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Abstract

We model unobserved preference heterogeneity in demand systems as random Barten

scales in utility functions. These Barten scales appear as random coefficients multiply-

ing prices in demand functions. Consumer demands are nonlinear in prices and may have

unknown functional structure. We therefore prove identification of additive Generalized

Random Coefficients models, defined as additive nonparametric regressions where each

regressor is multiplied by an unobserved random coefficient having an unknown distribu-

tion. Using Canadian data, we estimate energy demand functions with and without random

coefficient Barten scales. We find that not accounting for this unobserved preference het-

erogeneity substantially biases estimated consumer-surplus costs of an energy tax.
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1 Introduction

For discretely demanded goods, unobserved preference heterogeneity is typically modeled us-

ing random coefficients, as in Berry, Levinsohn, and Pakes (BLP 1995). Allowing for substan-

tial unobserved random preference heterogeneity, as BLP does, has proven to be necessary for

realistic evaluations of the impacts of price changes on demand. In this paper we propose an

analogous way to introduce unobserved preference heterogeneity in continuous demand sys-

tems.
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The application we consider is energy demand by consumers. Energy is consumed in con-

tinuous quantities and displays substantial nonlinearities in income and price effects. Therefore,

energy cannot be appropriately modeled using discrete demand methods like BLP, and instead

requires the methodology of continuous demand systems.

We demonstrate the importance of accounting for random coefficient type unobserved pref-

erence heterogeneity in energy demand. In particular, we show that failure to do so results in

a dramatic underestimate of the variance of impacts of energy price changes across consumers.

Accounting for this variation is crucial for correctly assessing the true costs to society of energy

policies such as a carbon tax. We show that measures of social welfare that ignore this unob-

served preference heterogeneity yield substantially biased estimates of the full costs to society

of an energy tax on consumers, by failing to fully account for the tax’s distributional impacts.

One of the most commonly used methods for incorporating observable sources of preference

heterogeneity (such as the impacts of age or family size) in continuous demand systems is

via Barten (1964) scales. Barten scales deflate the prices faced by consumers, and so have a

structure that is analogous to random coefficients on prices, in that they multiply each price

in the demand system. This suggests that a natural way to introduce unobserved preference

heterogeneity into continuous demand systems is to allow random variation in the Barten scales

via random coefficients on prices.

However, randomly varying Barten scales introduces a substantial econometric difficulty

because, unlike discrete demand models such as multinomial logit, realistic continuous demand

models are highly nonlinear in prices, due to constraints such as homogeneity and Slutsky

symmetry. We therefore require a general type of random coefficients that can be identified

and estimated in nonlinear, or even nonparametrically specified, demand functions. We define

"generalized random coefficients" to be random coefficients applied to variables in a general

nonlinear or nonparametric model, in contrast to ordinary random coefficients that are applied

in linear index models.

In this paper we first provide some identification theorems, showing that the joint distrib-

ution of random coefficients can be nonparametrically identified in nonlinear, and in additive

nonparametric, regression models.

We then apply these results to identification of random Barten scales in demand systems.

This application includes proving a new theorem that nonparametrically characterizes the pref-

erences associated with demand functions having a certain additive structure. This result is

relevant because it allows us to exploit the regularity conditions required for nonparametric

identification of generalized random Barten coefficients in additive models.

Based on these identification theorems, we estimate energy demand functions for a set of

Canadian consumers. To illustrate the importance of allowing for unobserved heterogeneity

in Barten scales, we evaluate the (partial equilibrium) impacts of a hypothetical tax on energy

goods, like a carbon tax. Among other results, we find that allowing for unobserved preference

heterogeneity has a large impact on the estimated distribution of the relative costs (consumer

surplus impacts) of the tax. For example, we find that this distribution across consumers has

a standard deviation that is more than twice as large in our model compared to an analogous

model that does not allow for such unobserved preference heterogeneity.

Consider first our proposed generalization of random coefficients models. Suppose an ob-

served variable Y depends on a vector of observed regressors X = (X1, ..., X K ), and on a set
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of unobserved errors U0,U1, ...,UK that are (possibly after conditioning on other covariates Z )

independent of X . We propose a generalized random coefficients model given by

Y = G (X1U1, ..., X K UK ) or Y = G (X1U1, ..., X K UK )+U0 (1)

for some function G. We focus mainly on results for the special case of equation (1) where G

takes the additive model form

Y =
∑K

k=1
Gk (XkUk)+U0 (2)

and the functions G1, ...,G K are unknown.

In these models the vector U = (U1, ...,UK ) represents unobserved heterogeneity in the

dependence of Y on X , while U0, if present, represents measurement error or other independent

variation in Y . We provide conditions under which the joint distribution of the vector U is

nonparametrically identified. If present, U0 is assumed independent of these other errors and

has a marginal distribution that is also nonparametrically identified.

In our empirical application, Y will be a measure of energy demanded by a consumer, G

will be a Marshallian demand function, each Xk will be the price of a good k divided by a

consumer’s total expenditures, and each Uk (other than U0) will be a Barten scale. All previous

empirical implementations of Barten scales have exactly these forms, but with every Uk other

than U0 specified as deterministic functions of observable characteristics that affect preferences,

such as age or family size. In contrast, we allow the Barten scales to be random, and show their

joint distribution can be nonparametrically identified, under low level regularity conditions.

One of our identification theorems shows that if G is known, then under mild conditions

the joint distribution of the elements of U is nonparametrically identified. We also provide

a theorem giving conditions under which, in equation (2), each function Gk can be nonpara-

metrically identified (unlike our other identification result, this theorem employs an argument

analogous to identification at infinity). Combining both theorems then allows us to simultane-

ously nonparametrically identify the joint distribution of U and nonparametrically identify each

Gk function. Combining both theorems also provides some overidentification that we show can

be exploited to generalize the model a bit (relaxing the additivity assumption by adding some

interaction terms), and to some extent also relaxes our dependence on identification at infinity

type arguments.

Imposing the additivity of equation (2) directly on Marshallian demand functions yields

some implausible restrictions on preferences. However, we show that, when K = 2, these re-

strictions can be relaxed by suitably transforming Y . In particular, we prove a theorem showing

that when K = 2, if Y is defined as a logit transformed budget share, then demands will take

the additive form implied by equation (2) if and only if indirect utility has a correspondingly

additive form. This theorem also provides closed form expressions for the indirect utility func-

tion corresponding to nonparametrically specified demand functions that are additive in this

way. These closed form expressions greatly simplify our later consumer surplus and welfare

calculations.

We first provide a literature review bearing on the econometric identification of models

containing random coefficients and on the modeling of preference heterogeneity in continuous
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demand systems. We then present our main identification theorems, followed by our theo-

rem characterizing the nonparametric connection between preferences and logit transformed

demands. We next provide our empirical implementation of the random Barten scales model,

including consumer surplus calculations on the hypothetical impacts of large increase in the

price of, or taxes on, energy goods. We then conclude, although we follow this with an ap-

pendix that includes proofs of Theorems and an extensive set of analyses verify the robustness

of our empirical results to a wide variety of alternative model specifications, including adding

complexity to the utility function specification, relaxing the parametric structure on preference

and error distributions, and dealing with potential endogeneity of regressors.

2 Literature Review

We use generalized random coefficients to represent price scales in consumer demand models.

There is a long history of using such scales to empirically model observed sources of preference

heterogeneity. See, e.g., Rothbarth (1943), Prais and Houthakker (1955), Barten (1964), Pollak

and Wales (1981) and Jorgenson, Lau, and Stoker (1982), and see Lewbel (1997) for a survey.

Barten (1964) type price scales (hereafter: Barten scales) take the form of multiplying each

price in a demand function by a preference heterogeneity parameter, as in equation (1). It is

therefore a natural extension of this literature to include unobserved preference heterogeneity

in Barten scales.

We apply estimated demand functions and estimated Barten scale distributions to do welfare

analyses. In particular, we use a Barten scaled energy demand function to perform consumer

surplus calculations for an energy price change (as in Hausman 1981). Our consumer surplus

calculations can be interpreted as a variant of Hoderlein and Vanhems (2011), who introduce

unobserved preference heterogeneity into the Hausman model. The first of these two papers

introduced scalar preference heterogeneity into the model nonparametrically, while the latter

incorporated heterogeneity in the form of ordinary linear random coefficients. As an alternative

to modeling unobserved heterogeneity, Hausman and Newey (2014) provide bounds on average

consumer surplus.

In contrast, our model follows the prior consumer demand literature by including preference

heterogeneity in the form of Barten scales, differing from the prior demand literature in that our

Barten scales include unobserved heterogeneity (a smaller additional difference is the way we

also include an additive measurement error). We also apply our empirical results to estimate

Atkinson (1970) type social welfare functions, and thereby analyze the extent to which allowing

for unobserved preference heterogeneity affects estimated tradeoffs between mean impacts and

inequality of impacts of a tax or price change in energy.

Other papers that introduce nonseparable unobserved preference heterogeneity in continu-

ous demand systems include Brown and Walker (1989), Lewbel (2001), Beckert (2006) Matzkin

(2007b), and Beckert and Blundell (2008). Lewbel and Pendakur (2009) propose a continuous

demand system model in which the standard separable errors equal utility parameters summa-

rizing preference heterogeneity, and do welfare calculations showing that accounting for this

unobserved heterogeneity has a substantial impact on the results. Lewbel and De Nadai (2011)

show how preference heterogeneity can be separately identified from measurement errors. A
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related empirical model to ours is Comon and Calvet (2003), who use repeated cross sections

and deconvolution to identify a distribution of unobserved heterogeneity in income effects.

Nonparametric identification and estimation of ordinary random coefficients models is con-

sidered by Beran and Hall (1992), Beran, Feuerverger, and Hall (1996) and Hoderlein, Kleme-

lae, and Mammen (2010). Recent generalizations include random coefficient linear index mod-

els in binary choice, e.g., Ichimura and Thompson (1998), Gautier and Kitamura (2010), and

semiparametric extensions of McFadden (1974) and Berry, Levinsohn, and Pakes (1995) type

models, e.g., Berry and Haile (2009).

Ordinary random coefficients are the special case of the additive model in equation (2)

in which each Gk is the identity function. Additive models are a common generalization of

linear models; see, Hastie and Tibshirani (1990), Linton (2000), and Wood (2006), and in the

particular applications of additivity to consumer demand systems include Gorman (1976) and

Blackorby, Primont, and Russell (1978).

This paper also contributes to the literature on estimation of models with nonseparable er-

rors, in particular where those errors arise from structural heterogeneity parameters such as

random utility parameters. Older examples of such models include Heckman and Singer (1984)

and Lewbel (2001). More recent work focusing on general identification and estimation results

include Chesher (2003), Altonji and Matzkin (2005), Hoderlein, and Mammen (2007), Matzkin

(2007a, 2008), and Imbens and Newey (2009).

Fox and Gandhi (2013) provide general conditions for identification of random utility para-

meters in multinomial choice problems, including linear index models with random coefficients,

and models analogous to Berry and Haile (2009) that exploit Lewbel (2000) type special re-

gressors. They note that the only general sufficient condition known for one of their identifying

assumptions is utility functions that are real analytic functions.

A related result to ours is Hoderlein, Nesheim, and Simoni (2011), who provide a high

level condition they call T -completeness that suffices for nonparametric identification of a vec-

tor of random parameters within a known function. They provide some examples where T -

completeness can be shown to hold, such as when error distributions are in the exponential

family, or are parameterizable by a single scalar. Our model when G is known is a special case

of their general setup, and so our theorem proving identification for this model provides a new

framework where T -completeness could be satisfied. More generally, one goal of our analysis

is to provide relatively low level conditions that serve to identify our model, instead of high

level, difficult to verify conditions as in Fox and Gandhi (2013), or like T -completeness.

Perhaps the result that comes closest to our identification theorem is Matzkin (2003), which

in an appendix describes sufficient conditions for identification of a general class of additive

models with unobserved heterogeneity. The biggest difference between our results and Matzkin

(2003) is that we identify the joint distribution of U , while Matzkin assumes the elements of

U are mutually independent. However, even our model when K = 1 (the case where there

is no joint distribution to be identified) while employing a structure very similar to Matzkin’s,

does not satisfy her identification assumptions and so even in that case our Theorem is new and

cannot be derived from her results.
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3 Generalized Random Coefficient Model Identification

In this section we first consider additive models given by equation (2). Specifically, Theorem

1 below shows nonparametric identification of each function Gk and the marginal distribution

of each random coefficient Uk . We then provide, in Theorem 2, separate assumptions under

which the joint distribution of the random coefficients can be identified in the more general

model of equation (1) when G is known. We then combine both theorems to nonparametrically

identify both the joint distribution of random coefficients and the functions Gk . We also discuss

conditions for identification of some more general models.

Theorem 1 employs an argument similar to identification at infinity (actually identification at

zero), or what Khan and Tamer (2010) call "thin set identification." However, when we combine

Theorems 1 and 2 we obtain very many overidentifying restrictions, and therefore our results

do not depend solely on thin set identification.

Later sections provide the connections between these theorems and our Barten scales model

of demand. However, we note upfront that in our empirical application X is positive (though

not bounded away from zero), so it is relevant that our identification theorems allow for zero

being on the boundary of the closure of the support of X .

For any random vectors A and B let FA|B (a | b) and f A|B (a | b) denote the conditional

cumulative distribution function and conditional probability density function, respectively, of A

given B. Let ek be the K vector containing a one in position k and zeros everywhere else. Let

X(k) denote the K − 1 vector that contains all the elements of X except for Xk .

3.1 Additive Model and Marginal Distribution Identification

We first consider identification of the Gk functions and of the separate distributions of each

Uk in equation (2). Here Y is the dependent variable, X is a set of covariates having random

coefficients, and Z is a set of additional covariates that may affect the distribution of U .

ASSUMPTION A1: The conditional distribution FY |X,Z (y | x, z) and the marginal distri-

bution FZ (z) are identified. (U0,U1, ...,UK ) ⊥ X | Z and (U1, ...,UK ) ⊥ U0 | Z . Either

U0 has a nonvanishing characteristic function (conditional on Z )1 or U0 is identically zero.

supp (U0) ⊆ supp (Y ). X has rectangular support and {0, e1, ..., eK } is a subset of the closure

of supp (X).

ASSUMPTION A2: For k ∈ {1, ..., K }, (Uk, Xk) | Z is continuously distributed, and for

every r ∈ supp (XkUk) there exists an xk ∈ supp (Xk) such that fUk

(
x−1

k r
)
6= 0.

ASSUMPTION A3: For k ∈ {1, ..., K }, Gk is a strictly monotonically increasing function.

The free location and scale normalizations Gk (0) = 0 and Gk (1) = y0 for some known

y0 ∈ supp (Y ) are imposed.

Assumption A1 first assumes identification of FY |X,Z (y | x, z) and FZ (z), which would

in general follow from a sample of observations of Y, X, Z with sample size going to infinity.

1Formally, the condition on U0 regarding a nonvanishing characteristic function required for the deconvolution

step of the proof is only that the set of t ∈ R for which E
(
ei tU0

)
6= 0 is dense in R. See, e.g., Meister (2005).
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Identification of FY |X,Z (y | x, z) is actually stronger than necessary for Theorem 1, since only

certain features of this distribution are used in the proof. For example, it would suffice to only

identify FY |X,Z (y | xkek, z) for k = 1, ..., K . However, more information regarding FY |X,Z is

used in Theorem 2 and other extensions.

Assumption A1 imposes conditional independence and support requirements on U , X and

Z . The role of Z is to permit the error U0 and random coefficients Uk to be correlated with X ,

thereby allowing elements of X to be endogenous. See, e.g., the correlated random coefficients

model of Heckman and Vytlacil (1998). This allows for Heckman and Robb (1986) control

function type endogeneity, with Z being control function residuals as in Blundell and Powell

(2003, 2004). In particular, if Xk = hk

(
X(k), Q

)
+ Zk for some observed instrument vector Q

and some identified function hk (typically hk would be E
(
Xk | X(k), Q

)
), then the conditional

independence assumptions in A1 correspond to standard control function assumptions. Note

that Z can be empty, so all the results given below will hold if there is no Z , in which case U

is independent of X and so the regressors X are exogenous. The assumptions also permit Z to

be discrete, and place no restriction on the dimension of Z , although control function residuals

would generally be continuous and have dimension equal to the number of endogenous elements

of X .

