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Abstract 

While PhysioNet is a large database for standard clinical vital signs measurements, such a database does not exist for 

unobtrusively measured signals. This inhibits progress in the vital area of signal processing for unobtrusive medical 

monitoring as not everybody owns the specific measurement systems to acquire signals. Furthermore, if no com-

mon database exists, a comparison between different signal processing approaches is not possible. This gap will 

be closed by our UnoViS database. It contains different recordings in various scenarios ranging from a clinical study 

to measurements obtained while driving a car. Currently, 145 records with a total of 16.2 h of measurement data is 

available, which are provided as MATLAB files or in the PhysioNet WFDB file format. In its initial state, only (multichan-

nel) capacitive ECG and unobtrusive PPG signals are, together with a reference ECG, included. All ECG signals contain 

annotations by a peak detector and by a medical expert. A dataset from a clinical study contains further clinical 

annotations. Additionally, supplementary functions are provided, which simplify the usage of the database and thus 

the development and evaluation of new algorithms. The development of urgently needed methods for very robust 

parameter extraction or robust signal fusion in view of frequent severe motion artifacts in unobtrusive monitoring is 

now possible with the database.
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Background
Unobtrusive vital signs monitoring for daily life as well 

as clinical scenarios like the general ward is gaining 

increasing attention in research. Moreover, its market 

is growing, with companies starting to sell, for example, 

devices for personal fitness tracking. �e sensor sys-

tems for unobtrusive vital signs monitoring use differ-

ent physical principles to measure information about a 

patient [1] without the need for medical trained staff or 

interference with the patient [2]. �is increased comfort 

aspect for the patient comes with an increased demand 

on the engineers to cope with the severe artifacts, which 

unavoidably occur due to the loose or even non-existing 

mechanical coupling of sensors and patients [3]. Very 

robust algorithms are needed, which reliably discard dis-

torted intervals or perhaps allow to compensate for them.

Although many research groups developing sensors 

and systems for unobtrusive vital signs monitoring or 

algorithms for signal processing exist [4–15], there is no 

public database of unobtrusive vital signs signals so far. In 

case of standard clinical monitoring, the PhysioNet data-

base contains large amounts of clinically acquired signals 

[16]. �e database is used by many groups to develop dif-

ferent algorithms and to compare their results with each 

other. �is is only possible as they all use the same data 

provided by PhysioNet.

In case of unobtrusive vital signs monitoring, such a 

database does not exist and thus the results of different 

signal processing approaches are not comparable. Hence, 

it is aimed to provide the first publicly available unob-

trusive vital signs database called “UnoViS” database. It 

shall stimulate the research of very robust signal process-

ing algorithms like peak detection, heart rate estimation 

or sensor fusion, in view of severe and frequent motion 

Open Access

*Correspondence:  wartzek@hia.rwth-aachen.de 
1 Chair of Medical Information Technology, RWTH Aachen University, 

Pauwelsstr. 20, 52074 Aachen, Germany

Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13755-015-0010-1&domain=pdf


Page 2 of 9Wartzek et al. Health Inf Sci Syst  (2015) 3:2 

artifacts, as these methods are a key aspect for the suc-

cess of unobtrusive, ubiquitous medical monitoring.

In the following, the data origin, the structure of the 

database, and its usage are described. In its initial state, 

the database contains capacitive ECG (cECG) signals 

(some datasets contain several simultaneously recorded 

channels) with a reference ECG signal with automatic 

detected peaks and, in some records, additional optical 

pulse signals acquired through clothes at the subject’s 

back. One dataset also contains clinical annotations such 

as e.g. rhythm analysis, or PQ durations from two clini-

cians. It is planned to add further sensor technologies 

like BCG, magnetic induction or video based methods.

Construction and content
Origin of data

�e origin of the data is manifold and currently consists 

of three application scenarios: measurements of a clini-

cal study [17], recordings while the subject is driving a 

car [18, 19] and while lying in bed [20]. Additionally, 

two records show the maximum measurement quality 

of our latest system if conditions are optimal. Since the 

measurements were acquired over a long time period of 

several years, slightly different (improved) measurement 

systems were used. In all scenarios, the monitored sub-

jects wore their normal clothes.

