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UNRAMIFIED COHOMOLOGY OF QUADRICS, I

BRUNO KAHN, MARKUS ROST, AND R. SUJATHA

Abstract. Given a quadric X over a field F of characteristic 6= 2, we compute
the kernel and cokernel of the natural map in degree 4 from the mod 2 Galois
cohomology of F to the unramified mod 2 cohomology of F (X), when dim X >

10 and in several smaller-dimensional cases. Applications of these results to
real quadrics and to the unramified Witt ring are given.
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Introduction

Let F be a field, let X be a smooth, proper, and irreducible variety over F and
let n be prime to charF . Consider the restriction map

Hi(F, µ⊗(i−1)
n ) → H i(F (X), µ⊗(i−1)

n )

in Galois cohomology.
The kernel of this map has been studied in various cases, for unirational and

notably for homogeneous varieties. In the case of the Brauer group (i = 2) this goes
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2 BRUNO KAHN, MARKUS ROST, AND R. SUJATHA

back to Witt [56] for conics and Amitsur [2] for Severi-Brauer varieties. For i = 3
the kernel has been determined by Arason [1] for quadrics. Other computations for
i = 3 and homogeneous varieties (Suslin [49], Peyre [39, 40], Merkurjev [29], Esnault
et al. [14]) rely on the Merkurjev-Suslin theorem (see below). The Merkurjev-
Suslin/Rost theorem makes it possible to study also the case i = 4 and n = 2. Here
certain quadrics have been considered by Jacob-Rost [16], Szyjewski [51], Rost and
Merkurjev [27].

Unramified cohomology. The image of this map sits inside the unramified

cohomology group

Hi
nr(F (X)/F, µ⊗(i−1)

n ) := Ker
(
(H iF (X), µ⊗(i−1)

n )
(∂x)−−→

⊕

x∈X(1)

Hi−1(Fx, µ
⊗(i−2)
n )

)
.

Here x runs through the codimension 1 points of X , and

∂x : Hi(F (X), µ⊗(i−1)
n ) → H i−1(Fx, µ

⊗(i−2)
n )

is the residue map associated to the discrete valuation ring OX,x.
We study the cokernel of the corresponding map

ηi
n : Hi(F, µ⊗(i−1)

n ) → H i
nr(F (X)/F, µ⊗(i−1)

n ).

The group H i
nr(F (X)/F, µ

⊗(i−1)
n ) is a birational invariant and does not change

when X is replaced by X × P1. Moreover for the base field extension from F to
the rational function field K = F (t) one has an exact sequence

(∗) 0 → H i
nr(F (X)/F, µ⊗(i−1)

n ) → H i
nr(K(X)/K, µ⊗(i−1)

n ) →
→

⊕

y∈A1
(0)

Hi−1
nr (Fy(X)/Fy, µ

⊗(i−2)
n ) → 0.

(cf. [7, §3.3, th. 4.1.1, 4.1.5], [42, (7.3),(12.10)].)
Saltman [43, 44], Bogomolov [3], Colliot Thélène-Ojanguren [8], and Peyre [38],

inter alia, have studied the unramified cohomology of certain unirational varieties
over an algebraically closed F (there are many more references available on this case,
for which the reader can consult for instance [7, § 4]). The unramified cohomology
of real varieties has been studied in high cohomological degree by Colliot Thélène-
Parimala [9] and Scheiderer [46]. For quadrics X and i ≤ 3, the cokernel of ηi

2

was studied by Colliot Thélène-Sujatha [10] (F = R), Peyre [39] (F arbitrary, X
a conic), Sujatha [48] (F arbitrary, X defined by a neighbour of a 3-fold Pfister
form) and Kahn [17] (F arbitrary, dimX > 2). It follows from [56, 1, 17] that η2

2

(resp. η3
2) is bijective for dimX > 2 (resp. dimX > 6) and has kernel and cokernel

of order at most 2 for all X (resp. for dimX > 2).
In this paper, we show that η4

2 is bijective if X is a quadric of dimension > 10,
and that

∣∣Ker η4
2

∣∣ ≤ 2,
∣∣Coker η4

2

∣∣ ≤ 4 for dimX > 4. To our knowledge, this is the
first non-trivial instance where unramified cohomology of degree 4 is determined
over an arbitrary field.

