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Abstract 

In hyperspectral imagery one pixel typically consists of a mixture 
of the reflectance spectra of several materials, where the mixture 
coefficients correspond to the abundances of the constituting ma
terials. We assume linear combinations of reflectance spectra with 
some additive normal sensor noise and derive a probabilistic MAP 
framework for analyzing hyperspectral data. As the material re
flectance characteristics are not know a priori, we face the problem 
of unsupervised linear unmixing. The incorporation of different 
prior information (e.g. positivity and normalization of the abun
dances) naturally leads to a family of interesting algorithms, for 
example in the noise-free case yielding an algorithm that can be 
understood as constrained independent component analysis (ICA). 
Simulations underline the usefulness of our theory. 

1 Introduction 

Current hyperspectral remote sensing technology can form images of ground surface 
reflectance at a few hundred wavelengths simultaneously, with wavelengths ranging 
from 0.4 to 2.5 J.Lm and spatial resolutions of 10-30 m. The applications of this 
technology include environmental monitoring and mineral exploration and mining. 
The benefit of hyperspectral imagery is that many different objects and terrain 
types can be characterized by their spectral signature. 

The first step in most hyperspectral image analysis systems is to perform a spectral 
unmixing to determine the original spectral signals of some set of prime materials. 
The basic difficulty is that for a given image pixel the spectral reflectance patterns 
of the surface materials is in general not known a priori. However there are gen
eral physical and statistical priors which can be exploited to potentially improve 
spectral unmixing. In this paper we address the problem of unmixing hyperspectral 
imagery through incorporation of physical and statistical priors within an unsuper
vised Bayesian framework. 

We begin by first presenting the linear superposition model for the reflectances 
measured. We then discuss the advantages of unsupervised over supervised systems. 
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We derive a general maximum a posteriori (MAP) framework to find the material 
spectra and infer the abundances. Interestingly, depending on how the priors are 
incorporated, the zero noise case yields (i) a simplex approach or (ii) a constrained 
leA algorithm. Assuming non-zero noise our MAP estimate utilizes a constrained 
least squares algorithm. The two latter approaches are new algorithms whereas the 
simplex algorithm has been previously suggested for the analysis of hyperspectral 
data. 

Linear Modeling To a first approximation the intensities X (Xi>.) measured in 
each spectral band A = 1, ... , L for a given pixel i = 1, ... , N are linear combi
nations of the reflectance characteristics S (8m >.) of the materials m = 1, ... , M 
present in that area. Possible errors of this approximation and sensor noise are 
taken into account by adding a noise term N (ni>'). In matrix form this can be 
summarized as 

X = AS + N, subject to: AIM = lL, A ~ 0, (1) 

where matrix A (aim) represents the abundance of material m in the area cor
responding to pixel i, with positivity and normalization constraints. Note that 
ground inclination or a changing viewing angle may cause an overall scale factor for 
all bands that varies with the pixels. This can be incorporated in the model by sim
ply replacing the constraint AIM = lL with AIM ~ lL which does does not affect 
the discussion in the remainder of the paper. This is clearly a simplified model of 
the physical phenomena. For example, with spatially fine grained mixtures, called 
intimate mixtures, multiple reflectance may causes departures from this first or
der model. Additionally there are a number of inherent spatial variations in real 
data, such as inhomogeneous vapor and dust particles in the atmosphere, that will 
cause a departure from the linear model in equation (1). Nevertheless, in practical 
applications a linear model has produced reasonable results for areal mixtures. 

