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ABSTRACT

Native oyster species were once vital ecosystem engineers whose populations have 
collapsed worldwide due to overfishing and habitat destruction. In 2004 we initiated a 
vast (35 ha) field experiment by constructing native oyster reefs of three types (high- 
relief, low-relief, unrestored) in nine protected sanctuaries throughout the Great 
Wicomico River in Virginia, USA. Upon sampling in 2007 and 2009, we found a thriving 
metapopulation comprising 185 million oysters of various age classes. Oyster density was 
fivefold greater on high-relief than low-relief reefs, explaining the failure of past 
attempts. Juvenile recruitment and reef accretion correlated with oyster density, 
facilitating reef development and population persistence. This re-established 
metapopulation is the largest of any native oyster worldwide, and validates ecological 
restoration o f native oyster species.
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ABSTRACT: Native oyster species were once vital ecosystem engineers whose 
populations have collapsed worldwide due to overfishing and habitat destruction. In 2004 
we initiated a vast (35 ha) field experiment by constructing native oyster reefs of three 
types (high-relief, low-relief, unrestored) in nine protected sanctuaries throughout the 
Great Wicomico River in Virginia, USA. Upon sampling in 2007 and 2009, we found a 
thriving metapopulation comprising 185 million oysters of various age classes. Oyster 
density was fivefold greater on high-relief than low-relief reefs, explaining the failure of 
past attempts. Juvenile recruitment and reef accretion correlated with oyster density, 
facilitating reef development and population persistence. This re-established 
metapopulation is the largest o f any native oyster worldwide, and validates ecological 
restoration of native oyster species.
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INTRODUCTION

Along North American, European and Australian coastlines, native oyster 

populations have been devastated to less than 10% of their historical abundance through 

overfishing and oyster reef destruction (Rothschild et al. 1994, Jackson et al. 2001, Kirby 

2004). These vital ecosystem engineers influence nutrient cycling, water filtration, habitat 

structure, biodiversity, and food web dynamics (Grabowski et al. 2007, Jackson et al. 

2001). The widespread decline of these dominant suspension feeders was the main cause 

of eutrophication in estuarine ecosystems, owing to the shift from benthic to planktonic 

primary production and the accompanying hypoxia resulting from microbial 

decomposition (Jackson et al. 2001). This phenomenon remains a leading cause of 

ecosystem degradation in estuaries worldwide due to the largely failed efforts at oyster 

restoration (Lotze et al. 2006). Consequently, non-native oyster species (e.g. Pacific 

oyster Crassostrea gigas) were introduced in many of these ecosystems to recover lost 

economic and ecological benefits (Ruesink et al. 2005), despite the unnatural alteration of 

the world's ecosystems (Jackson et al. 2001, Lotze et al. 2006).

In Chesapeake Bay, oyster landings o f the native Crassostrea virginica peaked in 

the 1880s at 20-25 million bushels per year, whereas recent landings are less than 

200,000 bushels (Rothschild et al. 1994). Concurrently, the natural populations were 

reduced to approximately 1% of historical abundance (Rothschild et al. 1994, Jackson et 

al. 2001, Lotze et al. 2006), despite considerable expensive attempts to restore the 

populations. Introductions of C. gigas and other species were attempted through the 

1900s, but failed due to biological and environmental impediments (Mann et al. 1991).
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More recently it was concluded that revival of the native oyster is unlikely, and 

that introduction of non-native Asian oyster (C. ariakensis) merits consideration (US 

Army Corps 2009). This conclusion was based on the premise that restoration failed 

largely due to the inability o f C. virginica to resist the challenge o f two diseases (MSX: 

Haplosploridium nelsoni and Dermo: Perkinsus marinus). However, various unfished 

populations have overcome disease pressure by being allowed to live in protected reefs 

conducive to growth, survival and disease resistance (Lenihan 1999, Lenihan et al. 1999, 

Encomio et al. 2005). Moreover, the currently accepted strategy of attempting to restore 

the wild fishery and native populations in tandem allows for destructive harvest practices 

that devastate the structural integrity o f reefs (Lenihan and Peterson 1998, 2004) and 

inhibit recovery. Recently, however, scattered small assemblages of C. virginica have 

been observed on natural and alternative oyster reefs protected from exploitation in 

Delaware Bay (Taylor and Bushek 2008), North Carolina sounds (Lenihan and Peterson 

1998, Powers et al. 2009), and the Chesapeake (Lipcius and Burke 2005, Nestlerode et al. 

