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Unmasking Multivariate Outliers and 
Leverage Points 

PETER J. ROUSSEEUW and BERT C. VAN ZOMEREN* 

Detecting outliers in a multivariate point cloud is not trivial, especially when there are severaloutliers. The classical identification 
method does not always find them, because it is based on the sample mean and covariance matrix, which are themselves affected 
by the outliers. That is how the outliers get masked. To avoid the masking effect, we propose to compute distances based on 
very robust estimates of location and covariance. These robust distances are better suited to expose the outliers. 

In the case of regression data, the classical least squares approach masks outliers in a similar way. Also here, the outliers 
may be unmasked by using a highly robust regression method. Finally, a new display is proposed in which the robust regression 
residuals are plotted versus the robust distances. This plot classifies the data into regular observations, vertical outliers, good 
leverage points, and bad leverage points. Several examples are discussed. 

KEY WORDS: Breakdown point; Leverage diagnostic; Mahalanobis distance; Minimum volume ellipsoid; Residual plot 

1. IDENTIFICATION OF MULTIVARIATE OUTLIERS 

Outliers are observations that do not follow the pattern 
of the majority of the data. Outliers in a multivariate point 
cloud can be hard to detect, especially when the dimension 
p exceeds 2, because then we can no longer rely on visual 
perception. A classical method is to compute the Mahal- 
anobis distance 

MD, = V(x, - T(X))C(X)-'(xi - T(X))t (1) 

for each point x,. Here, T(X) is the arithmetic mean of 
the data set X and C(X) is the usual sample covariance 
matrix. The distance MD, should tell us how far x, is from 
the center of the cloud, taking into account the shape of 
the cloud as well. It is well known that this approach suffers 
from the masking effect, by which multiple outliers do not 
necessarily have a large MD,. This is due to the fact that 
T(X) and C(X) are not robust: a small cluster of outliers 
will attract T(X) and will inflate C(X) in its direction. 
Therefore, it seems natural to replace T(X) and C(X) in 
(1) by robust estimators. 

Campbell (1980) proposed to insert M estimators for 
T(X) and C(X), which marked an important improvement. 
Unfortunately, the breakdown point of M estimators (i.e., 
the fraction of outliers they can tolerate) is at most l l ( p  
+ I) ,  so it goes down when there are more coordinates 
in which outliers can occur [see, e.g., chapter 5 of Hampel, 
Ronchetti, Rousseeuw, and Stahel (1986)l. 

As a further step, one may consider estimators of mul- 
tivariate location and covariance that have a high break- 
down point. The first such estimator was proposed by 
Stahel (1981) and Donoho (1982). Here we will use the 
minimum volume ellipsoid estimator (MVE) introduced 
by Rousseeuw (1985). For T(X) we take the center of the 
minimum volume ellipsoid covering half of the observa- 
tions, and C(X) is determined by the same ellipsoid (mul- 
tiplied by a correction factor to obtain consistency at 
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multinormal distributions). A technical definition of the 
MVE estimator is given in the Appendix, together with 
two approximate algorithms for its computation. We de- 
note by RD, the robust distances obtained by inserting the 
MVE estimates for T(X) and C(X) in (1). 

Figure 1illustrates the distinction between classical and 
robust estimates. It is a log-log plot of brain weight versus 
body weight for 28 species. The raw data (before taking 
logarithms) can be found in Rousseeuw and Leroy (1987, 
p.-58), where they were used for a different purpose. In 
Figure 1we see that the majority of the data follow a clear 
pattern, with a few exceptions. In the lower right region 
there are three dinosaurs (observations 6, 16, and 25) with 
a small brain and a heavy body, and in the upper left area 
we find the human and the rhesus monkey (observations 
14 and 17) with a relatively high brain weight. The 97.5% 
tolerance ellipse obtained from the classical estimates 
(dashed line) is blown up by these outliers, and contains 
all animals but the largest dinosaur. The tolerance ellipse 
based on the MVE is much narrower (solid line) and does 
not include the outliers. 

