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Unmasking Multivariate Outliers and

Leverage Points

PETER J. ROUSSEEUW and BERT C. van ZOMEREN*

Detecting outliers in a multivariate point cloud is not trivial, especially when there are several outliers. The classical identification
method does not always find them, because it is based on the sample mean and covariance matrix, which are themselves affected
by the outliers. That is how the outliers get masked. To avoid the masking effect, we propose to compute distances based on
very robust estimates of location and covariance. These robust distances are better suited to expose the outliers.

In the case of regression data, the classical least squares approach masks outliers in a similar way. Also here, the outliers
may be unmasked by using a highly robust regression method. Finally, a new display is proposed in which the robust regression
residuals are plotted versus the robust distances. This plot classifies the data into regular observations, vertical outliers, good
leverage points, and bad leverage points. Several examples are discussed.

KEY WORDS: Breakdown point; Leverage diagnostic; Mahalanobis distance; Minimum volume ellipsoid; Residual plot.

1. IDENTIFICATION OF MULTIVARIATE OUTLIERS

Outliers are observations that do not follow the pattern
of the majority of the data. Outliers in a multivariate point
cloud can be hard to detect, especially when the dimension
p exceeds 2, because then we can no longer rely on visual
perception. A classical method is to compute the Mahal-
anobis distance

MD; = V(x; - TX)CX) '(x, - TX))' (1)

for each point x;. Here, T(X) is the arithmetic mean of
the data set X and C(X) is the usual sample covariance
matrix. The distance MD; should tell us how far x; is from
the center of the cloud, taking into account the shape of
the cloud as well. It is well known that this approach suffers
from the masking effect, by which multiple outliers do not
necessarily have a large MD,. This is due to the fact that
T(X) and C(X) are not robust: a small cluster of outliers
will attract 7(X) and will inflate C(X) in its direction.
Therefore, it seems natural to replace T(X) and C(X) in
(1) by robust estimators.

Campbell (1980) proposed to insert M estimators for
T(X) and C(X), which marked an important improvement.
Unfortunately, the breakdown point of M estimators (i.e.,
the fraction of outliers they can tolerate) is at most 1/(p
+ 1), so it goes down when there are more coordinates
in which outliers can occur [see, e.g., chapter 5 of Hampel,
Ronchetti, Rousseeuw, and Stahel (1986)].

As a further step, one may consider estimators of mul-
tivariate location and covariance that have a high break-
down point. The first such estimator was proposed by
Stahel (1981) and Donoho (1982). Here we will use the
minimum volume ellipsoid estimator (MVE) introduced
by Rousseeuw (1985). For T(X) we take the center of the
minimum volume ellipsoid covering half of the observa-
tions, and C(X) is determined by the same ellipsoid (mul-
tiplied by a correction factor to obtain consistency at
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multinormal distributions). A technical definition of the
MVE estimator is given in the Appendix, together with
two approximate algorithms for its computation. We de-
note by RD; the robust distances obtained by inserting the
MVE estimates for 7(X) and C(X) in (1).

Figure 1 illustrates the distinction between classical and
robust estimates. It is a log-log plot of brain weight versus
body weight for 28 species. The raw data (before taking
logarithms) can be found in Rousseeuw and Leroy (1987,
p. 58), where they were used for a different purpose. In
Figure 1 we see that the majority of the data follow a clear
pattern, with a few exceptions. In the lower right region
there are three dinosaurs (observations 6, 16, and 25) with
a small brain and a heavy body, and in the upper left area
we find the human and the rhesus monkey (observations
14 and 17) with a relatively high brain weight. The 97.5%
tolerance ellipse obtained from the classical estimates
(dashed line) is blown up by these outliers, and contains
all animals but the largest dinosaur. The tolerance ellipse
based on the MVE is much narrower (solid line) and does
not include the outliers.

The second column of Table 1 shows the classical Ma-
halanobis distances for these observations. The only out-
lier outside the tolerance ellipse (number 25) yields the
only MD; exceeding the cutoff value Vy3 ¢;s = 2.72. On
the other hand, the robust distances RD; in the rightmost
column do identify the exceptional observations (all values
larger than 2.72 are underscored).

