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Unpacking the impact of social media analytics on customer 

satisfaction: Do external stakeholder characteristics matter? 

 

Abstract 

Purpose: Underpinned by the lens of Contingency Theory (CT), the purpose of this paper is to 

empirically evaluate whether the impact of social media analytics (SMA) on customer 

satisfaction (CS) is contingent on the characteristics of different external stakeholders, 

including business partners (i.e. partner diversity), competitors (i.e. localised competition) and 

customers (i.e. customer engagement). 

 

Design/Methodology/Approach: Using both subjective and objective measures from multiple 

sources, we collected primary data from 141 hotels operating in Greece and their archival data 

from TripAdvisor and the Hellenic Chamber of Hotels (HCH) database to test the hypothesised 

relationships. Data were analysed through structural equation modelling.  

 

Findings: This study confirms the positive association between SMA and CS, but it remains 

subject to the varied characteristics of external stakeholders. We find that an increase in CS 

due to the implementation of SMA is more pronounced for firms that (1) adopt a selective 

distribution strategy where a limited number of business partners are chosen for collaboration 

or (2) operate in a highly competitive local environment. The results further indicate the high 

level of customer engagement amplify moderating effect of partner diversity (when it is low) 

and localised competition (when it is high) on the SMA–CS relationship.  

 

Originality/Value: The study provides novel insights for managers on the need to consider 

external stakeholder characteristics when implementing SMA to enhance firms’ CS, and for 

researchers on the value of studying SMA implementation from the CT perspective.  

 

Keywords: Social media analytics, Contingency theory, Service operations, Customer 

satisfaction 

 

Article Classification: Research paper 



 

 

1. Introduction 

Operations and supply chain management (OSCM) scholars have recognised that firms 

are increasingly utilising social media analytics (SMA) to garner market reactions from their 

external constituents in order to satisfy customers’ various demands (Gu and Ye, 2014; Chan 

et al., 2016; Lam et al., 2016; Cui et al., 2018). For instance, through using multi-channel SMA, 

the Intercontinental Hotels Group (IHG) generated the corporate metrics and a scorecard with 

over 5,000 variables from social media traffic data, and to link those to deliver brand preference 

and customer engagement (Gibb, 2015). However, without appropriate governance of SMA, 

firms may fail to address customer concerns due to slow response to unexpected consequences. 

For example, United Airlines failed to respond adequately or in a timely manner to harsh 

comments regarding the dragging incident, posted on online social media platforms. As a result, 

United Airlines lost 800 million USD in market value within one day, and was eventually 

forced to introduce costly policies to avoid further reputational loss and a decrease in bookings 

(Tse et al., 2018).  

These examples of success and failure in using SMA show that it could play a pivotal 

role in achieving customer satisfaction (CS) in today’s highly dynamic business environment. 

Although the importance of SMA has been widely demonstrated in the OSCM literature (e.g. 

Abrahams et al., 2015; Chan et al., 2016), empirical evidence as to the impact of SMA on CS 

is scarce. Some practitioners question the benefits of using SMA. Anecdotal evidence reported 

by New York magazine indicates that social media traffic metrics are fabricated and thus 

business insights generated from social media data are questionable (Read, 2018). Whether 

SMA can improve CS more generally remains an open question. This question is particularly 

important for hospitality sector because hospitality practitioners are heavily reliant on social 

media platforms as a means of capturing user-generated content for customer analytics and 

customer relationship management (Ghose et al., 2012; Proserpio and Zervas, 2017).  

SMA has been viewed as a technical solution or an organisation and process issue (Fan 

and Gordon, 2014). The majority of the existing studies on the topic have examined the effect 

of analytics-related resources and capabilities on organisational performance and the 

moderating role of intra-organisational issues, such as organisational changes in business 

processes, business strategies and organisational routines (Srinivasan and Swink, 2018). For 

instance, Hazen et al. (2014) emphasise the need for the monitoring and control of data quality 

in big data analytics (BDA) initiatives, while Ross et al. (2013) suggest that an organisational 

culture of evidence-based decision making enables firms to ensure the decision-making quality, 



 

 

thereby improving overall firm performance. Apart from the identification of these internal 

conditions, a discussion regarding how the role of external stakeholders can catalyse the 

conversion of SMA investments to business value is noticeably absent from the extant literature. 

In fact, the value of analytics to a firm is, to a large extent, determined by its external 

stakeholders, such as business partners, competitors and customers (Grover et al., 2018; Park 

et al., 2017). In information systems (IS) literature, Melville et al. (2004) recognise that 

external stakeholders (e.g. trading partners and customers) and the competitive environment 

play crucial roles in driving business value through information technology (IT) capabilities, 

while Grover et al. (2018) suggest that integrating the views of external stakeholders is a key 

priority when implementing BDA. It is acknowledged that firms are required to carefully 

monitor their external environments and stakeholders when developing their analytics 

capability (Chen et al., 2015; Müller et al., 2018).  

Furthermore, the important role of customer engagement in OSCM has been widely 

recognised by scholars across a range of contexts, from the manufacturing sector (e.g. Gosling 

et al., 2017) to the service sector (e.g. Brandon-Jones et al., 2016). While several studies have 

recognised that a successful BDA implementation heavily depends on assimilating and 

transforming customer knowledge into the firm’s knowledge base (Cohen, 2018; Grover et al., 

2018), very little attention has been paid to explaining how a firm should make appropriate 

responses to the external environment that is characterised by their customer engagement level 

when initiating SMA. Following the logic of these thoughts, three characteristics of external 

stakeholders (i.e., partner diversity, customer engagement, and localised competition) are 

proposed for examination as possible moderators of the relationship between SMA and CS 

through the lens of contingency theory (CT). This examination could readdress a classical 

organisation theory question raised by McArthur and Nystrom (1991) “Do environmental 

conditions interact with strategies as joint determinants of company performance?” (P. 349) 

in general, and specifically, provide hospitality practitioners with more specific implications 

of how the characteristics of external stakeholder can catalyse the conversion of SMA 

investments to business value.  