The second column of Table 1 shows the classical Ma- 
halanobis distances for these observations. The only out- 
lier outside the tolerance ellipse (number 25) yields the 
only MD, exceeding the cutoff value = 2.72. On 
the other hand, the robust distances RD, in the rightmost 
column do identify the exceptional observations (all values 
larger than 2.72 are underscored). 

Of course, in two dimensions we can still look at a plot 
of the data to find the outliers. Algorithms really become 
necessary in three and more dimensions. For instance, 
consider the explanatory variables of the stackloss data 
(Brownlee 1965). This point cloud (with p = 3 and n = 

21) contains several outliers. The second column of Table 
2 gives the classical MD,, all of which stay beneath 

= 3.06. The largest MD, (of observation 17) is 
only 2.70. The robust distances in the next column, how- 
ever, clearly pinpoint four outliers (cases l ,  2, 3, and 21). 
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Log Brain Weight Table 2. Mahalanobis Distances (MD,) and Robust Distances (RD,) 
for the Stackloss Data, Along With the Diagonal Elements 

of the Hat Matrix 

Log Body Weight 

Figure 1. Plot of Log Brain Weight Versus Log Body Weight, With 
97.5% Tolerance Ellipse Based on the Classical Mean and Covariance 
(dashed line) and on the Robust Estimator (solid line). 

The data set of Hawkins, Bradu, and Kass (1984, table 
4) yields a prime example of the masking effect. The first 
three variables form a point cloud with n = 7 5  and p = 

3. It is known that cases 1 to 14 are outliers, but the 
classical MD, in Table 3 do not reveal this. The only MDi 
larger than = 3.06 belong to observations 12 and 
14, which mask all the others. On the other hand, the 
robust distances in the same table do expose the 14 outliers 
in a single blow. 

Table 1. Classical Mahalanobis Distances (MD,) and Robust 

Distances (RD,) for the Brain Weight Data 


19 1.86 1.19 
20 2.27 1.24 
2 1 .83 .47 
22 .42 .54 
23 .26 .29 
24 1.05 1.95 
25 2.91 7.26 
26 1.59 1.04 
27 1.58 1.19 
28 .40 .75 

NOTE: Distances exceeding the cutoff value = 2.72 are underscored. 

18 1.50 2.09 .16 
19 1.59 2.29 .17 
20 0.81 .64 .08 
2 1 2.18 -3.30 .28 

-NOTE: Distances exceeding the cutoff value 3.06 are underscored 

The robust estimates and distances have been computed 
by means of a Fortran 77 program, which can be obtained 
from us. The computation time is of course larger than 
that of the classical method, but it is quite feasible (even 
on a PC) and the user obtains much information at once. 
We would like to stress that the user does not have to 
choose any tuning constants in advance and, in fact, the 
examples in this article were obtained from routine ap- 
plication of the program. Note that we do not necessarily 
want to delete the outliers; it is only our purpose to find 
them, after which the user may decide whether they are 
to be kept, deleted, or corrected, depending on the situ- 
ation. 

Remark. Detecting outliers turns out to be hardest 
when n l p  is relatively small. In such a case a few data 
points may be nearly collinear by chance, thereby com- 
pletely determining the MVE. This is caused by the emp- 
tiness of multivariate space (the "curse of dimen-
sionality"). As a rule of thumb we recommend applying 
the MVE when there are at least five observations per 
dimension, so n l p  > 5 .  

Robust covariance matrices can be used to detect out- 
liers in several kinds of multivariate analysis, such as prin- 
cipal components (Campbell 1980; Devlin, Gnanadesikan, 
and Kettenring 1981) and canonical correlation and cor- 
respondence analysis (Karnel 1988). 

