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Unpacking the Black Box: Applications and Considerations  
for Using GPS Devices in Sport

James J. Malone, Ric Lovell, Matthew C. Varley, and Aaron J. Coutts

Athlete-tracking devices that include global positioning system (GPS) and microelectrical mechanical system (MEMS) com-
ponents are now commonplace in sport research and practice. These devices provide large amounts of data that are used to 
inform decision making on athlete training and performance. However, the data obtained from these devices are often provided 
without clear explanation of how these metrics are obtained. At present, there is no clear consensus regarding how these data 
should be handled and reported in a sport context. Therefore, the aim of this review was to examine the factors that affect the 
data produced by these athlete-tracking devices and to provide guidelines for collecting, processing, and reporting of data. Many 
factors including device sampling rate, positioning and fitting of devices, satellite signal, and data-filtering methods can affect the 
measures obtained from GPS and MEMS devices. Therefore researchers are encouraged to report device brand/model, sampling 
frequency, number of satellites, horizontal dilution of precision, and software/firmware versions in any published research. In 
addition, details of inclusion/exclusion criteria for data obtained from these devices are also recommended. Considerations for 
the application of speed zones to evaluate the magnitude and distribution of different locomotor activities recorded by GPS are 
also presented, alongside recommendations for both industry practice and future research directions. Through a standard approach 
to data collection and procedure reporting, researchers and practitioners will be able to make more confident comparisons from 
their data, which will improve the understanding and impact these devices can have on athlete performance.
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Global positioning system (GPS) is a satellite navigation 
network that provides location and time information of tracking 
devices. Initially developed for military purposes, this system now 
has much wider application, including its use in athlete tracking and 
load quantification. GPS satellites orbit the Earth and send precise 
time information (from an atomic clock) to the GPS receivers (at 
the speed of light) to determine the duration of signal transit.1 A 
minimum of four satellites are required to determine the position 
of the GPS receiver trigonometrically. Commercial GPS systems 
are now commonly used in individual- and team-sports at all levels. 
The development and subsequent acceptance of microtechnology 
in sport has led to the integration of other micro inertial sensors 
within GPS devices, such as triaxial accelerometers, magnetometers, 
and gyroscopes; collectively termed as micro electrical mechani-
cal systems (MEMS). Thus, GPS and MEMS technology provides 
practitioners with a wide array of data that can be used to assess 
athlete physical loading and activity profile.

The use of GPS in sport allows practitioners to evaluate athletic 
training programs, and researchers to better investigate applied 
research questions. Indeed, since the first paper using GPS technol-
ogy in sport was produced in 2001,2 the number of peer-reviewed 
research publications has increased exponentially (Figure 1). Such 
devices have been used mainly to investigate load monitoring in 

athletes3 although other applications in assessing injury risk4 and 
neuromuscular fatigue5 have also been described. Given the wide use 
of GPS and MEMS derived data, it is important that both researchers 
and practitioners are aware of the how these data are derived. More 
specifically, it is important to understand how these data are gener-
ated, the factors that affect measurement validity and reliability, 
the impact of changes in hardware/software and how data should 
be reported. Therefore, the purpose of this article is to examine 
these issues and provide guidelines for collecting, interpreting, and 
reporting of GPS- and MEMS-derived data in sport.

Reliability and Validity  
of Commercial GPS Devices

Athlete tracking technology is continually improving through 
developments in microprocessors, data processing, and software. 
With these advancements, researchers have conducted independent 
validity and reliability studies as each device/update is released from 
commercial suppliers. However, due to the time taken to publish 
such studies, GPS devices are often used in sport before essential 
independent information on measurement precision is available.6 
Nonetheless, it appears that both the measurement validity and 
reliability of GPS devices has improved with recent developments 
(for review see Scott et al7). In general, measurement precision has 
improved with increased sampling rate and is better in activities 
completed at lower speeds and with fewer changes in direction. 
While in the study of Johnson et al8 10-Hz devices were found to be 
superior to 15-Hz devices, the 15-Hz device used interpolated data 
which was not “true” GPS sampling. Thus there is a requirement 
to conduct further testing using true higher sampling GPS devices 
for further clarification. It must be noted that sampling rate alone 
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will not improve the quality of GPS data, as factors such as the 
chipset processor used and position of the device on the body can 
also influence the output. Since this recent review7 has described 
most of the validity and reliability studies, the following section 
will focus on the considerations for practitioners and researchers 
when conducting and interpreting reliability/validity research with 
GPS devices.