Measurements from a clinical study

To analyze the reliability and accuracy of non-contact 

ECG measurements, a clinical study was conducted in 

the university hospital at RWTH Aachen, Germany. 

Patients from an anesthesiology premedication and a car-

diology day ward were asked to sit in a chair which had a 

cushion with two integrated capacitive ECG electrodes to 

derive a bipolar one lead ECG (see Figure 1). �e aim was 

to analyze the sensitivity and specificity for the diagnosis 

of cardiac arrhythmias utilizing cECG. Further informa-

tion can be found in the corresponding article [17]. In 

total, measurements of 92 patients with one annotated 

5-s interval are provided. While only undistorted short 

intervals of 5 s length were used for analysis in the pub-

lished study, UnoViS provides the complete measurement 

for each patient. However, the analyzed intervals are 

marked. �e clinical annotations made by two clinicians 

are based on the analysis of these short intervals.

Each record of the clinical subset contains one cECG 

and one reference ECG signal (Lead I, obtained with a 

commercial ICU monitor MP 70, Philips, Netherlands).

Measurements while driving a car

In this study, the possibility to measure a cECG of the 

driver while driving was analyzed. Six volunteers partici-

pated as drivers. �e system was evaluated while driving 

in the city, on a highway and on a proving ground in 

Lommel, Belgium, containing different road types such 

as highspeed, curvy roads or bad road surfaces. �e 

driver seat contained six electrodes (see Figure  2) from 

which three cECGs were derived by manually selecting 

the best three electrodes and taking the corresponding 

differences:

To approximate bipolar leads similar to the Einthoven’s 

triangle, vertically aligned electrodes were not allowed.

Additionally, a reference ECG (Lead I, g.BSamp from 

g.tec, Austria) was recorded. In contrast to the original 

corresponding publications [18, 19], UnoViS contains 

further, previously unpublished records.

Measurements while lying in bed

�e most recent measurements were performed with an 

array of 12 electrodes integrated into a mattress on top of 

a bed and covered with a bed sheet. From those twelve, 

three were continuously and automatically selected in an 

online process [21]. �is results in a set of three bipolar 

cECG leads similar to the measurements while driving. 

Because of the automatic electrode selection, the set of 

(1)cECG1 = Electrode1 − Electrode2

(2)cECG2 = Electrode3 − Electrode2

(3)cECG3 = Electrode3 − Electrode1.

Figure 1 Picture of a patient sitting on the chair equipped with the 

cushion and the integrated cECG electrodes.
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three electrodes may be different between volunteers and 

can in principle also change during a measurement if the 

lying position changes a lot. Although this circumstance 

may complicate the signal analysis, electrode selection is 

necessary if the sensors are not fixed to the person and 

the lying position is not known.

Ten volunteers participated and lay down on the sen-

sor-equipped mattress in supine position as it is shown 

in Figure  3. During the measurements, they performed 

defined motions following a specific protocol to simulate 

typical motion artifacts which might occur during sleep-

ing. In ten measurements the volunteers were asked to 

move every 60 s (denoted with ‘lab, bed, A’ in the data-

set). In ten additional measurements they were asked to 

lie still for 120  s, then move for 60  s and then again lie 

still for 120 s (denoted with ’lab, bed, B’ in the dataset).

As these electrodes have an integrated optical pulse 

sensor [22], each record contains three cECG, three 

optical, and one reference ECG signal (Lead I, MP  70, 

Philips, Netherlands).

Measurements under optimal conditions

In this case, one subject wearing only a cotton shirt sat on 

a chair in the lab. �ree capacitive electrodes were tightly 

fixed to the torso with an elastic belt at the standard Ein-

thoven’s triangle position on chest. �e two reference 

ECG electrodes were fixed at the same position (usually 

named as RA and LA). Hence, the first capacitive ECG 

lead and the reference ECG measure almost exactly the 

same signal. Motion was avoided to show that the quality 

of the cECG is similar to the reference ECG. An exam-

ple interval is presented in Figure 4. Similar to the meas-

urements before, the record contains three cECG, three 

optical and one reference ECG signal (Lead I, MP  70, 

Philips, Netherlands).