2007), suggesting that restoration of the native C. virginica is feasible using novel 

methods.

M ATERIALS AND M ETHODS

We report the restoration of a native C. virginica metapopulation in the Great 

Wicomico River, a sub-estuary o f lower Chesapeake Bay that was selected for restoration 

in 2004 by the US Army Corps o f Engineers (USACE). Nine reef complexes covering

35.3 ha were declared permanent sanctuaries, free from oyster fishing (Fig. 1). Pre- 

restoration surveys demonstrated that there was on average less than 2 oysters/m
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throughout the nine reef complexes (Fig. 2). The field experiment involved two 

restoration treatments [high-relief reef (HRR) and low-relief reef (LRR)] and a control 

treatment o f unrestored bottom (UNB) spread over each of the reef complexes. In 2007 

we sampled 85 one-square-meter plots, allocated randomly across the three treatments in 

the nine reef complexes, with patent tong and video surveys (Fig. 1). We further sampled 

the reefs in March 2009 to verify long-term persistence of the reefs.

OYSTER RESTORATION 
GREAT WICOMICO RIVER

Figure 1: Map of the reef sites in the Great Wicomico River, Chesapeake Bay. HRR is indicated 
in red, LRR by stippling, and UNB by the remaining area in each of the Baylor Ground polygons.
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Pre-Restoration survey

A pre-restoration survey with patent tong samplers was conducted throughout the 

unrestored, potential oyster reef habitat in the Great Wicomico River, a small sub-estuary 

on the western shore o f the Chesapeake Bay just South o f the Potomac River (Fig. 1) in 

Northumberland County, Virginia at approximately N 37.8043 and W -76.268. The 

survey consisted of 63 samples across the nine reef complexes (Figs. 1 and 2), and none 

of the samples had more than 2 oysters per m (Fig. 2). This pre-restoration survey served 

as the "Before-Control" element of a "Before-After Control-Impact" experimental design.

(/>

£  £

</>

±2 <D 
3  CL

~o <
_  0>

cre >»
«- 5 .re
CL

i f )

1200

Post-Restoration 
r2 = 0.86

1000

800

600

400

Pre-Restoration 
t2  -  0.02

200

0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Proportion of High-Relief Reef

Figure 2: Combined spat and adult oyster density as a function of the proportion of sampled HRR 
plots on each of the nine reefs [Least-squares regression; Spat and adult density = 165.5 + 992.8 x 
(Proportion HRR), r2 = 0.86, n = 9].
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Construction

The U. S. Army Corps of Engineers (USACE) attempted to construct 

approximately 42.5 ha of oyster reef habitat in fall of 2004 by placing dredged and 

washed oyster shells removed from former productive reef footprints in the lower James 

River. These areas were not the most suitable habitat available in the river, but were areas 

classified as “shell-sand” and “shell-mud” rather than high-quality hard bottom known as 

“oyster rock” in a 1981 survey (Fig. 1). Areas of high-quality bottom were set aside for 

the public common-access oyster fishery by the Virginia Marine Resources Commission. 

This practice is common when combining fishery and ecological restoration, forcing 

sanctuaries for ecological restoration to be placed on marginal bottom (e.g. soft muds), 

which hinders reef performance and persistence, thereby fostering the belief held by 

some that native oyster restoration cannot succeed. The US ACE responded to the 

problems of having to build reefs on sub-optimal bottom and the suspected ephemeral 

nature of low-relief reefs by constructing high-relief reefs over a large portion of the 

project area to increase the chances of project success. This proved to be a wise decision.

Post-Restoration survey

The patent tong survey was conducted throughout the restored oyster reef areas 

(Fig. 1). Underwater video was used to document the reef condition and appearance at 

various locations during the patent tong survey. The filming occurred immediately 

adjacent to the patent tong sample sites. The patent tong survey, along with associated 

underwater video, indicated that the USACE reefs encompassed 38.7 ha initially and as 

of fall 2007, 35.2 ha remained, an approximately 9% rate of loss over the four year period
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since the reefs were constructed. Due to the vagaries o f the shell placement technique, 

which consisted of blowing the dredged shells, with a water cannon, over the area to be 

restored from a barge into the water, approximately 10% of the area the US ACE had 

attempted to build reefs on never received any shells. Due to subsidence, a significant 

portion of the HRR strata had essentially degraded to LRR. This resulted in a 33.9% loss 

of HRR acreage to the LRR strata, which gained in size as a result. Much of this loss 

occurred toward the main channel of the Great Wicomico River on reefs in waters deeper 