There are many manufacturers of GPS-devices, often with sev-
eral models that have a variety of sampling rates, chip sets, filtering 
methods, and data-processing algorithms. Due to these differences in 
data processing between brands/models of GPS device, it is essential 
that the measurement validity and reliability for each is determined. 
Many users may not be aware these factors can influence the data 
obtained from these devices how GPS devices collect the data 
reported. For example, GPS velocity and distance can be calculated 
using different methods (Doppler-shift or positional differentiation). 
Furthermore, the accuracy of positional information to determine 
the distance between multiple units is different to the accuracy of a 
unit to measure distance alone. Accordingly, measures of velocity 
and distance require validation independently and in combination 
(eg, distance covered at certain velocities). Some studies have used 
latitude and longitude measures to determine the distance between 
devices and subsequently athletes, thus the measure of position 
also requires specific validation.9,10 Therefore, it is important that 
researchers refer to validation studies that have used the same GPS 
brand/model specific to their own. It is also important that these 
studies report on same metrics (ie, range of speeds, distance etc.) 
examined in practice.

The majority of GPS validation studies have employed rela-
tively simple field-based research designs using human subjects, 
with validity assessed against a known distance. However, studies 
that have assessed GPS-derived velocity against a criterion mea-
sure for velocity have been more complex. Some studies have used 
timing gates to assess velocity11–13; however, this approach only 
determines average velocity based on limited sampling points. 
The use of higher sampling criterion measures (ie, Laveg laser or 
radar gun) provide a more sensitive measure of velocity, which 
is important when assessing movements that involve changes in 
velocity such as accelerations and decelerations. These studies 
have investigated reliability and validity using linear running 
movements without any changes in direction.12,14,15 While these 

studies provided a thorough assessment of velocity, acceleration, 
and deceleration compared with high-sampling criterion measures, 
the limitations were that they did not assess using sport-specific 
movements involving changes in direction. Other studies have 
employed sport-specific movement circuits,8,11,16–19 however most 
of these studies are limited in the criterion measures used to evalu-
ate velocity (eg, timing gates,20,21) and synchronization protocols 
are not well documented.

High error rates have been reported for interunit reliability 
across different GPS models.11,13,16–18 This can have significant 
practical implications if different devices are worn by an athlete 
across a longitudinal period, which renders meaningful interpre-
tation of the data difficult. It is suggested that where possible 
that practitioners assign a specific device to each athlete for 
within-athlete longitudinal monitoring.22 It is worth noting that 
the extent of the interference between 2 or more devices during 
testing has yet to be fully explored. In the example of Buch-
heit et al23 using a sled with multiple devices being used at the 
same time, we must first understand the influence of positioning 
these devices in close proximity before fully interpreting such 
outcomes. While interunit reliability information is available 
for distance it is difficult to determine for velocity. The deter-
mination of interunit reliability for velocity requires the specific 
velocities at which the participants move to be reproduced across 
trials. As human participants are unable to exactly replicate the 
same movement patterns (speeds and direction changes) on 
multiple occasions, the uses of such study designs are limited. 
Future research could determine interunit reliability through the 
use mechanical devices that allow exact velocity and distance  
to be replicated.

Data Collection, Processing,  
and Reporting Considerations

In research, detailed reporting standards are considered necessary 
in fields of measurement to ensure output conform to standards for 
reporting trials (CONSORT) or observational studies (STROBE). 
At present, no reporting standards exist for the use of GPS in sport, 
therefore, this section will highlight some considerations for col-
lecting, processing, and reporting GPS data.