Assumption A2 assumes that the regressors and random coefficients are continuously dis-

tributed. Assumption A2 also calls for a mild relative support assumption on Xk and Uk . Later

Theorem 2 will require a stronger support restriction.

The normalizations in Assumption A3 are free normalizations, because first if Gk (0) 6= 0

then we can redefine Gk (r) as Gk (r)−Gk (0) and redefine U0 as U0+Gk(0), thereby making

Gk (0) = 0. Next, given a nonzero y0 ∈ supp (Y ), there must exist a nonzero r0 such that

Gk (r0) = y0. We can then redefine Uk as r0Uk and redefine Gk (r) as Gk (r/r0), thereby

making Gk (1) = y0. These particular normalizations are most convenient for proving Theorem

1 below, but in empirical applications alternative normalizations may be more natural, e.g.,

choosing location to make E (U0) = 0.

What follows is our first identification theorem, which as noted in the literature review is

closely related to, but is not a direct corollary of, results in Matzkin (2003).

THEOREM 1: Let Y =
∑K

k=1 Gk (XkUk)+U0 and let Assumptions A1, A2, and A3 hold.

Then the functions G1,G2,...,G K and the distributions FU0|Z , FU1|Z ,...FUK |Z are all nonpara-

metrically identified.2

It follows immediately from Assumption A1 and Theorem 1 that the marginal distributions

FU0 , FU1 ,...FUK
are also nonparametrically identified. In applications we would generally as-

sume that Assumptions A2 and A3 hold for all k ∈ {1, ..., K }.

As noted earlier, Theorem 1 depends on an identification at zero argument, however, there

is considerable overidentifying information in the data that Theorem 1 does not use. For ex-

2The proof of Theorem 2 involves evaluating the distribution of Y given X where either X = 0 or all but one

element of X equals zero. This means conditioning on a set of measure zero. The same applies to Theorem 1

regarding conditioning on Z at a point if Z is continuous. Note, however, that issues of nonuniqueness of the

limiting argument (the Borel-Kolmogorov paradox) do not arise here, since the identification proof depends only

on transformations of smooth conditional density and expectation functions. It would be possible to recast the

proofs in terms of conditioning on sets ‖ X ‖ ≤ c and taking limits as c → 0.
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ample, given a Gk and FUk |Z function identified by Theorem 1, one piece of overidentifying

information would be to construct the function
∫

u∈supp(Uk |Z=z)

[
∂Gk (xku) /∂xk

]
d FUk |Z (u | z)

and verify that this equals the function ∂E (Y | X = x, Z = z) /∂xk where xk is the k′th ele-

ment of the vector x . Later Theorem 2 below will provide considerably more overidentifying

information.

In our notation, Matzkin (2003) considers models of the form Y =
∑K

k=0 Mk (S, Xk,Uk)

where Mk are unknown functions and S are additional observed covariates. Our Theorem 1 fits

this general framework with Mk (S, Xk,Uk) = Gk (XkUk) and G0 (X0U0) = U0 with X0 = 1.

As we do, Matzkin assumes that Mk is monotonic in Uk and that U and X are continous and

conditionally independent. She proposes alternative restrictions or normalizations that suffice

to identify each function Mk and distribution FUk
, but none of her proposed restrictions fit

our generalized random coefficients framework, and as a result Theorem 1 is not a corollary

of her results. Her closest result to our framework is the assumption that Mk (S, Xk,Uk) =

Nk (S, Xk −Uk) for some function Nk . By redefining Xk and Uk as ln Xk and ln Uk , we can

replace our Gk (XkUk) with gk (Xk −Uk) for a suitably redefined function gk . However, we

still cannot apply Matzkin’s result by equating Nk (S, Xk −Uk) = gk (Xk −Uk), because for

this specification Matzkin (2003) requires the presence of at least one additional regressor S that

has certain properties, and our model has no such additional regressors inside the Gk functions.3

Another point of difference between our Theorem 1 and Mazkin (2003) is that she assumes the

Uk functions are mutually (conditionally) independent, while our Theorem 1 does not impose

either conditional or unconditional independence.

A small extension to Theorem 1 is the following.

COROLLARY 1: Let Y = G (X1U1, ..., X K UK ) + U0 for any function G that includes

XkUkek in its domain, for k = 1, ..., K . Then

i) There exists functions G1, ...,G K , and G̃ such that

Y = G̃ (X1U1, ..., X K UK )+
∑K

k=1
Gk (XkUk)+U0 (3)

where the function G̃ (X1U1, ..., X K UK ) equals zero when all but one of its elements equal

zero, and

ii). Theorem 1 holds replacing Y =
∑K

k=1 Gk (XkUk)+U0 with equation (3).

In Corollary 1, the function G̃ is not identified, so the main points of this corollary are first

that any function G can be decomposed into an additive part
∑K

k=1 Gk and an interactions part

G̃, and second that the presence of the interaction function G̃ does not interfere with identifi-

cation of the Gk and FUk |Z functions. We later apply Corollary 1 in a context where G̃ can be

identified by other means.

3An alternative identifying restriction Matzkin (2003) proposes has S empty, but assumes Mk (̃xk,Uk) = Uk

for some known value x̃k . However, in our model this would require Gk (̃xkUk) = Uk , which only holds when Gk

is proportional to the identity function. One other restriction she considers is that Mk be linearly homogeneous in

Xk and Uk , which cannot hold for our Gk .
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3.2 Joint Distribution Identification

Theorem 1 only identifies the distribution function of each Uk . We now make additional as-

sumptions sufficient to identify the joint distribution FU |Z (U1,...,UK | Z). Theorem 2 below

shows identification when G is known in equation (1). We will then combine both Theorems

to obtain overidentification of equation (2). The fact that we will have overidentification should

mitigate some concern about making use of identification at zero arguments in Theorem 1.

ASSUMPTION A4: The conditional distribution FỸ |X,Z (y | x, z) and the marginal distri-

bution FZ (z) are identified. U ⊥ X | Z . The distribution of
(

U−1
1 , ...,U−1

K | Z
)

is identified

from its integer moments. supp (X) is rectangular, supp (X | Z) = supp (X), and the closure

of supp (X | Z) equals the closure of supp (U1 X1, ...,UK X K | Z ,U ).

Necessary and sufficient conditions for integer moments to identify a distribution are known,

and are weaker than the conditions needed for existence of a moment generating function. See,

e.g., Assumption 7 of Fox, Kim, Ryan, and Bajari (2012). In our empirical application it will be

reasonable to assume that each Uk is bounded and bounded away from zero, which is sufficient

and stronger than necessary.

Given U ⊥ X | Z , the support condition in Assumption A4 could be satisfied in a few

different ways. Most usefully for our application, the support condition holds if supp (X | Z) =

R
K
+ and supp (U | Z) ⊆ R

K
+ . It will also hold if supp (X | Z) = R

K and U has any support

that excludes the origin.

ASSUMPTION A5: Ỹ = G (X1U1, ..., X K UK ) for some identified function G.

Let t = (t1, ..., tK ) denote a K vector of positive integers. For a given function hρ and

vector t , define κρ,t by

κρ,t =

∫

supp(X)

hρ [G (s1, ...sK ) , t1, ..., tK ] s
t1−1
1 s

t2−1
2 ...s

tK−1
K ds1ds2...dsK (4)

The subscript ρ is present because we will later consider multiple hρ functions, in which case

ρ will index the choice of function.

ASSUMPTION A6: Given G, for any K vector of positive integers t we can find a nonneg-

ative, bounded function hρ such that κρ,t is finite and nonzero.

Assumption A6 is a rather mild restriction on G, because the function hρ is freely chosen,

based on knowing G and t . For example, in our later application where supp (X) = RK
+ , choos-

ing hρ to be nonnegative and somewhere nonzero will ensure κρ,t is nonzero, and finiteness will

follow if hρ has sufficiently thin tails when any sk goes to infinity. For example, if G (s1, ...sK )

is a polynomial, then it goes to plus or minus infinity if and only if any sk goes to infinity, so

in this case we may choose hρ to be a thin tailed density function on RK
+ to satisfy Assumption

A6. The same choice of hρ would also work if G (s1, ...sK ) equaled a polynomial multiplied

by any nonnegative bounded function, or indeed any finite sum of products of polynomials and

nonnegative bounded functions.

9



THEOREM 2: Let Assumptions A4, A5, and A6 hold. Then the joint distribution function

FU |Z (U1,...,UK | Z) is identified.

Define λρ,t (Z) by

λρ,t (Z) =

∫

X∈supp(X)

E
[
hρ
(
Ỹ , t1, ..., tK

)
| X1, X2...X K , Z

]
X

t1−1
1 X

t2−1
2 ...X

tK−1
K d X1d X2...d X K

(5)

λρ,t (Z) is an integral of a known conditional expectation, and so is identified. The proof of The-

orem 2 works by showing that the moment E
(

U
−t1
1 U

−t2
2 ...U

−tK

K | Z
)

is identified for integers

t1,...,tk by equaling the ratio of identified objects λρ,t (Z) /κρ,t . Identification of FU |Z (U1,...,UK | Z)

then follows from identification of the distribution of U−1
1 U−1

2 ...U−1
K | Z using its MGF. We

could have instead directly identified FU |Z using it’s MGF by working with negative values of

t1,...,tk , or identified its characteristic function replacing t1,...,tk with the square root of minu

one times t1,...,tk for reals t1,...,tk , but Assumption A6 would be more difficult to satisfy than

with positive integers t .

3.3 Full Model Identification and Over Identification

Here we combine Theorems 1 and 2 to completely identify equation (2), and then show how the

model is overidentified, and might be identified even without the use of Theorem 1.

COROLLARY 2: Let Y =
∑K

k=1 Gk (XkUk)+U0. Define G (X1U1, ..., X K UK ) =
∑K

k=1 Gk (XkUk).

Let Assumptions A1, A2, A3, A4, and A6 hold. Then functions G1,G2, ...,G K and the joint

distribution function FU |Z (U1,...,UK | Z) are identified.

Corollary 2 shows not just identification but substantial over identification of the model. In

particular, both Theorem 1 and Theorem 2 identify the functions FUk |Z for k = 1, ..., K , and so

overidentifying restrictions on the functions G1,G2, ...,G K and FU1|Z , ..., FUK |Z are obtained

by equating the construction of the functions FUk |Z from each of the two theorems for each k.

Additional restrictions are obtained by applying Theorem 2 using different h functions. Let

P denote a set such that, for any ρ ∈ P , Assumption A6 holds for the function hρ . It then

follows immediately from the proof of Theorem 2 that

λρ,t (z)

κρ,t
=
λρ̃,t (z)

κ ρ̃,t
for all t ∈ RK

+ and all ρ ∈ P , ρ̃ ∈ P . (6)

Theorem 2 only needed and used positive integers t , but the same equations hold for reals t . For

a given choice of t , hρ , and hρ̃ , equation (6) depends only on conditional expectations of data

that can be readily estimated, and on the functions G1, ...G K . Equation (6) therefore provides

a continuum of equations in the unknown functions G1, ...G K for each pair of ρ and ρ̃. For

example, we might take hρ to be normal density functions with mean µ and variance σ 2, and

then each value of ρ could correspond to a different
(
µ, σ 2

)
vector, providing an infinite number

of such equations for an infinite number of choices of t .
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If there exists only one set of functions G1, ...G K that jointly satisfies equation (6) for all

real vectors t and all ρ, ρ̃ ∈ P , (which is essentially a completeness assumption), then they

suffice to completely G1, ...G K . In this case Theorem 1 is not needed at all, since this result

combined with Theorem 2 would then identify the entire model.

We do not know of low level sufficient conditions to ensure that this collection of equations

(6) has a unique solution, so we do not present this result alone, without Theorem 1, as a formal

identification theorem for the functions G1, ...G K . However, this infinite set of restrictions

shows that we have far more identifying information regarding G1, ...G K and FU1|Z , ..., FUK |Z

than just the thin set based information from Theorem 1.

3.4 Models With Interaction Terms

The overidentifying information discussed in the previous subsection suggests that Theorems 1

and 2 may be combined to potentially identify richer models than equation (2). Suppose that

Y = G̃ (X1U1, ..., X K UK , ξ)+
∑K

k=1
Gk (XkUk)+U0 (7)

where the function G̃ is known, but the vector of parameters ξ is unknown, and G̃ equals zero

whenever all but one of its first K elements equals zero. Then the functions G1,G2, ...,G K are

still identified by Corollary 1. We can then identify and construct the function κρ,t (ξ) defined

by

κρ,t (ξ) =

∫

supp(X)

hρ

[
G̃ (s1, ..., sK , ξ)+

∑K

k=1
Gk (sk) , t1, ..., tK

]
s

t1−1
1 s

t2−1
2 ...s

tK−1
K ds1ds2...dsK

and it follows from equation (6) that

λρ,t (z)

κρ,t (ξ)
=
λρ̃,t (z)

κ ρ̃,t (ξ)
for all t ∈ RK

+ and all ρ ∈ P , ρ̃ ∈ P . (8)

This then provides infinitely many equations that can be potentially used to identify the finite

parameter vector ξ . If ξ can be identified from these equations, then we can then apply Theorem

2 to identify FU |Z (U1,...,UK | Z), and so the entire model will be identified.

To illustrate, consider the model

Y = G1 (X1U1)+ G2 (X2U2)+ ξ X1U1 X2U2 +U0 (9)

for some unknown scalar constant ξ , so in this example G̃ (s1, s2, ξ) = ξs1s2. Apply Theorem

1 to identify G1, G2, and FU0|Z (U0 | Z). Assume there exists a value of ρ, ρ̃, and t such

that κρ,t (ξ) /κ ρ̃,t (ξ) is strictly monotonic in the scalar ξ . This then suffices to ensure that

equation (8) has a unique solution and hence that ξ is identified. Finally, apply Theorem 2 with

G (s1s2) = ξs1s2 + G1 (s1) + G2 (s2) to identify FU |Z (U1,U2 | Z), and so the entire model

given by equation (9) is then identified.

For either equation (2) or more general models like those above, constructing an estimator

based on mimicing the steps of our identification arguments would likely be both inefficient
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and difficult to implement. Inefficiency is likely because Theorem 1 uses thin set identification

and Theorem 2 provides equations based on specific choices of the function hρ , and it is hard

to see how one might choose the function hρ to maximize efficiency. Indeed, different hρ
functions might be optimal for each moment and each function to be estimated. Also, Theorem

2 identifies the MGF of U−1
1 , ...U−1

K , so an inversion would be needed to directly obtain the

distribution function of U . Finally, sequentially applying Theorem 1 to estimate G1,G2, ...,G K

and Theorem 2 to estimate FU would ignore the overidentifying information discussed in the

previous subsection. We will therefore use parametric maximum likelihood to estimate our

models.

4 Barten Scales in Utility Functions

Let a "consumer" refer to an individual or household that maximizes a single well behaved

utility function. Let Q j denote the quantity purchased of a good j , and let S (Q,U ) denote

the direct utility function over the bundle of goods Q = (Q1, ..., Q J ) of a consumer having

a vector of preference heterogeneity parameters U = (U1, ...,UJ ). Assume S is continu-

ous, non-decreasing, twice differentiable in Q and quasi-concave in Q. Define the reference

consumer to be a consumer that has heterogeneity parameters U normalized to equal one,

and let S (Q1, ..., Q J ) denote the direct utility function of a reference consumer. Each con-

sumer chooses quantities to maximize utility subject to the standard linear budget constraint∑J
j=1 Pj Q j = M where Pj is the price of good j and M is the total amount of money the con-

sumer spends on this bundle of goods. Let W ∗
j = Q j Pj/M be the share of the money budget

M that is spent on good j (called the budget share of good j). Write the Marshallian budget

share functions that result from maximizing the reference utility function S subject to the budget

constraint as W ∗
j = ω j (P1/M, ..., PJ/M). Let V (P1/M, ..., PJ/M) denote the indirect utility

function corresponding to S, obtained by substituting Q j = ω j (P1/M, ..., PJ/M)M/Pj into

S (Q1, ..., Q J ) for j = 1, ..., J .