The Milnor conjecture. Before a more detailed discussion we recall the Bloch-
Kato conjecture, the Milnor conjecture, and the related conjecture about existence
of cohomological invariants for the graded Witt ring.
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The Bloch-Kato conjecture predicts that if n is invertible in F , then the norm
residue homomorphism hi of degree i,

hi : K
M
i F/n→ H i(F, µ⊗i

n )

is an isomorphism for all i ≥ 0. Here KM
i F denotes the i-th Milnor K-group of F

[34]. If n is a power of 2, this is called the Milnor conjecture. The bijectivity
of hi holds trivially for i = 0 and by Kummer theory for i = 1. The Merkurjev-
Suslin theorem states that h2 is an isomorphism [31] and Merkurjev-Suslin/Rost
[32] proved the Milnor conjecture for i = 3. The second author announced a proof
of the Milnor conjecture for i = 4. Voevodsky [54] recently released a proof of the
Milnor conjecture for all i. In the present paper we use only the Milnor conjecture
for i ≤ 3, except in appendix C for an application to the unramified Witt group
which relies on the Milnor conjecture for i = 4.

Let W (F ) denote the Witt ring of F and let (I iF )i≥0 be the filtration on W (F )
given by the higher powers of the fundamental ideal I(F ) ([26, 45]). For a1, a2,
. . . , ai ∈ F ∗ let 〈〈a1, . . . , ai〉〉 denote the i-fold Pfister form 〈1,−a1〉 ⊗ · · · ⊗ 〈1,−ai〉
(ibid.). A quadratic form q is a neighbour of an i-fold Pfister form ϕ if dim q > 2i−1

and q is similar to a subform of ϕ. For simplicity, write

HiF = H i(F,Z/2).

We define a symbol to be an element ofH iF of the form (a1, . . . , ai), where aj ∈ F ∗,
(aj) is the class of aj in H1F by Kummer theory and (a1, . . . , ai) := (a1) · . . . ·(ai) is
the cup-product. Let Pi(F ) denote the set of classes of i-fold Pfister forms in W (F ).
There are maps

ei : Pi(F ) → H iF

which send the class of an i-fold Pfister form 〈〈a1, . . . , ai〉〉 to the corresponding
cohomological symbol (a1, . . . , ai). It is conjectured that these maps extend to
well-defined isomorphisms

ei : IiF/Ii+1F → H iF

for all i ≥ 0. For i ≤ 2, it is easy to see that these maps are well-defined, being the
rank mod 2, signed discriminant, and the Clifford invariant, respectively, for i = 0,
1, 2. Arason [1] proved that e3 is well-defined and Jacob-Rost/Szyjewski [16, 51]
proved that e4 is well-defined. Granting the existence of ei, the Milnor conjecture
in degree i implies the bijectivity of ei. Voevodsky has recently announced a proof
of the existence and bijectivity of the homomorphisms ei for all i, jointly with Orlov
and Vishik [35].

We now describe our results. Let q be a (regular) quadratic form over a field F
with charF 6= 2 and let X be the associated projective quadric. Unless mentioned
otherwise, we assume dim q ≥ 3.

Note that if q is isotropic, then the extension F (X)/F is purely transcendental
and therefore ηi

2 is bijective for all i (cf. proposition 2.5).

Kernel of ηi
2. Here the major result is

Theorem 1 (cf. theorem 6.3). Let i ≤ 4. If dim q = 2i−2 + 1, then every element

in Ker ηi
2 is a symbol.
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For i = 3 and, in case of a Pfister neighbour, for i = 4, this theorem follows easily
from the computations of Ker ηi

2 by Arason [1], Jacob-Rost [16], and Szyjewski [51,
6.1].

The proof of theorem 1 for i = 4 in general is an extension of the discussions
in [16, 27] to arbitrary 5-dimensional quadratic forms. The method used there
provides a very general description of Ker η4

2 for quadratic forms of dimension ≥ 5
(see [27]) as follows:

Ker η4
2 = Ker(H2(X,K3) → H2(X,K3)).(∗∗)

For an Albert form with corresponding biquaternion algebra A (see below) this
yields an isomorphism SK1(A) = Ker η4

2 (ibid.).
For a five dimensional form q, let q̂ = q ⊥ 〈−d〉, d = det(q) be the attached

Albert form. In this case (∗∗) yields a surjective homomorphism

O(q̂)/[O(q̂),O(q̂)]O(q) →→ Ker η4
2 .