Figure 1 — The number of research studies published using commercial GPS devices from 2001 to 2015. A systematic search of all electronic databases 
(MEDLINE, SPORTDiscus, Web of Science, and Google Scholar) was performed from the earliest records (2001) to the last complete year (2015). The 
key words GPS sport were used for the search, and we included studies involving human subjects in applied sporting studies only.
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Satellite Connection and Horizontal 
Dilution of Precision

The signal quality received by GPS devices during data collec-
tion influences the accuracy of the data recorded. Signal quality 
may change depending on location and environmental obstruction 
(ie, stadiums), and should be recorded to ensure that longitudinal 
analysis can be carried out with confidence.24 To evaluate the fidel-
ity of the data collected, signal quality can be judged based on the 
number of satellites interacting with the receiver together with their 
orientation in the atmosphere.25 It is equally important that the 
satellites connected have adequate signal strength to the specific 
device. While GPS devices require a minimum of 4 satellites for 
adequate connection, the higher the number of connected satellites 
would increase the coverage of the device. Anecdotally, devices 
connected to less than 6 satellites would tend to have a weaker con-
nection and thus data quality. The recent development of multiple 
Global Navigation Satellite Systems (GNSS) has improved both the 
availability and signal strength of surrounding satellites. However, 
there has yet to be a direct comparison study completed comparing 
the data quality of GPS versus GNSS in a sporting context, which 
lends to future research. In addition, research is also required to 
identify whether the inclusion of GNSS technology improves data 
quality in different stadium environments, which has often been a 
limitation of GPS-based systems.

The horizontal dilution of precision (HDOP) provides a 
measure of the accuracy of the GPS horizontal positional signal 
determined by the geometrical organization of the satellites. When 
satellites are bunched together HDOP is high and precision is poor 
whereas when satellites are spread out HDOP is low and precision is 
good. Values range from 0 to 50,25 with a value less than 1 considered 
ideal. While some researchers have detailed the average number of 
satellites and/or HDOP connected to the devices used during data 
collection,13,14,16,18,22,23,26 many have not provided these details that 
make study conclusions difficult. While all GPS devices are able to 
collect information on the number of satellites and HDOP, not all 
manufacturers allow this data to be accessed by the user. Therefore, 
we recommend that manufacturers make this information available 
to practitioners and researchers.

In a practical setting, practitioners may be providing train-
ing and competition reports to coaches based on erroneous data. 
This can have significant implications for the coaching process, 
as changes may be made to the athletes program based on poor 
quality data. Therefore, we strongly recommend that practitioners 
ensure they have confidence in the data they use on a daily basis to 
make practice-changing decisions. We recommend that users check 
the data quality using the before mentioned satellite and HDOP 
information and exclude any data files that fall outside acceptable 
ranges for a considerable portion of the file. It should also be noted 
that there is no clear “gold standard” guidelines to allow users to 
clearly objectively identify files of poor data quality. Further work 
is required in this area to improve the reporting standards guidelines 
for practitioners.

Data-Exclusion Criteria

Due to factors outside of the practitioner’s control, there may be 
instances in which data collected should be excluded from any 
subsequent analysis. Indeed, the number of satellites connected and 
HDOP are methods that can be used to determine whether to exclude 
data. Moreover, raw traces of velocity and acceleration should also 

be inspected for irregularities generated from the device itself (ie, 
spikes in the data). These irregularities may occur due to sudden 
loss in satellite signal connection leading to a delayed detection 
of locomotion. A combination of these processes is encouraged 
to inform judgments regarding data exclusion, and researchers are 
encouraged to detail the specific criteria adopted and the proportion 
of discarded data (ie, Weston et al26).

Velocity and Acceleration Data
The GPS devices can calculate distance and velocity via two dif-
ferent methods, from positional differentiation or Doppler shift. 
The GPS devices calculate position (latitude and longitude) using 
information of the distance of each satellite to the device and 
then triangulating the devices location. Subsequently distance is 
calculated via positional differentiation (change in location with 
each signal), from which velocity can be derived (distance over 
time). Velocity can also be calculated by measuring the change in 
frequency of the satellite emitted periodic signal (Doppler shift). 
This provides an almost instantaneous measure of velocity from 
which distance can be derived (velocity multiplied by time). Velocity 
calculated via Doppler-shift has shown a higher level of precision 
and less error compared with velocity calculated via positional dif-
ferentiation during linear running at a range of velocities for 1-Hz 
GPS devices.27 Whether such differences exist in units sampling 
at higher frequencies is unclear, as is the comparison of distance 
calculated via each method. Therefore further validation of com-
mercial systems is required. Current commercial systems (Catapult 
Sports, GPSports) determine distance via positional differentia-
tion and velocity via Doppler shift (personal communication with 
manufacturers). Manufacturers should include this information in 
documentation pertaining to their devices as it is relevant for both 
practitioners and researchers. If velocity and distance are calculated 
from 2 different methods it is an important consideration as valida-
tion is required of both measures.