Our study makes several important contributions to the OSCM literature. First, 

hospitality organisations are more likely to improve CS when their SMA initiatives are properly 

implemented. This is among the first research to provide empirical evidence on the positive 

impact of SMA on CS in the hospitality context. Second, our study reveals the moderating role 

of external stakeholder characteristics in the SMA–CS relationship. We offer a complementary 

explanation as to whether the diversity of business partner and the level of customer 



 

 

engagement are beneficial for hotels that deploy SMA to enhance CS. Our theoretical 

perspective helps to reaffirm a theoretical view proposed by Melville et al. (2004), who contend 

that external stakeholders (e.g., trading partners) play a crucial role in the IT business value 

generation of the focal firm when IT spans firm boundaries. Third, underpinned by contingency 

theory, our finding confirms that the SMA–CS relationship would be strengthened for firms 

that operate in a highly localised competition market. In view of our suggestion that businesses 

must develop SMA in accordance with their external stakeholders in order to improve their CS, 

this paper extends the research that interprets the implementation of analytics as strategic 

change within an organisation.  

 

2. Theoretical Background 

2.1. Review on the link between analytics-related resources and capability and 

organisational performance 

Recent studies have sought to understand under what internal and external conditions an 

organisation can enhance organisational performance through the deployment of analytics 

resources and capabilities. One strand of this research has tended to investigate how internal 

environment (the organisation itself) conditions moderate the relationship between analytics-

related resources and capability and organisational performance. Internal environment 

conditions such as organisational flexibility (Dubey et al., 2019; Srinivasan and Swink, 2018), 

organisational size (Park et al., 2017), strategic alignment (Akter et al., 2016), and task-

technology fit (Ghasemaghaei et al., 2017) have been considered as complementary to 

analytics capability. For instance, Srinivasan and Swink (2018) claim that in firms with high 

levels of organisational flexibility, analytics capability will have a more powerful effect on 

operating performance. Hallikainen et al. (2020) conduct an empirical investigation of 417 

B2B firms to examine the mechanisms by which customer analytics indirectly influence sales 

growth and customer relationship performance. Their findings show that customer analytics 

significantly fosters sales growth, and this effect would be stronger for firms that have a high 

level of analytics culture.  

Another strand of the recent research indicates that the role of external stakeholder 

characteristics are also important context factors that could amplify or lessen the impact of 

analytics resources and capability on firm performance. Chen et al. (2015) claim that the 

effectiveness of BDA is more pronounced in highly dynamic industrial environments, where it 



 

 

enables firms to better use big data resources to improve asset productivity and business growth. 

Using a longitudinal dataset that includes information about analytics assets owned by 814 

companies from 2008 to 2014, Müller et al. (2018) conclude that firms operating in IT-

intensive or highly competitive industries are most likely to create business value from their 

BDA assets.  

Figure 1 below provides an overview of bodies of knowledge and the central works that 

identify the moderating role in the analytics-related resources and capability–organisational 

performance relationship. Although prior research has explored various internal environment 

conditions as complementary to analytics resources and capability for improving firm 

performance, surprisingly, no study has investigated the possibility that SMA contributes to 

CS considering the distinctive roles of external stakeholders such as business partners and 

customers. Our study complements the existing OSCM literature theoretically by 

hypothesising and empirically testing the moderating role of external stakeholder 

characteristics in the SMA–CS relationship in the hospitality sector.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Visualising the research gaps in the current literature regarding the moderating 

role in the analytics-related resource and capability–organisational performance link 
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Internal (organisational) conditions 

• Organisational flexibility (Dubey et al., 2019; Srinivasan and Swink, 2018) 

• Organisational size (Park et al., 2017)  

• Strategic alignment (Akter et al., 2016)  

• Fit perspectives (Ghasemaghaei et al., 2017)  

• Organisational culture (Hallikainen et al., 2020; Wang et al., 2019) 

 

 

 

 

 

 

 

 

External Stakeholder Characteristics 

 

Competitors and industrial environment  

• Environmental velocity (Park et al., 2017) 

• Environmental dynamism (Chen et al., 2015) 

• Industry characteristics (Müller et al., 2018) 

• Hostility (Mikalef et al., 2019) 

• Localised competition (this study) 

Customers 

• Customer engagement  

(this study) 

Supply chain partners 

• Partner diversity  

(this study) 

? ? 



 

 

2.2. The characteristics of external stakeholders on SMA implementation 

Contingency Theory (CT) points out the importance of external business conditions in 

building firm capability and performance. The general hypothesis of CT is that the superior 

performance of a firm depends on the extent to which its internal features (e.g. adoption of the 

best practices) can match the situational demands of its external environment (Hofer, 1975; 

Roh et al., 2016; Sousa and Voss, 2008). Underpinned by CT, IS literature emphasises that a 

good fit between new IT and dominant forces in the external environment are critical for a 

company’s strategic change and sustained organisational performance (Xue et al., 2012). The 

business value of IT has been theorised to be contingent upon various external business 

environments, such as the characteristics of trading partners and the velocity and dynamism of 

the industrial environment (Melville et al., 2004; Pavlou and El Sawy, 2010). Likewise, OSCM 

literature claims that changing the conditions in the external environment (e.g. supplier and 

customer relationships) is necessary to build a more certain environment to support the growth 

of the firm (Boyd, 1990; Shu and Lewin, 2017). The survival and growth of a firm depend upon 

its ability not only to manage relationships with suppliers, customers or other organisations in 

the same industry that control needed external resources, but also to explore ways in which to 

“negotiate” the external environments.  

These CT arguments could be extended by theorising SMA as an optimal IT solution to 

improve CS, but such positive effects on CS are expected to vary according to the particular 

external conditions and situations. In fact, although the impact of SMA on operational 

performance has been initially recognised in the literature, inappropriate deployment of SMA 

may disrupt firms’ operation and customer service, and ultimately tarnish their brand reputation 

(Johnson et al., 2017; Moe and Schweidel, 2017). For instance, the diversity of social media 

data across various business partners may hinder its integration into a firm’s processes, while 

the volume and velocity of data may further complicate its deployment (Moe and Schweidel, 

2017). Moreover, it is possible that the business value of SMA may not be realised since firms 

would pay less attention on developing analytical capability to compete with their rivals in a 

less competitive environment. Contrarily, in highly competitive environments, implementing 

SMA is necessary to optimise service operations and maintain competitiveness (Cohen, 2018).  

To fully appreciate the effects of SMA, the contingency roles of partner diversity and 

localised competition need to be understood in relation to customer engagement, which has 

been widely regarded as an important strategic resource (Pansari and Kumar, 2017). We argue 

that the effects of partner diversity and the effects of competitions can be contingent on the 



 

 

level of customer engagement. Having highly engaged customers provides signals to those 

business partners about the importance of SMA usage and required commitment to help the 

focal company to deal with them (Guesalaga, 2016). In a highly competitive environment, 

companies with few engaging customers could face significant challenges to make sense of the 

market and the use of SMA could be inefficient, due to the difficulties in obtaining enough data 

from the customers. 

