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ABSTRACT: 

Coral reefs, among the world’s most biodiverse and productive submerged habitats, have faced several mass bleaching events due to 

climate change during the past 35 years. In the course of this century, global warming and ocean acidification are expected to cause 

corals to become increasingly rare on reef systems. This will result in a sharp decrease in the biodiversity of reef communities and 

carbonate reef structures. Coral reefs may be mapped, characterized and monitored through remote sensing. Hyperspectral images in 

particular excel in being used in coral monitoring, being characterized by very rich spectral information, which results in a strong 

discrimination power to characterize a target of interest, and separate healthy corals from bleached ones. Being submerged habitats, 

coral reef systems are difficult to analyse in airborne or satellite images, as relevant information is conveyed in bands in the blue 

range which exhibit lower signal-to-noise ratio (SNR) with respect to other spectral ranges; furthermore, water is absorbing most of 

the incident solar radiation, further decreasing the SNR. Derivative features, which are important in coral analysis, result greatly 

affected by the resulting noise present in relevant spectral bands, justifying the need of new denoising techniques able to keep local 

spatial and spectral features. In this paper, Unmixing-based Denoising (UBD) is used to enable analysis of a hyperspectral image 

acquired over a coral reef system in the Red Sea based on derivative features. UBD reconstructs pixelwise a dataset with reduced 

noise effects, by forcing each spectrum to a linear combination of other reference spectra, exploiting the high dimensionality of 

hyperspectral datasets. Results show clear enhancements with respect to traditional denoising methods based on spatial and spectral 

smoothing, facilitating the coral detection task. 

* Corresponding author 

1. INTRODUCTION

Coral reefs, recognized as one of the world’s most biodiverse 

and productive submerged habitats (Connel, 1978), faced 6 

mass bleaching events due to climate change and its linked 

impacts during the past 35 years (Hughes, 2003; Hedley, 2016). 

Coral bleaching occurs during prolonged periods of increased 

sea surface temperature (SST) which induce the expulsion of 

the symbiotic microalgae, zooxanthellae, from the coral host 

(Glynn, 1990; Atwood, 1992). This phenomenon can rapidly 

lead to coral mortality and thus substantial decline in 

biodiversity associated with the reef environment (Hoegh-

Guldberg, 2016). Scientists are predicting increasingly serious 

consequences for reef-associated fisheries, tourism, coastal 

protection, and people (Hoegh-Guldberg, 2007). Accurate 

detection, mapping and modelling of the onset, event and 

subsequent results of coral bleaching are vital for the longevity 

of coral reef ecosystems.  

Remote sensing is regarded as the most efficient approach to 

identify coral bleaching events from regional to oceanic basin 

scale (Yamano, 2004). A major complication in such 

approaches is the differentiation between the spectral 

reflectance of bleached coral and that of healthy coral, algae and 

sand that compose a typical reef environment (Holden, 1999; 

Clark, 2000). This highlights the importance of high spectral 

resolution in discriminating the distinct spectral shape of 

bleached coral (Hochberg, 2004). Furthermore, a high spatial 

resolution is necessary to map spatial patterns of bleaching, and 

an optimal Ground Sampling Distance has been suggested in 

the range 40-80 cm (Andréfouët, 2002). Another crucial aspect 

is the temporal resolution of the observations: algae, which 

exhibit similar spectral behavior to zooxanthellae populating 

healthy coral, can rapidly colonize dead corals following 

bleaching, thus hindering the detection of the phenomenon 

(Clark, 2000). Recent development on data acquired by 

airborne and satellite optical sensors have advanced the 

identification and mapping of coral bleaching from a theoretical 

and experimental to a routine level (Hedley, 2016; Holden, 

1999; Elvidge, 2004). 

Hyperspectral instruments measure the reflected solar energy 

from a target in up to hundreds of contiguous and narrow 

spectral bands of the electromagnetic spectrum. The amount of 

energy reflected in each of the wavelength positions differs 

depending on the chemical composition of the target material 

and results in material-specific spectral reflectance signatures, 

which enable the identification of specific materials. In the case 

of corals, these sensors excel at mapping the structure of a coral 

reef and separating healthy from bleached corals. 

For these tasks, mostly airborne data have been used in 

literature, due to the aforementioned need of an adequate GSD, 

which is not possible to obtain from spaceborne sensors. In the 
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specific, derivative features from hyperspectral data convey 

relevant information for the detection of healthy vs. bleached 

coral and the characterization of their context (sand bed) 

(Holden, 2000). 