Supervised vs. Unsupervised techniques Supervised spectral un mixing re
lies on the prior knowledge about the reflectance patterns S of candidate surface 
materials, sometimes called endmembers, or expert knowledge and a series of semi
automatic steps to find the constituting materials in a particular scene. Once the 
user identifies a pixel i containing a single material, i.e. aim = 1 for a given m and 
i, the corresponding spectral characteristics of that material can be taken directly 
from the observations, i.e., 8 m >. = Xi>. [4]. Given knowledge about the endmembers 
one can simply find the abundances by solving a constrained least squares problem. 
The problem with such supervised techniques is that finding the correct S may re
quire substantial user interaction and the result may be error prone, as a pixel that 
actually contains a mixture can be misinterpreted as a pure endmember. Another 
approach obtains endmembers directly from a database. This is also problematic 
because the actual surface material on the ground may not match the database en
tries, due to atmospheric absorption or other noise sources. Finding close matches 
is an ambiguous process as some endmembers have very similar reflectance charac
teristics and may match several entries in the database. 

Unsupervised unmixing, in contrast, tries to identify the endmembers and mixtures 
directly from the observed data X without any user interaction. There are a variety 
of such approaches. In one approach a simplex is fit to the data distribution [7, 6, 2]. 
The resulting vertex points of the simplex represent the desired endmembers, but 
this technique is very sensitive to noise as a few boundary points can potentially 
change the location of the simplex vertex points considerably. Another approach by 
Szu [9] tries to find abundances that have the highest entropy subject to constraints 
that the amount of materials is as evenly distributed as possible - an assumption 



944 L. Parra, C. D. Spence, P Sajda, A. Ziehe and K.-R. Muller 

which is clearly not valid in many actual surface material distributions. A relatively 
new approach considers modeling the statistical information across wavelength as 
statistically independent AR processes [1]. This leads directly to the contextual 
linear leA algorithm [5]. However, the approach in [1] does not take into account 
constraints on the abundances, noise, or prior information. Most importantly, the 
method [1] can only integrate information from a small number of pixels at a time 
(same as the number of endmembers). Typically however we will have only a few 
endmembers but many thousand pixels. 

2 The Maximum A Posterior Framework 

2.1 A probabilistic model of unsupervised spectral unmixing 

Our model has observations or data X and hidden variables A, S, and N that 
are explained by the noisy linear model (1). We estimate the values of the hidden 
variables by using MAP 

(A SIX) = p(XIA, S)p(A, S) = Pn(XIA, S)Pa(A)ps(S) 
p , p(X) p(X) 

(2) 

with Pa(A), Ps(S), Pn(N) as the a priori assumptions of the distributions. With 
MAP we estimate the most probable values for given priors after observing the data, 

A MAP , SMAP = argmaxp(A, SIX) (3) 
A,S 

Note that for maximization the constant factor p(X) can be ignored. Our first as
sumption, which is indicated in equation (2) is that the abundances are independent 
of the reflectance spectra as their origins are completely unrelated: (AO) A and S 
are independent. 

The MAP algorithm is entirely defined by the choices of priors that are guided by 
the problem of hyperspectral unmixing: (AI) A represent probabilities for each 
pixel i. (A2) S are independent for different material m. (A3) N are normal i.i.d. 
for all i, A. In summary, our MAP framework includes the assumptions AO-A3. 

2.2 Including Priors 

Priors on the abundances Positivity and normalization of the abundances can 
be represented as, 

(4) 

where 60 represent the Kronecker delta function and eo the step function. With 
this choice a point not satisfying the constraint will have zero a posteriori probabil
ity. This prior introduces no particular bias of the solutions other then abundance 

constraints. It does however assume the abundances of different pixels to be inde
pendent. 

Prior on spectra Usually we find systematic trends in the spectra that cause 
significant correlation. However such an overall trend can be subtracted and/or 
filtered from the data leaving only independent signals that encode the variation 
from that overall trend. For example one can capture the conditional dependency 
structure with a linear auto-regressive (AR) model and analyze the resulting "inno
vations" or prediction errors [3]. In our model we assume that the spectra represent 
independent instances of an AR process having a white innovation process em.>. dis
tributed according to Pe(e). With a Toeplitz matrix T of the AR coefficients we 
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can write, em = Sm T. The AR coefficients can be found in a preprocessing step on 
the observations X. If S now represents the innovation process itself, our prior can 
be represented as, 

M L L 

Pe (S) <X Pe(ST) = II II Pe( L sm>.d>.>.,) , (5) 

m=1 >.=1 >.'=1 

Additionally Pe (e) is parameterized by a mean and scale parameter and potentially 
parameters determining the higher moments of the distributions. For brevity we 
ignore the details of the parameterization in this paper. 