Our empirical application is based on Barten (1964) scales. Barten scales are a longstanding

method used to bring preference heterogeneity on the basis of observed variables into continu-

ous demand models. Barten scales are consequently a natural starting point for the incorporation

of random utility parameters representing unobserved preference heterogeneity. See, e.g., Lew-

bel (1997) for a survey of various types of equivalence scales in the consumer demand literature,

including Barten scales, and see Jorgenson, Lau, and Stoker (1982) for a prominent empirical

application of traditional Barten scales. Deaton and Muellbauer (1980) includes an extensive

discussion of parametric identification of Barten Scales.

Barten (1964) proposed the model in which consumers have utility functions of the form

S(Q1, .., Q J ; αh1, ..., αh J ) = S (Q1/αh1, ..., Q J/αh J ), where the Barten scales αh1, ..., αh J

are positive functions of observable household attributes h, such as age or family size, that

embody variation in preferences across consumers. For households with multiple members,

Barten scales can be interpreted as representing the degree to which each good is shared or

jointly consumed. The smaller the Barten scale αhj is, the greater the economies of scale to

consumption of good j within the household. This is then reflected in the demand functions,

where smaller Barten scales have the same effect on demands as lower prices. For example, if a
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couple with one car rides together some of the time, then in terms of total distance each travels

by car, sharing has the same effect as making gasoline cheaper. The more they drive together

instead of alone, the lower is the effective cost of gasoline, and the smaller is the couple’s Barten

scale for gasoline.

More generally, Barten scales provide a measure of the degree to which different households

get utility from different goods. This is how we will employ them. Although Barten scales

have long been a popular method of modeling preference heterogeneity in empirical work, up

until now Barten scales have always been modeled as deterministic functions of observable

characteristics of consumers. Here we consider using Barten scales to embody unobserved

heterogeneity of preferences across consumers.

We propose random Barten scales, assuming that consumers have utility functions of the

form S(Q1, .., Q J ; U1, ...,Uh J ) = S (Q1/U1, ..., Q J/UJ ), where U1, ...,UJ are positive ran-

dom utility parameters embodying preference heterogeneity (both observed and unobserved)

across consumers. More formally, we could write each random Barten scale as U j (h), since

for each good j , the distribution function that U j is drawn from could depend on observable

household attributes h. Barten’s original model is then the special case where the distribution

of each U j (h) is degenerate with a mass point at αhj .

Define normalised prices X j = Pj/M for each good j and rewrite the budget constraint

as
∑J

j=1 X j Q j = 1. Now S (Q1, ..., Q J ) and V (X1, ..., X J ) are the direct and indirect

utility functions of the reference consumer, and ω j (X1, ..., X J ) is the Marshallian budget

share demand function of the reference consumer. It can be immediately verified from the

first order conditions for utility maximization that a consumer will have Marshallian demand

functions of the form W ∗
j = ω j (U1 X1, ...,UJ X J ) for each good j if and only if the con-

sumer’s direct and indirect utility function equal, up to an arbitrary monotonic transformation,

S (Q1/U1, ..., Q J/UJ ) and V (U1 X1, ...,UJ X J ), respectively. Also, given a specification of

reference indirect utility V (X1, ..., X J ), the corresponding Barten scaled demand functions can

be obtained by the logarithmic form of Roy’s identity:

ω j (U1 X1, ...,UJ X J ) =
∂V (U1 X1, ...,UJ X J )

∂ ln X j

/

(∑J

`=1

∂V (U1 X1, ...,UJ X J )

∂ ln X`

)
(10)

Notice that the functional form of each ω j only depends on the functional form of S or equiva-

lently of V , so U1, ...UJ can vary independently of X1, ..., X J across consumers. These deriva-

tions are exactly those given by Barten (1964) and by later authors who applied Barten scales,

e.g., Jorgenson, Lau, and Stoker (1982), except that we put unobserved random variables U j

in place of deterministic functions αhj of observed household characteristics. Random Barten

scaled Marshallian demand functions then have precisely the form of our generalized random

coefficients given in equation (1).

4.1 Indirectly Additively Separable Utility

In our empirical application, we let ω1 be the budget share of a single good of interest, energy,

and we let ω2 denote the budget share of all other goods, corresponding to the general Barten

scaled model with J = 2. This case only requires estimating a single equation for ω1, since the
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equation for ω2 is automatically determined by construction as ω2 = 1− ω1. If we had J > 2,

then we would have J − 1 separate equations to estimate, and we would have further overiden-

tification because the same Barten scales, with the same joint distribution FU |Z (U1,...,UK | Z),

would appear in each equation.

Matzkin, (2007a), (2007b), (2008) discusses identification of systems of equations where

the number of equations equals the number of random parameters, assuming it is possible to

invert the reduced form of the system to express the random parameters as functions of ob-

servables. Although our model has J Barten scales U j and J demand equations, Matzkin’s

identification method for systems of equations cannot be applied here because there are actu-

ally only J − 1 distinct demand functions ω1,...,ωJ−1, with the remaining demand function ωJ

determined by the adding up constraint that
∑J

j=1 ω j = 1.

The decomposition of total consumption into J = 2 goods is often done in empirical work

when one wishes to focus on the welfare effects of a price change on a particular good, as we will

do empirically. See, e.g., Hausman (1981), Hausman and Newey (1995), Blundell, Horowitz,

and Parey (2010), and Hoderlein and Vanhems (2011). This construction is formally rational-

izable by assuming utility is separable into good 1 and a subutility function of all other goods.

See, e.g., Blackorby, Primont, and Russell (1978). Alternatively, Lewbel (1996) provides con-

ditions on the distribution of prices (stochastic hicksian aggregation) under which Marshallian

demand functions have the same properties with nonseparable utility as with separable utility.

With J = 2 goods, our model is W ∗
1 = ω1 (U1 X1,U2 X2) and W ∗

2 = 1 − W ∗
1 , and with

J = 2 we can rewrite equation (10) as

λ
(
W ∗

1

)
= ln

(
∂V (U1 X1,U2 X2)

∂ ln X1

)
− ln

(
∂V (U1 X1,U2 X2)

∂ ln X2

)
(11)

where λ
(
W ∗

1

)
is the logit transformation function λ

(
W ∗

1

)
= ln

[
W ∗

1 /
(
1−W ∗

1

)]
.

Due to the constraints of Slutsky symmetry, imposing additivity directly on the Marshal-

lian budget share function ω1 (X1, X2) would result in extreme restrictions on behavior. See,

e.g., Blackorby, Primont, and Russell (1978). So we instead impose additivity on the logit

transformation of ω1 (X1, X2) (later this will be relaxed to allow for interaction terms), thereby

assuming demands have the additive form

λ (W1) = λ [ω1 (U1 X1,U2 X2)]+U0 = g1 (U1 X1)+ g2 (U2 X2)+U0 (12)

Here the functions g1 and g2 are nonparametric and U0 is interpreted as measurement error

in the observed budget share W1 relative to the true budget share W ∗
1 . This implies that the

underlying demand function for good 1 is given by

W ∗
1 = ω1 (U1 X1,U2 X2) =

(
1+ e−g1(U1 X1)−g2(U2 X2)

)−1
(13)

Use of the logit transformation here, and assumed additivity in logit transformed budget

shares, has as far as we know not been considered before in the estimation of continuous demand

functions. However, this logit transformed model has a number of advantages. First, λ (W1) has

support on the whole real line, so the measurement error U0 has unrestricted support, instead

of a support that necessarily depends on covariates. Second, with this transform no constraints
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need to be placed on the range of values the nonparametric functions g1 and g2 take on. Third,

unlike all other semiparametric or nonparametric applications of the Hausman (1981) consumer

surplus type methodology (such as those cited above), a closed form expression for the indirect

utility function that gives rise Marshallian demands (13) and hence (12) exists, and is given by

Theorem 3.

THEOREM 3: The demand function ω1 satisfies λ [ω1 (U1 X1,U2 X2)] = g1 (U1 X1) +

g2 (U2 X2) for some functions g1 and g2 if and only if ω1 is derived from an indirect utility

function of the form

V (U1 X1,U2 X2) = H [h1 (U1 X1)+ h2 (U2 X2) ,U1,U2] .

for some montonic in its first element function H and some differentiable functions h1 and h2.

The functions g1, g2, h1, and h2 are related by

h1 (U1 X1)+ h2 (U2 X2) =

∫
eg1(U1x1)d ln x1 +

∫
e−g2(U2x2)d ln x2 (14)

and

g1 (U1 X1)+ g2 (U2 X2) = ln

(
∂h1 (U1 X1)

∂ ln X1

)
− ln

(
∂h2 (U2 X2)

∂ ln X2

)
(15)

Also, the functions h1 (U1 P1/M) and h2 (U2 P2/M) are each nonincreasing, and their sum is

strictly increasing in M and quasiconvex in P1,P2, and M .

The function H has no observable implications for individual consumer’s demand functions,

and is present only because utility functions are ordinal and therefore unchanged by monotonic

transformations.4 We can therefore just write the indirect utility function in Theorem 3 as

V (U1 X1,U2 X2)
−1 = h1 (U1 X1)+ h2 (U2 X2) . (16)

which takes H to be the reciprocal function (this is a convenient normalization since we later

take h1 and h2 to be increasing functions, and utility must be nondecreasing in total expendi-

tures).

Preferences V (X1, X2) are defined to be indirectly additively separable (see, e.g., Blacko-

rby, Primont, and Russell 1978) if, up to an arbitrary monotonic transformation H , V (X1, X2) =

H [h1 (X1)+ h2 (X2)] for some functions h1, h2. So an equivalent way to state the first part

of Theorem 3 is that ω1 satisfies equation (13) if and only if preferences are given by a Barten

scaled indirectly additively separable utility function. The second part of Theorem 3 then pro-

vides closed form expressions for the indirect utility function given the nonparametric (additive

in the logit transformation) demand function and vice versa.

4Later we will reintroduce the function H to construct a money metric representation of utility for use in social

welfare calculations.
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4.2 Random Barten Scales: Identification

From equation (12) we have the demand model

λ (W1) = g1 (U1 X1)+ g2 (U2 X2)+U0 (17)

Identification of this model can be obtained by Corollary 3, letting Y = λ (W1) and Gk = gk .

A condition that suffices to make the monotonicity of Assumption A3 hold is that the goods not

be Giffen goods.5 Having good 1 not be Giffen guarantees monotonicity of g1, and similarly

the restriction that good 2 is not Giffen means that ω2 is monotonic in X2, which by the adding

up constraint ω1 + ω2 = 1 implies monotonicity of g2.

Next consider Assumptions A1 and A2. As discussed earlier, Barten scales are traditionally

modeled as deterministic functions of demographic characteristics, so in our extension to ran-

dom Barten scales we take Z to be demographic characteristics. Continuity of each Xk and Uk

is straightforward. U0 is assumed to be measurement error in Y and hence independent of the

other variables. U1 and U2 are preference parameters, and it is common to assume that tastes are

determined independently of regressors in partial equilibrium analyses. In our application W1

will be energy demand by Canadian households and the regressors are scaled prices. One might

therefore be concerned about correlations between U and X caused by endogeneity of prices,

however, Canadian households comprise a very small fraction of world energy demand, and so

the likely effect of U on energy prices should be very small. In our empirical work we verify

statistically that endogeneity, if any is present due to this or other sources (such as potential

measurement error in total expenditures) appears too small to significantly change our results.

Each Xk is by construction nonnegative so to satisfy Assumption A4 we assume the support

of each Xk is R+, the closure of which includes zero. We are therefore assuming that prices

can be arbitrarily close to zero and/or total expenditures can be arbitrarily large. Given our

overidentification results, we are not relying exclusively on data in this region for identification.

Barten scales are positive, so for Assumption A4 we assume their distribution is both bounded

and bounded away from zero to ensure the required MGF exists. Finally, the earlier discussions

regarding Assumption A6 carry over directly to these demand applications.

4.3 Random Barten Scales: Specification and Estimation

Given nonparametric identification, we originally attempted to estimate the model using Sieve

Maximum Likelihood as in Chen (2007). However, we found that, given our sample size,

complexity of the model, and the dimensionality of our data, attempts to estimate more than

second or third order expansions for the unknown functions in the model yielded results that

were numerically unstable. We have therefore opted to primarily follow a parametric Maximum

Likelihood modeling strategy, though using functional forms based on series expansions. We

then follow these estimates with a battery of robustness checks and tests of model adequacy.

5A Giffen good is a good that has a positive own price elasticity in its Marshallian quantity demand function,

and hence an upward sloping demand curve. While possible in theory, very little empirical evidence has been

found for the existence of Giffen goods, and particularly not for the types of goods we consider in our application.

The only example we know of is Jensen and Miller (2008), who show that some grains may have been Giffen

goods for extremely poor households in rural China.
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Marshallian budget shares are commonly modeled as equal to, or proportional to, polyno-

mials, almost always of third or lower order in terms of flexibility. See, e.g., Lewbel (2008)

and references therein. We therefore specify the functions g1 and g2 as squared third-order

polynomials

eg1(X1) =
(
β10 + β11 X1 + β12 X2

1 + β13 X3
1

)2
(18)

e−g2(X2) =
(
β20 + β21 X2 + β22 X2

2 + β23 X3
2

)2
(19)

with constants βks for k = 1, 2 and s = 0, .., 3. We square these polynomials, analogous to Gal-

lant and Nychka (1987), to ensure that the resulting demand functions will not entail taking logs

of a negative number. This specification also has the advantage that we can analytically evaluate

the integrals that define the corresponding indirect utility function in Theorem 3. Specifically,

by equation (14) we get V−1 = h1(U1 X1)+ h2(U2 X2) where6

hk (Xk) =

∫

ln Xk

(
βk0 + βk1er + βk2e2r + βk3e3r

)2
dr (20)

As noted earlier, it is both unusual and convenient to have closed form expressions for utility

functions corresponding to arbitrary demand function components like these.

We impose the free normalization β20 = 1. This is imposed without loss of generality, be-

cause if β20 6= 0 then we can rescale the indirect utility function and redefine the remaining βks

parameters appropriately to get an observationally equivalent representation of indirect utility

that has β20 = 1. This, and assuming E (U0) = 0, are free normalizations that take the place of

the normalizations of the g functions described in Theorem 1. These observationally equivalent

normalizations are used in place of the ones used to prove Theorem 1, because they’re more

natural and easier to impose in our particular application.

Applying Theorem 3 and equation (12) to this model gives the demand function

λ (W1) = λ [ω1 (U1 X1,U2 X2, β)]+U0 (21)

= ln

[(∑3

s=0
β1s (U1 X1)

s
)2
]
− ln

[(∑3

s=0
β2s (U2 X2)

s
)2
]
+U0. (22)

We also tried estimating the models with higher-order polynomials (see the Appendix) but found

that, as noted above, the resulting parameter estimates became numerically highly unstable.

We next need to specify the distribution of U . To simplify the model, instead of letting

the dependence of U on a vector of demographic characteristics Z be entirely unrestricted, we

assume each Barten scale takes the form

Uk = αk (Z) Ũk (23)

where αk (Z) is a traditional deterministic Barten scale that depends on demographic household

characteristics Z , and the remaining random variation Ũk in each Barten scale is assumed to be

6The integral in equation (20) is readily evaluated, e.g., for our squared cubic functions we have∫ (
βk0 + βk1er + βk2e2r + βk3e3r

)2
dr =

1
6β

2
k3e6r + 2

5βk2βk3e5r + 1
4

(
2βk1βk3 + β

2
k2

)
e4r + 2

3

(
βk0βk3 + βk1βk2

)
e3r + 1

2

(
2βk0βk2 + β

2
k1

)
e2r +

2βk0βk1er + rβ2
k0 Each hk (Uk Xk) function is given by substituting r = ln (Uk Xk) into this expression.