Structure of database

�e database consists of records which represent one 

measurement each. �at means, a record contains, for 

example, one measurement of one patient in case of the 

clinical study, or one driver driving in a specified scenario 

in case of the driving tests et cetera. It should be pointed 

out that several records may exist for the same subject 

in the driving or lying in a bed scenario. However, these 

records are labeled with the same unique subject ID but 

different record IDs.

�e database is provided in two formats for easy usage: 

users who are familiar with PhysioNet can use the data 

provided in the WFDB file format. Hence, they can use 

their existing algorithms written in ANSI/ISO C, K&R 

C, C++, or Fortran for the analysis of data from the 

UnoViS database [16]. Each record is represented by a 

header file (e.g. UnoViS_auto2012_1.hea), a data file (e.g. 

Figure 2 Picture of a driver sitting in the car seat with the integrated 

electrodes.

Figure 3 Picture of a person lying in the equipped bed.
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UnoViS_auto2012_1.dat) and an annotation file of the 

locations of the peaks in the reference ECG signal (e.g. 

UnoViS_auto2012_1.osearefecg). �e information about 

the measurement scenario, the subject and the quality of 

the reference ECG is stored in the comment section of 

the header file.

�e structure of each record in case of the MAT-

LAB file is given in Table  1. �e presented structure of 

one record is saved as a struct. Each record consists of 

several fields such as an unique id, the duration of the 

measurement, the measurement scenario measScenario, 

information about the subject and several channels con-

taining the actual measurement data and annotations 

ann.

�e field ann is an array of structures within each 

channel. It contains the type (e.g. peaks or rhythm), 

which may be event based (e.g. in case of the type 

peaks) or interval based (e.g., in case of the clini-

cal study, the clinicians analyzed an interval of 5  s). 

It further contains the source (e.g. manual by medical 

experts or automatic by the open source ECG detec-

tor OSEA [23]) and the location loc of the annotation 

in samples. �e value of the annotation(s) depends on 

the annotation type and is further elucidated in Table 2. 

If the annotation refers to an interval, as for example 

in the clinical study, the field loc contains the sample 

numbers of the analyzed interval. If the annotation is 

event based, loc refers to the location of each event; 

e.g. of each detected R-peak. Table  2 also shows all 

annotations defined so far. All ECG signals (capacitive 

as well as reference) in all datasets contain detected 

peaks from OSEA and by a medical expert. �is allows 

to compare peak detection algorithms against a gold 

standard, either based only on the capacitive signals or 

based on the reference ECG.

In case of the measurements from the clinical study, 

this dataset contains the following annotations for the 

cECG as well as for the reference ECG:
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Figure 4 Record of the UnoViS_ opti2013 dataset which shows the 

signal quality under optimal conditions.

Table 1 Structure of records of the database in MATLAB. The variable n just indicates a varying number greater than one 

and does not mean that n is always the same in in all �elds or records

 val Value of the annotation depends on annotation type. Details are given in Table 2.

Field Datatype Occurrence Content Example

id 1 × n char Always Unique identifier of each record UnoViS_auto2012_1

duration 1 × 1 single Always Duration of record in seconds 500

measScenario 1 × n char Always Measurement scenario automotive, city

Subject 1 × 1 struct Always

      id 1 × n char Always Unique identifier of each subject p1

      clothes 1 × n char Optional Clothes worn cotton shirt

      age 1 × 1 uint8 Optional Age of subject in years 32

      bmi 1 × 1 single Optional Body mass index (kg m−1) 23.4

      sex 1 × 1 char Optional Sex m

Channels 1 × n struct Always Varying number of n 1 × 1 structs

      type 1 × n char ” Type of channel cecg

      name 1 × n char ” Name of channel cecg_1

      fs 1 × 1 single ” Sampling rate (Hz) 200

      data n × 1 single ” Raw data (a.u.)

      ann 1 × n struct Optional Varying number of n 1 × 1 structs

            type n × 1 char ” Type of annotation peaks

            source n × 1 char ” Source/origin of annotation osea

            loc n × 1 uint32 ” Location(s) of annotation(s) (samples) [25 125 191]
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  • rhythm: is atrial fibrillation present?