Of course, in two dimensions we can still look at a plot
of the data to find the outliers. Algorithms really become
necessary in three and more dimensions. For instance,
consider the explanatory variables of the stackloss data
(Brownlee 1965). This point cloud (with p = 3 and n =
21) contains several outliers. The second column of Table
2 gives the classical MD;, all of which stay beneath
Vix}.ss = 3.06. The largest MD; (of observation 17) is
only 2.70. The robust distances in the next column, how-
ever, clearly pinpoint four outliers (cases 1, 2, 3, and 21).
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Figure 1. Plot of Log Brain Weight Versus Log Body Weight, With
97.5% Tolerance Ellipse Based on the Classical Mean and Covariance
(dashed line) and on the Robust Estimator (solid line).

The data set of Hawkins, Bradu, and Kass (1984, table
4) yields a prime example of the masking effect. The first
three variables form a point cloud withn = 75 and p =
3. It is known that cases 1 to 14 are outliers, but the
classical MD; in Table 3 do not reveal this. The only MD;
larger than V3 o5 = 3.06 belong to observations 12 and
14, which mask all the others. On the other hand, the
robust distances in the same table do expose the 14 outliers
in a single blow.

Table 1. Classical Mahalanobis Distances (MD,) and Robust
Distances (RD,) for the Brain Weight Data

i MD, RD,

1 1.01 54
2 .70 54
3 30 40
4 38 63
5 1.15 74
6 2.64 6.83
7 1.71 1.59
8 71 64
9 86 48
10 .80 1.67
11 69 69
12 87 50
13 68 52
14 1.72 3.39
15 1.76 1.14
16 2.37 6.11
17 1.22 2.72
18 20 67
19 1.86 1.19
20 2.27 1.24
21 .83 47
22 42 54
23 26 29
24 1.05 1.95
25 291 7.26
26 1.59 1.04
27 1.58 1.19
28 40 75

NOTE: Distances exceeding the cutoff value V 125,‘975 =~ 2.72 are underscored.
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Table 2. Mahalanobis Distances (MD,) and Robust Distances (RD))
for the Stackloss Data, Along With the Diagonal Elements
of the Hat Matrix

i MD, RD, h,
1 2.25 5.23 30
2 2.32 527 32
3 1.59 4.01 7
4 1.27 84 13
5 .30 .80 .05
6 77 78 .08
7 1.85 64 22
8 1.85 64 22
9 1.36 83 14
10 1.75 64 20
11 1.47 58 16
12 1.84 .79 22
13 1.48 55 16
14 1.78 64 21
15 1.69 2.23 19
16 1.29 2.1 13
17 2.70 2.07 41
18 1.50 2.09 16
19 1.59 2.29 7
20 0.81 64 .08
21 2.18 3.30 28

NOTE: Distances exceeding the cutoff value V 132‘_975 ~ 3.06 are underscored.

The robust estimates and distances have been computed
by means of a Fortran 77 program, which can be obtained
from us. The computation time is of course larger than
that of the classical method, but it is quite feasible (even
on a PC) and the user obtains much information at once.
We would like to stress that the user does not have to
choose any tuning constants in advance and, in fact, the
examples in this article were obtained from routine ap-
plication of the program. Note that we do not necessarily
want to delete the outliers; it is only our purpose to find
them, after which the user may decide whether they are
to be kept, deleted, or corrected, depending on the situ-
ation.

Remark. Detecting outliers turns out to be hardest
when n/p is relatively small. In such a case a few data
points may be nearly collinear by chance, thereby com-
pletely determining the MVE. This is caused by the emp-
tiness of multivariate space (the ‘“curse of dimen-
sionality”). As a rule of thumb we recommend applying
the MVE when there are at least five observations per
dimension, so n/p > 5.

Robust covariance matrices can be used to detect out-
liers in several kinds of multivariate analysis, such as prin-
cipal components (Campbell 1980; Devlin, Gnanadesikan,
and Kettenring 1981) and canonical correlation and cor-
respondence analysis (Karnel 1988).