 

Hyperspectral data also present relevant problematics, hindering 

their use in some practical applications. Firstly, narrow spectral 

bands can be affected by a low Signal-to-Noise Ratio (SNR), 

especially in spectral regions at shorter wavelengths such as the 

blue portion of the spectrum, where Rayleigh scattering 

contributes at decreasing the quality of the images, in addition 

to pronounced atmospheric absorption effects. Furthermore, for 

applications to submerged objects, the water above absorbs 

most of the incident solar radiation, further decreasing the SNR 

and the discrimination capabilities of an acquisition. 

 

It is well known that computing derivative features on noisy 

data sequences can significantly amplify the noise, hindering 

such analysis in hyperspectral image processing. As second 

derivatives are going to be used in this work, multiplying the 

described effects, efficient image denoising algorithm must be 

employed in order to be able to extract reliable and consistent 

derivative features. 

 

Denoising is often carried out in image processing through 

filtering, usually based on convolutions with sliding windows in 

the image domain, on operations in the frequency domain, or on 

estimated noise statistics or degradation functions, if these are 

known for the image acquisition process (Gonzalez, 2007). In 

the case of hyperspectral data, the high spectral dimensionality 

of each image element can be exploited in order to derive a 

pixel-based denoising exploiting both spatial and spectral 

information. Unmixing-based Denoising (UBD) is a supervised 

methodology for the recovery of bands characterized by a low 

SNR in a hyperspectral scene (Cerra, 2014), which is described 

in next section.  

  

2. UNMIXING-BASED DENOISING 

Unmixing-based Denoising (UBD) has been recently proposed 

to selectively retrieve spectral bands characterised by a low 

SNR by exploiting their correlation with non-corrupted pixels 

across the whole spectral dimension in hyperspectral images 

(Cerra et al., 2014). Spectral unmixing is the process which 

aims at decomposing each hyperspectral image element as a 

linear (or less often non-linear) combination of signals typically 

related to pure materials, often called endmembers, representing 

the backscattered solar radiation in each spectral band. 

Considering the physical properties of a mixed spectrum, UBD 

assumes the residual vector derived from the unmixing process 

to be mostly composed of noise and more relevant in spectral 

bands where atmospheric absorption effects are stronger, and 

therefore ignored in the reconstruction.  

 

These methods give as output abundances maps, which quantify 

the contribution of each endmember to a given pixel. Therefore, 

a pixel m could be described as a linear combination of n 

reference spectra },...,,{ 21 nsssS = , weighted by the 

fractional abundances },...,,{ 21 nxxxX = , plus a residual 

vector r, containing the portion of the signal which cannot be 

represented in terms of the basis vectors of choice: 
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For example, if in a scene we have only mixtures of two 

materials in each pixel, for example water and soil, m could be 

expressed as rsxsxm soilsoilwaterwater ++= . The output 

of the described spectral unmixing process is inferred into the 

reconstruction of a given noisy band in a hyperspectral dataset 

through Unmixing-based Denoising (UBD) as follows. 

  

If the modelling errors in S are kept to a minimum, we expect 

the noise term and local anomalies to be predominant in r for 

bands with low SNR and corrupted values, respectively. We 

therefore assume r to be composed by noise, anomalous 

fluctuation, and artifacts introduced during either the 

acquisition or the preprocessing step. If r is ignored we can 

derive a noise-free reconstruction for m which also corrects 

anomalous values as: 
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This means that if the contributions to the radiation reflected 

from a resolution cell are known, the values of noisy bands can 

be derived by a combination of the average values 

characterizing each component in that spectral range. This is 

done under the assumptions that contributions related to 

materials not present in S, subtle variations of one or more 

materials in S, and non-linear mixing effects are negligible. 

 

In spite of adopting a linear unmixing model, which in theory 

does not adapt well to water in which several non-linear 

scattering effects take place, UBD achieved satisfactory results 

when applied to spectral bands in the blue range for scenes 

acquired over coastal waters in previous works (Cerra et al., 

2013).  Therein, UBD showed promising results for the 

estimation of coloured Dissolved Organic Matter (CDOM), and 

for the regularization of bathymetry estimation in coastal 

waters. 

 

3. EXPERIMENTAL RESULTS 

We analyse a hyperspectral scene acquired by the SpecTIR 

sensor over a coral reef in the Red Sea in Saudi Arabia, of size 

960 x 600 pixels, with 128 bands acquired in the range 400-

1000 nm. The image is processed to top-of-the-atmosphere 

radiance values. Several corals are visible in the area: Fig. 1 

reports a true color combination of the Red Sea image in which 

these appear in red. 