Prior on the noise As outlined in the introduction there are a number of prob
lems that can cause the linear model X = AS to be inaccurate (e.g. multiple 
reflections, inhomogeneous atmospheric absorption, and detector noise.) As it is 
hard to treat all these phenomena explicitly, we suggest to pool them into one noise 
variable that we assume for simplicity to be normal distributed with a wavelength 

dependent noise variance a>., 
L 

p(XIA, S) = Pn(N) = N(X - AS,~) = II N(x>. - As>., a>.l) , (6) 

>.=1 

where N (', .) represents a zero mean Gaussian distribution, and 1 the identity matrix 
indicating the independent noise at each pixel. 

2.3 MAP Solution for Zero Noise Case 

Let us consider the noise-free case. Although this simplification may be inaccurate it 
will allow us to greatly reduce the number of free hidden variables - from N M + M L 
to M2 . In the noise-free case the variables A, S are then deterministically dependent 
on each other through a N L-dimensional 8-distribution, Pn(XIAS) = 8(X - AS). 
We can remove one of these variables from our discussion by integrating (2). It is 
instructive to first consider removing A 

p(SIX) <X I dA 8(X - AS)Pa(A)ps(S) = IS-1IPa(XS- 1 )Ps(S). (7) 

We omit tedious details and assume L = M and invertible S so that we can perform 
the variable substitution that introduces the Jacobian determinant IS-II . Let us 
consider the influence of the different terms. The Jacobian determinant measures 
the volume spanned by the endmembers S. Maximizing its inverse will therefore try 
to shrink the simplex spanned by S. The term Pa(XS- 1 ) should guarantee that all 
data points map into the inside of the simplex, since the term should contribute zero 
or low probability for points that violate the constraint. Note that these two terms, 
in principle, define the same objective as the simplex envelope fitting algorithms 
previously mentioned [2]. 
In the present work we are more interested in the algorithm that results from 
removing S and finding the MAP estimate of A. We obtain (d. Eq.(7)) 

p(AIX) oc I dS 8(X - AS)Pa(A)ps(S) = IA -llps(A- 1 X)Pa(A). (8) 

For now we assumed N = M. 1 If Ps (S) factors over m , i.e. endmembers are inde
pendent, maximizing the first two terms represents the leA algorithm. However, 

lIn practice more frequently we have N > M. In that case the observations X can be 
mapped into a M dimensional subspace using the singular value decomposition (SVD) , 

X = UDVT , The discussion applies then to the reduced observations X = u1x with 
U M being the first M columns of U . 
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the prior on A will restrict the solutions to satisfy the abundance constraints and 
bias the result depending on the detailed choice of Pa(A), so we are led to con

strained ICA. 
In summary, depending on which variable we integrate out we obtain two methods 
for solving the spectral unmixing problem: the known technique of simplex fitting 

and a new constrained ICA algorithm. 

2.4 MAP Solution for the Noisy Case 

Combining the choices for the priors made in section 2.2 (Eqs.(4), (5) and (6)) with 
(2) and (3) we obtain 

(9) AMAP, SMAP = "''i~ax ft {g N(x", - a,s" a,) ll. P,(t. 'm,d",) } , 

subject to AIM = lL, A 2: O. The logarithm of the cost function in (9) is denoted 
by L = L(A, S). Its gradient with respect to the hidden variables is 

88L = _AT nm diag(O')-l - fs(sm) (10) 
Sm 

where N = X - AS, nm are the M column vectors of N, fs(s) = - olnc;(s). In (10) 

fs is applied to each element of Sm. 