Theorem 1 follows from a careful computation of this map.
Using this theorem and some quadratic form theory, we show in section 3:

Corollary 2. Let i ≤ 4. Then

(1) A symbol (a1, . . . , ai) 6= 0 lies in Ker ηi
2 if and only if q is similar to a subform

of 〈〈a1, . . . , ai〉〉.
(2) Ker ηi

2 consists of symbols for dim q > 2i−2.

(3)
∣∣Ker ηi

2

∣∣ ≤ 2 for dim q > 2i−1.

(4) Ker ηi
2 = 0 for dim q > 2i.

Note that the bound dim q > 2i−2 in (2) is optimal: if q is an (i− 2)-fold Pfister
form 〈〈a1, . . . , ai−2〉〉, then Ker ηi

2 contains H2F · (a1, . . . , ai−2), which obviously
contains non-symbolic elements in general.

One may expect that theorem 1 also holds for higher degree i. Then corollary 2
would hold accordingly (using the existence and bijectivity of the ei).

Cokernel of ηi
2. Results on Coker ηi

2 are best understood in terms of Cokerηi,
where ηi is the restriction map

ηi : Hi(F,Q/Z(i− 1)) −→ H i
nr(K/F,Q/Z(i− 1)).

Here Q/Z(i − 1) := lim−→µ
⊗(i−1)
m , where m runs through all integers prime to

charF . A consequence of Milnor’s conjecture in degree i − 1 is that H iF →
Hi(F,Q/Z(i − 1)) is injective; hence Ker ηi

2 = Ker ηi since the latter group is
killed by 2 (cf. lemma 7.2 a)). To relate Coker ηi

2 and Cokerηi, define

(Ker ηi
2)0 = {α ∈ Ker ηi

2 | (−1) · α = 0 ∈ H i+1F }.
We prove in section 7:

Proposition 3 (cf. proposition 7.4). For any quadric X and i ≤ 4, there is an

exact sequence

0 → (Ker ηi
2)0 −→ Coker ηi

2 → Coker ηi.

This way, information on Ker ηi
2 and Cokerηi immediately yields information on

Coker ηi
2.

To describe our picture about Cokerηi we formulate:

Conjecture.
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(1) Coker ηi = 0 if q is Pfister neighbour.

(2) Coker ηi = 0 for dim q ≤ 5.
(3) Coker ηi is finite for dim q > 6 · 2i−4.

(4) Coker ηi = 0 for dim q > 6 · 2i−3.

In appendix A we show Coker ηi = 0 for dim q = 3 and—after an appropriate
modification of the target group—also for dim q = 2. Here the arguments rely on
the Milnor conjecture in degree i− 2 (resp. i− 1).

For i ≤ 2 one has (cf. section 9):

Theorem 4. Coker ηi = 0 for i ≤ 2.

For i = 3 there appears a peak in the story at dim q = 6. For the reader’s
convenience, we recall the various types of 6-dimensional quadratic forms. Let d±q
be the signed discriminant and let C(q) be the Clifford algebra of q [26]. The pure

subform 〈〈a1, . . . , ai〉〉′ of the Pfister form 〈〈a1, . . . , ai〉〉 is defined by

〈〈a1, . . . , ai〉〉 = 〈1〉 ⊥ 〈〈a1, . . . , ai〉〉′.
There are four types of anisotropic quadratic forms q of dimension 6:

• d = d±q 6= 1, qF (
√

d) is anisotropic. For convenience, we shall call such forms

virtual Albert forms.
• d±q = 1, i.e., q ∈ I2F . Such forms are called (anisotropic) Albert forms. An

Albert form is similar to a form of type

〈〈a, b〉〉′ ⊥−〈〈e, f〉〉′ a, b, e, f ∈ F ∗.

To an Albert form there is attached the biquaternion algebra A = (a, b) ⊗
(e, f) which is the central simple algebra with C(q) ≃ M2(A). The form q is
isotropic if and only if A is not a skewfield.

• d = d±q 6= 1, qF (
√

d) is hyperbolic. These forms are the 6-dimensional Pfister

neighbours (cf. [24, p. 10]).
• d = d±q 6= 1, qF (

√
d) is isotropic without being hyperbolic. Such forms are of

type aτ ⊥ b〈1,−d〉, where a, b ∈ F ∗ and τ is a 2-fold Pfister form.

Now for i = 3 our result is (cf. section 10):

Theorem 5. Coker η3 = 0, except if q is an anisotropic Albert form, for which

Coker η3 ≃ Z/2.

This result completes those of [17].
The main results about Cokerη4 are:

Theorem 6 (cf. section 12).