2. IDENTIFICATION OF LEVERAGE POINTS
IN REGRESSION

In linear regression the cases are of the type (x;, y;)
where x; is p-dimensional and the response y; is one-di-
mensional. Cases for which x; is far away from the bulk
of the x; in the data we call leverage points. Leverage points
occur frequently when the x; are observational, unlike “de-
signed” situations with fixed x;. Leverage points may be
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Table 3. Mahalanobis Distances (MD,) and Robust Distances (RD,) for the Hawkins—Bradu—Kass Data, Along With the
Diagonal Elements of the Hat Matrix

i MD, RD, h, i MD, RD, h,
1 1.92 16.20 .063 39 1.27 1.34 .035
2 1.86 16.62 .060 40 1.1 .55 .030
3 2.31 17.65 .086 41 1.70 1.48 .052
4 2.23 18.18 .081 42 1.77 1.74 .055
5 2.10 17.82 .073 43 1.87 1.18 .061
6 2.15 16.80 .076 44 1.42 1.82 .041
7 2.01 16.82 .068 45 1.08 1.25 .029
8 1.92 16.44 .063 46 1.34 1.70 .038
9 2.22 17.71 .080 47 1.97 1.65 .066
10 2.33 17.21 .087 48 1.42 1.37 .041
11 2.45 20.23 .094 49 1.57 1.27 .047
12 3.11 21.14 144 50 .42 .83 016
13 2.66 20.16 .109 51 1.30 1.19 .036
14 6.38 22.38 .564 52 2.08 1.61 .072
15 1.82 1.54 .058 53 2.21 2.41 .079
16 2.15 1.88 .076 54 1.41 1.26 .040
17 1.39 1.03 .039 55 1.23 .66 .034
18 .85 73 .023 56 1.33 1.21 .037
19 1.156 .59 .031 57 .83 .93 .023
20 1.59 1.49 .048 58 1.40 1.31 .040
21 1.09 87 .030 59 .59 .96 .018
22 1.55 90 .046 60 1.89 1.89 .062
23 1.09 94 .029 61 1.68 1.31 .051
24 .97 .83 .026 62 .76 1.22 .021
25 .80 1.26 .022 63 1.29 117 .036
26 1.17 .86 .032 64 .97 1.14 .026
27 1.45 1.35 .042 65 1.15 1.40 .031
28 .87 1.00 .024 66 1.30 78 .036
29 .58 72 .018 67 .63 .37 .019
30 1.57 1.97 .047 68 1.55 1.64 .046
31 1.84 1.43 .059 69 1.07 1.17 .029
32 1.31 95 .036 70 1.00 1.04 .027
33 .98 73 .026 71 .64 64 .019
34 1.18 1.42 .032 72 1.05 .52 .028
35 1.24 1.26 .034 73 1.47 1.14 .043
36 .85 .86 .023 74 1.65 .96 .050
37 1.83 1.26 .059 75 1.90 1.99 .062
38 .75 .92 .021

NOTE: Distances exceeding the cutoff value VZ% 975 =~ 3.06 are underscored.

quite difficult to detect, however, when the x, have di-
mension higher than 2, because then we are exactly in the
situation described previously in Section 1.

In the usual multiple linear regression model given by
y = X0 + e people often use the diagonal elements of
the hat matrix H = X(X'X) !X as diagnostics to identify
leverage points. Unfortunately, the hat matrix, like the
classical Mahalanobis distance, suffers from the masking
effect. This can be explained by realizing that there exists
a monotone relation between the A, and the MD, of
the x;:

_ (MD)?
T n-1

h, L1 0

S

Therefore, the h;, do not necessarily detect the leverage
points, contrary to what is commonly believed. Many au-
thors even define leverage in terms of A,; which, in our
opinion, confuses cause and effect: the cause is the fact
that some x; are outlying, whereas the 4, are merely some
(unreliable) diagnostics trying to find those points. As an
illustration let us look at Table 2, which shows the A, for
the stackloss data. The largest A, belongs to observation
17, whereas the RD; identify observations 1, 2, 3, and 21.
Another example is the Hawkins-Bradu-Kass data set

(Table 3). We know that the first 14 observations are le-
verage points, but only 12, 13, and 14 have large h,;. There-
fore, we propose to use the robust distances of the x; as
leverage diagnostics, because they are less easily masked
than the A;.

Saying that (x;, y;) is a leverage point refers only to the
outlyingness of x, but does not take the response y, into
account. If (x,, y;) lies far from the plane corresponding
to the majority of the data, we say that it is a bad leverage
point. Such a point is very harmful because it attracts or
even tilts the classical least squares regression (hence the
word “leverage”). On the other hand, if (x,, y,) does fit
the linear relation it will be called a good leverage point,
because it improves the precision of the regression coef-
ficients.

