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Abstract—An unmixing-based data fusion technique is used to
generate images that have the spatial resolution of Landsat The-
matic Mapper (TM) and the spectral resolution provided by the
Medium Resolution Imaging Spectrometer (MERIS) sensor. The
method requires the optimization of the following two parameters:
the number of classes used to classify the TM image and the size of
the MERIS “window” (neighborhood) used to solve the unmixing
equations. The ERGAS index is used to assess the quality of the
fused images at the TM and MERIS spatial resolutions and to
assist with the identification of the best combination of the two
parameters that need to be optimized. Results indicate that it
is possible to successfully downscale MERIS full resolution data
to a Landsat-like spatial resolution while preserving the MERIS
spectral resolution.

Index Terms—ERGAS, fusion quality, Landsat, linear mixing
model, Medium Resolution Imaging Spectrometer (MERIS), spa-
tial unmixing.

I. INTRODUCTION

DURING the last few years, data fusion methods have
received more and more attention from the remote sensing

community because of the increasing need to integrate the vast
amount of data that are being collected by Earth observation
satellites. As a result, a large number of data fusion methods
have been developed (see, for example, [1]–[4] for a review).
In this letter, we focus on the implementation and evaluation
of the so-called unmixing-based data fusion approach [5]. The
aim of this data fusion approach is to combine two images
acquired over the same area but at different spatial resolutions
to produce an image with the spatial resolution of the high
spatial resolution image and the spectral resolution of the
low spatial resolution image. Often, the selected low spatial
resolution image has a better spectral resolution than the high
spatial resolution image. As a result, the fused image has (po-
tentially) more information than each of the original images. A
simplified version of this data fusion approach has been used by
Minghelli-Roman et al. [6], [7] to combine Medium Resolution
Imaging Spectrometer (MERIS) full resolution (FR) and Land-
sat Enhanced Thematic Mapper (ETM) data for coastal water
monitoring. In their approach, only one parameter, namely,
the number of classes used to classify the high resolution
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image, needs to be optimized, because they solved the unmixing
equations for the whole image at once. A large number of
classes (typically > 100) are needed to achieve good results
with this method [6], [7]. However, such a large number of
classes are not always feasible or realistic. For instance, if an
existing land cover classification is used to get the high spatial
resolution information, then the number of classes is limited
and, in most cases, well below 100. Furthermore, solving the
unmixing equations for the whole image at once might severely
hamper the quality and usability of the fused images, because
all pixels belonging to one class will get the same spectral
signature. In other words, if we apply the method as described
by Minghelli-Roman et al. [6], [7], we implicitly reject all
the within-class variability. Therefore, we believe that using a
neighborhood should be preferred over simultaneously solving
the unmixing for all the pixels present in the scene. For that
reason, here, we implement a detailed version of the unmixing-
based fusion algorithm where two parameters, the number of
classes used to classify the Thematic Mapper (TM) image and
the size of the MERIS FR neighborhood used to solve the
unmixing equations, need to be optimized. The ERGAS index
[3] is used to support the optimization of these two parameters
and to quantitatively assess the quality of the fused images.

Finally, this letter presents a case study that uses MERIS FR
and Landsat TM data over land, because several studies have
proven the potential of MERIS for this kind of applications
[8]–[10]. If the proposed data fusion approach proves to be
successful, the resulting fused images could be used to improve
land cover maps and/or to monitor ecosystems at high spatial
and spectral resolutions.

II. METHODOLOGY

The study area covers approximately 40 km × 60 km of
the central part of The Netherlands (52.19◦ N, 5.91◦ E). A
Landsat-5 TM image from July 10, 2003 and a MERIS FR
level 1b image acquired on July 14, 2003 were available over
this area. The TM image was georeferenced to the Dutch
national coordinate system (RD) using a cubic convolution
resampling method and a pixel size of 25 m. The digital num-
bers of the TM image were converted into radiances (in watts
per square meter per steradian per micrometer) using the latest
calibration coefficients [11] to ensure that both the TM and
the MERIS image are in the same radiometric units. The
MERIS FR level 1b image (300 m pixel size and radiances
in watts per square meter per steradian per micrometer) was
first corrected for the smile effect [12]. Then, an image-to-
image coregistration was performed in order to ensure the best
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possible match between the two images. In this process, the
TM image was used as a reference, and a nearest neighbor
resampling was used not to modify the original MERIS pixel
values. The pixel sizes of the TM and MERIS FR sensors
were preserved, which implies that 144 TM pixels are inside
each MERIS FR pixel. Subsequently, the TM and the MERIS
FR images were fused using an unmixing-based data fusion
approach. The method consists of the following four main
steps [5].