Drawing upon the perspective of CT, we propose a theoretical model to comprehensively 

capture the interplay between internal contingency (i.e. implementation of SMA) and external 

contingencies. In particular, we consider how external stakeholder characteristics moderate the 

impact of SMA on CS. We focus on three external stakeholder characteristics, namely partner 

diversity, customer engagement and localised competition in this research because they 

represent the different roles of the external stakeholders (i.e. business partners, customers and 

competitors) for SMA implementation. Our research model is shown in Figure 2 and the 

associated hypotheses are discussed in the next section. 

 
Dotted line indicates the moderating effect of SMA initiatives 

t: Data collected June – July 2016 

t+1: Data collected within a full one-year period from August 1st, 2017 to July 31st, 2018 

Control variables: firm size, star rating, metropolitan hotel and chain hotel 

 

Figure 2. Research Model 
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Prior research has indicated that social media usage could benefit an organisation in 

various ways, for example by improving CS (Gu and Ye, 2014; Ramanathan et al., 2017) and 

customers’ perceptions toward quality (Gao et al., 2015) and by enhancing operational 

efficiency (Cui et al., 2018; Lam et al., 2016). The use of social media has become a core 

initiative of the evolving digitalisation of business (Cohen, 2018). To dig out the business value 

from social media data, firms require SMA. According to Xiang et al. (2017), SMA is 

“concerned with using analytical tools and frameworks to collect, analyse, summarise and 

interpret social media data to extract useful patterns and insights”. SMA initiatives can be 

conceptualised into three categories based on the SMA process (Fan and Gordon, 2014): (1) 

aggregation; (2) analysis; and (3) interpretation.  

Aggregation initiative refers to the transformation of diverse types of social media data 

into a format that can be read and analysed by the data analysis platform. Aggregation 

initiatives (e.g. firms’ ability to search out and select relevant user-generated ideas for 

innovation development) can mitigate information overload when processing a vast amount of 

user-generated content on social media channels, and thus improve the quality of business 

decision making (Dong and Wu, 2015). Firms are able to gain an overview of consumer 

feedback and word-of-mouth reflected by social media, which in turn allows them to take 

proactive actions to respond to customers’ needs (Luo et al., 2013). Social media can reveal 

information about users’ social influence, connections, networking structure and position in the 

social network that may help marketers identify potential customers and their preferences. For 

instance, Nam and Kannan (2014) find that tracking information contained in social tags can 

proactively improve brand performance and financial performance. The appropriate 

deployment of aggregation initiatives allows firms to seamlessly integrate social media data 

across multiple social networking sites, to effectively track social media events and customer 

engagement activities, and to search social networking sites for all data related to customer 

characteristics, thereby facilitating their CS. 

Analysis initiative refers to the identification of customer needs through various 

analytical techniques based on the specific mechanisms used for analytics, which can then 

inform a firm’s decisions and actions. In recent SMA studies, analytic initiatives have been 

considered as crucial components of SMA, which transform social media raw data into 

marketing insights. Analysis initiatives enable firms not only to analyse large amounts of online 

customer reviews to understand the past, current and future conditions regarding target 

customers, but also to exploit undetected correlations, patterns and trends between specific 



 

 

variables of interest across social networking sites, which, in turn, can improve a firm’s brand 

sales (Lee and Bradlow, 2011; Liu and Toubia, 2018; Toubia et al., 2019). 

Interpretation initiative refers to the production of business reports that evaluate customer 

service and identify areas for operational improvement. Interpretation initiatives allow firms to 

generate performance metrics in real-time or near-real-time, which can be presented in visual 

dashboards/systems for role-based decision-making and to provide actionable insights or 

recommendations in a format readily understood by social media managers. As social media 

can be a reliable indicator for predicting customer behaviour (Luo et al., 2013), and because 

incorrect interpretation of the outputs generated from SMA could result in questionable 

business decisions, the key to utilising social media metrics is to equip managers and data 

scientists with relevant professional competencies (Wang et al., 2018).  

Taken together, the above SMA initiatives allow us to evaluate an organisation’s analytic 

prowess, specifically how thoroughly that organisation has been transformed by better use of 

analytics and information. We argue that SMA are strategic resources that integrate the use of 

various social media with analytics approaches for service operations management. Prior 

research has shown that SMA initiatives provide an effective means for firms to obtain market 

knowledge and customer insights, which, in turn, helps firms to improve their current customer 

experience, retention and revenue (Moe and Schweidel, 2017). Hence, we argue that, with 

appropriate deployment, SMA initiatives have the potential to transform social media data into 

a vital source of insights that can be used to improve CS. Therefore, we propose the following 

hypothesis:  

 

Hypothesis 1 (H1): Social media analytics initiatives have a positive effect on customer 

satisfaction. 

 

3.2. The contingent role of external stakeholder characteristics 

Partner diversity refers to “the degree of heterogeneity in the types of partners with 

which a firm allies” (Terjesen et al., 2011, p. 107). The extent to which a firm selects business 

partners for collaboration has been a subject of much debate in the OSCM literature. High 

partner diversity is likely to gain a higher bargaining power within the complex network of 

supply chains (Raguseo et al., 2007; Ling et al., 2014), to complement a focal firm’s knowledge 

and tacit skills that are required to achieve innovation (Van Beers and Zand, 2014), and to build 

supplier innovation triads (Potter and Paulraj, 2020). Nevertheless, high partner diversity 



 

 

within the supply chain network may come with additional overhead costs, and some concerns 

about channel conflicts and data governance. As Steven et al. (2014) suggest, a complex supply 

chain network where a large number of suppliers are involved may lead to “upstream 

complexity” issues in the supply chain, such as increasing the difficulty of monitoring supplier 

behaviour. Due to such increased complexity, companies are likely to face supplier risk and 

lower supplier responsiveness (Choi and Krause, 2006). Saboo et al. (2017) further indicate 

that firms that focus on many supply chain partners will be less capable of managing the 

relationship and the increasing transaction costs.  