than 6 m. The reef areas lost were typically on areas o f softer sediments and had little 

shell; in some cases only approximately 2-4 cm of shells remained. The shells became 

completely covered with sediment and were no longer available as settlement substrate 

for oyster larvae. Any spat or adults observed on these shells had died due to anoxia. The 

restored reefs were all constructed above Sandy Point, in a stretch of river known to have 

a relatively small tidal exchange. All restored reefs were intended to be fully within 

various Baylor (public) oyster grounds, but a substantial percentage of most o f the nine 

reefs extended outside o f the Baylor grounds. Though bottom categorized as Baylor 

grounds did not necessarily include all natural oyster reefs, it is a reasonable guide for the 

location of subtidal oyster reefs in Virginia waters of the Chesapeake Bay. The Baylor 

grounds encompassing the project cover a total o f 194.2 ha and contain many habitat 

types, including former reef footprints consisting of hard shell, sand-shell and mud-shell 

mix, sand, clay, and mud. Due to the inherent difficulties in deploying shells off a barge 

using a water cannon to create shell beds of uniform thickness, some areas intended to 

receive shells did not, and some areas near but outside the Baylor grounds did. This 

heterogeneous placement of shell is typical of such construction, and the area of bottom



covered is not strongly correlated with the volume of shell used. The direct result was the 

deployment of reefs of various heights and configurations, as well as areas devoid of 

shell, within the Baylor areas targeted for restoration. Recent observations (2009) have 

shown that some of the high quality LRR on the edge of the remaining (after the 33.9% 

loss due to subsidence) HRR has achieved a dense population that has accreted enough 

additional shell material to now be considered HRR.

Estimate of 1994 oyster population in Great W icomico River (GWR)

To generate the population increase due to the restoration effort in the GWR over 

a historical time frame, we used estimates of abundance derived from the 1994 dredge 

survey by the Virginia Institute of Marine Science and Virginia Marine Resources 

Commission (the status of Virginia’s public oyster resource 2004 report). From the 

dredge survey, abundance of spat, small adults and large adults were combined into a 

total average of 110 per bushel (16 spat + 87 small adult + 7 large adult per bushel). Each 

dredge tow collected 1.5 bushels and sampled 55 m , with an average efficiency of 18% 

and range in efficiency from 2-26%. The area o f bottom inhabited by the oyster 

population was estimated as 19.425 ha, which represents areas of high-quality oyster 

habitat (= "oyster rock") as defined in previous surveys (Fig. 1). The resultant average 

estimate = 1.5 x 110 oysters/55 m2 x 100/18 x 194250 m2 = 3.244 million oysters. If the 

dredge efficiency was 2%, estimated abundance = 9.011 million, and if  26% it would be 

0.693 million.
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RESULTS and DISCUSSION

In 2007, the metapopulation on the nine reefs consists of an estimated 184.5 

million oysters, comprising 119.2 million adults of two age classes (2005 and 2006) and

65.3 million juveniles o f the 2007 age class (Figs. 3 and 4), indicating protracted survival 

of settled individuals to adulthood and recruitment of larvae to the reefs. This represents a 

57-fold augmentation of the resident Great Wicomico River population, which greatly 

exceeds the previously unachieved restoration goal (10-fold increase of 1994 baseline by 

2010) of the Chesapeake Bay Program. Moreover, the reef complex continued to develop 

and still persists five years post construction (March 2009), as evident in 2009 video and 

patent tong surveys (Fig. 5a-f).
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Figure 3: Size-frequency distributions of Crassostrea virginica on (a) HRR and (b) LRR 
treatments. Upper Crosses indicate average size of year 0, 1+ and 2+ year old oysters, the lower 
cross indicates the average size of oysters on HRR and LRR, respectively.
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Figure 5: Time series of (A, B) UNB, (C, D) LRR and (E, F) HRR between 2007 and 2009.

The 185-million-strong population in the Great Wicomico River dwarfs all 

individual populations throughout Maryland's 111,600 ha o f public oyster grounds in 

upper Chesapeake Bay (Tarnowski 2007), and is nearly as large as the estimated 200 

million oysters in all o f Maryland waters. Comparisons to native oyster populations in 

other parts of the world similarly demonstrate the unrivaled magnitude of the restoration.
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The largest documented populations of native oyster species comprise 24 million flat 

oyster Ostrea anagasi in Tasmania (Mitchell et al. 2000) and 100 million European flat 

oyster Ostrea edulis in the Mediterranean (Airoldi and Beck 2007). For all other native 

oyster species, there is little data but their populations are much smaller than the Great 

Wicomico River population (Rothschild et al. 1994, Kirby 2004, Ruesink et al. 2005, 

Lotze et al. 2006).