Acceleration that is measured using the GPS is often derived 
from Doppler-shift velocity. The time interval over which accelera-
tion is calculated can significantly alter the data with a wider interval 
resulting in a smoothing effect on the data. Typically, accelera-
tion is calculated over 0.2 or 0.3 second when using 10-Hz GPS, 
although the most appropriate interval will depend on the brand 
and model of the device. After acceleration is calculated the data 
may be smoothed using different filtering techniques, often chosen 
at the discretion of the manufacturer. Filters that have been used 
by current manufacturers include moving average, median, and 
exponential filters. Velocity data may also be smoothed using the 
aforementioned filters. Often these filters are predetermined by the 
manufacturers software, however if the raw data can be exported 
the users can apply their own custom filters.

Practitioners should be aware that any changes to the way 
their data are filtered is likely to have implications on their choice 
of thresholds (velocity/acceleration) and the selection of a mini-
mum time in which efforts (velocity/acceleration) are detected. 
In most manufacturers’ software, velocity metrics are calculated 
from Doppler estimates; nonetheless clarification of the method 
of determination would facilitate the interpretation of GPS data 
by research consumers. In addition, it is a common misconcep-
tion that the accelerometers within these devices are involved in 
the calculation of GPS acceleration, however this is not the case, 
and accelerometer-derived acceleration/deceleration are distinctly 
separate metrics.
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Raw Data Versus Software-Derived Data
Manufacturer software often includes algorithms to identify poor 
quality data, and automatically interpolate, smooth or extract data 
(ie, software-derived data). This is helpful in the practical setting 
where fast evaluation of training/competition loads is necessary 
to assess performance and inform exercise prescription. However, 
greater clarity of the filters and algorithms used to process the data 
are required from manufacturers in order for users to understand 
the metrics produced. Indeed, users should be aware that data pro-
cessing by commercial software would be subject to change due 
to changes in technology and processing algorithms.23 In circum-
stances where researchers are conducting studies using historical 
or longitudinal data, it is recommended to export and analyze the 
data using the same software version and disclose this information 
to research consumers.

Some practitioners and researchers prefer to export raw data 
from commercial software and process it independently.26,28–30 
This allows data to be analyzed in greater detail such as the use of 
rolling periods31 or for custom algorithms to identify new metrics. 
Custom processing of raw data also allows the user to provide 
details on error detection, data filtering and reporting processes to 
facilitate appropriate interpretation and replication by others. How-
ever, manufacturer proprietary software often uses data-processing 
algorithms that are subject to intellectual property protection, and 
their details are not disclosed to users. The lack of transparency 
about these processing algorithms can make external validation of 
these metrics difficult.

The “raw” data exported from many commercial software 
are often prefiltered by the receivers’ firmware to reduce the noise 
within the GPS signal. Firmware refers to a writable control store 
within the devices chipsets that contains microcode defined by the 
manufacturer’s instruction set. The type of processing is dependent 
upon the model and version of the firmware, therefore each firmware 
version that processes the data differently will require validation. 
Due to the potential influence of firmware updates on data, manu-
facturers are encouraged to inform users on the influence of these 
updates and researchers should report the firmware version used 
during data collection.

Minimum Effort Duration
A data processing feature that is customizable by some manufacturer 
software is the criteria used to identify movement efforts such as 
sprints or accelerations. Users select the minimum time to delineate 
the minimum effort duration above a particular speed or accelera-
tion threshold required for an effort to be recorded. For example, 
the detection of a sprint effort defined at >7 m/s with a minimum 
time of 0.4 second, requires speed to be maintained >7 m/s for a 
minimum of 4 consecutive samples when sampling at 10 Hz. This 
approach ensures that unrealistic calculation of efforts, such as 
those that arise from GPS random error or spikes in speed, are not 
included (eg, efforts lasting <0.1 s are counted as sprint efforts).