  • extrasys: are extrasystoles present?

  • bbb: is a bundle branch block present?

All these annotations specify only if it occurs somewhere 

in the 5-s interval. If the two clinicians could not clearly 

identify a parameter or if their results differed on the 

given 5-s interval, it is denoted with NaN. Furthermore, 

the heart rate and different time durations such as PQ, 

QRS, and QT duration are given. Here, the mean value 

of the two clinicians’ results and the relative difference 

are given. Again, if one parameter, e.g. the PQ duration, 

could not be clearly estimated on the given 5-s interval, it 

is denoted with NaN.

Statistics of database

In its current state, the database contains 145 records 

with a total duration of 16.2 h of data. As several chan-

nels exist in some records, the amount of raw data is 

even greater (46.5  h for capacitive ECG signals, 5.4  h 

for optical signals and 16.2 h for the reference ECG sig-

nals, see also Table 3. "#Rec." means number of records,  

"Dur. refECG" means total duration of reference ECG). In 

the following, all values are given in mean ± two stand-

ard deviation.

Clinical study

In case of the clinical study (measScenario: ‘clinical-

Study2009’), 92 subjects are included with a total dura-

tion of 55 min. �e age of the patients is 64.3 ± 21.9 years 

and the BMI is 27.7 ± 8,9 kg m−1. �e gender was not 

recorded.

Driving a car

�e measurements while driving a car are composed of 

31 records of 6 different subjects resulting in 13.4 h of 

data. �ey have an age of 39.8 ± 26.2 years and a BMI of 

27.0 ± 11,6 kg m−1. All volunteers are male.

�e distribution of duration per specific scenario is as 

follows:

  • ‘automotive, city’: 2.0 h

  • ‘automotive, highway’: 8.8 h

  • ‘automotive, proving ground’: 2.5 h

here, ‘automotive, *’ are the identifiers found in the field 

measScenario of the respective record.

Lying in bed

�e measurements where a subject is lying in bed (meas-

Scenario: ‘lab, bed, A’, ‘lab, bed, B’) consist of 20 records of 

10 different subjects resulting in 1.7 h of data. �e volun-

teers have and age of 27.8 ± 4.3 years and a BMI of 24.2 

± 8.3 kg m−1, while 30% are female.

Optimal conditions

�e measurement under optimal conditions consists of 

two records (measScenario: ‘lab, chair, optimal condi-

tions’) of one subject and a total duration of 6.3 min. �e 

male subject’s age is 28 and he has a BMI of 22.2 kg m−1.

Table 2 Available annotations

Dataset Type Meaning Source Value Datatype

All peaks Detected peaks osea OSEA Typecode 1 × 1 int8

All peaks Detected peaks manual OSEA Typecode 1 × 1 int8

UnoViS_clin2009 rhythm Atrial fibrillation present? manual 1/0/NaN 1 × 1 logical

UnoViS_clin2009 extrasys Extrasystole present? manual 1/0/NaN 1 × 1 logical

UnoViS_clin2009 bbb Bundle branch block? manual 1/0/NaN 1 × 1 logical

UnoViS_clin2009 hr Heart rate manual [mean, relative difference] 2 × 1 single

UnoViS_clin2009 pq PQ time manual [mean, relative difference] 2 × 1 single

UnoViS_clin2009 qrs QRS time manual [mean, relative difference] 2 × 1 single

UnoViS_clin2009 qt QT time manual [mean, relative difference] 2 × 1 single

Table 3 Summary of initial content of database

Dataset Signaltypes #Rec. Dur. refECG

UnoViS_clin2009 1 Capacitive ECG 92 55 min

1 Reference ECG

UnoViS_auto2012 3 Capacitive ECGs 31 13.4 h

1 Reference ECG

UnoViS_bed2013 3 Capacitive ECGs 20 1.7 h

3 Optical pulse

1 Reference ECG

UnoViS_opti2013 3 Capacitive ECGs 2 6.3 min

3 Optical pulse

1 Reference ECG
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Utility
Many signal processing challenges exist in the realm of 