The major influence upon oyster reef success was reef height, which drove 

abundance and density across the reef complexes (Fig. 6). Despite their much smaller 

area (12.1 ha), HRR segments harbored 67% or 123.8 million oysters (Fig. 6a), whereas 

the 23.2 ha of LRR contained 32% or 58.1 million (Fig. 6a), and 43.5 ha of UNB held 

only 1% or 2.6 million (Fig. 6a). Irrespective of reef type, adults were twice as abundant 

as young juveniles (Fig. 6). Mean oyster density per m was four-fold higher on HRR 

(1026.7 ± 51.5 SE) than on LRR (250.4 ± 32.3 SE); UNB only had 6.0 (± 1.5 SE)

oysters/m2 (Fig. 6b). The HRR density stands in sharp contrast to the typical average

# 2
densities on Chesapeake Bay sanctuary reefs, which have 100-152 oysters/m . On

harvested reefs in Chesapeake Bay, oysters exist at much lower densities (2-11

2 2 
oysters/m ); some harvested reefs harbor higher densities up to 350 oysters/m , but these

are unusual.

The key feature mediating the abundant restored population was the vertical relief 

of the restored reefs, specifically the height above the river bottom (HRR: 25-45 cm and 

LRR: 8-12 cm, prior to subsidence of 2-6 cm due to settling) of the oyster shell used to

build the reefs. As the proportion of HRR increased on any particular reef, oyster density

2 2 
rose sharply from 200 oysters/m when a reef was 10% HRR to over 1000 oysters/m
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2 .
when a reef was 90% HRR (Fig. 2, r = 0.86). For every 10% increase m the proportion

of HRR, oyster density rose by 100 oysters/m2 (Fig. 2). Similarly, oyster size (shell 

height) on HRR (47.3 mm ± 1.2 SE; Fig. 3 A) was 15% larger than that on LRR (41.0 mm 

±1 . 1  SE; Fig. 3B). The mechanism mediating the superiority o f HRR over LRR was 

most likely due to the optimal flow rates and corresponding healthier physiological 

condition of oysters on HRR, which maximize growth and survival and minimize disease 

influence and sedimentation (Lenihan and Peterson 1998, Lenihan 1999).

The sharply magnified oyster densities on HRR had two profound benefits for the 

long-term sustainability of the restored population (Fig. 4a) and the persistence of the 

associated reef matrix (Fig. 4b). First, there was a positive feedback between adult 

density and subsequent juvenile recruitment such that spat density was a positive 

parabolic function of adult density, with a peak at an adult density of 850 oysters/m , 

after which juvenile recruitment declined (Fig. 4a). Variance in juvenile recruitment also 

differed by reef type (Fig. 4a), and was distinctly lower on HRR (coefficient of variation 

= 43%) than on LRR (129%). Thus, recruitment was not only much greater on HRR, but 

it was also more consistent than the variable and lower recruitment on LRR (Fig. 4a).

Oyster reefs require an accumulation of accreting shell (i.e. the conglomeration of 

shell from living and dead oysters) that develops vertically with a complex architecture, 

and which serves as the base for the extant population, spat settlement and reef 

persistence. Accretion rate of shell material on restored reefs was a sigmoid function of 

total oyster density and differed substantially by reef type: 6-16 L/m on HRR and < 4

2 2
L/m on LRR (Fig. 4b). Historically, accretion rates exceeding 5 L/m characterized 

successful native oyster reefs (DeAlteris 1988). The vertical growth and cohesiveness of

14



HRR indicate that they are coalescing into the historic, natural oyster reef architecture 

typical of pre-exploitation reefs (DeAlteris 1998), as evident in the photographs and 

video clips o f 2007 and 2009 (Fig. 6). These results suggest that oyster reefs exist in two 

alternative states (Scheffer and Carpenter 2003), one a heavily sedimented degraded state 

and the other a vertically accreting, elevated reef configuration comprised o f abundant 

oysters, which provides a positive feedback to reef integrity.