To distinguish between good and bad leverage points
we have to consider y, as well as x;, and we also need to
know the linear pattern set by the majority of the data.
This calls for a high-breakdown regression estimator, such
as least median of squares (LMS), defined by

mini{;nize median r2(0) (3)

1=1,..., n
(Rousseeuw 1984), where r(0) = y, — x,0 is the residual
of the ith observation. The LMS estimate  is affine equi-
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variant and has the maximal breakdown point. After com-
puting ¢ one also calculates the corresponding scale
estimate, given by

o =

kVmedian r3(6)

i=1.., n

Q)

where k is a positive constant. The standardized LMS
residuals 7;/6 can then be used to indicate regression out-
liers, that is, points that deviate from the linear pattern of
the majority (Rousseeuw 1984).

Figure 2 illustrates our terminology in an example of
simple regression. The majority of the data are regular
observations, indicated by (a). Points (b) and (d) deviate
from the linear pattern and hence are called regression
outliers, but (c) is not. Both (c) and (d) are leverage points,
because their x; value is outlying. Therefore, we say that
(c) is a good leverage point and (d) is a bad leverage point.
The observation (b) is called a vertical outlier, because it
is a regression outlier but not a leverage point.

The robust distances in Tables 2 and 3 indicate leverage
points but cannot distinguish between good and bad ones,
because the y; are not used. On the other hand, the LMS
residual plots in chapter 3 of Rousseeuw and Leroy (1987)
pinpoint regression outliers without telling which ones are
leverage points. Therefore, it seems like a good idea to
construct a new display in which the robust residuals
r;/& are plotted versus the robust distances RD,. In Figure
3 this is done for the stackloss data. Points to the right of
the vertical borderline through Vix3 ¢;5 = 3.06 are leverage
points, whereas points outside the horizontal tolerance
band [ 2.5, 2.5] are regression outliers. In this example
the four points with the largest RD; are also regression
outliers, so they are bad leverage points. Figure 3 also
contains a vertical outlier (observation 4), which is a
regression outlier with RD; < V¥3 ;5. Our cutoff values
are to some extent arbitrary, but in the plot we can rec-
ognize the boundary cases: observation 21 is not very far
away in x-space, whereas case 2 is only a mild regression
outlier.

}YI
. (b) *(©)
(a) ofo®
oo
0:0 o (d)

X,

Figure 2. Simple Regression Example With (a) Regular Observations,
(b) Vertical Outlier, (c) Good Leverage Point, and (d) Bad Leverage
Point.
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Figure 3. Plot of Robust Residuals Versus Robust Distances RD, for
the Stackloss Data.

A referee has asked to compare this display with its
classical counterpart, which would plot the usual least
squares residuals versus the nonrobust Mahalanobis dis-
tances MD;. This plot is given in Figure 4 for the same
data. It does not reveal any leverage points or regression
outliers, because all of the points stay between the lines
and only observations 21 and 17 come close to being iden-
tified. Because of (2), things would not improve when
replacing MD,; by h;.

Figure 5 is the plot of robust residuals versus robust
distances for the Hawkins—Bradu-Kass data. It immedi-
ately shows that there are 14 leverage points, of which 4
are good and 10 are bad. A glance at Figure S reveals the
important features of these data, which are hard to dis-
cover otherwise. This type of plot presents a visual clas-
sification of the data into four categories: the regular
observations with small RD; and small r;/&, the vertical
outliers with small RD; and large r,/4, the good leverage
points with large RD; and small r,/&, and the bad leverage
points with large RD; and large r;,/6. Note that a single

Stackloss Data

2.5

Standardized LS residual

-4

0 1 2 V x30875 4

Classical distance MD,

Figure 4. Plot of Least Squares Residuals Versus Classical Mahal-
anobis Distances MD, for the Stackloss Data.
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Figure 5. Plot of Robust Residuals Versus Robust Distances RD, for
the Hawkins—-Bradu—Kass Data.

diagnostic can never be sufficient for this fourfold classi-
fication!

Robust residuals may be used to assign weights to ob-
servations or to suggest data transformations (Carroll and
Ruppert 1988; Rousseeuw and Leroy 1987). They are
much better suited to this than least squares residuals,
because least squares tries to produce normal-looking re-
siduals even when the data themselves are not normal.
The combination of the robust residuals with the RD, also
offers another advantage. As pointed out by Atkinson
(1986), it may sometimes happen that the LMS regression
produces a relatively large residual at a good leverage
point, because of small variations in the regression coef-
ficients. The amplitude of this effect is roughly propor-
tional to the RD,, so the problem can only occur in the
section on the right side of our new display. This is a
distinct improvement over the usual plot of standardized
residuals versus the index of the observation, where one
does not see whether a given residual corresponds to an
X, at the center or to a leverage point.