The identification of the end point of an effort is also important 
as speed may oscillate around a set threshold, therefore a minimum 
time in which speed is required to fall below a threshold should also 
be determined. For example, an athlete’s speed may oscillate around 
the sprint threshold of 7 m/s. If a short minimum time is used to 
detect the end of an effort (eg, 0.1 s) than if the athlete’s speed fell 
below the threshold for one sample, they would be reported to have 
performed 2 or more sprints efforts when only one effort was likely 
to occur. Currently there is no consensus on an optimal duration that 

should be set to identify discrete efforts; however, too short duration 
can result in a high number of efforts being reported. Moreover, the 
minimum duration used to identify the start and end of an effort can 
have a greater effect on identifying short duration efforts such as 
accelerations and decelerations. A conservative approach for users 
would be to set a longer duration above a threshold as the criteria for 
accelerations and decelerations. Practitioners should be aware that this 
user-defined criterion may have a marked effect on their results and 
should be consistent with their choice of minimum time. In addition, 
differences between studies in the criteria used to define efforts or 
where the criteria are not defined make it difficult to compare find-
ings. Further complicating this issue is that practitioners may use 
a variety of sprint effort definitions. While some practitioners will 
only consider movement above a specific threshold, others may wish 
to include the preceding acceleration. Accordingly, we recommend 
that details regarding minimum effort duration should be reported in 
research. Future research should also look to link the effort duration 
analysis with clear physiological rationale such as what clearly defines 
an anaerobic- and aerobic-type single effort through the GPS data.

GPS and MEMS Device Preparation  
and Considerations

When using GPS/MEMS devices, it is important to ensure that the 
correct procedures for data collection are followed and reported. 
For example, devices should be calibrated by the manufacturer 
before data collection and the details provided to the user. Further, 
athletes should wear the devices in appropriate tight-fitting garments 
to hold the device and minimize unwanted movement. Poor fitting 
of devices may negatively affect accelerometer data. Users should 
also ensure that devices have satellite connection before any data 
collection (known as GPS lock). This can be achieved by placing 
the devices in a clear outdoor space and allowing sufficient time to 
achieve GPS lock (usually indicated on the manufacturer’s device 
by flashing light signals).

Real-Time Testing
It is common for sport scientists embedded in sport to use the 
real-time data features of the manufacturer’s software to pro-
vide feedback and inform decisions in training and competition. 
Coaches and players may seek feedback on loads (during training 
to see if they have achieved predetermined targets. However, the 
quality of real-time data can be influenced by a number of factors 
including the distance of the antennae from the GPS device and 
the processing ability of the GPS device to stream data. Indeed, 
an earlier study comparing differences between real-time data and 
“postdownload” data showed a discrepancy in the output suggesting 
caution should be taken when interpreting real-time data.32 However, 
since this research was completed, GPS and real-time technology 
has improved. Therefore, we recommended that further research 
be conducted to establish the accuracy of real-time data, and that 
for quality assurance purposes that GPS data be downloaded post 
activity for reporting.

Speed Thresholds
The total distance covered during a training session or competitive 
event is considered a global index of the athletes’ workload and it 
is often a stable metric.33 However, GPS data are often categorized 
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into speed zones in an attempt to understand the “locomotor profile” 
or “intensity distribution” of the athletes’ external loading. The fol-
lowing section will examine issues relating to determining speed 
zone thresholds for GPS data for team-sport athletes, with specific 
discussion on justification for selecting absolute and relative speed 
zones, and methodological approaches and practical considerations 
for individualizing speed zones.

The customizability of speed thresholds afforded by GPS soft-
ware resulted in a range in the number of zones and their thresholds 
used to demarcate different locomotor activities (see: Cummins et 
al3 and Aughey34 for more detail). Indeed, while several previous 
authors have suggested standardization of speed-zone thresholds 
to permit between sport or competition contrasts,3,34,35 differences 
in the technology available,36,37 equipment manufacturers,8,17 sam-
pling frequencies,8,16,36,38 software versions,23 and data-processing 
techniques make it difficult to draw confident inferences about 
appropriate speed thresholds from previous studies. While between-
study comparisons may be permitted with relative GPS metrics 
(ie, % of total distance covered39), the specific nature and demands 
of each sport and its athlete cohort, together with the range of 
contextual factors that influence external loading patterns40–43 may 
render threshold standardization academic, and of little relevance 
for industry practice.