The optimization with respect to A for given S can be implemented as a standard 
weighted least squares (L8) problem with a linear constraint and positivity bounds. 
Since the constraints apply for every pixel independently one can solve N separate 
constrained LS problems of M unknowns each. We alternate between gradient steps 
for S and explicit solutions for A until convergence. Any additional parameters of 
Pe(e) such as scale and mean may be obtained in a maximum likelihood (ML) sense 
by maximizing L. Note that the nonlinear optimization is not subject to constraints; 
the constraints apply only in the quadratic optimization. 

3 Experiments 

3.1 Zero Noise Case: Artificial Mixtures 

In our first experiment we use mineral data from the United States Geological Sur
vey (USGS)2 to build artificial mixtures for evaluating our unsupervised unmixing 
framework. Three target endmembers where chosen (Almandine WS479, Montmo
rillonite+Illi CM42 and Dickite NMNH106242). A spectral scene of 100 samples 
was constructed by creating a random mixture of the three minerals. Of the 100 
samples, there were no pure samples (Le. no mineral had more than a 80% abun
dance in any sample). Figure 1A is the spectra of the endmembers recovered by the 
constrained ICA technique of section 2.3, where the constraints were implemented 
with penalty terms added to the conventional maximum likelihood ICA algorithm. 
These are nearly identical to the spectra of the true endmembers, shown in fig
ure 1B, which were used for mixing. Interesting to note is the scatter-plot of the 
100 samples across two bands. The open circles are the absorption values at these 
two bands for endmembers found by the MAP technique. Given that each mixed 
sample consists of no more than 80% of any endmember, the endmember points 
on the scatter-plot are quite distant from the cluster. A simplex fitting technique 
would have significant difficulty recovering the endmembers from this clustering. 

2see http://speclab.cr . usgs.gov /spectral.lib.456.descript/ decript04.html 
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Figure 1: Results for noise-free artificial mixture. A recovered endmembers using 
MAP technique. B "true" target endmembers. C scatter plot of samples across 2 
bands showing the absorption of the three endmembers computed by MAP (open 
circles). 

3.2 Noisy Case: Real Mixtures 

To validate the noise model MAP framework of section 2.4 we conducted an ex
periment using ground truthed USGS data representing real mixtures. We selected 
lOxl0 blocks of pixels from three different regions3 in the AVIRIS data of the 
Cuprite, Nevada mining district. We separate these 300 mixed spectra assuming 
two endmembers and an AR detrending with 5 AR coefficients and the MAP tech
niques of section 2.4. Overall brightness was accounted for as explain in the linear 
modeling of section 1. The endmembers are shown in figure 2A and B in comparison 
to laboratory spectra from the USGS spectral library for these minerals [8J . Figure 
2C shows the corresponding abundances, which match the ground truth; region 
(III) mainly consists of Muscovite while regions (1)+(I1) contain (areal) mixtures of 
Kaolinite and Muscovite. 

4 Discussion 

Hyperspectral unmixing is a challenging practical problem for unsupervised learn
ing. Our probabilistic approach leads to several interesting algorithms: (1) simplex 
fitting, (2) constrained ICA and (3) constrained least squares that can efficiently use 
multi-channel information. An important element of our approach is the explicit 
use of prior information. Our simulation examples show that we can recover the 
endmembers, even in the presence of noise and model uncertainty. The approach 
described in this paper does not yet exploit local correlations between neighboring 
pixels that are well known to exist. Future work will therefore exploit not only 
spectral but also spatial prior information for detecting objects and materials. 
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Figure 2: A Spectra of computed endmember (solid line) vs Muscovite sample 
spectra from the USGS data base library. Note we show only part of the spectrum 
since the discriminating features are located only between band 172 and 220. B 
Computed endmember (solid line) vs Kaolinite sample spectra from the USGS data 
base library. C Abundances for Kaolinite and Muscovite for three regions (lighter 
pixels represent higher abundance). Region 1 and region 2 have similar abundances 
for Kaolinite and Muscovite, while region 3 contains more Muscovite. 
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