing, and has fast convergence speed

and strong adaptability [6], so it has been widely used in

solving path planning problems. In the literature [7], the

paper proposes an improved ant colony algorithm. The

article mainly improves the positional distribution of the

initial population and increases the adaptive evaporation

factor and simulated annealing. It is found through ex-

periments that the algorithm can effectively reduce the

problem of search time. In the literature [8], the author

can avoid the blindness of initial planning by adjusting

the transition probability based on the classical ant col-

ony algorithm and introducing relevant strategies to

solve the deadlock problem. The simulation experiment

proves that the algorithm is superior to the classical ant

colony algorithm, which can effectively guide the mobile

robot to avoid dynamic obstacles in the environment,

obtain the optimal or suboptimal path without collision,
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and better adapt to the changes of the environment. In

the literature [9], based on the basic ant colony algo-

rithm, the author improves the heuristic information

and pheromone update strategy by introducing the ant

colony regression strategy to improve the adaptability,

convergence speed and optimization ability of the

algorithm.

2 Environmental model
The currently constructed environment model is gener-

ally simplified to a two-dimensional map. The path plan-

ning environment model of the unmanned vehicle of

this paper will be constructed by the grid method pro-

posed by W.E. Howden. According to the grid method,

first divide the simulation environment into several iden-

tical grids according to the scale and segmentation re-

quirements, then set the environmental parameters for

each grid, next set the conditions of each grid obstacle

according to the actual or hypothetical environment.

The data structure obtained by the grid method is actu-

ally a two-dimensional table, so the map is relatively easy

to create and maintain in the computer. The map is easy

to transfer into the coordinate system, so that the pos-

ition and feasible area of the obstacle can be displayed

more intuitively, and the position information is mark-

edly marked by the row and column [10].

The grid method decomposes the unmanned work

space into a series of binary information grid cells. In a

static environment, it is assumed that the size and pos-

ition of the obstacle are known, and the two-

dimensional workspace model of the unmanned vehicle

is D, which is evenly divided using the grid. Since the ac-

tual shape of the obstacle is irregular, when it is less than

one grid, it is added as a grid. Considering that the two-

dimensional map can be of any shape, the entire graph

is set to a rectangle or a square, complemented by a bar-

rier grid at the boundary of the original graph. Accord-

ing to the meshed area and the area where the obstacle

is located, as shown in Fig. 1, it can be divided into a

feasible grid (white grid) and an infeasible grid (black

grid), where green is the starting point and red is the

ending point.

Using the numbering method, the divided grids are

numbered in order from left to right and top to bottom.

Each grid has its corresponding serial number and coordi-

nates, that is, the i-th row, the grid of the j-th column is

denoted as D(i, j), and the corresponding serial number is

k. The relationship between the grid number k and the co-

ordinates (xi, yj) is as shown in Eqs. (1) and (2).

xi ¼ k−1ð Þ modNh½ � þ 1 ð1Þ

y j ¼ int k−1ð Þ=Nh½ � þ 1 ð2Þ

where Nh is the number of rasters per row, int is the

remainder of the remainder, and mod is the remainder

calculation.

During the movement of the robot, the default move-

ment direction of the robot is set to eight, as shown in

Fig. 2 below. Since each step of the robot is from the

center of one grid to the center of another adjacent grid,

the motion step of the robot is R or
ffiffiffi

21
p

R.

Fig. 1 Grid method to establish environment model. Figure

illustrates that the unmanned work space is decomposed into a

series of binary information grid cells

Fig. 2 Unmanned vehicle movement direction. Figure shows the

default movement direction of the vehicle
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3 Ant colony algorithm
3.1 Ant colony optimization algorithm

The ant colony algorithm (ACO) is used to solve the

path planning problem, which can be divided into two

parts: path construction and pheromone update [11].

The artificial ant colony algorithm and the real ant for-

aging process are moving from one position to the next,

and the position change is realized by the probability se-

lection strategy. A pheromone release and volatilization

mechanism is also set in the process of artificial ant

movement, but the artificial ant colony algorithm adds

some characteristics that are different from the real ant

colony foraging behavior:

(1) In the algorithm, the artificial ant colony is placed

in a discrete space and does not have any

association with time. The next move position is

determined by the selection strategy. The update of

the pheromone is independent of time and is only

related to the path and update method.