Put into our research context, hotels heavily rely on SMA to deal with social media data, 

such as review aggregators of travel-related content, booking preferences and patterns 

generated from their business partners to optimise service operations (Cohen, 2018). Where 

hotels have a close partnership with a few selected business partners, and therefore the partner 

diversity is low, hotels should be capable of accessing high quality social media data from its 

partners and the information sharing between the hotel and other partners should be more 

accurate (Steven et al., 2014). Conversely, hotels with high partner diversity will need to invest 

more resources to build strong SMA capability to address consumer needs due to the 

complexity of social media data governance. Ye et al. (2018) argue that working closely with 

a large variety of hotel partners, such as online travel agents, is not a guarantee of sales growth. 

Hence, we argue that with lower partner diversity, hotels can more easily manage the necessary 

resources (such as customer profiles and daily transaction data) to strengthen the effectiveness 

of SMA in achieving superior CS. We hypothesise that:  

 

Hypothesis 2 (H2): The extent to which a firm develops its SMA initiatives has a stronger effect 

on customer satisfaction when partner diversity is low than when it is high.  

 

Localised competition refers to the intensity of competition among organisations in a 

particular geographic area (Baum and Mezias, 1992). In the hospitality sector, localised 

competition has been widely acknowledged as one of the most important factors influencing 

hotels’ market position and marketing strategy, because location is a crucial criterion affecting 

travellers’ purchasing decisions (Chung and Kalnins, 2001). Hotels normally compete with 

either neighbouring competitors within a relatively well-defined geographic area, or those with 

proximate class and market position (Chung and Kalnins, 2001). When the potential for intense 

competition increases, hotels may face market uncertainty or unpredictability. In this case, they 



 

 

would adopt new technology or innovation in order to overcome challenges and threats in the 

market.  

The impact of competition intensity on organisational IT adoption and innovation has 

been well documented in IS (e.g. Chatterjee et al., 2002; Zhu and Kraemer, 2005) and OM (e.g. 

Lam et al., 2019) studies. In an environment of high competition, firms are more likely to 

devote greater analytical effort to explore new business opportunities and overcome market 

threats. This is because the deployment of data analytics is inherently linked to the exploration 

of opportunities, satisfaction of demand and utilisation of resources within a business 

environment (Park et al., 2017). Kitchens et al. (2018) suggest that analytical capability can be 

improved in high-volume data environments because analytics requires substantial data from 

stakeholders such as competitors to make an accurate analysis, and mature analytical processes 

to achieve superior performance. Hence, it is possible that SMA will create more operational 

benefits for hotels operating in local markets with high levels of geographical competition, 

since there would be more demand for, and more opportunities to support, the use of analytics. 

In contrast, in less competitive environments firms would avoid excessive investment 

and risk taking and would pay less attention to developing their analytical capability. Therefore, 

the intention to adopt new advanced technologies such as SMA for firm growth will be reduced 

when focal firms face low competition from their local rivals (Xue et al., 2012). Consequently, 

localised competition is considered as a condition of competitor within the industrial 

environment that positively moderates the relationship between SMA and CS, such that the 

impact of SMA on CS will be higher for firms operating in markets where there is a high level 

of geographically localised competition. We hypothesise that: 

 

Hypothesis 3 (H3): The impact of SMA initiatives on customer satisfaction is higher for firms 

operating in a highly competitive geographical environment. 

 

Customer engagement can be defined as “the mechanics of a customer’s value addition 

to the firm, through direct or/and indirect contribution” (Pansari and Kumar, 2017, p. 295). It 

is more likely that firms, who are able to establish a continuing dialogue with customers, to 

create knowledge that is then shared among groups of customers with shared interests, and 

even extend the interactions to competitors’ customers or prospective customers on the internet, 

will gain more benefits from social media (Sawhney et al., 2005). Engaging customers to 

collaborate with firms in the value adding process could better satisfy their needs as well as the 

needs of other customers. Promoting SMA in a firm could be resource demanding. Firms not 



 

 

only need to invest in the analytics platforms and human resources for data mining, monitoring 

and interpretation, but must also sustain a close collaboration with business partners, who may 

share the social media data from different platforms (Steven et al., 2014). Where partner 

diversity is low, the company will be better able to maintain close collaboration and ensure the 

data quality. Firms with higher customer engagement inherently have more diverse online 

information and more complex social media data (Carlson et al., 2018). This may make it more 

difficult for firms that have greater level of partner diversity to apply SMA.  

On the other hand, having higher customer engagement signals the popularity of the 

companies and would therefore help to increase their bargaining power with business partners 

(Pansari and Kumar, 2017). If the highly customer-engaged firms collaborate with only a 

limited number of partners, they are more likely to gain valuable customer insights and better-

quality data, as the business partners need to get support of these firms. Hence it is likely that, 

with low diversity of partners and close partnership between business partners and focal firms, 

higher customer engagement will be more beneficial in facilitating the SMA–CS relationship.  

 

Hypothesis 4 (H4): Where there is high customer engagement, the impact of SMA initiatives 

on customer satisfaction will be strengthened when the partner diversity is low. 

 

Engaging customers on social media platforms enhances the efficiency of communication, 

and thus the intimacy with those customers and promotes customers’ future intention to use the 

service or to purchase products (Simon and Tossan, 2018). These benefits are important when 

SMA is being employed to facilitate aspects of company performance such as word-of-mouth 

and customer perceived quality. SMA provides the valuable customer insights and market 

knowledge necessary for the improvement of such company performance, while high customer 

engagement ensures that social media data are updated frequently and that the norms of high-

quality communication among loyal customers or fans are maintained. It is likely that the 

benefits of pairing SMA with customer engagement as a means to enhance CS will be enhanced 

among firms operating in more competitive local environments. In a local market characterised 

by intense competition, firms could face the challenges of managing unpredictable demand and 

pressure created by online visibility. Companies operating in intensively competitive 

environments require higher levels of information-processing capability from their IT adoption. 

However, where there is low customer engagement, firms may increasingly struggle to make 

sense of the market, with the lack of sufficient information decreasing the effectiveness of 

SMA. Hence: 



 

 

 

Hypothesis 5 (H5): Where there is high customer engagement, the impact of SMA initiatives 

on customer satisfaction will be stronger for firms operating in a highly competitive 

geographical environment. 