 

The UBD algorithm does not need the data to be expressed in 

reflectance, so no conversion from radiance to reflectance has 

been carried out. We apply the algorithm on the scene by pre-

selecting a spectral library of 15 spectra, chosen according to 

their Pixel Purity Index (PPI). The spectra should be chosen in 

order to be as pure as possible: this implies that they should lie 

on the convex hull encompassing the dataset projected in the 

space defined by the spectral bands of the image. The PPI helps 

empirically in selecting pixels as close as possible to the convex 

hull, increasing the chance of reconstructing any pixel inside the 

convex hull with limited distortions as quantified by the 

residual vector r in (1). 
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Figure 1. True color combination (central wavelengths 640, 

551, and 461 nm) from the SpecTIR Red Sea dataset, 

© 2012 SpecTIR 

 

In the following experiments we choose inversion through Non-

negative Least Squares (NNLS) to quantify the abundance 

related to each reference spectrum in the spectral library, 

proportional to the area covered by a given material within an 

image element. It is of interest to remark that NNLS naturally 

enforces sparsity in its solution, as several components in it are 

set to zero: this intuitively well agrees with the characteristics of 

a hyperspectral pixel, which is usually composed by a limited 

number of materials (Cerra, 2014). Unconstrained Least 

Squares and first attempts at using sparse reconstruction tools 

did not yield satisfactory results, while in recent years the fully-

constrained least squares method, which enforces not only non-

negativity but also the sum-to-one constraint on the estimated 

abundances, has been debated by the community and is 

therefore not considered in these experiments (Bioucas Dias, 

2012). 

 

As a first experiment, the first derivative feature is computed for 

noisy bands in the blue range. Fig. 2 reports the original 

derivative and Fig. 3 the result after applying UBD. As the 

method operates pixelwise, fine details in the image are kept, 

along with the overall local spectral information. 

 

As a next step, results are assessed on the second derivative 

feature, which represents a more difficult application. In 

(Holden, 2000), the authors establish a correlation between the 

presence of healthy corals and the second derivative feature 

around 545 nm. Due to the noise present in the image, the 

computation of a second derivative around 545 nm results in a 

very noisy image, in which live corals are very hard to spot 

(Fig. 4). Even after both a spatial and spectral smoothing of the 

image prior to the extraction of derivative features, results are 

hard to interpret (Fig. 5). The pixel-based denoising based on 

UBD delivers a set of derivative features which appear smooth 

and correlated to the actual presence of live corals (Fig. 6). 

Around the live corals, it is easy to identify areas in which the 

first derivative drops considerably, highlighting areas in which 

it assumes higher values. All the derivative features reported 

have undergone the same histogram stretch. In the color 

mapping used, blue corresponds to low values and red to high 

ones. 

 

 
 

Figure 2. First derivative between spectral bands 3 and 4 of the 

Red Sea dataset. 

 

 
 

Figure 3. First derivative between spectral bands 3 and 4 of the 

Red Sea dataset undergone through a denoising step with UBD.  

 

 

 

Figure 4. Second derivative at 545 nm for the Red Sea dataset 

reported in false colors.  

 

4. CONCLUSIONS 

Hyperspectral data are powerful at detecting and characterizing 

coral reefs ecosystems. As derivative features on the spectral 

information are difficult to use in practice, given the low SNR 

of bands in the blue range of the spectrum and the low energy 
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measured by the sensor which is reflected by the submerged 

coral reefs, denoising techniques must be employed in order to 

derive meaningful information from these features.  

Figure 5. Derivative feature as reported in Fig. 4 computed after 

a preprocessing step of spatial and spectral smoothing. 

Figure 6. Second derivative at 545 nm derived after selecting 

UBD as preprocessing step. The live corals can be identified 

and match the ones visible in Fig. 1.  

Unmixing-based Denoising (UBD) is a supervised methodology 

for the recovery of bands characterized by a low Signal-to-

Noise Ratio (SNR) in a hyperspectral scene. UBD reconstructs 

any pixel in a given band as a linear combination of reference 

spectra belonging to materials present in the scene. If a perfect 

unmixing model is given, the residual vector from the unmixing 

process is mostly composed by contributions of uninteresting 

materials, unwanted atmospheric influences and sensor-induced 

noise, and can be thus ignored in the reconstruction process. 

The reported results are promising and suggest that local 

information, both spatial and spectral, could be well preserved 

by selecting UBD as an alternative denoising technique as a 

pre-processing step for coral reef analysis. 
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