(2) The artificial ant colony has a path memory

function, which records the walking route before

the ant [12].

(3) The artificial ant colony is not completely blind. It

has heuristic information about the problem space.

(4) In order to improve the search efficiency of the

algorithm. Artificial ant colonies have added new

features such as local optimization, prior

knowledge, predictive future and tabu search.

In the following formula (3), Pk
ijðtÞ is the calculation

method of ant position transfer, which indicates the

transition probability of ant k moving from position i to

position j at time t:

Pk
ij tð Þ ¼

τij tð Þ
� �α � ηij tð Þ

h iβ

P

k∈allowedk
τij tð Þ
� �α � ηij tð Þ

h iβ
0 if j∈allowedk

0 0 otherwise

8

>

>

>

<

>

>

>

:

ð3Þ

where τij(t) represents the pheromone intensity of the

current position to the target point at time t, and ηij(t) is

the visibility of the ant, that is, the reciprocal of the dis-

tance from the current position to the end point,

expressed as ηij(t) = 1/dij. Both have a certain guiding

role for the movement of ants. α and β represent the

weight of the pheromone intensity and the ant visibility,

respectively. Allowedk = {N-tabuk} indicates the city col-

lection that ant k can currently select; tabuk is the taboo

list of ant k, indicating the city collection where ants are

not selectable and N is the total number of cities from

the current location to the next location. And tabuk is

constantly changing as the position of the ant changes.

In order to simulate the change of pheromone in the

process of ant foraging, the update of artificial ant col-

ony pheromone also considers the two processes of

volatilization and release of pheromone [13]. In the real

world, as time goes by, the pheromone on the path will

gradually evaporate. And its volatilization is helpful for

ants to explore other areas to find better paths, so it

does not converge too quickly to a local optimal solu-

tion; in the path of ants to explore food, the correspond-

ing pheromones are also released, so that the ants can

communicate with each other and have a certain guiding

effect on other ants who are looking for food. The initial

setting of the pheromone is neither too large nor too

small; too large will make its guiding effect lower, while

too small will make the ant group converge too quickly

to a local optimal path [14]. Thus, the pheromone up-

date formula (4) is expressed as follows:

τij tð Þ ¼ 1−ρð Þτij tð Þ þ
X

m

k¼1

Δτkij ð4Þ

where m is the number of ants, 0 < ρ < =1 is the evap-

oration rate of the pheromone and is usually set to 0.5

in the ACO. Therefore, (1 − ρ)τij(t) represents the re-

sidual amount of a path pheromone found by the ant

after volatilization, and Δτkij is the pheromone left by the

kth ant in the path i to j. As shown in Eq. (5):

Δτkij ¼
Ckð Þ−1 0 shortest path
0 0 otherwise

�

ð5Þ

where Ck is the total path length obtained after the kth

ant walks the complete path. Here, as described above,

the optimal path distance is obtained.

Take the TSP problem as an example. The process of

algorithm design is as follows:

Step 1: Initialize the relevant parameters, including ant

colony size, pheromone factor, heuristic function factor,

pheromone volatilization factor, pheromone constant

and maximum number of iterations

Step 2: And reading the data into the program and

pre-processing: for example, converting the city’s

coordinate information into a distance matrix between

cities

Step 3: Randomly place the ants at different starting

points and calculate the next visiting city for each ant

until there are ants accessing all the cities

Step 4: Calculate the path length of each ant, record

the optimal solution of the current iteration number,

and update the pheromone concentration on the path
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Step 5: Determine whether the maximum number of

iterations is reached. If not, return to step 2 or end the

program.

Step 6: Output the result, and output relevant

indicators in the optimization process, such as running

time, convergence iteration number, etc., as needed.