unobtrusive monitoring. One important aspect is the 

peak detection, i.e. the precise location of individual 

heart beats. Subsequently, parameters like heart rate (HR) 

or heart rate variability (HRV) can be calculated. None-

theless, it is also possible to estimate the heart rate with 

indirect methods [24–26]. However, especially in unob-

trusive monitoring without fixed electrode-patient-inter-

faces, severe artifacts are prevalent and large intervals 

might be corrupted to a degree that the extraction of use-

ful information is impossible. It is hence equally impor-

tant to detect these corrupted intervals and exclude them 

from further analysis. In case of several simultaneously 

recorded redundant signals, it is furthermore possible 

to perform signal fusion to increase the temporal cover-

age of valid information and simultaneously decrease the 

error, e.g. in HR estimation as we have shown in [27].

All these mentioned scenarios (and probably even 

more) are possible with UnoViS. An example for the 

severe motion artifacts and the opportunities of a mul-

tichannel unobtrusive monitoring is shown in Figure  5. 

While the channel cecg1 has a very low amplitude of 

the R-peaks even after recovering from a severe artifact, 

channel cecg2 shows larger amplitudes of the R-peaks. 

Hence, it would be beneficial to use this channel for 

parameter extraction. Furthermore, the optical channels 

opt1 and opt3 recover even faster and would thus allow to 

increase the time in which a reliable heart rate could be 

estimated.

Provided functions

For the purpose of easy usage and fast development of 

own algorithms, several MATLAB functions are provided 

with the database. In case of the WFDB files, it is possi-

ble to start immediately out of the box with own existing 

algorithms, as data is stored in a standardized file format. 

However, a plot function for MATLAB, which loads a 

WFDB file and plots all available channels and informa-

tion, is attached as an example.

For the database stored in a MATLAB mat-file, basic 

working examples for peak and artifact detection as well 

as result analysis are provided. �e usage of those func-

tions and procedures are demonstrated in the script 

EXAMPLE_USAGE.m. �ey can be used with a single 

record or, for increased statistical power, with the whole 

database. �ese functions allow researchers to concen-

trate on the development of sophisticated algorithms 

instead of having to build the needed infrastructure and 

the evaluation methods.

Detection of peaks

�e detection of heart beats in unobtrusively measured 

signals is a challenging task. For demonstration, find-

PeaksInRecord uses the OSEA QRS-detector to detect 

R-peaks in capacitive ECG signals of a given record. 

To evaluate its performance, bxbAmsi calculates the 

sensitivity and positive predictive value (PPV) of the 

detected peaks compared with the given reference peaks. 

Calculations are based on the two standards ANSI/

AAMI EC38:1998, the American National Standard for 

Ambulatory ECGs, and ANSI/AAMI EC57:1998, the 

American National Standard for Testing and Reporting 

Performance Results of Cardiac Rhythm and ST Segment 

Measurement Algorithms.

It is also possible to perform an artifact detection 

after peak detection to classify each detected peak using 

a quality index. �is is demonstrated with a simple 
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Figure 5 Example plot of a multichannel record (first record from dataset ”UnoViS_bed2013”) with artifacts.
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algorithm called calcQualityIndex, which discards every 

beat that would result in a heart rate above 120  BPM 

and below 30 BPM. In case of a heavily distorted signal 

resulting in many additional (falsely) detected peaks, this 

would decrease the sensitivity but increase the positive 

predictive value. �is very simple approach is of course 

not sufficient for a real application but can serve as a 

minimal working example for future developments.

Error and temporal coverage of heart rate estimation

As already stated, beat-to-beat heart rates can be esti-

mated based on detected peaks or by other, indirect 

methods [24–26]. In any case, algorithms need to be 

evaluated by two parameters: error and temporal cover-

age. It is obviously important that the error compared to 

a reference heart rate should be as low as possible. How-

ever, a high temporal coverage is important as well - one 

could exclude all “challenging” data segments and get 

very low errors, but at the same time almost no informa-

tion. �e function calcHrErrorTimeCoverage calculates 

these two parameters. �e error eHR is calculated based 

on an upsampled and interpolated (in a staircase way) 