17



independent of covariates. We model ln [αk (Z)] as linear in a vector of demographic charac-

teristics Z , having a vector of coefficients denoted θ k . This index does not include a constant

term, because the scaling of αk (Z) is freely absorbed into the βks parameters.

For our main results we specify f0, the density of U0, as a mean zero normal with variance

σ 2
0. We specify the joint distribution of the random component of the Barten scales, Ũ =(

Ũ1, Ũ2

)
, to be a log normal, specifically, the density of ln Ũ is

fln Ũ

(
Ũ1, Ũ2, σ , ρ

)
=

1

2πσ 1σ 2

(
1− ρ2

)1/2 exp




(
ln Ũ1
σ 1

)2
− 2ρ

(
ln Ũ2
σ 2

) (
ln Ũ1
σ 1

)
+
(

ln Ũ2
σ 2

)2

−2
(
1− ρ2

)


 .

(24)

As our estimation method uses numerical integration, in the empirical work we use a finite

support for the integration over Ũ . We integrate ln Ũ over the box defined by±3σ 1,±3σ 2 with

a stepsize of 0.06σ j , yielding a 10,000 point grid for numerical integration.7

To check the adequacy of these parametric error distribution assumptions, In an appendix we

later consider more general specifications in which these densities are multiplied by polynomials

as in Gallant and Nychka (1987), corresponding to the types of hermite polynomial expansions

that are commonly used nonparametric sieve density specifications. As we show later, we find

that far richer specifications of these densities, with two or three times as many parameters

as the above, yields estimates that are numerically close to the above normal and log normal

models.

For a given consumer with observed values x1 and x2, the conditional density function of

W1 is then given by

fW1|X1,X2,Z (w1 | x1, x2, z; α, β, σ , ρ) (25)

=

∫ ∞

0

∫ ∞

0

f0 [λ (W1)− λ [ω1 (α1 (z) ũ1x1, α2 (z) ũ2x2, β)] , σ 0] fŨ (̃u1, ũ2, σ , ρ) dũ1dũ2

which for the above specification of preferences is

fW1|X1,X2,Z (w1 | x1, x2, z; α, β, σ , ρ) =

(26)

∫ ∞

−∞

∫ ∞

−∞

fln Ũ (̃u1, ũ2, σ , ρ)

(2π)1/2 σ 0

exp



−1

2σ 2
0


λ (W1)− ln



(∑3

s=0 β1s (̃u1α1 (z) x1)
s

∑3
s=0 β2s (̃u2α2 (z) x2)

s

)2





2

 d ln ũ1d ln ũ2.

Assuming n independently, identically distributed observations w1i , x1i , x2i of consuming

households i , estimation proceeds by searching over parameter vectors α, β, σ , and ρ to maxi-

mize the log likelihood function

∑n

i=1
ln fW1|X1,X2,Z (w1i | x1i , x2i , zi ; α, β, σ , ρ) . (27)

7Bounding the support of Ũ in this way satisfies the assumptions of Theorem 2 that Ũ be bounded away from

zero and ensuring that a moment generating function exists.
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5 Empirical Results

5.1 Data

We estimate a baseline parametric specification as above, and with it undertake Engel curve,

cost-of-living and social welfare analyses. Later, in an Appendix, we consider the impact of

possible misspecification by undertaking a series of robustness checks. These include con-

sideration of interaction terms in the utility function (relaxing additivity in functions of X j ),

higher order polynomial demand functions, allowing for non-normal error terms with sieve-

like hermite series density expansions, checking impacts of remaining heteroskedasticity, and

controlling for possible endogeneity in X j .

We estimate the model using Canadian household expenditure microdata from the 1997 to

2008 Surveys of Household Spending. We consider households comprised of one adult (as of

31 Dec) aged 25-64 residing in cities of 30,000 or more residents in provinces other than Prince

Edward Island (due to data masking). We drop observations whose expenditures on energy

goods are zero, and eliminate a few extreme outliers by removing those whose total nondurable

expenditures are in the top or bottom percentile of the total nondurable expenditure distribution.

This leaves 9971 observations for estimation.

We consider the budget share of energy goods, W1, defined as the share of total nondurable

expenditures devoted to energy goods. Total nondurable expenditures are constructed as the

sum of household spending on food, clothing, health care, alcohol and tobacco, public trans-

portation, private transportation operation, and personal care, plus the energy goods defined

as fuel oil, electricity, natural gas and gasoline (reported in thousands of dollars). We include

eight demographic characteristics, comprising the vector Z , as observed preference shifters: a

dummy for female individuals; age of the individual (on an 8 unit integer scale for 5 year age

groups with age 40 to 44 coded as 0); calendar year minus 2002; a dummy for residence in the

francophone province of Quebec; Environment Canada ex poste records of the number of days

requiring heating and cooling in each province in each year (normalized as z-scores from the

full sample of all households in all provinces in all city sizes); an indicator that the household

is a renter (spending more than $100 on rent in the year); and an indicator that the household

received more than 10% of its gross income from government transfers. These demographic

characteristics equal zero for the reference consumer (whose utility function is S and indirect

utility function is V ): a single male aged 40-44 with less than 10% transfer income living in

owned accomodation outside Quebec in 2002 with average heating and cooling days.
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Table 1: Summary Statistics

9971 Observations mean std dev min max

logit energy share, Y -1.949 0.766 -7.140 1.005

energy share, W1 0.146 0.085 0.001 0.732

nondurable expenditure, M 15.661 7.104 2.064 41.245

energy price, P1 1.039 0.230 0.426 1.896

non-energy price, P2 0.965 0.075 0.755 1.284

energy normalized price, X1 0.082 0.049 0.015 0.570

non-energy normalized price, X2 0.077 0.045 0.020 0.476

female indicator 0.482 0.500 0.000 1.000

age group-4 0.549 2.262 -3.000 4.000

year-2002 0.363 3.339 -5.000 6.000

Quebec resident 0.168 0.374 0.000 1.000

heat days, normalized -0.102 0.990 -2.507 2.253

cooling days, normalized 0.014 1.007 -1.729 4.013

renter indicator 0.512 0.500 0.000 1.000

transfer income indicator 0.184 0.387 0.000 1.000

Prices vary by province (9 included) and year (12 years) yielding 108 distinct price vec-

tors for the underlying commodities comprising nondurable consumption. These underlying

commodity prices are normalised to equal one in Ontario in 2002. To account for the impact

on prices of individual variation in compositional differences of these aggregate commodities,

we follow the methodology of Lewbel (1989) and Hoderlein and Mihaleva (2008) in construct-

ing P1 as the Stone price index using within group household specific budget shares of energy

goods, and P2 is constructed similarly for non-energy goods. This construction has the feature of

further increasing relative price variation across households at the aggregate group level. These

price indices are normalized (a free normalization) to take the value of one in Ontario in 2002.

The budget, M , is equal to the total nondurable expenditures of the household. The regressors

X j are then given by X j = Pj/M . Finally, the regressand, Y , is the logit transformation of the

energy budget share, so Y = λ (W1). Table 1 gives summary statistics for these budget shares,

expenditures, prices, normalised prices and demographic preference (Barten scale) shifters.

5.2 Baseline: Random Barten Scales in Indirectly Additively Separable

Model

Our main analyses are based on two models. The first, Model 1, imposes the restriction that

Ũ1 = Ũ2 = 1, which makes the distribution of Ũ degenerate, and thereby makes equation (25)

simplify to

fW1|X1,X2,Z (w1 | x1, x2, z; α, β, σ 0) =

exp


 −1

2σ 2
0

[
λ (W1)− ln

((∑3
s=0 β1s (̃u1α1(z)x1)

s

∑3
s=0 β2s (̃u2α2(z)x2)

s

)2
)]2




(2π)1/2 σ 0

.

(28)
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This is just a traditional deterministic Barten scale model, having U j = α j (z), estimated using

our general functional form for energy demand. Model 1 is then compared to our real specifi-

cation, Model 2, which is equation (26) with the distribution of Ũ given by equation (24), and

therefore contains our random Barten scales U j = α j (z) Ũ j . Both models are estimated using

maximum likelihood in Stata, with likelihood functions given by substituting equation (28) or

(26) into equation (27). Estimated coefficients are given in Table 2 below.

Our estimates do not impose the theoretical restriction that the g functions be monotonic.8

Despite not imposing monotonicity, we find that our Model 2 estimates satisfy monotonicity at

97.7% of the data points in our sample.

Model 2 has three more parameters than Model 1 (σ 1, σ 2, ρ). The likelihood ratio test

statistic for the restriction that these parameters are all zero is 672, so the parameters that allow

for random Barten scales parameters are highly jointly significant. One can see in Table 2 that

they are also individually highly significant.

Figures 1 and 2 show the estimated joint distribution of lnα1(z) and lnα2(z) (logged deter-

ministic portion of the Barten scales) in Model 1 and Model 2, respectively. Summary statistics

for these distributions are provided in the bottom panel of Table 2. In both Models the estimated

distributions of lnα1(z), lnα2(z) are bimodal. The two modes are driven almost entirely by the

renter variable; conditioning on just renters or just owners produces unimodal distributions. In

Canada, most renters do not pay for their own home heating or electricity (this is included in

rents and doesn’t depend on usage), causing a ceteris paribus reduction in their energy shares

relative to home owners.

Looking at the bottom of Table 2, we see in both models that the standard deviation of

lnα2(z) is much larger than that of lnα1(z). This indicates that heterogeneity in preferences due

to observables is larger for non-energy than for energy goods. This is not surprising, it just says

that people vary more (based on observable characteristics) in their taste for non-energy goods

than in their taste for energy goods. Unconditionally, lnα1(z), lnα2(z) are slightly negatively

correlated in both models. However, conditional on rental tenure, the deterministic components

of Barten scales are strongly positively correlated.

8In a parametric setting like ours, failing to impose inequality constraints on estimation that are satisfied by the

true model does not affect standard limiting distribution theory, assuming that the true parameter values do not on

the boundary of the parameter space.
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Table 2: Estimated Parameters

Model 1 Model 2

llf=−10043.1 llf=−9706.9

Parameter Estimate Std Err Estimate Std Err

β10 0.145 0.010 0.185 0.007

β11 8.113 0.487 7.623 0.287

β12 -37.563 2.924 -32.871 2.147

β13 51.576 5.650 40.630 4.390

β21 2.484 0.568 1.805 0.266

β22 -1.743 0.663 1.053 0.314

β23 0.152 0.141 -0.996 0.139

α1 female -0.214 0.031 -0.228 0.015

agegp 0.002 0.009 0.013 0.004

time -0.013 0.004 -0.003 0.002

PQ 0.085 0.043 0.043 0.021

heat 0.036 0.016 0.026 0.008

cool -0.062 0.015 -0.035 0.007

renter -0.292 0.058 -0.440 0.026

social 0.034 0.038 0.054 0.020

α2 female -0.130 0.076 -0.117 0.010

agegp -0.068 0.023 -0.038 0.002

time 0.018 0.010 0.044 0.001

PQ 0.402 0.100 0.217 0.017

heat 0.015 0.040 -0.021 0.008

cool -0.077 0.043 -0.014 0.006

renter 0.943 0.155 0.605 0.008

social -0.085 0.091 -0.110 0.011

σ 0 0.663 0.005 0.469 0.009

σ 1 0.165 0.036

σ 2 1.336 0.011

ρ 0.883 0.100

std dev ln(α1) 0.197 0.252

ln(α2) 0.568 0.380

correlation ln(α1), ln(α2) -0.479 -0.700

(all obs) ln U1, ln U2 0.293

correlation ln(α1), ln(α2) 0.426 0.105

(renter=0) ln U1, ln U2 0.699

correlation ln(α1), ln(α2) 0.420 0.087

(renter=1) ln U1, ln U2 0.691

In Model 1 the log Barten scales equal lnα j (z), but in Model 2 the log Barten scales are

given by ln U j = lnα j (z) + ln Ũ j . The components lnα j (z) and ln Ũ j are, respectively, the

observed deterministic and unobserved random components of these Barten scales. Thus the

mean, variance, and correlations of the ln Ũ j terms in Model 2 are directly comparable to the
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corresponding statistics of the lnα j (z) terms. The estimated parameters of the distribution of

ln Ũ j show some similar features to that of lnα j . The standard deviation ln Ũ2 (σ 2) is much

larger than that of ln Ũ1 (σ 1), so both observed and unobserved Barten scales vary more across

consumers for nonenergy goods than for energy goods. Likewise, ln Ũ1 and ln Ũ2 are positively

correlated (like lnα1 and lnα2 after conditioning on the rental dummy). That the estimated

effects of the unobserved random components of Barten scales have similar patterns to the

estimated effects of observed preference shifter on Barten scales is a reasuring indicator of

the sensibility and reasonableness of our model. Overall, we find that unobserved preference

heterogeneity is about important as observed preference heterogeneity in driving variation in

Barten scales. The estimated joint distribution of ln U1, ln U2, summing the effects of lnα j (z)

and ln Ũ j , is shown in Figure 3. Comparing Figures 1 and 3 shows that accounting for unob-

served heterogeneity substantially increases the estimated total heterogeneity in tastes across

individuals.

The unobserved preference heterogeneity terms Ũ j partly pick up unobserved variation that

would otherwise be subsumed by the non behavioral error term U0, making the estimated stan-

dard deviation of U0 fall from 0.666 in Model 1 to 0.469 in Model 2. But more significantly, U1

and U2 also pick up a substantial portion of what would otherwise be unexplained heteroskedas-

ticity in demand. This can be seen in a variety of ways. For example, appropriately modeling

the heteroskedasticity driven by unobserved preference heterogeneity should yield increased

precision in parameter estimates, just as appropriate generalized least squares estimation usu-

ally reduces standard errors relative to ordinary least squares estimation in regression models.

Empirically, we do see an improvement in estimation precision, comparing across the columns

in Table 2. The parameter estimates in Model 2 generally have standard errors about 20 per

cent smaller than those of model 1. Other evidence that random Barten scales explain a sub-

stantial portion of both the size and systematic components of otherwise unexplained variability

in demand (by making U0 both smaller and more homoskedastic) is provided in the Appendix.

Table 3 gives summary statistics on predicted values of the logit transformed budget share

Y and of the budget share itself, W1. To show the impact of various model components on

these fits, we first evaluate predicted Y and W1 at reference level prices P = 1, reference level

random Barten scale components Ũ j = 1, average demographics α j and observed budgets M .

The result, given in the first row of Table 3, shows the estimated impact of just varying total

expenditures M . Then, in the succeeding rows of Table 3, we add back observed variation

first due to observed demographics, then to prices, and finally in the unobserved preference

heterogeneity terms Ũ j .

Since Model 1 has just a single additively separable error term, the average prediction from

Model 1 including variation from all regressors (M, α j , P) exactly equals the mean of the

observed Y (−1.949). The predicted average mean of Y in Model 2 is somewhat larger for the

cases where we don’t account for unobserved preference heterogeneity Ũ j , with Y averaging

about −1.78. But, when we account for unobserved preference heterogeneity (in the bottom

row), Model 2 predicts the average −1.997 which is very close to the mean of the observed Y .

Looking across rows in Table 3 shws that the predictions of Models 1 and 2 have about

the same standard deviation when Ũ j is ignored, but the standard deviation of predicted Y in

Model 2 more than doubles to 0.896 when variation in Ũ j is accounted for. Predicted energy

budget shares have a similar property. When including all sources of variation, the standard
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deviation of Model 1 predictions of W1 is 0.044, while that of Model 2 prediction is 0.065.

Comparing these Table 3 predictions to Table 1 shows that, for both Y and W1, Model 2 gives

closer predictions to the actual empirical standard deviation of these variables than does Model

1.