 

4. Research Methods 

4.1.  Sampling and data collection 

The targeted respondents were managers of hotels located in Greece. To obtain a 

representative sample, we identified the hotels in the Attica region from the Hellenic Chamber 

of Hotels (HCH) database, which provides the hotel profile and contact information for all the 

certified hotels in Greece. Initially, a full contact list of 648 hotels was identified. After 

removing the entries with missing e-mail addresses, the total usable number of hotels for further 

research was 550. Finally, 158 responses were received from an online questionnaire platform. 

Therefore, the questionnaire response rate was 28.73%. The CS data of each hotel were 

captured from TripAdvisor. After taking account of data missing from TripAdvisor, our final 

effective sample consisted of 141 firms. The demographic characteristics of the respondents 

and hotel profiles in our effective sample are shown in Table 1.  

To examine the non-response bias, we conducted independent sample t-tests between the 

response group (n=158) and non-response group (n=392) in terms of hotel star ratings. The 

results of both tests were insignificant, thus indicating that non-response bias is not a threat to 

this research. Similarly, we used the t-test to check whether male-female respondents and 

junior-senior respondents perceived constructs in the same way. The results indicate that there 

is no significant difference in perception of the proposed constructs and variables across the 

gender groups and age groups. 

 

Table 1. Respondents’ characteristics (N = 141) 

Demographic traits Frequency Percentage (%) 

Gender 
Male 76 53.9% 

Female 65 46.1% 

Age 

18-24 24 17.0% 

25-35 47 33.3% 

36-45 37 26.3% 

46-55 23 16.3% 

56-65 10 7.1% 



 

 

Number of 

employees 

1-20 63 44.7% 

21-40 55 39.0% 

41-60 17 12.0% 

61-80 6 4.3% 

Star rating 

1-Star 9 6.4% 

2-Star 27 19.1% 

3-Star 43 30.5% 

4-Star 43 30.5% 

5-Star 19 13.5% 

Geographical 

location 

Metropolitan 94 66.7% 

Rural area 47 33.3% 

Hotel group 
Independent hotel 107 75.9% 

International chain 34 24.1% 

 

 

4.2.  Measures and control variables 

SMA initiatives. As shown in Table 2, the measures of SMA initiatives consist of six 

questionnaire items from the existing literature (Wang and Byrd, 2017). The independent 

measures are assessed on a 5-point Likert scale to capture the respondents’ agreement level on 

their SMA initiatives from the perspectives of data aggregation (SMA1 and SMA2), data 

analysis (SMA3 and SMA4) and data interpretation (SMA5 and SMA6). The data collection 

process lasted approximately 2 months (June 2016 – July 2016). Because our research targets 

were hotel managers in Greece, it was important to carefully refine and translate all the question 

items and definitions into Greek. Following Brislin (1970), we adopted a back-translation 

approach to ensure conceptual equivalence. The confirmatory factor analysis (CFA) results for 

the SMA initiatives scales reveals satisfactory measurement model fit indices: χ2(8)= 16.477, 

comparative fit index (CFI) = .91, Tucker-Lewis index (TLI) = .82, and RMSEA = .05 (Bagozzi 

and Yi, 2012). We also obtained convergent validity for SMA initiatives, as factor loadings 

meet the criterion of O'Rourke and Hatcher (2013) (Table 2). Average variances extracted 

(AVE) is 0.561 and composite reliability is 0.884, indicating adequate reliability. 

Customer satisfaction. CS is a surrogate measure of competitive advantage (Katsikeas 

et al., 2016). The dependent variable is measured by average sentiment value of the hotel 

review. We obtained the archival data from TripAdvisor one year after the completion of 

questionnaire data collection (i.e. August 1st, 2017 to July 31st, 2018). In particular, we 

conducted a lexicon-based sentiment analysis to calculate the average sentiment value of the 

hotels’ reviews (Taboada et al., 2011; Lee et al., 2018). In order to determine the polarity of 



 

 

the review comments, we annotated the comments using the dictionary from Hu and Liu (2004). 

Polarity is calculated for review comments showing how positive/negative a comment is.  

Partner diversity. This variable refers to the level of presence and visibility on online 

travel agents (OTAs)’ websites for a hotel. Following Rafuseo et al.’s (2007) suggestion, we 

measure it by the number of OTAs over which a focal hotel is listed and sells rooms out of a 

list of 12 key OTAs 1  that cover hotels operating in Greece. The list encompasses three 

predominant business models used by the OTAs, namely the merchant model (e.g. Hotels.com 

and Lastminute.com), the agency model (e.g. Trip.com and zenHotel) and the advertising 

model (e.g. FindHotel and HotelsCombined). The number of OTAs ranges from 0 to 12. We 

checked the timestamp of the first customer review posted on each OTA website to ensure that 

the number of OTAs for each hotel reflects the situation in July 2016. Due to the complexity 

of the data and the variety of OTA channels, the data collection was a labour-intensive task. 

We recruited three research assistants to carry out the coding task and perform the cross-check 

of the data validity. To ensure data quality and consistency among research assistants, we 

developed a standardised data collection procedure and instruction for training and continuing 

guidance. All the samples collected were further verified by our research team. 

Localised competition. A postcode area in Greece is the geographic area that corresponds 

to the five digits of a postcode. The first three digits of a postcode refer to a particular region 

(in this case the Attica region), whilst the last two digits refer to a particular part of that region 

(for example, Athens). As suggested by Chung and Kalnins (2001), we counted the number of 

competing hotels with similar size operating in the same postcode area. Using PKF 

Consulting’s (1997) hotel classification, hotel size was categorised into three size classes 

ranging from small (fewer than 124 guest rooms), to medium (125 to 200), to large (more than 

200). Where a postcode area contains a high number of active hotels of similar size, we consider 

that there is a high level of localised competition.  

Customer engagement. In this study, for reasons of data availability, the measurement 

of customer engagement focuses on both customer contribution and customer creation 

behaviours (Schivinski et al., 2016). A composite variable of customer engagement was 

computed by a natural logarithm of the mean score of proxies representing consumer creation 

and contribution behaviours. Following Liu et al. (2019), we adopted a commonly-used 

additive aggregation method to calculate the average of multiple indicator variables. More 

 
1 Expedia group (Hotels.com /Travelocity/ Orbitz.com/Trivago), Lastminute.com, Agoda, Trip.com 

group (trip.com/skyscanner), Travel Republic, Hotel Reservation Service, zenHotel, Booking holding 

group (Booking.com/Priceline), Ebookers.ie, FindHotel, HotelsCombined, and KAYAK 



 

 

specifically, we used the sum of the number of “helpful” votes on comments posted by 

customers and presented on the hotel’s TripAdvisor page by the end of July 2016 as a proxy of 

contribution behaviours. As proxy for the creation type of customer engagement, we used the 

total number of comments posted by customers on TripAdvisor by the end of July 2016.  