3.2 Ant colony algorithm with punitive measures

In the research of ant colony algorithm, it is found that

there must be an optimal solution and the worst solu-

tion for the whole ant colony search results. Previous

artificial ant colony algorithm only based on the optimal

solution of ant colony search behavior, to generate posi-

tive feedback behavior of the whole group. However, the

total amount of resources invested in the path explor-

ation process is constant. Therefore, this paper hopes to

use the search results of the poor path to enhance the

volatilization degree of the pheromone on the poor path

and reduce the number of traversal times. At this time,

the concentration of the pheromone in the unexplored

area will be significantly larger than the value confirmed

as the worse path, which will give the ant a greater

chance to explore the unknown area, because there may

be a better solution in the unknown field. First, all the

paths found by the ants are sorted, and then, the path is

sorted to the last ω ants to punish the pheromone

volatilization. The ω ants are sorted according to the

length of the path, and the penalty condition is weighted

according to different sorting levels, that is, the higher

the path sorting, the higher the level, and the greater the

penalty for the ant search path. Based on this idea, this

paper attempts to design the pheromone penalty model

of the ant colony algorithm, as shown in formula (8):

C ¼ ρþ
λ
X

k¼ω

ω¼0

k−ωð Þ

D
ð6Þ

where ρ represents the pheromone volatilization rate

and D is the distance from the point to the target point.

λ represents 1/10 of the distance D to ensure that the

entire value is not too large. ω is the order of the poor

path of the ant search, and k is a fixed value equal to ω.

In a specific application, if the optimal path and the

worst path pass through this point, no penalty is

imposed.

In fact, this has an effect on the value of the ant’s

probability selection formula. That is, the value of the

pheromone on the poor path is reduced, and the prob-

ability of being traversed again is lower. At this time,

there is a greater probability of exploring the unknown

domain. In the aspect of pheromone update, the global

pheromone update method is adopted, because the local

update method is more likely to cause the ant to fall into

the local optimal solution [15]. That is, after all the ants

of each generation have completed the search, the

pheromone is updated according to the result of the

optimization and the pheromone update model de-

scribed above. In the search mode of the AS algorithm,

the premature convergence mechanism is avoided, so

that the algorithm obtains better performance. The total

amount of pheromone on the path is also controlled

within a certain range ([MIN, MAX]), which can well

avoid the ant to converge too quickly to the local opti-

mal path, so that ants can search for a wider range of

unknown areas. In the initial search phase of the ant, in

order to improve the algorithm search ability, the initial

value of the pheromone is set to the upper limit. Its

pheromone is updated according to the following rules:

τij tð Þ ¼ 1−ρð Þτij tð Þ þ Δτbestij ð7Þ

where Δτbestij is the update of the optimal path phero-

mone, and Ck is the optimal path distance, as follows:

Δτbestij ¼ Ckð Þ−1 0 shortest path
0 0 otherwise

�

ð8Þ

Although the historical optimal solution is retained

after the ant colony search ends, when the path phero-

mone is updated, the pheromone matrix is updated on

the optimal path of the current generation [16]. It will

make better use of the positive feedback mechanism

generated by the optimal path and give more opportun-

ities to explore the unknown. As a result, the path ex-

ploration of the whole algorithm becomes relatively

more diverse, avoiding premature convergence to the

local optimal solution and reducing the exploration of

the path that has been confirmed as a worse path, fur-

ther improving the performance of the ant colony search

algorithm.

Table 1 Partial issues in the TSPLIB data set

Question Description Optimal solution

ulyeese Odyssey of Ulysses(Groetschel/Padberg) 74

Att48 48 capitals of the US (Padberg/Rinaldi) 33,522

Eil76 76-city problem (Christofides/Eilon) 538

Table 2 Algorithm parameter settings

Algorithm Algorithm parameter settings

PSO The problem size is n, the number of ants is m = n, and
other variables are set according to the classical algorithm
guidance.

GA

ASrank

MMAS

AS-N The problem size is n, the number of ants M = N
α = 2, β = 8, ρ = 0.02, W = 5
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4 Performance test
4.1 Data set

This chapter mainly tests the performance of the algo-

rithm through the TSPLIB data set. The improvement

effect of AS-N algorithm is expounded by comparing

AS-N algorithm with other classical algorithms on the

data set. Table 1 shows some of the issues in the TSPLIB

data set.