Table 3: Estimated Energy Budget Shares

Logit Budget Shares Y Model 1 Model 2

Mean Std Dev Mean Std Dev

M, α j = α j , P = 1, Ũ j = 1 -1.943 0.251 -1.779 0.250

M, α j , P = 1, Ũ j = 1 -1.978 0.397 -1.799 0.379

M, α j , P, Ũ j = 1 -1.949 0.387 -1.775 0.371

M, α j , P, Ũ j -1.997 0.896

Budget Shares W1

M, α j = α j , P = 1, Ũ j = 1 0.128 0.026 0.147 0.030

M, α j , P = 1, Ũ j = 1 0.128 0.044 0.148 0.048

M, α j , P, Ũ j = 1 0.131 0.044 0.151 0.047

M, α j , P, Ũ j 0.137 0.065

Figure 4 shows estimated Engel curves from the models, showing W1 as a function of ln M .

These are estimated demand functions evaluated at the reference price vector P1 = P2 = 1 and

at average demographics α j . Model implies a different Engel curve for every value that Ũ1 and

Ũ2 can take on. The single Engel curve for Model 1, which imposes Ũ j = 1, is shown as a thick

gray line, while that for Model 2 evaluated at Ũ j = 1 is shown as a thick black line. To illustrate

the range of Engel curves implied by our model, we also evaluate Model 2 at each quartile of

the distribution of Ũ1 paired with each quartile of the distribution of Ũ2, for a total of nine pairs

of values. This yields eight Engel curves (in addition to the one thick black line), which are

depicted by thin gray lines in Figure 4. Finally, we show the estimated marginal density of ln M

(divided by 10 to fit in the graph) as a thick light gray line at the bottom of Figure 4.

On average, richer consumers tend to spend a smaller fraction of their budget on energy

goods than poorer consumers. This can be seen in the mostly downward slope of the Engel

curves in Figure 4. Comparing these curves to the depicted density function of ln M shows that

only a small fraction of all consumers, the poorest ones, are on the upward sloping parts of these

curves.

A striking feature of Figure 4 is that for each given value of M , there is substantial variation

in the level and slope of Engel curves, due entirely to variation in Ũ j . To reduce clutter we did

not include standard error bars on this graph, but the differences between these estimated Engel

curves are statistically significant. For example, at the mean value of ln M (ln M = 2.64),

the top Engel curve displayed is that of the top quartile of both Ũ1 and Ũ2, and the bottom

Engel curve is that of the bottom quartile of both Ũ1 and Ũ2. The estimated levels of these

Engel curves at ln M = 2.64 are 0.166 and 0.104, respectively, with standard errors of 0.002

and 0.008, repectively. The sample value of the z-test statistic testing the hypothesis that these

levels are the same is 7.4, so the levels are both economically and statistically significantly

different from each other. The estimated derivatives of the budget shares with respect to ln M

at this level of ln M are −0.116 and -0.017, respectively, and the sample value of z-test statistic

for the hypothesis that these slopes are the same is 11.4, strongly rejecting this hypothesis.
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Thus variation in the random components Ũ j of Barten scales, corresponding to unobserved

variation in tastes across consumers, yields significant differences in both the levels and slopes

of the estimated Engel curves.

Figure 4 showed the effects on W1 of just the random component of the Barten scales at all

different budget levels M . In contrast, Figure 5 illustrates the total effect of Barten scales on W1.

Specifically, Figure 5 shows a contour plot of the joint distribution of W1 (predicted by Model

2) and observed M , evaluated at reference prices P1 = P2 = 1 and observed demographics z.

The vertical variation in this graph therefore shows the estimated variation in W1 due to Barten

scales (both observed and unobserved components) at different M levels. This wide variation

in tastes will have important implications for welfare analyses below.

Taken together, all of the above results show that Model 2’s inclusion of random Barten

scales accounts for more and richer variation in observed behaviour than does Model 1. This

is due to the fact that budget shares are highly variable and heteroskedastic, and Model 1 treats

this variance and heteroskedasticity entirely as meaningless variation in a nonbehavioral error

term, while Model 2 captures much of this variation in a behaviorally sensible, structural way,

via random Barten scales.

The next subsections show the price implications of our estimates and provide welfare cal-

culations, based primarily on Model 2. Additional checks of the adequacy of the specification

of Model 2 and robustness of our results against a range of more general alternatives is provided

in the Appendix

5.3 Consumer Surplus Effects of a Carbon Tax

We now apply our model to evaluate the partial equilibrium effects of a large change in the

price of energy, as might result from a carbon tax.9 Using equation (35), we have a closed form

expression for indirect utility. We can therefore directly compute consumer surplus effects, just

by numerically inverting the indirect utility function (35) to obtain the cost of living impact

of a price change. Without Theorem 3, we would otherwise require numerical approximation

instead of exact solutions such as in Vartia (1984), or we need to numerically solve a differential

equation as in Hausman and Newey (1995), but such a solution would need to be calculated for

every value on the continuum of points that U1 and U2 can take on.

Recall the indirect utility function defined over normalized prices X j and Barten scales U j

is V (U1 X1,U2 X2) = V (U1 P1/M,U2 P2/M). For an individual facing initial prices P1, P2,

having total expenditures M , and having preferences indexed by Barten scales U1,U2, the cost-

of-living impact of moving to new prices P1, P2 is π
(
U1,U2,M, P1, P2, P1, P2

)
, defined as

the solution to

V (U1 X1,U2 X2) = V

(
U1 P1

M
,

U2 P2

M

)
= V

(
U1 P1

πM
,

U2 P2

πM

)
.

9Our model is not a general equilibrium model, so we are only estimating the consumer’s responses to a

change in energy prices. Moreover, these should only be interpreted as short run responses, since in the longer

run consumers could change their energy elasticities and demand by, e.g., buying more energy efficient cars and

appliances. Also, we just consider a change in the overall price of energy, and so do not consider impacts of

possible changes in the composition of energy goods.
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Here π is the proportionate change in costs M needed to compensate for the price change, that

is, the amount by which M would need to be scaled up to bring an individual facing prices

P1, P2 (and having preferences given by U1,U2) back to the same indifference curve they were

on when facing prices P1, P2.

The cost-of-living index π should be weakly positive for a price increase, reflecting the

fact utility is decreasing in normalized prices X j and that the Slutsky matrix is symmetric

and negative semidefinite. Our model and associated estimator imposes all of these conditions

except negative semidefiniteness. However, this condition turns out to be satisfied at all but six

of our data points in Model 2 (the condition is violated at 36 points in Model 1).

To show price effects clearly, we consider a large price change: a 50% increase in the

price of energy. This price increase is chosen to approximate the effect of a $300 per ton

CO2 tax (see, e.g., Rhodes and Jaccard 2014)10. We solve for the π function given the initial

price vector P1 = P2 = 1 and the new price vector P1 = 1.5, P2 = 1. Figure 6 shows the

resulting estimated joint distribution (contour plot) of lnπ and ln M from Model 2 evaluated

at the observed demographics Z and budgets M . This plot is constructed by calculating the

surplus for each observation in the data, with draws from the estimated distribution of Ũ1, Ũ2,

and using observed values of the preference shifters Z .

Analogous to Table 3, to assess the contribution of variation in π due to observed and un-

observed preference heterogeneity, we also calculate the π distribution imposing Ũ j = 1 and

imposing α j = α j , and do so for both Models 1 and 2. Table 4 gives summary statistics (means

and standard deviations) of these distributions. For ease of presentation this Table reports per-

cent changes in cost of living, that is, 100 (π − 1). Standard errors for these statistics that

account for the sampling variability of the parameter estimates (estimated via simulation) are

provided in italics.

Table 4: Cost of Living Impacts: 50% Energy Price Increase

Per Cent Increase Model 1 Model 2

π − 1, per cent Estimate Std Err Estimate Std Err

α j = α j , Ũ j = 1 Mean 5.34 0.22 5.66 0.17

Std Dev 1.26 0.06 1.30 0.05

α j , Ũ j = 1 Mean 5.31 0.24 5.64 0.17

Std Dev 1.85 0.21 1.69 0.08

α j , Ũ j Mean 5.37 0.20

Std Dev 4.31 0.46

It has long been known that first order approximations to the cost of living effects of mar-

ginal price changes can be evaluated without estimating demand functions, essentially by ig-

noring substitution effects (see, e.g., Stern 1987). These theoretical results have been used to

argue that demand function estimation is not required for marginal policy analyses. In our data,

the average value of the budget share for energy is 0.146, so if there were no substitution effects

in response to a price change, doubling the price of energy would increase the cost of living

by 7.3 per cent. This would be the first order approximation based estimate of π . However,

10British Columbia has a CO2 tax. It charges 6.7 cent/liter of gasoline for 30$/ton. A 67 cent/liter CO2 tax is

about half as large as the pump price of gasoline in 2002 (the base year for this analysis).
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the estimated cost-of-living impacts given in Table 4, averaging about 5.4 per cent, are much

smaller than 7.3 per cent, showing substantial relative price substitution effects. This difference

of nearly 2 percentage points is very large relative to the standard error of estimated means in

Models 1 and 2 of about 0.20 percentage points, so the hypothesis that the model estimates have

a mean of 7.3 is strongly rejected at conventional levels. These results supports findings in, e.g.,

Banks, Blundell, and Lewbel (1996) that, contrary to the first order approximation theory, it is

empirically necessary to estimate demand functions and associated price elasticities to properly

evaluate the consumer surplus and welfare effects of large price changes. Moreover, one goal of

an energy tax would be to reduce energy consumption (a substitution effect), so it’s important

to account for the impact on welfare of this reduction.

Models 1 and 2, with or without variation in α j or Ũ j , deliver similar estimates of the

mean effects of the energy tax on cost of living. However, as can be seen by going down the

columns of Table 4, each source of variation increases the estimated standard deviation of π ,

and in particular the inclusion of the random Barten scale components Ũ j in Model 2 more than

doubles the estimated standard deviation of π across consumers (this difference is statistically

significant as well as being economically large; the z-test statistic for the hypothesis that these

standard deviations are the same has value of 6.1). Though less substantial economically, the

difference in mean effects between the Model 2 estimates without and with unobserved prefer-

ence heterogeneity (5.64% and 5.37%, respectively) is also statistically significant with a z-test

statistic of 3.9.

The large estimated standard deviation of π in Model 2 (which is mostly due to unobserved

variation in tastes Ũ j ) has substantial welfare implications. The larger is the variation in π , the

larger is the variation in impacts of an energy tax. Although the average consumer would need

to have their budget M increased by 5.37% to compensate for the tax, some consumers (those

near the bottom of Figure 6) would only need a slight increase in their budget to be made whole,

while others (those near the top of Figure 6) would be greatly harmed by the tax, needing an

over 10% increase in M to compensate.

What makes this substantial variation in cost of living impacts particularly relevant econom-

ically is that it mostly impacts poorer consumers. As can be seen in Figure 6, both the mean

and the variation in cost of living impacts is larger at low values of M than at high values, so

those consumers who are hurt the most by the tax in percentage terms are also predominantly

the poorer consumers, who can least afford the increase in costs. Not only do richer consumers

spend a smaller fraction of their budget on energy goods (as seen in Figure 4), but they also

appear to have a greater ability to substitute away from energy when the relative price of energy

increases.

5.4 Social Welfare Implications of a Carbon Tax

The above analysis showed the distribution across consumers of the cost of living effects of an

energy tax. We now evaluate the implications of these results for aggregate welfare, based on a

range of social welfare functions. To evaluate social welfare functions, we require interperson-

ally comparable, cardinalized measures of individual utility. We follow the standard procedure

in this literature of constructing money metric cardinalizations of utility. A money metric utility

cardinalization Ṽ of a given indirect utility function V is the monotonic transformation of V

27



having the property that, evaluated at base prices P1, P2, the function Ṽ = M . We therefore

may define cardinalized utility Ṽ by

Ṽ (U1 P1/M,U2 P2/M) = H
[
V (U1 P1/M,U2 P2/M) ,U1,U2, P1, P2

]

where, by definition, the monotonic transformation function H is chosen so that

Ṽ
(
U1 P1/M,U2 P2/M

)
= M

for all values of M,U1,U2. We let base prices be P1 = P2 = 1. Strict monotonicity of H as a

function of V , and of V as a function of M , ensures that such a function H exists and that the

resulting function Ṽ is unique.

The money-metric function Ṽ gives a utility level that may be interpreted as the number

of dollars that, at base prices, delivers the same level of utility that the consumer can achieve

with a budget of M dollars when facing prices P1, P2. Attained utility depends on U1,U2, so

the function H that yields Ṽ will likewise depend on these Barten scales. This construction of

a cardinalized, interpersonally comparable utility function Ṽ as a transformation of V , while

required for evaluating social welfare, has no observable affects on demand functions. It is

therefore not possible to test the assumption (standard in this literature) that welfare can be

evaluated based on a social welfare function of the form S(Ṽ1...ṼN ), where Ṽi denotes the

money metric utility of consumer i .

The range of social welfare functions that we consider are in the Atkinson (1970) Mean-of-

Order-r class, defined by

Sr (Ṽ1...ṼN ) =

(
1

N

∑(
Ṽi

)r
)1/r

for r 6= 0, and Sr (Ṽ1...ṼN ) = exp

(
1

N

∑
ln Ṽi

)
for r = 0.

We use r = −1, 0, 1 corresponding to the harmonic, geometric and arithmetic mean of individ-

ual money metric utility. The resulting social welfare function S1 is inequality neutral, while S0

and S−1 are inequality averse. We compute proportionate welfare losses 4Sr equal to welfare

at base prices minus welfare at new prices divided by welfare at base prices. The money metric

at base prices (P1 = P2 = 1) equals the budget Mi assigned to each consumer. Letting Ṽi be

the money metric at new prices P1 = 1.5, P2 = 1, we have

4Sr =
(
Sr (M1...MN )− Sr (Ṽ1...ṼN )

)
/Sr (M1...MN )

A first cut at welfare analysis is to employ a first-order approximation of the money metric.

A standard approximation of the individual money-metric utility associated with a given price

vector, which in our case is (1.5, 1), is given by Ṽi = Mi/(W1i ∗ 1.5 + (1 − W1i ) ∗ 1). This

is just the Laspeyres index approximation to the true cost of living index for consumer i . The

welfare loss associated with this approximate money metric accounts for some heterogeneity

across individuals (because W1i differs across individuals) but does not account for substitution

responses. The arithmetic mean welfare index computed using this approximate money-metric

utility shows a welfare loss of 6.30 per cent. The inequality-averse geometric and harmonic

mean welfare indices show higher welfare losses of 6.74 and 7.18 per cent, respectively. This
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is because energy budget shares W1i are negatively correlated with budgets Mi , so the welfare

indices that upweight poorer households show a greater welfare loss associated with lower

budgets and hence with higher energy budget shares.

These approximate social welfare loss numbers can be compared with the estimates from

Models 1 and 2, provided in Table 5. Standard errors accounting for the sampling variability of

the estimated parameters were generated via simulation and are shown in italics. In Table 5 we

account for both substitution effects and heterogeneity using our models. In the upper panel,

we account for only observed heterogeneity using the estimates of Models 1 and 2. In the

lower panel of Table 5, we also account for unobserved preference heterogeneity (the random

component of Barten scales) using Model 2.

Table 5: Social Welfare Loss: 50% Energy Price Increase

Model 1 Model 2

Welfare Loss, Per Cent r Estimate Std Err Estimate Std Err

α j , Ũ j = 1

Arithmetic Mean 1 4.81 0.19 5.14 0.14

Geometric Mean 0 5.27 0.26 5.43 0.16

Harmonic Mean -1 6.14 0.54 5.48 0.17

α j , Ũ j

Arithmetic Mean 1 4.91 0.17

Geometric Mean 0 5.37 0.22

Harmonic Mean -1 5.85 0.30

Every estimate in Table 5 is lower than its corresponding first-order approximation. For ex-

ample, the welfare loss given the geometric mean welfare index is about 1.5 percentage points

lower (about one one fourth lower) than the first-order approximation. This shows that ac-

counting for substitution effects has a substantial effect on welfare. All the estimates also show

welfare losses increasing with the inequality aversion of the welfare index. As discussed above,

this is primarily due to the downward sloping Engel curves as seen in Figure 4.