First, the high spatial resolution image is used to identify the
main components (i.e., spectral groups) of the study area. For
this purpose, the TM image was classified into nc unsupervised
classes using the ISODATA classification rule. In this letter, five
nc values were used: 10, 20, 40, 60, and 80.

Second, a sliding window of k × k MERIS FR pixels is
applied to each of the TM classified images to generate class-
proportion matrices. These matrices contain the proportions
of each of the nc classes that fall within each of the MERIS
FR pixels that are inside the k × k window. In this letter,
14 window sizes (from now on, referred to as neighborhoods)
were tested: from k = 5 to k = 53 in steps of four.

Third, the spectral information of all the classes present in the
k × k neighborhood are unmixed using the proportion matrices
and their corresponding MERIS FR radiance values. Here, it
is important to notice that the unmixing is solved for each
low resolution band independently. Therefore, care must be
taken to select a neighborhood size (k2) larger than or equal
to the number of classes present in the neighborhood, because
each MERIS FR pixel provides only one (mixing) equation.
Although the unmixing is solved for all the classes present in
the neighborhood, only the spectral information of the classes
present in the central pixel of the neighborhood is kept because
that is the pixel that is being effectively unmixed.

Finally, each of the TM unsupervised classes present in the
central pixel of the neighborhood is replaced by its correspond-
ing unmixed MERIS signal. By repeating this operation for all
the MERIS FR pixels, for all MERIS bands, and for all the
possible combinations of nc and k, a series of fused images
is generated.

Fig. 1 shows the four steps of the unmixing-based data fusion
approach and presents a matrix–vector notation for the third
step (i.e., the unmixing). This notation should be interpreted
as follows:

Li,k = Pk,nc · Si,k,nc + Ei, i = 1, 2, . . . , N (1)

where
Li,k is a (k2 × 1) vector that contains the values of

band i for all the MERIS FR pixels present in the
neighborhood k;

Pk,nc is a (k2 × nc) matrix containing the proportions of
the TM unsupervised classes that fall inside each
of the MERIS FR pixels present in the neighbor-
hood k;

Si,k,nc is the (nc × 1) unknown vector of unmixed spec-
tral information (band-i radiances) for each of the
classes present in k;

Fig. 1. Scheme of the general methodology.

Sk,nc is the fused image after iterating over all MERIS
pixels and all MERIS bands;

Ei is a (k2 × 1) vector of residual errors;
N is the total number of bands of the low-resolution

image.
This formulation of the unmixing-based data fusion indi-

rectly implies that the number of classes used to classify the
TM image (nc) and the size of the MERIS FR neighborhood
(k) need to be optimized. nc needs to be optimized, because
it depends on the spectral variability of the scene (heteroge-
neous scenes will most likely require a larger nc value than
homogeneous ones). k also needs to be optimized, because it
has a great impact on the spectral quality of the fused image.
On the one hand, k should be kept as small as possible so
that the fused image is spectrally dynamic and consistent with
the variability recorded by the low spatial resolution sensor.
On the other hand, k should be sufficiently large to provide
enough equations to solve the unmixing. In other words, (1)
is a system of k2 equations (one equation per low resolution
pixel in the neighborhood) with up to nc unknowns (depending
on the number of classes present in such a neighborhood).
This means that k2 must be greater than or equal to the
number of classes inside the MERIS neighborhood. However,
if we use very large k values, the output image will have low
spectral variability, because each system of equations results in
a unique solution. For instance, if the size of the neighborhood
matches the size of the scene (k = image size), then all the
pixels of one class identified with Landsat TM will have the
same spectral response independently of their position within
the scene. Using k = image size, therefore, results in a fused
image with a low spectral dynamic range, where each of
the classes is represented by an approximation of its mean
spectral response. The latter approach was the one used by
Minghelli-Roman et al. [6], [7]. Although it is computationally
fast (we only need to solve one system of equations), here, we
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prefer to also optimize the size of the neighborhood k such that
we can account for the natural variability of the components
present in the scene.