Control variables. In this study we considered four control variables; namely, the firm 

size, star rating, metropolitan hotel and chain hotel, because of their potential impact on our 

dependent variables. Various studies have revealed the significant impact of star rating on hotel 

customer satisfaction (e.g. Radojevic et al., 2015; Zhao et al., 2019). We predict the 

relationship will be positive as higher rated hotels generally offer better quality service and 

product to the customers. For metropolitan hotels, we used a dummy variable to indicate 

whether the hotels were operating in the metropolitan area (e.g. the city of Athens), because 

the customers might be more satisfied with the hotels with convenience location. We also 

controlled for a dummy variable of indicating whether the observation is a chain hotel, because 

capabilities and organisational performance are expected to be diverse across the chain hotel 

and other hotels (Banerjee and Chua, 2016). As shown in Table 2, firm size is taken as the 

ordinal variable of the number of employees (Thao et al., 2019). Based on prior studies, we 

expect that firm size and chain hotel are negatively associated with CS, as a large‐scale hotel 

could be lack of flexibility to deal with customer complaints and it may offer more standardized 

products and services at lower prices (Assaf et al., 2015; Menicucci, 2018).  

Following the guidance of Hulland et al. (2018), to limit the common method variance 

(CMV) bias we adopted a design using multisource data for all the variables. To further control 

CMV, we used both subjective and objective measures of our focal variables in the model. All 

the measures adopted in this study are listed in Table 2 and Table 3 show their descriptive 

statistics and correlation matrix.  

 

Table 2. Measurement of variables 

Variables Measurement Data Source Reference 

Customer Satisfaction 

(DV) 

Calculate the average sentiment value of the 

hotels’ reviews using lexicon-based 

sentiment analysis 

TripAdvisor 

Taboada 

et al. 

(2011); 

Lee et al. 

(2018) 

SMA initiatives (IV) 

Five-point Likert scale is used to capture the 

respondents’ agreement level on the following 

items (factor loadings are in brackets): 

 

Primary data 

Wang and 

Byrd 

(2017) 



 

 

SMA1: Collect data (e.g., customer reviews) 

from social networking sites or travel 

websites (.774) 

SMA2: Store data collected from social 

media in appropriate databases (.688) 

SMA3: Identify important business insights 

to improve services (.736) 

SMA4: Analyse social media data to 

understand current trends among a large 

population (.737) 

SMA5: Provide systematic and 

comprehensive reporting to help recognise 

feasible opportunities for service 

improvement (.762) 

SMA6: Provide near-real time or real time 

information on day-to-day hotel services 

(.793) 

Partner diversity (M) 

The number of OTAs on which a hotel is 

listed and sells rooms out of a list of 12 

players2 that cover hotels in Greece. 

OTAs’ websites 

Ling et al. 

(2014); 

Raguseo 

et al. 

(2017) 

Localised competition 

(M) 

The number of similar competitors located 

within the same post code.  
HCH database 

Chung 

and 

Kalnins 

(2001) 

Customer engagement 

(M) 

Natural logarithm of the mean score of 

proxies representing consumer creation (the 

number of reviews) and contribution (the 

number of ‘helpful’ votes) behaviour 

presented on the hotel’s TripAdvisor page by 

the end of July 2016. 

TripAdvisor 

Liu et al. 

(2019); 

Schivinski 

et al. 

(2016) 

Firm Size (C) 
Ordinal variable of the number of employees: 

1=1-20; 2=21-40; 3=41-60; 4=61-80 
HCH database 

Thao et 

al. (2019) 

Star rating (C) 

Hotel class segmentation information about 

each hotel being reviewed using a service 

segmentation scheme that classifies hotels 

using “Crowns” with the value ranging from 

1 to 5. 

TripAdvisor 
Xie et al. 

(2016) 

Metropolitan Hotel 

(C) 

A dummy variable indicating the metropolitan 

hotel, otherwise equals to zero. 
HCH database 

Yang et 

al. (2014) 

Chain Hotel (C) 
A dummy variable indicating the chain hotel, 

otherwise equals to zero. 
HCH database 

Banerjee 

and Chua 

(2016) 

 

 

 
2  Expedia group (Hotels.com /Travelocity/ Orbitz.com/Trivago); Lastminute.com; Agoda; Trip.com group 

(trip.com/skyscanner); Travel Republic; Hotel Reservation Service; zenHotel; Booking holding group 

(Booking.com/Priceline); Ebookers.ie; FindHotel; HotelsCombined; KAYAK. 



 

 

 

Table 3. Correlation Matrix 
 

Variables Mean 
Std. 

dev. 
1. 2. 3. 4. 5. 6. 7. 8. 9. 

1. Firm Size 1.760 0.827 1         

2. Star Rating 2.404 1.276 -.0137 1        

3. Metropolitan 

Hotel 
0.667 0.473 0.176* -0.024 1       

4. Chain Hotel 0.241 0.429 -0.016 -0.166* 0.117 1      

5. Partner 

Diversity 
8.163 1.988 0.154 -0.271** 0.233** 0.113 1     

6. Localised 

Competition 
8.830 1.232 .043 -0.188* 0.228** 0.048 0.164 1    

7. Customer 

Engagement 
3.349 1.330 .290** -0.155 0.258** 0.145 0.403** 0.110 1   

8. SMA 2.583 0.923 .241** -0.035 0.181* 0.102 0.262** 0.131 0.299** 1  

9. CS 1.077 0.658 -.035 -0.031 -0.249** -0.053 0.031 -0.075 0.342** 0.236** 1 

Note: *p<0.05; **p<0.01 (two-tailed tests) 

 

 

4.3. Hypothesis testing 

In order to test the causalities among the conceptual constructs, this study applied the 

structural equations modelling (SEM) approach. The advantages of using SEM over other 

similar analysis approaches, such as ordinary least squares regression is well documented 

(Sardeshmukh and Vandenberg, 2017). As this study investigates SMA as a latent construct 

that consist of five different question items, the use of SEM is justified (Bollen, 1989). In 

addition, SEM permits the incorporation of measurement error into the analysis (Kaplan, 2000).   