3. CONCLUSIONS AND OUTLOOK

In this article we have proposed using distances based
on high-breakdown estimators to detect outliers in a mul-
tivariate point cloud. This is in line with our previous
suggestion to identify regression outliers by looking at re-
siduals from a high-breakdown fit. Combining these tools
leads to the robust diagnostic plot of Figures 3 and 5.

Although we do not claim this approach to be a panacea,
it has worked very well for detecting outliers in many real-
data examples not described here. Our general impression
is that most data sets are further away from the usual
assumptions (multivariate normality, approximate linear-
ity) than is commonly assumed. In actual practice our
methods have yielded some new and surprising results, for
example, in a consulting firm fitting economic models to
stock exchange data. Another application was to mining
(Chork, in press), in which the outliers reflect minerali-
zations hidden below the surface, so their detection is the
most important part of the analysis.
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We would like to stress that we are not advocating that
one simply remove the outliers. Instead we consider our
plots of robust residuals and/or distances as a mere starting
point of the analysis. In some cases the plots may tell us
to change the model. In other cases we may be able to go
back to the original data and explain where the outliers
come from and, perhaps, to correct their values.

For the moment we are still carrying out simulations to
compare different algorithms, study the distribution of ro-
bust distances, and so on. It turns out that it does not
matter so much which high-breakdown estimator is used
when the purpose is to detect outliers, because then sta-
tistical efficiency is less important than robustness.

Further research is needed to address situations where
some of the explanatory variables are discrete, such as 0—
1 dummies. The same is true for functionally related ex-
planatory variables (e.g., polynomial terms), because then
one cannot expect the majority of the x; to form a roughly
ellipsoidal shape. Nonlinear regression with high break-
down point has been addressed by Stromberg (1989).

Presently we are developing a program called ROMA
(which stands for RObust Multivariate Analysis), incor-
porating both robust regression and robust location/co-
variance, as well as other techniques such as robust
principal components.

Finally, we would like to apologize to all of the people
whose work we did not cite. We did not attempt to write
a review article (nor was it originally meant to be a dis-
cussion paper). Some reviews of the relevant literature on
outliers and robustness can be found in Beckman and
Cook (1983), Gnanadesikan (1977), Hampel et al. (1986),
and Rousseeuw and Leroy (1987).

APPENDIX: METHODS AND ALGORITHMS

Suppose that we have a data set X = (x,, . . ., X,) of n points
in p dimensions and we want to estimate its “‘center’” and “‘scat-
ter” by means of a row vector 7(X) and a matrix C(X). We say
that the estimators T and C are affine equivariant when

TxA +b,...,x,A+b)=Tk,...,x)A+Db
and
CxA +b,...,x,A+b)=ACxK,...,x)A (Al

for any row vector b and any nonsingular p-by-p matrix A. The
sample mean and the sample covariance matrix

1 n
H&=;Z&am
=1

€ = = 3 (5 = TO)x — TX) (A2

are affine equivariant but not robust, because even a single out-
lier can change them to an arbitrary extent.

The minimum volume ellipsoid estimator (MVE) is defined as
the pair (T, C), where T(X) is a p-vector and C(X) is a positive-
semidefinite p-by-p matrix such that the determinant of C is
minimized subject to

#i; (x, - T)C'(x, - Ty =a} = h (A.3)
where i = [(n + p + 1)/2] in which [q] is the integer part of

q. The number @ is a fixed constant, which can be chosen as
X% s when we expect the majority of the data to come from a
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normal distribution. For small samples one also needs a factor
¢z, which depends on »n and p. The MVE has a breakdown point
of nearly 50%, which means that 7(X) will remain bounded and
the eigenvalues of C(X) will stay away from zero and infinity
when less than half of the data are replaced by arbitrary values
(see, e.g., Lopuhai and Rousseeuw, in press). The robust dis-
tances are defined relative to the MVE:

RD, = V(x, - TX))CX)'(x, — TX))'. (A.4)
One can then compute a weighted mean,
n -1 n
Ty(X) = (2 w,~> > wx,, (A.5)
i=1 i=1

and a weighted covariance matrix,

Ci(X)= (i w; — 1)

-1 n

21 (x = Ti(X))(x = Ti(X)) (A.6)

where the weights w, = w(RD),) depend on the robust distances.
It can be shown that T, and C, have the same breakdown point
as the initial 7 and C when the weight function w vanishes for
large RD,; [see sec. 5 of Lopuhai and Rousseeuw (in press)].