Finally, a constrained least squares method was used to
retrieve Si,k,nc from (1). The use of a constrained method is
justified, because the solution should fulfill the following two
conditions: 1) the radiance values must be positive and 2) the
radiance values cannot be larger than the MERIS radiance-
saturation values [13].

A. Data Fusion Quality and Optimization of nc and k

A quantitative assessment of the quality of the fused images
was done at the level of the TM and of the MERIS spatial
resolution. This assessment was used to support the selection
of the best combination of nc and k.

Bearing in mind that any fused image should be as identical
as possible to the original low resolution image once degraded
back to its original resolution (coherence property [14]), we
degraded the fused images Sk,nc to 300 m using a mean filter.
After this, we assessed the quality of the degraded fused images
by comparing them with the original MERIS FR image. The
ERGAS index [3] was used for this comparison

ERGAS = 100
h

l

√√√√ 1
N

N∑
i=1

(rmse2
i /M

2
i ) (2)

where
h is the resolution of the high spatial resolution image

(TM);
l is the resolution of the low spatial resolution image

(MERIS FR);
N is the number of spectral bands involved in the

fusion;
rmsei is the root mean square error computed between the

degraded fused image and the original MERIS image
(for the band i);

Mi is the mean value of the band i of the reference image
(MERIS).

The ERGAS index equals zero when the degraded fused
image (300 m) is equal to the original MERIS FR image.
Therefore, low ERGAS values indicate high image fusion
quality.

If we assume that spectrally corresponding bands are highly
correlated for images that have been acquired nearly at the same
date, then the ERGAS index can also be used to evaluate the
quality of the fused images at 25 m. This ERGAS will be named
ERGASTM (because the Landsat TM image will be used as
a reference), whereas the ERGAS computed at 300 m will be
referred to as ERGASM (MERIS used as a reference). Other
terms, like spatial and spectral ERGAS, have been identified
in literature to indicate that the ERGAS index is computed at
different spatial resolutions [15]–[18].

The expression used to compute the ERGASTM is basically
the same as (2) except for the following: 1) the rmsei is
computed between Landsat TM bands 1–4, and their spectrally
corresponding fused bands (3, 5, 7, and 13, respectively) and

Fig. 2. Results for (a) ERGASM, (b) ERGASTM, and (c) coefficient of
correlation. Each symbol represents the number of classes used to classify the
TM image. Notice that the neighborhood size of five does not provide sufficient
equations to solve the unmixing when the TM image is classified into 40, 60,
and 80 classes.

2) Mi corresponds to the mean of the band i of the TM image.
The ERGASTM index never reaches a zero value, because the
bands that were used for the calculation of this index have
slightly different characteristics (band centers and bandwidths).
Despite this, its values can be used to assess the quality of the
fused images, because—similar to the ERGASM—the lower
the ERGASTM, the better the quality of the fused image.

In order to better understand, evaluate, and benchmark the
values obtained for the ERGASTM, the average coefficient of
correlation (r̄) was also computed at 25 m. First, the coefficient
of correlation was computed for the four pairs of bands used to
compute the ERGASTM. Then, these values were averaged to
produce a single r̄ value for each of the fused images.

III. RESULTS AND DISCUSSION

A. TM and MERIS FR Data Fusion

Fig. 2 shows the ERGAS indexes and the r̄ values for all
fused images that were generated for the different combinations
of nc and k.

Most fused images yielded low ERGAS values [Fig. 2(a)
and (b)], which means that the unmixing-based data fusion
succeeded in synthesizing the spectral information of the
MERIS FR image at a high spatial resolution. However, rela-
tively high ERGASTM values (> 3) were found for the images
unmixed using small k values. This might indicate that the
solution of the unmixing equations is not stable when few
equations are used and that regularization methods might be
needed in these cases. Poor r̄ values (< 0.45) were found when
unmixing with small k values [Fig. 2(c)], whereas high r̄ values
(> 0.75) were always associated with low ERGASTM values
(< 2). Because of this opposite behavior, we conclude that the
information given by the ERGASTM and r̄ is equivalent. For
this reason, we mainly discuss the results obtained using the
ERGAS indexes.
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Fig. 3. RGB color composite of (a) bands 4, 3, and 2 of the TM image, (b) bands 13, 7, and 5 of the fused image obtained for nc = 60 and k = 45, and
(c) bands 13, 7, and 5 of the original MERIS FR image. Upper row shows the whole study area, whereas the lower row shows a 25 × 25 pixel subset.