Another feature seen in Table 5 is that the estimates based on Model 2, which account for

unobserved preference heterogeneity, have smaller standard errors. For the more inequality-

averse welfare measures, this improvement in precision is substantial, e.g., the estimated har-

monic mean welfare loss for Model 2 has about half the standard error of that for Model 1. This

is due to the fact that the Model 2 treatment of unobserved heterogeneity increases precision of

estimated parameters over model 1, as discussed earlier.

Finally, we find that dealing with unobserved preference heterogeneity affects both the level

and pattern of estimated welfare losses. There are two ways in which the misspecification

of Model 1 compared to Model 2 matters for welfare analysis. First, Model 2 Engel Curves

are on average less downward sloping than those of Model 1. This means that, even without

accounting for unobserved preference heterogeneity, when we consider welfare functions that

are very inequality-averse, Model 1 will tend to overstate welfare losses. For example, in the

upper panel of Table 5, the harmonic mean index shows a welfare loss of 6.14 per cent for

Model 1 but only 5.48 per cent for Model 2.

A second difference is that Model 2 has greater variance in individual utility losses than
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does Model 1, and inequality-averse welfare functions will tend to penalize such variance. This

effect can be seen in the right side of Table 5 comparing the upper and lower panels. In the

lower panel we account for unobserved preference heterogeneity, which increases the welfare

loss for inequality-averse welfare functions. However, this increase is relatively modest.

The welfare loss in Model 2 not accounting for unobserved preference heterogeneity (top

panel) is 0.34 percentage points higher with the harmonic versus the arithmetic mean welfare

index. Because these welfare loss measures are highly positively correlated, this difference

is statistically significant, with a standard error of 0.05. Similarly, due to all of the above

described effects, the Model 1 estimates of welfare are substantially biased, especially when

the welfare index is inequality-averse. In the bottom panel of Table 5, where we add variation

due to unobserved preference heterogeneity, the difference in estimated welfare loss measures

is 0.94 percentage points, with a standard error of the difference of 0.15. Thus, appropriately

accounting for unobserved preference heterogeneity dramatically increases the sensitivity of

estimated welfare loss to the inequality-aversion of the welfare index.

Overall, our energy tax experiment yields two major conclusions. First, accounting for unob-

served preference heterogeneity has a big impact on how much variation we find in the impacts

of price changes. In our example, the standard deviation of cost-of-living impacts due to a 50%

energy tax is more than doubled by accounting for unobserved preference heterogeneity by ran-

dom Barten scales. Second, we find that accounting for unobserved preference heterogeneity

changes welfare analyses in a variety of ways, and in particular decreases estimated welfare

loss when the welfare index is inequality-averse.

In the Appendix we provide a large number of comparisons of our Model 2 against a variety

of more general specifications and modeling assumptions. These results confirm that the pat-

terns of price, expenditure, and welfare effects summarized above are robust to a wide range of

possible sources of specification error.

6 Conclusions

We show nonparametric identification of a generalized random coefficients model. We also

provide an empirical application in which the generalized random coefficient structure arises

naturally from extending an existing commonly used economic model of observed heterogene-

ity to a model allowing for unobserved heterogeneity. In this Barten scales application, we

allow for general forms of unobserved preference heterogeneity that are shown to be important

for empirically evaluating the welfare effects of potential policy interventions such a carbon tax.

For example, we find that accounting for unobserved preference heterogeneity more than dou-

bles the estimated variation in impacts of an energy tax (as measured by the standard deviation

across consumers of the cost of living impact of the tax).

Accounting for unobserved preference heterogeneity via Barten scales is economically im-

portant because, by including them, we reveal that the variance in the impacts of energy prices

is particularly large among poorer consumers. This can be seen in Figure 6, where the variation

in cost of living impacts of an energy price increase is largest at low values of total expenditures.

This figure also confirms the previously known result that mean cost of living impacts of energy

price increases are also higher for the poor. Roughly, these results say that not only are energy
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taxes regressive on average (the previously known result), but also the degree of regressivity

varies more among poorer consumers than among the rich.

This result has important implications for social welfare. Empirically, the unobserved pref-

erence heterogeneity revealed by our model strongly interacts with inequality aversion in social

welfare calculations, reversing conclusions that would have been made using almost all previous

demand models, which fail to account for such preference heterogeneity.

Useful areas for further work on the theory of generalized random coefficients would be

finding conditions under which Theorem 2 alone could be used to identify the model without

the identification at zero assumptions used in Theorem 1, formalizing the extent to which overi-

dentification stemming from these theorems might be used to identify more general structures

or to test the model, and investigating how the assumptions for identification might interact with

assumptions needed for possible nonparametric estimators such as sieve maximum likelihood.

Our application focuses on consumers with single utility functions, that is, unitary house-

holds. A possible extension would be to consider collective household models. For example,

Barten scales are used in the collective household models of Browning, Chiappori, and Lewbel

(2013). It would also be useful to extend our carbon tax analyses into a general equilibrium set-

ting, which would affect the conditional independence assumptions we used for identification

of the random Barten scales.

7 Appendix A: Proofs

Before proving Theorem 1, we prove a couple of lemmas.

LEMMA 1: Let Ỹk = Gk (XkUk) where Gk is a strictly monotonically increasing, function.

Assume Uk ⊥ X | Z . The marginal distributions of Uk and Xk are continuous. The support of

Xk includes zero, the support of Uk is a subset of the support of Ỹk , and for every r such that

Gk (r) is on the support of Ỹk there exist an xk 6= 0 on the support of Xk such that fUk

(
x−1

k r
)
6=

0. Assume the location and scale normalizations Gk (0) = 0 and Gk (1) = y0 for some known

y0 in the support of Ỹk are imposed. Let r = Hk (ỹk) be inverse of the function Gk where

ỹk = Gk (r). Assume Hk is differentiable. Define X(k) to be the vector of all the elements of X

except for Xk . Define the function Sk (ỹk, x̃) by

Sk (ỹk, x̃) = E
[

FỸk |Xk ,X(k),Z

(
ỹk | x̃−1, 0, Z

)]
=

∫

supp(Z)

FỸk |Xk ,X(k),Z

(
ỹk | x̃−1, 0, z

)
fz (z) dz.

Then, for all xk and ỹk such that xk 6= 0 and fUk

(
x−1

k Hk (ỹk)
)
6= 0,

Hk (ỹk) = sign


sign (xk)

∂Sk

(
ỹk, x−1

k

)

∂x−1
k


 exp



∫ ỹ

y0

xk∂Sk

(
ỹk, x−1

k

)
/∂ ỹ

∂Sk

(
ỹk, x−1

k

)
/∂x−1

k

d ỹk


 (29)

Note that if Z is discretely distributed, then the integral defining Sk becomes a sum. If Z is

empty (so Uk and X are unconditionally independent) then Sk (ỹk, x̃) = FỸk |Xk ,X(k)

(
ỹk | x̃−1, 0

)
.
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The main implication of Lemma 1 is that if the distribution FỸk |X,Z
is identified, then the func-

tion Hk is identified by construction.

PROOF of Lemma 1: For any ỹk = Gk (xkUk) and any xk > 0 we have

FỸk |Xk ,X(k),Z
(ỹk | xk, 0, z) = Pr

(
Gk (xkUk) ≤ ỹ | Xk = xk, X(k) = 0, Z = z

)

= Pr
(

Uk ≤ x−1
k Hk (ỹ) | Xk = xk, X(k) = 0, Z = z

)

= FUk |Xk ,X(k),Z

[
x−1

k Hk (ỹ) | xk, 0, z
]
= FUk |Z

[
x−1

k Hk (ỹ) | z
]

where the last equality uses Uk ⊥ X | Z . Similarly for any xk < 0 we have

FỸk |Xk ,X(k),Z
(ỹk | xk, 0, z) = Pr

(
Gk (xkUk) ≤ ỹ | Xk = xk, X(k) = 0, Z = z

)

= Pr
(

Uk ≥ x−1
k Hk (ỹ) | Xk = xk, X(k) = 0, Z = z

)

= 1− FUk |Z

[
x−1

k Hk (ỹ) | z
]

Together these equations say

FUk |Z

[
x−1

k Hk (ỹk) | z
]
= I (xk < 0)+ sign (xk) FỸk |Xk ,X(k),Z

(ỹk | xk, 0, z) .

So

FUk

[
x−1

k Hk (ỹk)
]
=

∫

supp(Z)

[
I (xk < 0)+ sign (xk) FỸk |Xk ,X(k),Z

(ỹk | xk, 0, z)
]

f (z) dz.

= I (xk < 0)+ sign (xk) S
(

ỹk, x−1
k

)

It follows that for any xk 6= 0,

∂S
(

ỹk, x−1
k

)

∂x−1
k

= sign (xk) fUk

[
x−1

k Hk (ỹk)
]

Hk (ỹk)

and

∂S
(

ỹk, x−1
k

)

∂ ỹk

= sign (xk) fUk

[
x−1

k Hk (ỹk)
]

x−1
k

∂Hk (ỹk)

∂ ỹk

So for fUk

[
x−1

k Hk (ỹk)
]
6= 0 it follows that

xk∂S
(

ỹk, x−1
k

)
/∂ ỹk

∂S
(

ỹk, x−1
k

)
/∂x−1

k

=
∂Hk (ỹk) /∂ ỹk

Hk (ỹk)
=
∂ ln |Hk (ỹk) |

∂ ỹk
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so

exp



∫ ỹk

ỹ0

xk∂S
(

ỹ, x−1
k

)
/∂ ỹ

∂S
(

ỹ, x−1
k

)
/∂x−1

k

d ỹ


 = exp

(∫ ỹk

ỹ0

∂ ln |Hk (ỹ) |

∂ ỹ
d ỹ

)

= exp (ln |Hk (ỹk) | - ln |Hk (ỹ0) |) = |Hk (ỹk) |

where Hk (ỹ0) = 1 follows from Gk (1) = ỹ0. Finally

sign


sign (xk)

∂S
(

ỹk, x−1
k

)

∂x−1
k


 = sign

(
sign (xk) sign (xk) fUk

[
x−1

k Hk (ỹk)
]

Hk (ỹk)
)

= sign
(

fUk

[
x−1

k Hk (ỹk)
]

Hk (ỹk)
)
= sign (Hk (ỹk))

So the right side of equation (29) equals sign (Hk (ỹk)) |Hk (ỹk) | = Hk (ỹk) as claimed.

LEMMA 2: If Assumption A1 holds and the normalization Gk (0) = 0 for all k holds, then

FU0|Z and the distribution function FỸ |X,Z

(
Ỹ | x, z

)
are identified, where Ỹ =

∑K
k=1 Gk (XkUk).

PROOF of Lemma 2:

FY |X,Z (y | 0, z) = Pr (G (0)+U0 ≤ y | X = 0, Z = z) = FU0|X,Z (y | 0, z) = FU0|Z (y | z)

identifies the distribution function FU0|Z on the support of Y , which contains the support of

U0. Next define Ỹ = Y − U0. Then since Y = Ỹ + U0 and the distributions of Y | X, Z

and U0 | X, Z are identified, for each value of X = x, Z = z apply a deconvolution (using

the nonvanishing characteristic function of U0) to identify the distribution of Ỹ | X, Z , where

Ỹ =
∑K

k=1 Gk (XkUk).

PROOF of Theorem 1: When X(k) = 0 (equivalently, when X = ek xk for some xk) we

get Ỹ = Gk (XkUk) +
∑

j 6=k G j (0) = Gk (XkUk). Define Ỹk = Gk (XkUk). It follows that

FỸk |Xk ,X(k),Z
(ỹk | xk, 0, z) = FỸ |X,Z (ỹk | xkek, z), so the distribution function on the left of

this identity is identified, given by Lemma 2 that FỸ |X,Z is identified. Let r = Hk (ỹk) denote

the inverse of the function Gk where ỹk = Gk (r). It follows by construction from Lemma 1

that Hk (ỹk) is identified for every value of ỹk on the support of Ỹk satisfying the property that,

for some xk on the support of Xk , fUk

[
x−1

k H (ỹk)
]
6= 0. This identification of Hk (ỹk) in turn

means that the function Gk (r) is identified for every r such that Gk (r) is on the support of

Ỹk and there exist an xk on the support of Xk such that fUk |Z

(
x−1

k r
)
6= 0. This then implies

identification of Gk on its support. Finally, given identification of FỸ |X,Z and of Hk (ỹk), the

distribution function FUk |Z is identified by FUk |Z

[
H (ỹ) /xk | z

]
= FỸ |Xk ,X(k),Z

(ỹ | xk, 0, z)

for xk > 0 and FUk |Z

[
H (ỹ) /xk | z

]
= 1− FỸ |Xk ,X(k),Z

(ỹ | xk, 0, z) for xk < 0.

PROOF of Corollary 1: For part i), Given any function G, for k = 1, ..., K , define Gk (XkUk) =

G (XkUkek) = G (0, ..., 0, XkUk, 0, ..., 0) and define G̃ by G̃ (X1U1, ..., X K UK ) = G (X1U1, ..., X K UK )−

33



∑K
k=1 Gk (XkUk). Then, by construction, part i) holds. For part ii), we have that the function

G̃ (X1U1, ..., X K UK ) is zero when evaluated at X = 0 or at X = Xkek for any k, so evaluated

at any such value of X , equation (3) is equivalent to equation (2). For equation (2), the proof of

Theorem 1 shows (for k = 1, ..., K ) identification of FUk |Z and of Gk only using X = 0 and

X = Xkek , so these functions are also identified for equation (3).

PROOF of Theorem 2:

Let�X = supp (X),�X |Z = supp (X | Z), etc. and let F (U | Z) = F (U1,U2...UK | Z)By

the definition of λρ,t (Z) we have λρ,t (Z) =

∫

X∈s�X

∫

U∈�U |Z

hρ (G (X1U1, ..., X K UK ) , t1, ..., tK ) d F (U | Z) X
t1−1
1 X

t2−1
2 ...X

tK−1
K d X1d X2...d X K

=

∫

U∈�U |Z

∫

X∈�X |Z

hρ (G (X1U1, ..., X K UK ) , t1, ..., tK ) X
t1−1
1 X

t2−1
2 ...X

tK−1
K d X1d X2...d X K d F (U | Z)

where the second equality follows from Fubini’s theorem and supp (X) = supp (X | Z). Do a

change of variables on the inner integral, letting sk = XkUk for k = 1, ..., K to get λρ,t (Z) =

∫

U∈s�U |Z

∫

s∈supp(X1U1,...,X K UK |Z ,U )

hρ (G (s1, ..., s) , t1, ..., tK ) s
t1−1
1 s

t2−1
2 ...s

tK−1
K U

−t1
1 U

−t2
2 ...U

−tK

K

ds1ds2...dsK d F (U | Z)

=

∫

U∈�U |Z

∫

s∈�X

hρ (G (s1, ..., s) , t1, ..., tK ) s
t1−1
1 s

t2−1
2 ...s

tK−1
K U

−t1
1 U

−t2
2 ...U

−tK

K ds1ds2...dsK d F (U | Z)

=

∫

U∈�U |Z

∫

s∈�X

hρ (G (s1, ..., s) , t1, ..., tK ) s
t1−1
1 s

t2−1
2 ...s

tK−1
K ds1ds2...dsK U

−t1
1 U

−t2
2 ...U

−tK

K d F (U | Z)

=

∫

U∈�U |Z

κρ,tU
−t1
1 U

−t2
2 ...U

−tK

K d F (U | Z)

= κρ,t

∫

U∈�U |Z

U
−t1
1 U

−t2
2 ...U

−tK

K d F (U | Z) = κρ,t E
(

U
−t1
1 U

−t2
2 ...U

−tK

K | Z
)

where the second equality above uses supp (U1 X1, ...,UK X K | Z ,U ) = supp (X). It therefore

follows that moments E
(

U
−t1
1 U

−t2
2 ...U

−tK

K | Z
)

are identified for all positive integers t1,...,tk

by equalling the ratio of identified objects λρ,t (Z) /κρ,t . To identify moments where tk = 0 for

one or more values of k, redefine λρ,t (Z) and κρ,t setting the corresponding Xk terms equal to

zero. For example, to identify moments having t1 = 0, replacing equation (5) with

λρ,t (Z) =

∫

(X2,...X K )∈supp(X2,...X K )

E
[
hρ
(
Ỹ , 0, t2, ..., tK

)
| X1 = 0, X2...X K , Z

]
X

t2−1
2 ...X

tK−1
K d X2...d X K

and correspondingly redefining κρ,t as

κρ,t =

∫

(s2,...sK )∈supp(X2,...X K )

hρ [G (0, s2, ...sK ) , 0, ..., tK ] s
t2−1
2 ...s

tK−1
K ds2...dsK
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gives λρ,t (Z) /κρ,t equal to E
(

U
−t2
2 ...U

−tK

K | Z
)

.