heart rate HR
up
test of the test signal instead of a beat-to-

beat heart rate. �e error, i.e., the difference between the 

test and the reference heart rate, is calculated at the peak 

positions of the beat-to-beat reference heart rate tref,peak.
a

�e temporal coverage is calculated as the ratio of time 

in which information is available in both the upsampled 

reference and test heart rate, and the total time in which 

information is available in the upsampled reference heart 

rate. Since samples with no information contain NaN, the 

calculation of the temporal coverage can be expressed as

�ese definitions help to compare artifact detection algo-

rithms, which discard corrupted intervals. If no artifact 

detection is utilized, the error eHR may be large and the 

temporal coverage is 100%. If corrupted intervals are dis-

carded, the error reduces but also the coverage in which 

information is available (without differentiation if avail-

able information is correct or not). A good algorithm 

will result in a minimal error and a maximal temporal 

coverage.

For presentation of the results boxPlotErrorsCoverages 

plots a box plot of the errors and the temporal coverage. 

Again, it is also possible to use quality indexes and box-

PlotErrorsCoverages will show their impact in a direct 

comparison to the unclassified peaks.

(4)eHR = HR
up
test(tref,peak) − HRb2b

ref

(5)coverage =
t(HR

up
test �= NaN & HR

up
ref �= NaN)

t(HR
up
ref �= NaN)

As an example, one record from the database "UnoViS_

auto2012”, containing three cECG channels, is extracted. 

A simple artifact detection method is used and the 

results are presented as a box plot in Figure 6. �e figure 

shows (a) the error of the heart rate detection and (b) the 

temporal coverage. �e red line denotes the median, the 

blue box contains 50% of all data points, and the whiskers 

show the distribution of 99% of all data points. In case of 

the heart rate error, the errors above 30 BPM and below 

−30 BPM are moved to these limits, to remain legible.

It is clearly visible that, in case of no artifact detection, 

the errors in heart rate estimation are broadly distrib-

uted. 50% have an error between −8 and 1  BPM, how-

ever, 99% are between −20 and 12 BPM (keeping in mind 

that even larger errors are limited to ±30 BPM) and are 

hence not acceptable. �e temporal coverage is at 100%. 

If the simple artifact detection is applied, the heart rate 

estimation improves significantly as most errors are now 

within an interval of ±5 BPM. However, as it is an overly 

simple artifact detection method, many large errors 

remain, which are not visible here due to the set limits. 

�e temporal coverage becomes, as expected, lower and 

lies between 70 and 90%.

Discussion
�e purpose of the database is not to set a new stand-

ard but rather to provide a database for heavily distorted 

unobtrusive vital signs measurements. Different meas-

urement devices by different research groups worldwide 

will of course result in slightly different measurements. 

However, they all have to conquer severe motion arti-

facts. Although these measurement devices are not com-

mercially available yet, they are gaining more and more 
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attention in research as well as in industry. Hence, to 

allow all researchers to develop very robust algorithms, 

this database closes an important gap as it is the first of 

its kind. �ere is no need to own such a device and the 

results can be compared with others.

Conclusions
�is paper presents the first publicly available database 

of unobtrusive vital signs measurements. Beside the 

structure and the initial content of the database itself, 

supplementary MATLAB functions are described. �ey 

allow prospective users an easy usage of the database 

and fast developing and testing of their own algorithms. 

Especially for peak detection, heart rate estimation and 

artifact classification, working example algorithms and 

evaluation functions are provided. �is helps to avoid 

their time consuming yet required implementation for 

prospective database users. In the future, this database 

will be extended with more cECG measurements and 

other unobtrusive vital signs data acquired by various 

technologies such as, for example, BCG, video or mag-

netic impedance measurements.

Availability and requirements
�e database is located at http://www.medit.hia.rwth-

aachen.de/UnoViS and can be downloaded for free. How-

ever, we kindly ask to cite this publication if the database 

and/or its supplementary functions are used. �e data 

itself is available as a MATLAB mat-file or in several files 

per record in accordance to the PhysioNet WFDB (Wave-

Form DataBase) file format [16].

Endnotes
aIt should be noted, that the positions are slightly 

shifted to avoid wrong large differences at the heart rate 

transitions.
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