2, IDENTIFICATION OF LEVERAGE POINTS 
IN REGRESSION 

In linear regression the cases are of the type (xi, yi) 
where x, is p-dimensional and the response yi is one-di- 
mensional. Cases for which xi is far away from the bulk 
of the xi in the data we call leveragepoints. Leverage points 
occur frequently when the xi are observational, unlike "de- 
signed" situations with fixed x,. Leverage points may be 



635 Rousseeuw and van Zomeren: Unmasking Multivariate Outliers and Leverage Points 

Table 3. Mahalanobis Distances (MD,) and Robust Distances (RD,) for the Hawkins-Bradu-Kass Data, Along With the 

Diagonal Elements of the Hat Matrix 


i MD, RD, h,, i MD, RD, h,, 

NOTE: Distances exceed~ng the cutoff value \lz-- 3.06 are underscored 

quite difficult to detect, however, when the x, have di- 
mension higher than 2, because then we are exactly in the 
situation described previously in Section 1.  

In the usual multiple linear regression model given by 
y = XO + e people often use the diagonal elements of 
the hat matrix H = X(X1X)'X' as diagnostics to identify 
leverage points. Unfortunately, the hat matrix, like the 
classical Mahalanobis distance, suffers from the masking 
effect. This can be explained by realizing that there exists 
a monotone relation between the h,, and the MD, of 
the x,: 

Therefore, the h,, do not necessarily detect the leverage 
points, contrary to what is commonly believed. Many au- 
thors even define leverage in terms of hIi which, in our 
opinion, confuses cause and effect: the cause is the fact 
that some xi are outlying, whereas the hi, are merely some 
(unreliable) diagnostics trying to find those points. As an 
illustration let us look at Table 2, which shows the hi, for 
the stackloss data. The largest h,, belongs to observation 
17, whereas the RD, identify observations 1,  2,  3, and 21. 
Another example is the Hawkins-Bradu-Kass data set 

(Table 3). We know that the first 14 observations are le- 
verage points, but only 12,13, and 14 have large h,,. There- 
fore, we propose to use the robust distances of the xi as 
leverage diagnostics, because they are less easily masked 
than the h,,. 

Saying that (x,, yi) is a leverage point refers only to the 
outlyingness of x, but does not take the response y, into 
account. If (x,, y,) lies far from the plane corresponding 
to the majority of the data, we say that it is a bad leverage 
point. Such a point is very harmful because it attracts or 
even tilts the classical least squares regression (hence the 
word "leverage"). On the other hand, if (x,, y,) does fit 
the linear relation it will be called a good leverage point, 
because it improves the precision of the regression coef- 
ficients. 

To distinguish between good and bad leverage points 
we have to consider y, as well as x,, and we also need to 
know the linear pattern set by the majority of the data. 
This calls for a high-breakdown regression estimator, such 
as least median of squares (LMS), defined by 

minimize median r,2(8) (3
0 , = l , . . . .  11 

(Rousseeuw 1984), where r , ( o )  = y, - x,8 is the residual 
of the ith observation. The LMS estimate 0 is affine equi- 
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variant and has the maximal breakdown point. After com- 
puting Q one also calculates the corresponding scale 
estimate, given by 

8 = kdmedian r;(B) (4)
i = l .  ...n 

where k is a positive constant. The standardized LMS 
residuals rile can then be used to indicate regression out- 
liers, that is, points that deviate from the linear pattern of 
the majority (Rousseeuw 1984). 

Figure 2 illustrates our terminology in an example of 
simple regression. The majority of the data are regular 
observations, indicated by (a). Points (b) and (d) deviate 
from the linear pattern and hence are called regression 
outliers, but (c) is not. Both (c) and (d) are leverage points, 
because their xi value is outlying. Therefore, we say that 
(c) is a good leverage point and (d) is a bad leverage point. 
The observation (b) is called a vertical outlier, because it 
is a regression outlier but not a leverage point. 