The MVE method can still be used when p = 1, in which case
it yields the midpoint and the length of the shortest half. The
midpoint converges merely as n~'* (Rousseeuw 1984), whereas
the length converges as n="? (Griibel 1988). The influence func-
tion and finite-sample behavior of the latter were studied by
Rousseeuw and Leroy (1988).

The minimum covariance determinant estimator (MCD) is an-
other method with high breakdown point (Rousseeuw 1985). It
searches for a subset containing half of the data, the covariance
matrix of which has the smallest determinant. Recently, it has
been proved that the MCD estimator is asymptotically normal
(Butler and Jhun 1990). The MCD estimator needs somewhat
more computation time than does the MVE. The MCD estimator
has also been computed by means of simulated annealing (R.
Griibel, personal communication), but this approach takes much
more computation time.

We have tried out two approximate algorithms for the MVE.
The first is the resampling algorithm described in Rousseeuw and
Leroy (1987). It is based on the idea of looking for a small number
of good points, rather than for k bad points, where k = 1, 2, 3,
... . This resembles certain regression algorithms used by Rous-
seeuw (1984) and, independently, by Hawkins et al. (1984). We
draw subsamples of p + 1 different observations, indexed by J

= {i;, . .., i,41}. The mean and covariance matrix of such a
subsample are
T, ! > x; and
= X; an
! p+1%

C, =-2(x-T)x—-T). (A7)

SRS

The corresponding ellipsoid should then be inflated or deflated
to contain exactly 4 points, which amounts to computing

mi = {(x; — T)C;'(x; — 1))} (A.8)

because m; is the right magnification factor. The squared volume
of the resulting ellipsoid is proportional to m> det(C,), of which
we keep the smallest value. For this “‘best” subset J we compute

I(X) =T, and C(X) = (x2.5) 'c2,miC, (A.9)

as an approximation to the MVE estimator, followed by a re-
weighting step as in (A.5) and (A.6). The number of subsamples
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J depends on a probabilistic argument, because we want to be
confident that we encounter enough subsamples consisting of
p + 1good points. Moreover, by carrying out a simulation study,
we found that ¢, = (1 + 15/(n — p))*is a reasonable small-
sample correction factor. Therefore, this factor was incorporated
in all of the examples of our article.

The projection algorithm is a variant of an algorithm of Gasko
and Donoho (1982). For each point x; we consider

s xnvl) t
) X,V')

xv' — L(xv, ...
u; = max
v S(xyv, ...

where L and S are the MVE estimates in one dimension,
which we compute as follows. For any set of numbers
z; = z, < --- = z, one can determine its shortest half by taking
the smallest of the differences

(A.10)
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If the smallest difference is z; — z;_,., we put L equal to the
midpoint of the corresponding half,

L(zi, ..., 2) = (z; + zj_pe1)/2 (A.11)
and § as its length,
S(zi, . -5 20) = c(n)(z; = Zj—ns1) (A.12)

up to a correction factor c(n), which depends on the sample size.
Note that (A.10) is exactly the one-dimensional version of the
robust distance RD, of (A.4), but applied to the projections x,v*
of the data points x; on the direction v. As not all possible di-
rections v can be tried, we have to make a selection. We take
all v of the form x, — M where /l = 1, ..., n and M is the
coordinatewise median:

M = (median x;, . . .
j=1... n

, median x,,).

j=l,..n
In the algorithm we update an array (u;),-,.. , while / loops over
1, . .., n. The final u; are approximations of RD; which can be
plotted or used for reweighting as in (A.5) and (A.6).

Both algorithms are very approximate, but from our experi-
ence this usually does not matter much as far as the detection
of outliers is concerned. The resampling algorithm is affine equi-
variant but not permutation invariant, because reordering the x;
will change the random subsamples J. On the other hand, the
projection algorithm is permutation invariant because it consid-
ers all values of /, but it is not affine equivariant. Note that the
projection algorithm is much faster than the resampling algo-
rithm, especially in higher dimensions.
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