The control variables of firm size and metropolitan hotels are significant and exhibit the 

expected directionality on CS, while the variables of star rating and chain hotel are insignificant. 

As shown in Table 4, the main effects of SMA on CS (β = 0.562, p < 0.001) are positive and 

significant, as expected. Therefore, H1 is supported. The interaction effects between the partner 

diversity and SMA on CS are significant and negative (β = −0.207, p < 0.001). This result 

supports H2: with increased diversity of business partners, the positive impact of SMA on CS 

will be weaker. Then, we tested the interaction effects between SMA and localised competition 

on CS (β = 0.216, p < 0.001). The interaction effects on both dependent variables are significant 

and positive. In this case, the result supports hypothesis (H3), which predicts that for firms 

operating in a highly competitive geographical market, the positive impacts of SMA on CS are 

stronger. The goodness-of-fit statistics indicate a good model fit for the structural model (NNFI 

= 0.901, IFI = 0.919 and CFI = 0.908), which exceeds the recommended threshold value of 



 

 

0.90 (Cao and Zhang, 2011). The RMSEA is 0.037, which is below the acceptable maximum 

level of 0.08 (Browne and Cudeck, 1992). 

To examine the contingency effects of customer engagement on all the hypothesised 

interaction effects among partner diversity, localised competition and SMA, we created a two-

group model by dividing the sample into high (n = 70) and low (n = 71) customer engagement 

groups, based on the median of customer engagement (Wong et al., 2011). As shown in Table 

5, we have obtained significant X2 difference (∆X2 with p < 0.05) result between the baseline 

model and the constrained model of which structural parameters constrained to be equal across 

high and low customer engagement group. This suggests variance of the model under high and 

low customer engagement (Wong et al., 2011). More specifically, the relationship between the 

interaction effect (partner diversity x SMA) and CS is insignificant under low customer 

engagement (β = 0.023, n.s.) but negative and significant under high customer engagement (β 

= −0.657, p < 0.01) with a significant X2 difference. These results suggest that the negative 

interaction effect between partner diversity and SMA is strengthened under high customer 

engagement, and hence supports H4. In addition, the interaction effect between localised 

competition and SMA on CS is insignificant under low customer engagement (β = 0.058, n.s.) 

but positive and significant under high customer engagement (β = 0.545, p < 0.01). This finding 

provides support for H5 that the positive interaction effect between localised competition and 

SMA on CS is strengthened under high customer engagement. A significant difference of the 

X2 statistics also suggests variance of the interaction path across high and low customer 

engagement. 
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Table 4. Structural model 

 

 
Path 

Coefficient 

Standard 

error 

t-

statistics 
p-value 

Hypothesis 

(Result) 

Controls 

Firm size -0.077 0.056 -1.564 0.00**  

Star rating -0.026 0.036 -0.517 0.527  

Metropolitan Hotel 0.245 0.097 4.964 0.00**  

Chain Hotel -0.055 0.107 -1.105 0.248  

Main Effect 

SMA initiatives 0.562 0.078 7.865 0.00** H1 (Support) 

Interaction effects 

Partner Diversity -0.050 0.023 -1.020 0.340  

Localised Competition -0.044 0.006 -0.889 0.316  

SMA x Partner Diversity -0.207 0.006 4.186 0.00** H2 (Support) 

SMA x Localised 

Competition 
0.216 0.005 4.398 0.00** H3 (Support) 

* p<0.05; ** p<0.01 

 

 

Table 5. Multi-group analysis for customer engagement (CE) 

Models x2 df X2/df ∆X2 ∆df 𝑋2 difference test High in CE Low in CE 
Hypothesis 

(Result) 

1. Baseline Model 253.114 70 3.62       

2. Constrained Model 428.121 101 4.24 175.007 31 p<0.001    

3. Constrained Paths  

3a. Partner Diversity 

x SMA→ CS 
259.084 71 3.65 5.970 1 p<0.05 (-0.657) ** (0.023) n.s. 

H4 

(Support) 

3b. Localised 

Competition x 

SMA→CS 

261.332 71 3.68 8.218 1 p<0.05 (0.545) ** (0.058) n.s. 
H5 

(Support) 

Part Coefficient are in brackets; * p<0.05; **p<0.01; n.s. not significant 

  

 

5. Discussion and Conclusions 

Based on the primary data from 141 hotels in Greece and their archival data from multiple 

sources, we employed structural equation modelling to examine the impact of SMA on CS and 

how the moderating roles of external stakeholder contribute to this association. The results 

show the positive impact of SMA initiatives on CS and further reveal that the impact of SMA 

initiatives on CS is significantly moderated by partner diversity, customer engagement and 
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localised competition. The empirical evidence presented, interpreted through the lens of CT, 

provides novel insights and important implications for research and practice to the business 

analytics stream of OSCM literature, as discussed below. 

 

5.1 Theoretical contributions 

In the field of OSCM there is increasing interest in understanding the impact of SMA on 

service operations. This study responds to the call of Lam et al. (2016) to take into account 

how the SMA–CS relationship changes, while considering various characteristics of external 

stakeholders, in order to give a complete picture of SMA implementation. While a great deal 

of research focuses on user behaviours on social media from the customer perspective, few 

studies consider SMA as a strategic action at the firm level. We thus take an OSCM perspective 

to explore the possibility that SMA initiatives can be strategically deployed by firms to achieve 

positive effects on CS. Our results show that firms that invest in SMA could improve their CS. 

Consistent with the previous arguments, our results suggest that SMA initiatives are an 

effective way for firms to transform online customer opinions into marketing and service 

improvement insights (Lee and Bradlow, 2011; Toubia et al., 2019).  

Previous studies have made some attempts to examine different environmental factors 

that might moderate the impact of analytics on firms’ performance. Yet, the role of external 

stakeholders has been overlooked when implementing analytics within organisations. We 

employ the lens of CT with the objective of examining how external stakeholder characteristics 

might amplify or lessen the positive effect of SMA on CS. This examination contributes to the 

literature on business analytics in the OM context and contingency theory in three ways. First, 

contrary to popular belief, our empirical findings suggest that under conditions of low partner 

diversity, the effect of SMA on CS is amplified. This is justified since cooperation with selected 

major partners within supply chain networks may ease the efforts in coordinating or enforcing 

the partners for data or information sharing (Steven et al., 2014), and managerial insights may 

be easily explored from all relevant information accordingly. This finding not only adds new 

knowledge on the ongoing debate on whether the diversity of business partners is beneficial 

for firms who implement new IT to maintain competitiveness (Saboo et al., 2017) but also 

addresses the limitations of merely focusing on environmental factors. This also encourages 

future research to explore the roles of other characteristics of firms’ business partner. 