The robust distances in Tables 2 and 3 indicate leverage 
points but cannot distinguish between good and bad ones, 
because the y, are not used. On the other hand, the LMS 
residual plots in chapter 3 of Rousseeuw and Leroy (1987) 
pinpoint regression outliers without telling which ones are 
leverage points. Therefore, it seems like a good idea to 
construct a new display in which the robust residuals 
r,l& are plotted versus the robust distances RD,. In Figure 
3 this is done for the stackloss data. Points to the right of 
the vertical borderline through = 3.06 are leverage 
points, whereas points outside the horizontal tolerance 
band [-2.5, 2.51 are regression outliers. In this example 
the four points with the largest RD, are also regression 
outliers, so they are bad leverage points. Figure 3 also 
contains a vertical outlier (observation 4), which is a 
regression outlier with RD, < K.Our cutoff values 
are to some extent arbitrary, but in the plot we can rec- 
ognize the boundary cases: observation 21 is not very far 
away in x-space, whereas case 2 is only a mild regression 
outlier. 
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Stackloss Data 

2,j 
0 1 2 %  4 5 6 

Robust distance RD, 

Figure 3. Plot of Robust Residuals Versus Robust Distances RD, for 
the Stackloss Data. 

A referee has asked to compare this display with its 
classical counterpart, which would plot the usual least 
squares residuals versus the nonrobust Mahalanobis dis: 
tances MD,. This plot is given in Figure 4 for the same 
data. It does not reveal any leverage points or  regression 
outliers, because all of the points stay between the lines 
and only observations 21 and 17 come close to being iden- 
tified. Because of (2), things would not improve when 
replacing MD, by h,,. 

Figure 5 is the plot of robust residuals versus robust 
distances for the Hawkins-Bradu-Kass data. It immedi- 
ately shows that there are 14 leverage points, of which 4 
are good and 10 are bad. A glance at Figure 5 reveals the 
important features of these data, which are hard to dis- 
cover otherwise. This type of plot presents a visual clas- 
sification of the data into four categories: the regular 
observations with small RD, and small ri/8, the vertical 
outliers with small RD, and large r,/d, the good leverage 
points with large RD, and small ril&, and the bad leverage 
points with large RD, and large rile.  Note that a single 

Stackloss Data 

-
xi 

Classical distance MD,
Figure 2. Simple Regression Example With (a) Regular Observations, 

(b) Vertical Outlier, (c) Good Leverage Point, and (d) Bad Leverage Figure 4. Plot of Least Squares Residuals Versus Classical Mahal- 
Point. anobis Distances MD, for the Stackloss Data. 



637 Rousseeuw and van Zomeren: Unmasking Multivariate Outliers and Leverage Points 

Hawkins-Bradu-Kass Data 

I 

0 5 10 15 20 25 

Robust distance RD, 

Figure 5. Plot of Robust Residuals Versus Robust Distances RD, for 
the Hawkins-Bradu-Kass Data. 

diagnostic can never be sufficient for this fourfold classi- 
fication! 

Robust residuals may be used to assign weights to ob- 
servations or to suggest data transformations (Carroll and 
Ruppert 1988; Rousseeuw and Leroy 1987). They are 
much better suited to this than least squares residuals, 
because least squares tries to produce normal-looking re- 
siduals even when the data themselves are not normal. 
The combination of the robust residuals with the RD, also 
offers another advantage. As pointed out by Atkinson 
(1986), it may sometimes happen that the LMS regression 
produces a relatively large residual at a good leverage 
point, because of small variations in the regression coef- 
ficients. The amplitude of this effect is roughly propor- 
tional to the RD,, so the problem can only occur in the 
section on the right side of our new display. This is a 
distinct improvement over the usual plot of standardized 
residuals versus the index of the observation, where one 
does not see whether a given residual corresponds to an 
x, at the center or to a leverage point. 

3. CONCLUSIONS AND OUTLOOK 

In this article we have proposed using distances based 
on high-breakdown estimators to detect outliers in a mul- 
tivariate point cloud. This is in line with our previous 
suggestion to identify regression outliers by looking at re- 
siduals from a high-breakdown fit. combining these tools 
leads to the robust diagnostic plot of Figures 3 and 5. 