4.2 Parameter settings

Table 2 lists the algorithm’s internal initial value par-

ameter settings. The size of the population is ad-

justed according to the size of the TSP problem

space. For example, eil76 is the coordinate point of

76 cities in Christofides, so the population size is 76.

The number of iterations per test is set to 200 gen-

erations, and the number of independent runs of

each algorithm is 30.

4.3 Analysis of results

This section uses data analysis methods on different test

questions to describe the algorithm and describe the al-

gorithm’s search capabilities. In the test, this article used

three questions in the TSPLIB test data set, and tested

30 times for each question. Both the algorithm test work

and the result data analysis were performed using the

MATLAB 2014 software tool. The experiment recorded

30 sets of test results for each question; took the average,

maximum, and minimum values of the data for data

analysis; and evaluated the performance of the algo-

rithm. Table 3 gives the test results for each algorithm.

From the perspective of data analysis, the improved al-

gorithm AS-N has achieved better results, and it is bet-

ter to search for the optimal solution stably and

effectively. Among them, the MMAS algorithm performs

second, which is obviously better than the AS, GA, PSO

and MMAS algorithms.

Table 3 Test results

ASrank GA PSO MMAS AS-N

ulyees Average value 76.6355 76.5267 76.5355 76.1533 75.8746

Maximum 78.4533 77.2298 77.4509 77.4575 76.0355

Minimum 75.3625 75.9035 75.9843 75.3672 75.1283

Att48 Average value 33,864.65 33,821.96 32,268.86 33,751.98 33,728.76

Maximum 34,139 34,684 34,218 34,375 34,092

Minimum 33083 33,187 33,201 33,548 33,529

Eil76 Average value 572.66 574.63 570.98 567.9876 560.87

Maximum 589.43 590.86 588.42 584.87 573.54

Minimum 564.87 564.87 562.64 549.76 548.82

Fig. 3 Complex environment 1 Fig. 4 Changed complex environment 1

Yue and Chen EURASIP Journal on Wireless Communications and Networking        (2019) 2019:136 Page 5 of 9



5 Application experiment
In this section, MAX-MIN Ant System (MMAS) and

the ant colony algorithm with punitive measures

(AS-N) are compared experimentally. The MMAS al-

gorithm is the most typical representative of the dir-

ect improvement of the basic ant colony algorithm.

The experiment was completed in vs2013, and the

computer was configured as 4GB RAM, 2.50-GHz

processor.

5.1 Parameter setting and operation result

The ant colony algorithm includes parameters such as α,

β, ρ, γ, δ, and number of ants: The optimal parameter

settings are derived with reference to the classical ant

colony algorithm and a large number of references. The

pheromone intensity α is limited to [1, 5] and is set to α

= 2 during the experiment; the ant visibility β is limited

to [5, 12], and the experimental data is set to β = 8. The

evaporation rate ρ is limited to [0.01, 0.05], and ρ = 0.02

during the experiment. The modeling environment is:

design a 40 × 40 grid work area with different complex-

ity. The starting point is at (1, 1), the target point is (40,

40), and each small grid is 1 cm long. In a dynamic en-

vironment, testing is performed using two different com-

plex environments 1, 2. For the complex environment 1

(Fig. 3), the population size is set to 50. When the 25th

generation is run, the existing environment is trans-

formed, the feasible path is intercepted, and the obsta-

cles are placed to search for the new feasible path again.

As shown in Figs. 3 and 4 below:

For the complex environment 2 (Fig. 5), the popula-

tion size is set to 50, and the existing environment is

transformed when running 25 or 50 generations, re-

spectively, and other parameters are not changed. Inter-

cept the feasible path twice and set the obstacle to

Fig. 5 Complex environment 2

Fig. 6 Changed complex environment 2–1

Table 4 Complex environment 1

Algorithm MMAS AS-N

Figure 3 average distance 63.5451 63.4512

Figure 4 average distance 64.7329 64.6763

Average running time 1.1963 1.2305

Fig. 7 Changed complex environment 2–2
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search for the new feasible path again. As shown in

Figs. 5, 6, and 7 below:

The data analysis will be carried out separately for the

test results of the above simulation environment, the

convergence diagram is compared, and the box diagram

explains the superiority of the AS-N algorithm.