It has been suggested recently that native oyster restoration cannot succeed 

because restored reefs do not accrete reef material at sufficient rates to compensate for 

losses due to shell degradation and sedimentation (Powell et al. 2006, Mann and Powell 

2007). This conclusion is based on data from restored reefs characterized by poor habitat 

quality (e.g. low reef height), low recruitment, low standing stock, and ongoing 

exploitation, which destroys the reef architecture and removes large adults from the 

population (Lenihan and Peterson 2004). Such reefs are comparable to the poorly

performing LRR in the Great Wicomico River. In contrast, HRR are accreting shell at

2 1rates significantly faster than 5.0 L m' yr" , indicating that HRR has developed into a 

robust, permanent reef structure, whereas much o f the LRR is not likely to persist more 

than a few years. The HRR exhibit both vertical and cohesive growth, in contrast to the 

pattern of reef degradation typically observed on previous native oyster restoration 

projects (Smith et al. 2005). Our recent patent tong samples and UW ROV observations 

in March 2009 indicate that recruitment of the 2008 year class was very successful and 

that the reefs are continuing to develop and grow, attesting to the expansion and 

persistence of the reef matrix. The HRR system has persisted and, more importantly, 

thrived for nearly five years, well past the typical longevity of failed oyster reefs (Smith

15



et al. 2005). The HRR are gaining shell material and establishing oyster densities at rates 

previously unrecorded on native oyster restoration projects.
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Figure 6 : (a) Oyster abundance and (b) Density on each of the reef types across the nine-reef 
system. Values for UNB are magnified to demonstrate the similar pattern in adult and spat 
abundance as on the HRR and LRR patches. Abundance estimates for the system of nine reefs 
consisted of a total of 184.5 million oysters (95% Cl: 165.0-204.0 million), 119.2 million adults 
(95% Cl: 104.5-133.9 million) of the 2005 and 2006 year classes, and 65.3 million spat (95% Cl: 
59.7-77.2 million) of the newly recruited 2007 year class (Fig. 1).
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The native oyster metapopulation on the restored reef system in the Great 

Wicomico River greatly exceeds recently proposed criteria for sustainability (Powers et 

al. 2009): (1) it is comprised of multiple year classes at high abundance, which buffers 

year-to-year variation in spat settlement; (2) it is composed of young and old adults that 

have survived disease challenge; (3) the reefs are accreting (i.e. growing) at a rate that 

will provide settlement habitat for future generations; and (4) it receives sufficient spat 

settlement and recruitment to sustain the population over the long term.

The recent recovery of a native Crassostrea virginica metapopulation in the Great 

Wicomico River of Chesapeake Bay, as well as limited successes in other North 

American estuaries (Lipcius and Burke 2005, Nestlerode et al. 2007, Taylor and Bushek 

2008, Powers et al. 2009), highlight the critical importance of two common features of 

successful reefs—protection from fishing and high vertical relief (Lenihan and Peterson 

1998, 2004, Lenihan 1999, Lenihan et al. 1999). Past oyster restoration efforts operated 

under the mistaken premise that fishery and ecological restoration could be accomplished 

simultaneously (Mann et al. 1991, US Army Corps 2009). This approach failed to stem 

the decline in oyster stocks, and led to the widespread use of more efficient fishery 

methods such as power dredging, the most destructive technique of harvesting oysters 

(Lenihan and Peterson 2004, Smith et al. 2005). This strategy promoted partial fishery 

recovery via put-and-take fisheries at the expense of ecological restoration, and 

consequently perpetuated the precipitous decline of oyster populations in Chesapeake 

Bay as well as along the Atlantic and Gulf of Mexico coasts o f North America 

(Rothschild et al. 1994, Jackson et al. 2001, Kirby 2004, Lotze et al. 2006).
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The Great Wicomico River restoration project deviated significantly from prior 

restoration attempts in the Chesapeake Bay by building oyster reefs of high vertical relief 

at a broad spatial scale in large sanctuaries protected from fishery exploitation, and in 

locations characterized by high recruitment (Schulte 2003, Tarnowski 2007). Typical 

restored sanctuaries prior to this project amounted to 1% or less of an estuary’s original 

oyster reef extent. The Great Wicomico River reef network encompasses approximately 

40% of the original oyster reef extent (Berman et al. 2002) within a hydrodynamically 

restricted system (Schulte 2003). This metapopulation connectivity promotes persistence 

of individual populations in the network and larval subsidies from protected source reefs 

to fished reefs (Lipcius et al. 2008) with the attendant economic benefits (Grabowski et 

al. 2007). Designation of the reefs as sanctuaries protects the reefs both from exploitation 

of the spawning stock and physical destruction of the critically important vertical 

structure. Significant vertical relief and reef persistence were accomplished by building a 

substantial portion of the reef system as high as 45 cm (HRR) in contrast to the 8-12 cm 

LRR, which typically does not promote reef persistence more than 3-5 years (Smith et al. 