A specific practical issue for users working with athletes is 
determining appropriate speed thresholds. Ultimately, selection of 
absolute (or arbitrary) speed thresholds to examine the locomotor 
profile of an activity bout is at the discretion of the user/researcher 
and informed by the particular population being assessed. Yet, an 
appropriate theoretical framework to inform threshold selection has 
been historically absent in the research literature, and seemingly 
based on early locomotor category based time–motion analyses, 
which were subjective in nature. For example, in the research that 
has examined youth and female populations there has been little 
justification provided for the speed zones selected, except that the 
thresholds were lowered to reflect the lower locomotor performance 
capacities of younger44 and female cohorts.45 One approach to has 
been to use mean cohort-specific physical fitness (ie, anaerobic 
threshold46,47) or performance characteristics such as maximal sprint 
speed48,49 from normative data sets to anchor player-independent 
(arbitrary) speed thresholds. The advantage of this approach is that 
the locomotor profile of the activity will be representative for the 
cohort, however, this will be limited by frequent changes in speed 
zones owing to squad composition and seasonal variations in physi-
cal fitness, precluding longitudinal analysis of locomotor trends. 
Yet, longitudinal tracking of external load is relevant for young 
athletes for the purposes of session evaluation and prescription, 
and may also be used for educational, comparative, and selection 
purposes in industry practice. Accordingly, selection of universal 
arbitrary thresholds to demarcate zones of equal bandwidth may 
be recommended for each athlete/squad in an organization (ie, 
0–5, 5–10, 10–15, 15–20, >25 km/h), for which the qualitative 
locomotor descriptor used for each zone (ie, moderate-, high-, 
very-high-speed running, sprint) could be repositioned with age or 
biological maturation status to better reflect the physical capabili-
ties of the athlete/squad. We recommend that users reflect upon the 
cohort being monitored and the value of examining the locomotor 
profile of external loading to inform their prescription of absolute 
speed thresholds.

To complement GPS data categorized by absolute or cohort-
specific speed zones (player-independent), users may also consider 
individualizing the thresholds for each athlete according to their 
fitness attributes. The integration of athletes’ fitness characteristics 

into external load metrics may provide a proxy to determine 
the dose response in competition settings in which measures of 
internal training load (or the response to the stimulus) are not 
always feasible. This technique discerns the individuals’ specific 
locomotor profile (or “intensity distribution”) and may inform 
the evaluation of external load and the ensuing prescription.50–52 
For example, comparing the high-speed distance covered above 
an arbitrary (player-independent) threshold between two English 
Premier League players, who fulfilled similar tactical roles in the 
same competitive matches, resulted in trivial differences (~5%); yet 
application of individualized zones (≥velocity corresponding to the 
respiratory compensation threshold) yielded a 41% difference in the 
“high-intensity” running performed between the players.50 More 
recently, Hunter et al52 presented the case of a player whose fitness 
(running speeds corresponding to the respiratory compensation 
threshold and maximal oxygen consumption) decreased within a 
season, which corresponded with increased intensity of match play 
(ie, greater high-speed running and sprinting). Such cases were only 
identifiable with the application of individualized speed thresholds, 
highlighting the advantages of developing player-specific individual 
speed thresholds. Indeed, when both arbitrary and individualized 
speed thresholds are used in conjunction, greater insights into the 
player loading of individuals and teams of athletes may be achieved 
than with either method alone. However, while the ability to custom-
ize individual players speed thresholds is already available in some 
GPS commercial software applications, it is a laborious process, 
which may partly explain why this approach is not a commonly 
adopted in industry practice.53 Nonetheless, future commercial 
GPS software developments/upgrades might include the capacity 
to dual process and compare data according to both absolute and 
relative speed zones, which will assist practitioners to implement 
this approach in a time-efficient manner.

Practitioners have a range of options available in the deter-
mination and application of individualized speed thresholds. 
Previous research has used measures of anaerobic threshold,47,50,51 
intermittent-exercise capacity,54 maximal aerobic speed,52,55,56 
peak running speed,44,57–59 or a combination of two55,56 or three52 
of these measures to determine individualized speed thresholds. 
Users are cautioned against using one of these capacities in isola-
tion to individualize the complete locomotor profile, because data 
can be skewed dependent upon the phenotype of the athlete, which 
may result in erroneous interpretation (see examples presented in 
Hunter et al52). For instance, using fractions of peak sprint speed to 
demarcate high-speed running has become common in the research 
literature,57–59 yet this approach has no physiological rationale. A 
limitation of this approach is that it assumes that faster players 
also have a higher transition speeds into the high or supra-maximal 
intensity domains, which may not always be the case.