5.2 Data analysis

For complex problems 1, 2, as shown in Figs. 3 and 5,

30 sets of data are used to compare the superiority of

the algorithm. Tables 4 and 5 give the average distance

and average running time of the optimization results of

the two algorithms AS-N and MMAS. In the dynamic

environment, changing the search environment and im-

proving the superiority of the algorithm AS-N can

clearly see that the improved algorithm AS-N has

achieved ideal results regardless of running time or opti-

mal distance.

5.3 Box chart comparison

It can be concluded from the box graph data that the

composition of the data is the optimal solution obtained

for each set of tests. In a dynamic environment, this sec-

tion shows the search results before and after environ-

mental changes, as shown in Fig. 8. The plus sign in the

figure is the abnormal point, the red line represents the

median value, the blue line above the red line is the

maximum value, and the blue line below the red line is

the minimum value. The figure shows the average of

30 sets of data. AS-N1 and MMAS1 represent the

data distribution in the initial environment, that is,

the environment in Fig. 3, and AS-N2 and MMAS2

represent the data distribution in the environment of

Fig. 4, that is, the data distribution after the obstacle

is added on the basis of Fig. 3. It can be seen from

Fig. 8 that AS-N is more concentrated than MMAS

algorithm, and the results obtained by multiple tests

are more stable.

Figure 9 shows the data distribution of the complex

environment 2. Similarly, the three sets of arrays are the

results of running multiple times in Figs. 5, 6, and 7. In

the figure, the AS-N and MMAS algorithms, the median

and minimum values of AS-N, are smaller than the

MMAS.

In summary, the distribution of data on the box graph

can more clearly see the superiority of the AS-N

Fig. 8 Complex environment 1 box chart comparison

Fig. 9 Complex environment 2 box chart comparison

Fig. 10 Complex environment 1 convergence chart comparison

Table 5 Complex environment 2

Algorithm MMAS AS-N

Figure 5 average distance 61.3387 61.0082

Figure 6 average distance 63.8864 63.0581

Figure 7 average distance 64.9977 64.2471

Average running time 3.3951 3.1737
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algorithm, and its data distribution is relatively stable,

which leads to a stronger ability to find and optimize.

5.4 Convergence contrast

It can be seen from the illustration that in the dynamic

environment, the active occlusion of the ant feasible

path in the experiment, but the ant can quickly find the

feasible path and reach the target point. The conver-

gence diagram in different environments is shown in

Figs. 10 and 11. It can be seen that the AS-N algorithm

not only can search for the optimal path in the static en-

vironment, but also maintains the superiority of the algo-

rithm in the dynamic environment, and its adaptability to

the environment changes is also very high.

6 Conclusion
Ant colony algorithms have been widely used to solve

various optimization problems in different fields, espe-

cially in the field of engineering design. Ant colony algo-

rithm is an intelligent algorithm with positive feedback

mechanism. The main content includes the construction

of path and the update of pheromone. After an in-depth

study of the ant colony algorithm, an ant colony algo-

rithm with punitive measures is proposed. The salient

aspect of this punitive measure is that at the end of each

generation, the ant finds a poorer path pheromone

volatilization rate, thereby reducing the re-exploration of

this path and increasing the opportunity to explore the

unknown. In this paper, the MMAS algorithm and the

AS-N algorithm are used to simulate the unmanned

vehicle path planning problem in the dynamic environ-

ment. Finally, the simulation results and their compari-

sons are given. The AS-N algorithm performs better in

dealing with unmanned vehicle path planning.

Abbreviation

ACO: Ant colony optimization algorithm; AS-N: Ant colony algorithm with

punitive measures; ASrank: Ant system-based rank; MMAS: MAX-MIN Ant

System
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