2005). Low-relief reefs have been the construction method of choice by fishery 

management agencies in the Chesapeake and several other estuaries. The ephemeral 

nature of low-relief reefs has proven to be one o f the main impediments to the recovery 

of native oyster habitat wherever they are used.

The vertical growth and cohesiveness of HRR indicate that they are coalescing 

into the historic, natural architecture typical o f pre-exploitation oyster reefs (Winslow 

1881), as evident in the photographs (Fig. 6). Winslow (1881), during his historic survey 

of oyster reefs, documented perhaps the last unexploited reefs in Chesapeake Bay. These
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reefs consisted of "long, narrow oysters...no single oysters of any [age] class, but all 

grew in clusters of 3 to 15. The shells were clean and white, free from mud and sand. The 

mature oysters were covered and the interstices between them filled with younger 

oysters." Moreover, he noted that it was very difficult to sample these reefs due to their 

cohesive nature, which we also experienced when attempting to sample HRR during our 

2009 survey.

Although disease will kill some oysters in the Great Wicomico River, the recent 

development of disease tolerance in oysters on sanctuary reefs of lower Chesapeake Bay 

(Encomio et al.2005) bodes well for the long-term persistence of this metapopulation and 

its attendant ecosystem benefits (Grabowski et al. 2007). Similar approaches with other 

natural (Taylor and Bushek 2008) and artificial reefs (Schulte et al. 2009) could lead to 

recovery of the native oyster throughout North America, as well as other ecosystems 

worldwide where native oysters have been functionally extirpated (Jackson et al. 2001, 

Lotze et al. 2006).
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Closing Thoughts

Working towards restoration of native oyster to lower Chesapeake Bay with the primary 
focus on ecology and population recovery, not commercial fishery augmentation, has 
been a very difficult endeavor and one that I may not have taken up had I known how 
politically charged it was. Upton Sinclair put it nicely when he said: “It is difficult to get 
a man to understand something, when his salary depends on his not understanding it. ”
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Appendices

Appendix 1.1: Data Table of the winter 2007-8 survey in the Great Wicomico River, Virginia on 

the US Army Corps built sanctuary reefs
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H ig h -R e l ie f  R e e f  S a m p l e s
HRR adults/m*'2 spat/m ft2 accretion  rate  in ml

1 678 628 11200
2 588 206 5600
3 768 316 14000
4 604 572 no data
5 852 550 12600
6 714 352 12800
7 544 196 11600
8 1286 304 16000
9 696 194 14000
10 516 348 8000
11 646 300 10000
12 1136 194 12600
13 992 176 10400
14 636 154 11800
15 520 444 10500
16 4 1 4 374 7300
17 406 356 7000
18 532 164 12200
19 672 508 7240
20 634 348 no data
21 588 306 8200
22 604 572 10000

L o w -R e lie f  R e e f  S a m p le s
LRR adults/m A2 spat/m n2 accretion rate in ml

1 134 172 2200
2 206 30 5000
3 478 78 10600
4 216 18 4400
5 444 222 9600
6 246 34 no data
7 78 18 300
8 340 172 7000
9 516 348 no data
11 40 8 750
12 92 50 4000
13 366 32 9600
14 168 52 800
15 76 22 450
16 108 225 6000
17 66 336 2200
18 336 58 8000
19 158 18 no data
20 72 20 1300
21 192 18 3200
22 66 28 800
23 146 18 1500
24 12 2 120
25 36 48 140
26 84 170 no data
27 208 20 2500
28 140 8 900
29 10 64 200
30 220 490 3400
31 60 108 250
32 172 34 1600
33 50 76 4000
34 88 16 1200
35 34 76 800
36 80 16 500
37 36 4 600
38 92 11 500
39 56 30 1050
40 220 490 no data
41 84 266 no data
42 8 130 no data

e s t o r e d  B o t t o m / D e g r a d e d  R e e f  S a m p l e s
unresto red  adults/m ft2 spat/m A2 accretion rate in ml

1 2 2 30
2 6 2 50
3 0 0 0
4 0 0 0
5 2 2 5
6 6 14 60
7 12 0 no data
8 0 0 0
9 8 8 50
10 0 0 0
11 0 0 0
12 0 0 0
13 2 14 25
14 12 2 110
15 0 2 4
16 0 0 0
17 2 0 no data
18 0 2 5
19 8 0 10
20 14 2 10
21 2 0 35
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