Although most of the previous research to date on individual-
ized speed thresholds has adopted resource-intensive laboratory 
procedures to determine the fitness characteristics of athletes (ie, 
maximal aerobic capacity, anaerobic threshold, etc), these attributes 
can be determined in field settings using an appropriate test battery 
in conjunction with suitable monitoring technology (ie, VAM-EVAL 
and peak speed assessment56,60). The application of physiological 
thresholds determined from continuous exercise tests (such as the 
VAM-EVAL) to demarcate speed zones for intermittent activities 
such as team sport has been questioned,26,61 and the use of func-
tionally relevant tests (ie, Yo-Yo tests) has been recommended.61 
However, since most of the popular team-sport fitness tests (ie, 
Yo-Yo, multistage fitness test) require a combination of endurance, 
change of direction, and acceleration capabilities,62,63 they may be 
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more suited for evaluating changes in game readiness or “fitness,” 
rather than determining transitions in exercise intensity. Moreover, 
the nature of these fitness tests also precludes the determination of 
relevant47,50–52 submaximal physiological thresholds. Indeed, the 
velocity corresponding to anaerobic threshold is quite sensitive to 
changes in team-sport training status owing to a development phase 
(ie, preseason)64 or an injury-induced training interruption,52 and 
therefore may have value in determining individual speed zone 
thresholds. However, since a consensus is absent, users should 
consider which fitness tests are most appropriate to determine 
individualized speed thresholds before application. Moreover, the 
frequency in which fitness tests can be administered around the 
competition schedule should also be contemplated, so that indi-
vidualized speed zones reflect changes in fitness capabilities during 
the in-season period.52

The use of speed zones, whether arbitrary, individualized, 
or in combination, masks the intermittent nature of many sports, 
and underestimates metabolically taxing activities such as abrupt 
changes in speed,65 direction,66 or the mode of locomotion.67 For 
instance, an athletes who performs predominantly in confined 
spaces, rarely has the opportunity to reach the criterion speeds for 
high-speed running or sprint zones, yet the energy cost of their 
maximal accelerations may be 3-fold that of an athlete running at 
constant speeds.65 Hence, while individualizing speed thresholds 
based on physiological classifications of intensity domains or per-
formance attributes may offer additional insight into the athlete’s 
work rate, it cannot be considered a criterion measure of the intensity 
distribution in highly intermittent sports.

The complexities and challenges surrounding the application of 
individualized speed thresholds, such as lack of consensus in select-
ing and assessing appropriate fitness attributes, and difficulties in 
executing regular fitness tests with large squads of athletes, present 
significant barriers to its implementation in practice. This is further 
compounded by the dearth of evidence regarding its efficacy, and 
its inability to quantify metabolically demanding activities at low 
movement speeds. Intuitively, evaluating the athletes’ external load 
relative to their performance/fitness capacities is a logical practice, 
but further work is warranted to examine the utility of individualized 
versus arbitrary speed zones to predict injury risk resulting from 
mismanagement or poor control of load prescription.68,69 Research 
is also necessary to determine the dose response of external load 
evaluated via individualized vs. arbitrary speed zones, to changes 
in fitness. Such information will assist the user to make informed 
decisions about the evaluation of GPS data, and how this informs 
training prescription.

Inertial Sensors

The majority of research using GPS devices in sport has focused 
on the quantification of external load using metrics such as total 
and high speed running distances covered.3 Fewer studies have 
examined the loading recorded through the inertial measurement 
units (IMUs) available in MEMS devices. These sensors typically 
sample at a higher frequency (typically 100 Hz) compared with the 
GPS (5–20 Hz). The IMUs have the advantage that they can be used 
indoors as they do not require a satellite connection.

The accelerometer-derived load measures can vary between 
different manufacturers, with the most common being PlayerLoad™ 
(Catapult Sports) and Body Load (GPSports). These measures are 
based on the instantaneous rate of change in acceleration in each 
of the 3 vectors (x-, y-, and z-axis) as a proxy for mechanical load. 