We have now shown that E
(

U
−t1
1 U

−t2
2 ...U

−tK

K | Z
)

is identified for any nonnegative inte-

gers t1,...,tk . Since the MGF of U−1
1 U−1

2 ...U−1
K | Z exists, it follows that the joint distribution

of U−1
1 U−1

2 ...U−1
K | Z is identified from these moments, and therefore that the joint distribution

FU |Z (U1,...,UK | Z) is identified.

PROOF of Corollary 2: Theorem 1 identifies the functions G1,G2, ...,G K , and shows that

the distribution of Ỹ defined by Ỹ = G (X1U1, ..., X K UK ) is identified. Assumption A5 there-

fore holds, and by Theorem 2 the joint distribution function FU |Z (U1,...,UK | Z) is identified.

PROOF of Theorem 3: As discussed in the text, a property of Barten scales (which can

be readily verified using Roys identity) is that, if V (X1, X2) is the indirect utility function

corresponding to the demand function ω1 (X1, X2), then up to an arbitrary monotonic trans-

formation H (V,U1,U2) of V , the indirect utility function corresponding to ω1 (U1 X1,U2 X2)

is V (U1 X1,U2 X2), and vice versa. It therefore suffices to prove that the theorem holds with

U1 = U2 = 1.

By equation (10), given any indirect utility function V , the corresponding demand function

ω1 is given by

ω1 (X1, X2) =
∂V (X1, X2) /∂ ln X1[

∂V (X1, X2) /∂ ln X1

]
+
[
∂V (X1, X2) /∂ ln X2

] (30)

This is just one way to write Roys identity in a demand system of two goods. Then by the

definition of λ, we have that for any demand function ω1, the corresponding indirect utility

function V satisfies

λ [ω1 (X1, X2)] = ln

(
∂V (X1, X2)

∂ ln X1

)
− ln

(
∂V (X1, X2)

∂ ln X2

)
(31)

and similarly, given any V the corresponding ω1 satisfies equation (31).

It follows immediately that, given any differentiable functions h1 (X1) and h2 (X2), if V (X1, X2) =

h1 (X1)+ h2 (X2) then equation (31) equals

λ [ω1 (X1, X2)] = ln

(
∂h1 (X1)

∂ ln X1

)
− ln

(
∂h2 (X2)

∂ ln X2

)
(32)

which is in the form of equation

λ [ω1 (X1, X2)] = g1 (X1)+ g2 (X2) , (33)

showing that any additive indirect utility function generates a demand equation in the form of

(33). Also, by equation (32) given the functions h1 and h2 we can define g1 and g2 by

g1 (X1)+ g2 (X2) = ln

(
∂h1 (X1)

∂ ln X1

)
− ln

(
∂h2 (X2)

∂ ln X2

)
. (34)
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To go the other direction, start by supposing that equation (33) holds for some functions g1

and g2. We will apply the following two component special case of Lemma 4.1 in Blackorby,

Primont, and Russell (1978, p. 160): Assume a function F (r1, r2) is twice continuously dif-

ferentiable and strictly increasing in its elements. Then F (r1, r2) = F0 (F1 (r1)+ F2 (r2)) for

some functions F0, F1, and F2 if and only if

∂

∂r1
ln

(
∂F (r1, r2) /∂r2

∂F (r1, r2) /∂r1

)
= ψ (r1)

for some function ψ . Taking the derivative of equation (31) with respect to ln X1 and using

equation (33) gives

∂λ [ω1 (X1, X2)]

∂ ln X1
=
∂g1 (X1)

∂ ln X1
= ln

(
∂V (X1, X2) /∂ ln X2

∂V (X1, X2) /∂ ln X1

)
.

Apply the Lemma with r j = ln X j , F (r1, r2) = V (X1, X2), ψ (r1) = ∂g1 (X1) /∂ ln X1, and

F j

(
r j

)
= h j

(
X j

)
to prove that V (X1, X2) must equal F0 (h1 (X1)+ h2 (X2)) for some func-

tion F0, which by the properties of indirect utility functions must be monotonically increasing

(recall also that twice differentiability was one of the assumed properties of our indirect utility

functions). Finally, applying equation (30) to this indirect utility function shows that equation

(34) holds, which we can integrate to obtain

∫
eg1(x1)d ln x1 +

∫
e−g2(x2)d ln x2 = h1 (X1)+ h2 (X2) .

Together these results prove the first part Theorem 3. Adding back the Barten scales U1 and

U2 to the functions g1, g2, h1, and h2 proves equations (15) and (14). The properties of the

functions h1 and h2 given at the end of Theorem 2 follow from the fact that the indirect utility

function h1 (U1 P1/M)+h2 (U2 P2/M)must possess the standard properties of all indirect utility

functions, i.e., homogeneity and quaisconvexity in P1, P2, and M , nondecreasing in each price,

and increasing in M .

8 Appendix B: Empirical Model Robustness Checks

Given that our estimated model is parametrically specified, one may worry about the possible

impacts of misspecification. In this appendix we provide an extensive set of analyses to verify

the robustness of our empirical results to a wide variety of alternative model specifications, in-

cluding adding complexity to the utility function specification, relaxing the parametric structure

on preference and error distributions, and dealing with potential heteroskedasticity of errors or

endogeneity of regressors.

A brief summary of these results is that, while some departures from our baseline Model 2

are statistically significant, none result in big changes in our economic analyses or conclusions,

indicating that our results are robust to many different possible sources of misspecification.
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8.1 Interactions in Utility

The indirect additive utility function V−1 = h1 (X1)+ h2 (X2) from Theorem 3 restricts price

interaction effects. To relax the restrictiveness (in terms of cross effects) of the resulting additive

demand functions we here consider adding interaction terms to the model of Theorem 3, giving

an indirect utility function of the form

V−1 = h1 (X1)+ h2 (X2)+ S (X1, X2, ξ) (35)

where the interaction function S has a simple parametric form (with parameter vector ξ ), as in

equation (9).

By applying Roy’s identity to (35), then as before logit transforming the result, adding

Barten scales, and adding the error term U0 we obtain the demand model:

λ (W1) = ln
[
eg1(U1 X1) + M1 (U1 X1,U2 X2, ξ)

]
− ln

[
e−g2(U2 X2) + M2 (U1 X1,U2 X2, ξ)

]
+U0

(36)

where

M j (U1 X1,U2 X2, ξ) =
∂S (U1 X1,U2 X2, ξ)

∂ ln
(
U j X j

) (37)

and, as in Theorem 3,

∂h1 (X1)

∂ ln X1
= eg1(X1) and

∂h2 (X1)

∂ ln X2
= e−g2(X2).

Keeping the same polynomial expansions for gk as before, namely, equations (18) and (19),

yields the same hk as before, equation (20), and when substituted into the above gives the

demand function

λ (W1) = ωS1 (U1 X1,U2 X2, β, ξ)+U0 (38)

= ln

[ (
β10 + β11 ln (U1 X1)+ β12 (ln (U1 X1))

2 + ...+ β1S (ln (U1 X1))
S
)2

+M1 (U1 X1,U2 X2, ξ)

]

− ln

[ (
β20 + β21 ln (U2 X2)+ β22 (ln (U2 X2))

2 + ...+ β2S (ln (U2 X2))
S
)2

+M2 (U1 X1,U2 X2, ξ)

]
+U0

The demand function given by equation (38) is the same as (21), except for the addition of the

M j functions given by equation (37), which embody the desired price interaction terms.

We consider two models for S. One is the simple multiplicative interaction term

S = U1 X1U2 X2ξ11,

which has

M1 = M2 = U1 X1U2 X2ξ11.

This is the most obvious model for interactions, but it forces M1 = M2, pushing the g1 and g2

terms by the same amount. We therefore also consider

S = U1 X1U2 X2ξ11 + (U1 X1)
2 U2 X2ξ21 +U1 X1 (U2 X2)

2 ξ12
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which allows M1 and M2 to differ:

M1 = U1 X1U2 X2 (ξ11 + 2U1 X1ξ21 +U2 X2ξ12) ,

M2 = U1 X1U2 X2 (ξ11 +U1 X1ξ21 + 2U2 X2ξ12) .

For both models, we restrict the parameters ξ to be weakly positive because negative values of

the parameters ξ induce violations of regularity (that is, budget shares outside 0, 1, or equiva-

lently, taking logs of negative numbers) for large values of U j .
11

Table 6: Interactions Terms in Utility

Model 2 Model 2 w interaction

llf=-9706.9 llf=-9644.3

Parameter Estimate Std Err Estimate Std Err

σ 0 0.469 0.009 0.476 0.016

σ 1 0.165 0.036 0.229 0.044

σ 2 1.336 0.011 1.851 0.024

ρ 0.883 0.100 0.839 0.199

ξ11 0.671 0.093

std dev lnα1 0.252 0.261

lnα2 0.380 0.694

correlation lnα1, lnα2 -0.700 -0.540

(all obs) ln U1, ln U2 0.293 0.361

correlation lnα1, lnα2 0.105 0.434

(renter=0) ln U1, ln U2 0.699 0.729

correlation lnα1, lnα2 0.087 0.419

(renter=1) ln U1, ln U2 0.691 0.722

budget shares M, α j = α j , P = 1, Ũ j = 1 0.147 0.030 0.155 0.036

(mean and std dev) M, α j , P = 1, Ũ j = 1 0.148 0.048 0.153 0.049

M, α j , P, Ũ j = 1 0.151 0.047 0.155 0.049

M, α j , P, Ũ j 0.137 0.065 0.138 0.061

Cost-of-Living M, α j = α j , Ũ j = 1 5.66 1.30 5.67 1.39

(mean and std dev) M, α j , Ũ j = 1 5.64 1.69 5.55 1.61

M, α j , Ũ j 5.37 4.31 5.35 4.87

Welfare Loss Arithmetic Mean 4.91 0.17 4.79 0.23

(estimate and std err) Geometric Mean 5.37 0.22 5.24 0.29

Harmonic Mean 5.85 0.30 5.70 0.41

Table 6 gives results for the model with the simple interaction S = U1 X1U2 X2ξ11 on the

right hand side, and for our baseline model on the left. We do not present estimates for the

more complicated interaction model because the estimated values of ξ21 and ξ12 in that case

11To allow for possible negative interactions, we also tried the model S = α/ (1+U1 X1U2 X2), the magnitude

of which is bounded by α ≥ 0. This specification has M1 = M2 = −U1 X1U2 X2α/ (1+U1 X1U2 X2). We then

estimate equation (38) imposing the same normalizations and using the same sieve maximum likelihood method

as before. Empirically, this did not yield any different results.
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were zero (that is, the positivity restrictions on those parameters were binding), reducing that

specification to the simple interaction model. Table 6 gives a subset of estimated coefficients,

summary statistics on budget shares and cost of living impacts, and social welfare analysis

analogous to those results in Tables 2, 3, 4 and 5.

Looking at the top panel of Table 6, which shows the estimated parameters governing the

distributions of U0, Ũ1 and Ũ2, we see that the inclusion of the interaction term ξ11 does not

much affect the estimated variance of U0 or Ũ1, or the correlation of Ũ1 and Ũ2, but it does

seem to increase the estimated variance of Ũ2. Further, the inclusion of the interaction term

ξ11 reduces the precision of these parameter estimates. In particular, it doubles the estimated

standard error of ρ.

The magnitude of the estimated interaction term appears relatively large and significant.12

However, since we have no estimated difference between M1 and M2, the model becomes

λ (W1) = ln (eg1 + M1)−ln
(
e−g2 + M1

)
+U0, which approximately equals ln (eg1)−ln

(
e−g2

)
+

U0 using ln (eg1 + M1) ≈ ln (eg1) + ln (M1). As a result, the overall impact of the interaction

terms on behavior is rather small for most consumers. This can be seen by comparing the left

and right sides of the lower portions of Table 6. For the same reason, inclusion of interactions

generally reduces the precision with which objects like welfare losses are measured, while hav-

ing almost no impact on their estimated magnitude. For example, the bottom lines of Table 6

show that including the interaction term changes estimated welfare impacts by less than 3%,

and increases standard errors of the welfare effects by more than that amount.

Our overall conclusion is that possible interaction effects (and hence potential violations of

the additivity assumed by Theorem 3) may be present, but if so, they do not materially affect

our conclusions.

8.2 Higher Order Polynomials in Demand

Our model specifies demand functions using squared third-order polynomials for functions g1

and g2. This is consistent with a large theoretical and empirical literature on demand estimation

finding that three terms in total expenditures per demand equation are sufficient to capture the

shapes of various demand functions. See, e.g., Lewbel (2008) and references therein. This

specification yields a total of seven parameters (the beta’s) governing the shape of the demand

function for energy over X1, X2.

To check for adequacy of this specification we also estimated models with fourth and fifth

order polynomials. We find that the fourth and fifth order terms for energy goods (β14, β15)

are small, and are both individually and jointly insignificant. The estimated fourth and fifth-

order terms for nonenergy goods (β24, β25) are very large in magnitude but also have very large

standard errors, indicating numerical parameter instability, which is a common problem that in-

dicates overfitting when estimating high order polynomials with small data sets. To save space

we do not reproduce a full summary of alternative estimates as in Table 6, but simply note that

these high-magnitude high-variance parameters associated with higher order polynomials intro-

duce a large amount of noise into the fitted model. For example, this alternative specification

12The product Ũ1Ũ2 has a median of 1 and a right-skewed distribution, which makes the distribution of M1 =

M2 also right-skewed, with a mean of 0.047 but a median of 0.021 and an inter-decile range of (0.005, 0.098).
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nearly triples the standard errors of estimated welfare losses. We therefore confine our empirical

analysis to the more stable squared third-order polynomials in our baseline specification.

8.3 Specification of the Distributions of Unobservables

Our estimated models assume that the measurement error term U0 is distributed normally, and

our baseline Model 2 assumes Ũ =
(
Ũ1, Ũ2

)
has a bivariate log-normal distribution. Here we

consider more general specifications for these distributions, based on hermite polynomial ex-

pansions of the type commonly used for sieve estimation. Denote the joint density of Ũ by fŨ J

and the density for U0 by f0J , where J indexes the order of our polynomial expansions. Specif-

ically, we let J = 0 index our baseline parameterizations where ln Ũ is a mean zero bivariate

normal and U0 is a mean zero normal. Higher values of J then correspond to richer distribution

specfications based on polynomial expansions that multiply the base normal distributions.

We employ the seminonparametric density models used by Gallant and Nychka (1987).