Second, the significant moderating effect of localised competition indicates that SMA is 

differently valuable in improving CS under different competitive environments. We find that, 

specifically, under circumstances of greater levels of localised competition, strong SMA 
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capabilities are particularly important for the improvement of CS. This result corroborates the 

existing literature on the positively moderating effect of highly competitive industries in the 

relationship between BDA assets and business value (Müller et al., 2018). It is also aligned 

with the propositions of CT about the importance of understanding the interplay between the 

implementation of BDA and the external business environment (Grover et al., 2018). We 

believe this finding is beneficial to both IS and OSCM research by revealing that before 

committing to any IT investment, firms need to examine its external business environment 

(Chen et al., 2014). 

Third, interestingly, we found that where there is high customer engagement, the impact 

of SMA on CS could be strengthened when the partner diversity is low or localised competition 

is high. This finding advances the OSCM literature by reinforcing the need for managing well 

the relationship with customers, as investing in SMA when having high partner diversity or 

low localised competition is unlikely to result in superior CS. The discovery of the moderating 

role of customer engagement should be beneficial to future contingency research for explaining 

the performance variation due to the interaction between customer-related contingencies and 

other environmental contingencies.  

 

5.2 Practical implications 

Firms have been acknowledged to exhibit greater appreciation that SMA brings value to 

their customer service and operation; however, the business value of SMA is not directly 

achieved. Some practitioners remain unsure how best to deploy their SMA initiatives and to 

make them pay off, and this may disrupt the profitability of SMA investment. Our research 

provides four concrete implications that may guide their current or future SMA execution.  

First, we find support for the result that SMA initiatives are crucial strategic actions that 

directly impact CS. In particular, the aggregation, analysis and interpretation initiatives 

identified in this study can serve as a guideline in assessing the deployment of SMA initiatives. 

The responsibility to optimise SMA deployment lies entirely with the managers – it is their 

duty to understand whole social media data life cycle that starts with data aggregation, proceeds 

via specific function of data analysis, and culminates with data interpretation. Prioritising this 

task in SMA will enable a firm to transform social media data into meaningful business insights 

for improving CS. These SMA initiatives of course need to be in conjunction with a set of data 

governance procedures, and importantly the value realized from SMA is subject to the 

characteristics of external environment and stakeholder.  
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Second, we show that low diversity of business partner collaboration might create more 

SMA’s value potential. This finding is in contrast to the recent literature that has strongly 

emphasised that high level of partner diversity is preferred for the creation of business value 

(Alonso and Andrews, 2019; Potter and Paulraj, 2020). We caution that practitioners should 

not entirely follow the recent mantra; rather, when optimising SMA, they are advised to adopt 

a selective distribution strategy in which a limited number of business partners are chosen for 

partnership. Put into our research context, hotels take advantage of real-time data to detect 

patterns and discover business insights from business partners to improve operational processes 

and efficiencies. Without consistency and compatibility of the data that are collected across 

various business partners’ systems (e.g. booking system and customer ratings and reviews 

system), hotels may struggle to make good use of SMA. The vast amounts of data being 

captured from a large number of business partners may pose a challenge to accurate prediction 

of operations and processes, since analytics relies on the high quality and high integration of 

data (Wang et al., 2018). As such, we believe that hotels that are exposed to high partner 

diversity may suffer from fragmentation and inaccuracy of data collection, which would 

impede the effectiveness of SMA. Consequently, our results provide important insights for 

hotel managers in terms of signalling the negative consequences of partner diversity during the 

deployment of SMA. 

The third practical implication of this study regards the impact of SMA on CS in different 

business environments. In a highly competitive environment, SMA would be more efficient in 

enhancing CS. In the light of this finding, practitioners engaged in the development of SMA 

should focus strongly on the efficiency of operations that are aligned with the environmental 

context of the hotel. Specifically, when evaluating the returns from SMA, practitioners need to 

be cognizant of the existing and future states of the local market environment in which the 

hotels operate (Melville et al., 2004). 

Fourth, practitioners should understand that overlooking customer engagement may lead 

to an incomplete picture of SMA deployment. More specifically, the results of our moderated 

moderation analysis reveal that when high customer engagement is achieved, the adoption of 

a low partner diversity strategy or the presence of high localised competition further strengthen 

the positive impact of SMA initiatives on CS. In contrast, if firms have lower customer 

engagement on social media, even having a high level of SMA in the centralised partner 

network and responding to the intensively competitive environment may not result in good 

customer satisfaction. In this sense, when practitioners consider initiating SMA, it is critical to 

evaluate their current state of customer engagement. 
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5.3 Limitations and future research 

This study suffers from several limitations; however, these indicate directions for future 

research. The first and most significant limitation is that the single country and industry context 

of this study hinders the generalisability of its findings. Therefore, it would be worthwhile for 

future research to increase the scope of observation to further validate our findings by using 

samples from different research contexts in a broader range of countries and industries.  

Second, the selected measurement of the CS is representative and valuable for achieving 

the objectives of this research, and it allows for results that do not suffer from methodological 

bias, such as common method variance. However, the set of measurement we selected is not 

able to provide a perfectly comprehensive picture. This could be addressed in future research 

by adding more variables to capture different dimensions of firm performance, such as financial 

performance or actual sales.  

Third, in common with other researches that utilise primary data, the proxies of SMA 

initiatives were measured by data obtained from the hotel managers’ responses. However, there 

might be a gap between the disclosure of SMA projects and real SMA practices. How to use 

secondary data from other sources to measure the SMA could be a worthwhile topic for future 

studies. 

Finally, regarding the empirical research design, due to the cross-sectional nature of this 

study the findings cannot be taken as conclusive evidence of the hypothesised relationships. 

Specifically, our analysis took into consideration only the data for a certain period time (t in 

2016 and t+1 from 2017 to 2018). We recommend that future research should adopt a 

longitudinal research design or re-examine the underlying causal relationship through panel 

data. Nevertheless, given that we utilised a reasonably large sample size in comparison with 

other similar studies and take into consideration multiple data sources, this study does provide 

a solid basis for understanding the SMA–CS relationship and the moderating role of external 

stakeholder characteristics on this relationship. 
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