Both measures of accelerometer load have demonstrated acceptable 
levels of interunit and intraunit reliability.70,71 However, caution has 
been recommended when measuring the absolute magnitude of 
acceleration when comparing to a criterion-referenced accelerom-
eter.71 It should also be noted that as with GPS-based measures, the 
IMU outputs can be influenced by the type of filtering procedures 
that the manufacturer adopts.

The vector magnitude accelerometer data are sensitive to 
within-athlete changes in both internal and external measures of 
exercise intensity5,72 and has been shown to detect changes in 
movement strategy that may be indicative of acute18,73,74 and chronic 
fatigue.75,76 Studies have suggested that changes in the accelerom-
eter may reflect changes in lower-limb stiffness,71,73–75 but users 
should be aware that upper-body kinematics influence the distribu-
tion of load accumulated in each movement vector (plane) when 
devices are harnessed at the upper trunk.72,73 Inferences regarding 
the distribution of loading in different vectors are also constrained 
in some devices, as changes in the orientation of the unit are not 
considered by the accelerometer (eg, a rugby tackle). Therefore, 
MEMS users working in sports that are characterized by wrestling, 
tackling, and impacts may be unable to detect changes in move-
ment strategy during games, and further work is necessary to refine 
accelerometer metrics. Practitioners are also cautioned regarding the 
large between-athletes variability in loading patterns observed,72–74 
which impedes comparisons between different players. The different 
loading patterns between athletes may be caused by differences in 
running economy, stride characteristics, and movement artifact of 
the device dependent upon its fitting within the athlete’s garment. 
Further work is necessary in this area to examine the determinants 
of accelerometer data in sporting contexts.

The use of IMUs in sport has also led to the development of 
algorithms designed to detect sport-specific actions or movement 
(for review see Chambers et al77). Such technology has been used 
to detect collisions in rugby league78,79 fast bowling in cricket,80 
swimming,81 and cross-country skiing82 movements. While these 
studies have used single devices worn on the upper back, other 
studies have used multiple devices to identify these sport-specific 
actions.83–86 A practical consideration when using MEMS data are 
to ensure that devices are fitted securely in the same position for all 
sessions. This is of particular importance when using match jerseys 
with custom made pouches sown into the back which may differ 
with training jerseys, and users should ensure that athletes wear the 
same housing garment in routine training/competition. While the 
use of multiple sensors may provide the means to create sensitive 
algorithms to detect sport-specific actions, it is important that these 
sensors can be worn practically by athletes during normal practices. 
It may be the case that the current available sampling rates (ie, 100 
Hz) are not sensitive enough for the development of new algorithms 
and manufacturers may look to provide higher sampling data.

Summary and Recommendations
The present article has discussed some of the issues and consider-
ations that researchers and practitioners should be aware of when 
using GPS and MEMS devices. Currently there is no clear con-
sensus on the appropriate reporting standards using such devices. 
Therefore, we have detailed some key recommendations below to 
prompt an improvement in reporting standards both in research and 
also applicable in applied practice.

• Researchers should include information regarding the number 
of satellites, HDOP, device brand/model, sampling frequency 
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and software/firmware versions in any published research, 
together with details of data inclusion/exclusion criteria.

• Researchers and practitioners should be aware of the minimum 
time used to identify efforts and the smoothing filters used to 
derive acceleration data. Further, this information should be 
included in any published research.

• Manufacturers should provide information regarding any 
changes relating to data processing with updates to software 
or firmware.

• Practitioners are urged to carefully consider the justification 
for the short- and long-term application of arbitrary and/or 
individualized speed thresholds to examine the locomotor (or 
intensity) distribution of external load.

• Users are cautioned against using one physiological and/or 
performance metric to anchor multiple individualized speed 
zones and to reflect on practical considerations such as routine 
fitness testing, test-battery selection, and time-efficient process-
ing of individualized GPS data.

• Comparing accelerometer data between different athletes to 
make judgments regarding external load should be undertaken 
with caution due to the large degree of variation.

• Inertial sensors and the use of sport-specific algorithms provide 
an insight into the future of load monitoring, although this is a 
relatively new area that requires further work to ensure reliable 
and valid data are produced, and to refine existing metrics.
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