Two additional observations can be made from Fig. 2. First,
the ERGAS indexes are inversely correlated: the ERGASM

decreases when increasing the number of classes, and it in-
creases with larger neighborhood sizes, whereas the ERGASTM

presents the opposite behavior. This means that there is a
tradeoff between the quality of the fused images at 25 and
at 300 m and that we cannot find an optimum combination
of nc and k that minimizes both ERGAS values. Secondly,
both ERGAS indexes and the average coefficient of correlation
show a saturation behavior. This means that increasing nc or k
beyond the values that were tested in this letter will not improve
the quality of the fused images.

The selection of the best fused image is not straightforward,
because there is no combination of nc and k that simultaneously
minimizes the two ERGAS indexes. However, from Fig. 2(a),
we recognize that the range of variation of the ERGASM is
rather small (the smoothing effect caused by increasing the
window size is apparently not very important). Therefore, we
could select as the best fused image the one that first minimizes
the ERGASTM and then the ERGASM. Nevertheless, a large
number of fused images potentially meet this criterion. Fur-
thermore, a visual check of these fused images showed that,
indeed, they are very similar. As an illustration, Fig. 3 shows an

RGB color composite of the fused image obtained with nc = 60
and k = 45 (upper row—whole study area; lower row—a
25 × 25 pixel subset). For comparison purposes, an RGB color
composite of the original TM and MERIS FR images is also
shown in Fig. 3.

In general, the fused image preserves well the spatial patterns
found in the TM image while remaining spectrally similar to
the MERIS FR image. However, some deviating pixels can be
seen at the boundary between objects (e.g., river shorelines).
These pixels correspond to mixed pixels, and they are difficult
to unmix because the TM unsupervised classification is rather
noisy in those areas and because they cover a very small fraction
of the neighborhood under study.

IV. CONCLUSION

In this letter, we have studied the applicability of the linear
mixing model to fuse a Landsat TM and a MERIS FR level
1b image. The method, known as unmixing-based data fusion,
requires the optimization of the following two parameters: the
number of classes used to classify the TM image nc and the
size of the MERIS neighborhood k used to solve the unmixing
equations. Several combinations of nc and k have been tested.
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The ERGAS index computed at 25 and at 300 m, together
with the average coefficient of correlation (r̄) computed at
25 m, was used to assess the quality of the fused images and to
assist in the identification of the best fused image. The results
of the fusion quality assessment indicate the following: 1) the
unmixing-based data fusion approach presented here succeeded
in preserving the spectral information of MERIS: low values
were found for the ERGASM since all the spectral information
present in the fused image comes from MERIS; in addition,
high r̄ values were found between the first four TM bands and
its spectrally corresponding fused bands and 2) there is always
a tradeoff between the quality of the fused images at 25 and at
300 m, because the ERGAS indexes are inversely correlated.
Therefore, we suggest using a specific application (e.g., land
cover mapping) to better identify the best fused image. For
illustration purposes, we selected as the best fused image the
one obtained for nc = 60 and k = 45, because it is one of
the images that minimizes the ERGASTM while keeping one
of the lowest possible ERGASM values. Nevertheless, further
work is required in order to estimate the real possibilities
and limitations of this data fusion method. Special attention
should be paid to the coregistration of the high and low spatial
resolution images and to the criteria used to select the best fused
image.

The unmixing-based data fusion approach may also be used
to fuse MERIS FR time series with one or more TM images.
This multitemporal data fusion exercise will be of great interest
for land cover mapping and for monitoring vegetation dy-
namics (e.g., in terms of fraction of absorbed photosynthetically
active radiation, leaf area index, or chlorophyll content) at
high spatial, spectral, and temporal resolutions. Nevertheless,
it is important to realize that these fused images will only
be an approximation of what the MERIS sensor would be
measuring if it had a spatial resolution of 25 m. In addition,
possible landscape changes between the dates of the Landsat
TM acquisition and the MERIS images might further affect the
quality of the fused images [7], since the number and location
of land cover classes may change if the time span becomes
too wide.
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