Ignoring trimming for now, the joint density of Ũ is specified as

fŨ J

(
Ũ1, Ũ2, γ , σ , ρ

)
=

(∑J
j1=0

∑J
j2=0 γ j1 j2

(
ln Ũ1

) j1 (
ln Ũ2

) j2
)2

Ũ1Ũ2C̃J (γ , σ , ρ)
· (39)

exp




(
ln Ũ1
σ 1

)2
− 2ρ

(
ln Ũ2
σ 2

) (
ln Ũ1
σ 1

)
+
(

ln Ũ2
σ 2

)2

−2
(
1− ρ2

)


 (40)

where γ is the vector of polynomial coefficients γ j1 j2
, σ = (σ 1, σ 2), and C̃J (γ , σ , ρ) is the

constant necessary to make fŨ J integrate to one. Because we scale by C̃J , we can without

loss of generality let γ 00 = 1. In the simplest model when J = 0 this reduces to our baseline

specification of a bivariate log normal Ũ with C̃J (γ , σ , ρ) = 2πσ 1σ 2

(
1− ρ2

)
, each ln Ũk

having mean zero and variance σ 2
k , and correlation coefficient ρ. Note that we don’t need to

explicitly model the mean of ln Ũ and hence the scaling of each Ũk , because the scaling of Ũk ,

like that of αk (Z), is freely absorbed into the βks parameters. As in our baseline specification,

we trim this distribution of ln Ũk at ±3 standard deviations. We trim to bound the support of

Ũk away from zero and to ensure existence of a moment generating function, both as assumed

by Theorem 2. This trimming was found to have minimal numerical effects on our empirical

estimates.

We analogously model the density of U0 as

f0J (U0, δ, σ 0) =

(∑J
j=0 δ jU

j

0

)2

CJ (δ, σ 0)
exp

(
−1

2

(
U0

σ 0

)2
)

(41)

where δ0 = 1, and δ1 is set to ensure that the error term U0 has mean zero13.

13It is straightforward to verify that the function CJ needed for estimation is given by

CJ (δ, σ 0) = (2π)1/2
∑J

j=0

∑J
k=0 δ jδkσ

j+k+1
0 µ j+k where µ j+k = E(e j+k) for a standard nor-
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Estimation then proceeds by replacing f0 and fŨ with f0J and fŨ J in equations (25) and

(27), including γ and δ as additional parameters to estimate. Table 7 summarizes results with

J = 3 for U0 and with J = 2 for ln Ũ1, ln Ũ2. Just like Table 6, Table 7 gives selected estimates

from this model on the right, along with the corresponding estimates from our baseline model

(J = 0) on the left for comparison, including summary statistics on estimated budget shares,

cost-of-living indices, and social welfare losses. J = 2 was the most flexible model we could

estimate for the joint distribution of ln Ũ1, ln Ũ2, in that attempts at estimating models with

J > 2 produced very large standard errors and numerical instability of the sort discussed in the

previous subsection.

Figures 7 and 8 show the estimated distributions of U0 and ln U based on these polynomial

expansions. Figure 7 shows only a very small departure from our baseline normal model for

the density of U0. The estimated joint distribution of ln Ũ differs from our baseline lognormal

estimate mainly in having a larger variance (particularly for ln Ũ1), and has a small second

mode. The resulting estimate of the joint density of ln U is shown in Figure 8. Comparing

Figures 3 and 8, the larger variance of ln Ũ results in the two modes of Figure 3 largely merging

into one, while the second mode in ln Ũ puts some extra mass at smaller values of U .

The estimates in these figures and in Table 7 show departures from the baseline model that

are statistically significant, but turn out to have numerically modest and insignificant affects on

our economic analyses. The estimates of every summary measure and welfare implication of

the model (see the bottom section of Table 7) are changed by less than than one standard error,

meaning that we could not reject the null hypothesis that any one of the economic implica-

tions of the more richly specified model actually equal the values estimated from our baseline

model. Moreover, to the extent that the results from these more general specifications differ

from baseline, they all strengthen rather than weaken our economic conclusions. For example,

the estimated variation in cost-of-living impacts due to a 50% increase in the price of energy is

larger in this model than in the baseline model, and the extent to which increasing inequality

aversion increases welfare losses is also somewhat larger.

mal e. Similarly, E (U0) = 0 if and only if ζ J (δ, σ 0) =
∑J

j=0

∑J
k=0 δ jδkσ

j+k

0 µ j+k+1 =

0, which we imposed on estimation by appropriately specifying δ1. For example, when

J = 3 we get C3 (δ, σ 0) = (2π)1/2
(
15δ2

3σ
7
0 +

(
6δ1δ3 + 3δ2

2

)
σ 5

0 +
(
2δ2 + δ

2
1

)
σ 3

0 + σ 0

)
and

ζ 3 (δ, σ 0) = 2
(
δ1σ 0 + 3 (δ1δ2 + δ3) σ

3
0 + 15δ2δ3σ

5
0

)
, so E (U0) = 0 is imposed by setting δ1 =

−
(
3δ3σ

3
0 + 15δ2δ3σ

5
0

)
/ (σ 0 + 3δ2).
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Table 7: Non-Normal Unobserved Preference Heterogeneity

Model 2 Model 2 w squared poly

llf=-9706.88 llf=-9561.92

Parameter Estimate Std Err Estimate Std Err

σ 0 0.469 0.009 0.459 0.017

δ1 -0.946 0.074

δ2 0.563 0.110

σ 1 0.165 0.036 0.532 0.009

σ 2 1.336 0.011 1.401 0.062

γ 10 -2.431 0.404

γ 01 -0.109 0.113

γ 11 0.361 0.215

γ 20 -0.225 0.286

γ 21 1.299 0.260

γ 22 -0.236 0.070

γ 02 0.037 0.043

γ 1122 -0.133 0.063

ρ 0.883 0.100 0.691 0.034

std dev ln Ũ1 0.165 0.627

ln Ũ2 1.336 1.715

correlation ln Ũ1, ln Ũ2 0.883 0.740

std dev lnα1 0.252 0.190

lnα2 0.380 0.725

ln U1 0.298 0.631

ln U2 1.350 1.802

correlation lnα1, lnα2 -0.700 -0.488

(all obs) ln U1, ln U1 0.293 0.574

correlation lnα1, lnα2 0.105 0.397

(renter=0) ln U1, ln U1 0.699 0.707

correlation lnα1, lnα2 0.087 0.384

(renter=1) ln U1, ln U1 0.691 0.710

budget shares M, α j = α j , P = 1, Ũ j = 1 0.147 0.030 0.152 0.027

(mean, sd) M, α j , P = 1, Ũ j = 1 0.148 0.048 0.150 0.062

M, α j , P, Ũ j = 1 0.151 0.047 0.154 0.063

M, α j , P, Ũ j 0.137 0.065 0.130 0.068

Cost-of-Living M, α j = α j , Ũ j = 1 5.66 1.30 6.10 1.75

(mean, sd) M, α j , Ũ j = 1 5.64 1.69 5.83 2.44

M, α j , Ũ j 5.37 4.31 6.06 5.98

Welfare Loss Arithmetic Mean 4.91 0.17 5.51 0.24

(est, std err) Geometric Mean 5.37 0.22 5.84 0.37

Harmonic Mean 5.85 0.30 6.35 0.51
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8.4 Heteroskedasticity of U0

While the previous subsection considered possible non normality of U0, this subsection con-

siders potential heteroskesdasticity in U0. Heteroskedasticity of the Barten scales U1 and U2 is

already modeled by the deterministic components a1 (z) and a2 (z). As noted in the main text,

if our Barten scale model of taste variation is valid, then U1 and U2 should pick up a substan-

tial portion of what would otherwise be unexplained variation, including heteroskedasticity, in

demand. As a result, if our model is appropriate, then the nonbehavioral error term U0 should

be much smaller and more homoskedastic in Model 2 than in Model 1.

Table 2 showed that U0 is indeed much smaller in Model 2, with an estimated standard

deviation σ 0 falling from 0.666 in Model 1 to 0.469 in Model 2. To measure how much of

the heteroskedasticity that would end up in U0 is captured by the random coefficients Ũ j , we

consider a maximum likelihood analog to the Breusch-Pagan test. Specifically, we reestimate

the models allowing the standard deviation of U0, σ 0, to depend on normalized prices and

demographics, and then examine the significance of these covariates in σ 0. For this test we

replace σ 0 with a function σ 0(X1, X2, Z) that is linear in the ten variables comprising, X1, X2,

and Z . We then examine the estimated size and significance of the function σ 0(X1, X2, Z) in

Models 1 and 2.

In Model 1, the sample value of the Wald test of the joint significance of the coefficients

comprising σ 0(X1, X2, Z) is 327, while in Model 2 the Wald test statistic drops by over 50%

to 145. So by this measure more than half of the heteroskedasticity in the residual U0 in Model

1 is captured (and hence explained by) the preference heterogeneity embodied by our random

Barten scale components Ũ j . These Wald statistics remain above the critical values of the χ2
10

distribution at conventional levels, so although our model is big improvement over traditional

Barten scales in this dimension, there remains some residual systematic heterogeneity that our

model does not explain.14

Another way to measure how much heteroskedasticity is explained by random Barten scales

is to compare the estimated values of σ 0(X1, X2, Z) under the two models. In Model 1, the

mean and standard deviation of σ̂ 0i = σ̂ 0(X1i , X2i , Zi ) are 0.656 and 0.087, respectively. In

Model 2, the mean and standard deviation of σ̂ 0i are 0.472 and 0.068, respectively. This again

shows that random Barten scales explain a substantial portion of both the size and systematic

components of otherwise unexplained variability in demand, by making U0 both smaller and

more homoskedastic. As in Tables 6 and 7, attempting to generalize our baseline model by

modeling remaining heteroskedasticity in U0 results in almost no change in the resulting eco-

nomic analyses.

8.5 Endogeneity of X j

All of our estimates treat normalized prices X j as exogeneous regressors. Our model has no

constant term, and X j does not enter Y linearly, so endogeneity with respect to the measure-

14An assumption of the model from Theorem 1 is that U0 is independent of X after conditioning on Z . In

Model 1, the coefficients of X1, X2 in σ 0(X1, X2, Z) are small in magnitude but highly statistically significant

with t statistics over 5. In contrast, the coefficients of X1, X2 in σ 0(X1, X2, Z) are even smaller and much less

significant in Model 2, with t statistics of 1.04 and 2.52, respectively.
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ment error U0 is difficult to motivate. In contrast, endogeneity of X j with respect to the un-

observed preference heterogeneity parameters Ũ1 and Ũ2 is certainly possible. For example the

distribution of Ũ is assumed to be independent of regressors, so the presence of unobserved

characteristics that correlate with both Ũ j and other regressors could induce bias, specifically

bias in the estimates of the a j functions (since the Ũ j terms are specifically the unobserved

components of Barten scales and hence of preference heterogeneity, while the a j functions are

the observed components of Barten scales).

As discussed in the text, Canadian households are a small fraction of the world energy

market, and so are unlikely to have much effect on energy prices. However, Ũ j could be cor-

related with X j to the extent that the distribution of Canadian household preferences affects

total Canadian household demand, and such demand contributes to differences between local

(within Canada) energy prices and world energy prices. Similar arguments may apply to nonen-

ergy prices, and measurement error in M could similarly cause correlations between the errors

and regressors.

To test for the possibility that budgets M or prices P1 and P2 are endogenous, we try in-

strumenting these variables with gross annual income by source (for budgets), world oil price

(for energy prices) and the US residential Case-Shiller index (for nonenergy prices), all inter-

acted with observed demographics Z and a constant. The first stage for these regressions is

very strong, with F statistics in excess of 100 in all 3 cases, so the instruments are not weak.

We cannot test for exogeneity of these instruments, since we do not have observed residuals

analogous to Ũ1 and Ũ2 with which to construct an overidentification test. However, we note

that the use of income to instrument total expenditures M is standard in the consumer demand

literature. The world oil price ought to be a valid instrument for energy prices in Canada be-

cause Canadian residential demand is such a small component of the world energy market. It

is also a relatively strong instrument, especially since we interact it with Z which includes the

calendar year, thereby obtaining sufficient variation in the prediction (R2 is about 0.75 in this

first stage regression). The US residential price index is likewise to be a good instrument for

Canadian non-energy prices because Canadian residential prices are correlated with USA resi-

dential prices, but are not a big driver of them, and because local goods and service prices are

highly correlated with residential prices (see, e.g., Moretti 2012).

Given the nonlinearities and nonseparable errors in our model, we use control function

methods to test for endogeneity. As observed in, e.g., Wooldridge (2011), testing the signifi-

cance of the coefficients of control function residuals provides a valid test of endogeneity, even

when the resulting control function estimator does not satisfy all of the assumptions necessary

to completely cure the potential endogeneity problem. This is relevant because endogeneity

due to simultaneity of supply and demand does not in general lead to the triangular structures

necessary for validity of control function based estimation.

We obtain control function residuals by regressing ln M , ln P1 and ln P2 on our instrument

vector and on demographic characteristics Z . We then include the residuals from these three

regressions as control function regressors inside the functions α1 and α2. The sample value of

the Wald test statistic for the hypothesis that all six control functions are zero is 713, and the

likelihood ratio test statistic for the hypothesis is 124, which are both above conventional chi

squared statistic critical values. We therefore cannot reject the hypothesis that no endogeneity is

present, however, as with our other robustness checks, we can examine whether including these
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control function residuals materially affects our estimates, and hence verify whether attempting

to correct for potential endogeneity would be economically relevant. Note, however, that these

estimates, which are provided in Table 8 in the same form as Tables 6 and 7, are only consistent

if endogeneity takes the specific control function form.

Table 8: Estimates with Control Function Corrections

Model 2 Model 2 w ctrl fns

llf=-9706.88 llf=-9644.41

Parameter Estimate Std Err Estimate Std Err

σ 0 0.469 0.009 0.394 0.022

σ 1 0.165 0.036 0.288 0.030

σ 2 1.336 0.011 1.208 0.038

ρ 0.883 0.100 0.465 0.069

α1 vln M 0.234 0.037

vln P1 -0.187 0.064

vln P2 -0.100 0.169

α2 vln M 0.337 0.030

vln P1 -0.238 0.028

vln P2 1.249 0.084

std dev lnα1 0.252 0.244

lnα2 0.380 0.344

ln U1 0.298 0.372

ln U2 1.350 1.235

correlation lnα1, lnα2 -0.700 -0.444

ln U1, ln U2 0.293 0.258

correlation:renter=0 lnα1, lnα2 0.105 0.464

ln U1, ln U2 0.699 0.456

correlation: renter=1 lnα1, lnα2 0.087 0.459

ln U1, ln U2 0.691 0.444

budget shares M, α j = α j , P = 1, Ũ j = 1 0.147 0.030 0.147 0.036

(mean, sd) M, α j , P = 1, Ũ j = 1 0.148 0.048 0.148 0.051

M, α j , P, Ũ j = 1 0.151 0.047 0.151 0.051

M, α j , P, Ũ j 0.137 0.065 0.139 0.074

Cost-of-Living M, α j = α j , Ũ j = 1 5.66 1.30 6.29 1.69

(mean, sd) M, α j , Ũ j = 1 5.64 1.69 6.28 2.08

M, α j , Ũ j 5.37 4.31 5.80 3.83

Welfare Loss Arithmetic Mean 4.91 0.17 5.20 0.18

(mean, std err) Geometric Mean 5.37 0.22 5.67 0.22

Harmonic Mean 5.85 0.30 6.12 0.31

Most of the impact of the control function residuals is due to the log budget residual vln M .

This is consistent with our a priori belief that unobserved preference heterogeneity is unlikely to

have much correlation with prices, but might well be correlated with the budgets of households,

possibly due to measurement error in M . As in our previous robustness checks, the correction
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for potential endogeneity does not change our economic analyses much. One difference is that

the estimated correlation between lnα1 and lnα2 is increased, but this is offset by an estimated

decrease in the correlation between ln Ũ1 and ln Ũ2, leaving the estimated correlation between

the Barten scales ln U1 and ln U2 little changed.

As with our experiments estimating more complicated error distributions, to the extent that

controlling for potential endogeneity differs from baseline, all of the results in this alternative

specification strengthen rather than weaken our economic conclusions. For example, the esti-

mated variation in cost-of-living impacts due to a 50% increase in the price of energy is larger

when including control function residual than in the baseline model, and the extent to which

increasing inequality aversion increases welfare losses is also increased a small amount.
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