Although we do not claim this approach to be a panacea, 
it has worked very well for detecting outliers in many real- 
data examples not described here. Our general impression 
is that most data sets are further away from the usual 
assumptions (multivariate normality, approximate linear- 
ity) than is commonly assumed. In actual practice our 
methods have yielded some new and surprising results, for 
example, in a consulting firm fitting economic models to 
stock exchange data. Another application was to mining 
(Chork, in press), in which the outliers reflect minerali- 
zations hidden below the surface, so their detection is the 
most important part of the analysis. 

We would like to stress that we are not advocating that 
one simply remove the outliers. Instead we consider our 
plots of robust residuals and/or distances as a mere starting 
point of the analysis. In some cases the plots may tell us 
to change the model. In other cases we may be able to go 
back to the original data and explain where the outliers 
come from and, perhaps, to correct their values. 

For the moment we are still carrying out simulations to 
compare different algorithms, study the distribution of ro- 
bust distances, and so on. It turns out that it does not 
matter so much which high-breakdown estimator is used 
when the purpose is to detect outliers, because then sta- 
tistical efficiency is less important than robustness. 

Further research is needed to address situations where 
some of the explanatory variables are discrete, such as O-
1 dummies. The same is true for functionally related ex- 
planatory variables (e.g., polynomial terms), because then 
one cannot expect the majority of the xito form a roughly 
ellipsoidal shape. Nonlinear regression with high break- 
down point has been addressed by Stromberg (1989). 

Presently we are developing a program called ROMA 
(which stands for Robust  Multivariate Analysis), incor- 
porating both robust regression and robust location/co- 
variance, as well as other techniques such as robust 
principal components. 

Finally, we would like to apologize to all of the people 
whose work we did not cite. We did not attempt to write 
a review article (nor was it originally meant to be a dis- 
cussion paper). Some reviews of the relevant literature on 
outliers and robustness can be found in Beckman and 
Cook (1983), Gnanadesikan (1977), Hampel et al. (1986), 
and Rousseeuw and Leroy (1987). 

APPENDIX: METHODS AND ALGORITHMS 

Suppose that we have a data set X = ( x , , . . . , x,,)of n points 
in p dimensions and we want to estimate its "center" and "scat- 
ter" by means of a row vector T ( X ) and a matrix C ( X ) .We say 
that the estimators T and C are affine equivariant when 

and 

for any row vector b and any nonsingular p-by-p matrix A. The 
sample mean and the sample covariance matrix 

T ( X )  = x x, and 
n ,=, 

C ( X )  = -
1 2 " 

( x ,  - T(X) ) ' (x ,- T ( X ) )  ( A . 2 )
n - 1 ,=, 

are affine equivariant but not robust, because even a single out- 
lier can change them to an arbitrary extent. 

The minimum volume ellipsoid estimator (MVE) is defined as 
the pair ( T ,  C ) ,  where T ( X ) is a p-vector and C ( X ) is a positive- 
semidefinite p-by-p matrix such that the determinant of C is 
minimized subject to 

#{i; (x ,  - T ) C - ' ( x , - T)' 5 a*}r h ( '4 .3)  

where h = [ ( n  + p + 1)12] in which [ q ] is the integer part of 
q .  The number a2 is a fixed constant, which can be chosen as 

when we expect the majority of the data to come from a 
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normal distribution. For small samples one also needs a factor 
c;,,, which depends on n a n d p .  The MVE has a breakdown point 
of nearly 50%, which means that T(X) will remain bounded and 
the eigenvalues of C(X) will stay away from zero and infinity 
when less than half of the data are replaced by arbitrary values 
(see, e.g., Lopuhaa and Rousseeuw, in press). The robust dis- 
tances are defined relative to the MVE: 

One can then compute a weighted mean: 

T1(X) = (i:.,)-I i:W.X., (A.5) 
i = 1  , = I  

and a weighted covariance matrix, 

where the weights w, = w(RD,) depend on the robust distances. 
It can be shown that TI and C, have the same breakdown point 
as the initial T and C when the weight function w vanishes for 
large RD, [see sec. 5 of Lopuhaa and Rousseeuw (in press)]. 

The MVE method can still be used when p = 1, in which case 
it yields the midpoint and the length of the shortest half. The 
midpoint converges merely as n-l" (Rousseeuw 1984), whereas 
the length converges as n-", (Griibel 1988). The influence func- 
tion and finite-sample behavior of the latter were studied by 
Rousseeuw and Leroy (1988). 

The minimum covariance determinant estimator (MCD) is an- 
other method with high breakdown point (Rousseeuw 1985). It 
searches for a subset containing half of the data, the covariance 
matrix of which has the smallest determinant. Recently, it has 
been proved that the MCD estimator is asymptotically normal 
(Butler and Jhun 1990). The MCD estimator needs somewhat 
more computation time than does the MVE. The MCD estimator 
has also been computed by means of simulated annealing (R.  
Griibel, personal communication), but this approach takes much 
more computation time. 

We have tried out two approximate algorithms for the MVE. 
The first is the resampling algorithm described in Rousseeuw and 
Leroy (1987). It is based on the idea of looking for a small number 
of good points, rather than for k bad points, where k = 1, 2, 3, 
. . . . This resembles certain regression algorithms used by Rous- 
seeuw (1984) and, independently, by Hawkins et al. (1984). We 
draw subsamples of p + 1 different observations, indexed by J 
= {i,, . . . , i,,,,). The mean and covariance matrix of such a 
subsample are 

The corresponding ellipsoid should then be inflated or deflated 
to contain exactly h points, which amounts to  computing 

because m, is the right magnification factor. The squared volume 
of the resulting ellipsoid is proportional to  m y  det(Cl), of which 
we keep the smallest value. For this "best" subset J we compute 

T(X) = TI and C(X) = (y~,so)-lcf,,mSC, (A.9) 

as an approximation to the MVE estimator, followed by a re- 
weighting step as in ( A S )  and (A.6). The number of subsamples 
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J depends on a probabilistic argument, because we want to be 
confident that we encounter enough subsamples consisting of 
p + 1good points. Moreover, by carrying out a simulation study, 
we found that cZ,,, = (1 + 15/(n - p)), is a reasonable small- 
sample correction factor. Therefore, this factor was incorporated 
in all of the examples of our article. 

The projection algorithm is a variant of an algorithm of Gasko 
and Donoho (1982). For each point x, we consider 

x,vt - L(xlvt, . . . , x,,v1)1
u, = max (A. 10) 

S(xlvl, . . . ,x,vl) 

where L and S are the MVE estimates in one dimension, 
which we compute as follows. For any set of numbers 
z, 5 z, 5 ... 5 z,, one can determine its shortest half by taking 
the smallest of the differences 

If the smallest difference is z, - z , - ~ + ,we put L equal to the 
midpoint of the corresponding half, 

and S as its length, 

S(z,, . . . , z,) = c(n)(z, - z,-,+,) (A.  12) 

up to a correction factor c(n), which depends on the sample size. 
Note that (A.lO) is exactly the one-dimensional version of the 
robust distance RD, of (A.4), but applied to  the projections x,vl 
of the data points x, on the direction v. As not all possible di- 
rections v can be tried, we have to make a selection. We take 
a l l v o f  the form x, - M where 1 = 1 ,  . . . , n and M is the 
coordinatewise median: 

M = (median x,,, . . . , median x,,) 
j = 1  n j = 1  n 

In the algorithm we update an array (u,),=,, ,,while 1 loops over 
1, . . . , n. The final u, are approximations of RD, which can be 
plotted or used for reweighting as in (A.5) and (A.6). 

Both algorithms are very approximate, but from our experi- 
ence this usually does not matter much as far as the detection 
of outliers is concerned. The resampling algorithm is affine equi- 
variant but not permutation invariant, because reordering the x, 
will change the random subsamples J .  On the other hand, the 
projection algorithm is permutation invariant because it consid- 
ers all values of I, but it is not affine equivariant. Note that the 
projection algorithm is much faster than the resampling algo- 
rithm, especially in higher dimensions. 

[Received November 1988. Revised August 1989.1 
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