(1) For dim q > 6 there is an exact sequence

0 → Coker η4 → (CH 3X)torsion →
(
CH 1X ⊗H3(F,Q/Z(2))

)
⊕H5(F,Q/Z(3)).

Here CH pX denotes the p-th Chow group of X.

(2)
∣∣Coker η4

∣∣ ≤ 2 if dim q 6= 4, 5, 6.

(3) Coker η4 = 0 if

• q is a Pfister neighbour

• dim q = 8 and d±q = 1
• dim q > 12.
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In the proof of theorem 6 we use Karpenko’s results on CH 3 of a quadric. The
main computational tool is, as in [17], to mix the use of the Hochschild-Serre
and Bloch-Ogus [4] spectral sequences, here with divisible coefficients. We use in
particular the fact that these two spectral sequences are modules over the Galois
cohomology of F . Divisible coefficients have been used also in [23, 6, 39, 40]. It is
clear that these methods can also be applied to other homogeneous varieties.

Theorem 7. If q is an anisotropic Albert form or a virtual Albert form over F ,

then Coker η4 is infinite for qF (t).

This theorem is an easy consequence of theorem 5 and the exact sequence (∗).
From corollary 2, proposition 3, and theorem 6 one easily deduces:

Corollary 8.

(1) Coker η2
2 = 0, unless q is a neighbour of a 2-fold Pfister form 〈〈a, b〉〉. In this

case, it is 0 or Z/2 according as (−1, a, b) ∈ H3F is nonzero or not.

(2) If q is an anisotropic Albert form, (Ker η3
2)0 = 0 and Coker η3

2 ≃ Z/2. In all

other cases, Coker η3
2 ≃ (Ker η3

2)0. In particular:

a) If q is a neighbour of a 3-fold Pfister form 〈〈a, b, c〉〉, then Coker η3
2 = 0

or Z/2 according as (−1, a, b, c) ∈ H4F is nonzero or not.

b) If q is not an Albert form and does not embed into a 3-fold Pfister form

(up to similarity), then Coker η3
2 = 0.

(3) a) If dim q > 12 and q is not a neighbour of a 4-fold Pfister form, then

Coker η4
2 = 0.

b) If q is a neighbour of a 4-fold Pfister form 〈〈a, b, c, d〉〉, then Coker η4
2 = 0

or Z/2 according as (−1, a, b, c, d) ∈ H5F is nonzero or not.

c) For dim q > 8,
∣∣Coker η4

2

∣∣ ≤ 4.

In the case F = R, these results immediately imply that Coker ηi
2 = 0 for

all quadrics when i ≤ 4. In appendix B, we also get partial results on the H-
cohomology of such quadrics.

The unramified Witt ring. As in [17, corollary], we wish to apply the above
results to the unramified Witt ring. Denote by Wnr(K/F ) the unramified Witt ring
of a finitely generated extension K of F (cf. [8]) and, for i ≥ 0, by I i

nr(K/F ) the
intersection IiK ∩Wnr(K/F ). Let

χi : IiF/Ii+1F → Ii
nr(K/F )/Ii+1

nr (K/F )

be the natural map analogous to ηi
2 and ηi. The homomorphism ēi induces a

homomorphism

Ii
nrK/I

i+1
nr K → H i

nrK

and hence a homomorphism

Cokerχi → Coker ηi
2.

Using the Milnor conjecture in degree i = 4, we find:

Theorem 9. Let i ≤ 4. For any quadric X, the composition

Cokerχi → Coker ηi
2 → Coker ηi

is injective.

From corollary 2, theorem 6, and theorem 9 we deduce:
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Corollary 10.

(1) The map W (F )/I3F → Wnr(F (X)/F )/I3
nr(F (X)/F ) is surjective. It is bi-

jective for dim q > 4.
(2) The map W (F )/I4F → Wnr(F (X)/F )/I4

nr(F (X)/F ) is surjective, except if

q is an anisotropic Albert form. In this case, its cokernel is ≃ Z/2 (by [17,
remark 3, p. 249]). It is bijective for dim q > 8.

(3) The map W (F )/I5F →Wnr(F (X)/F )/I5
nr(F (X)/F ) is surjective in cases

• q is a Pfister neighbour

• dim q = 8 and d±q = 1
• dim q > 12.

It is bijective for dim q > 16.

Remark. Voevodsky’s work yields also the computation of Ker ηi
2 for i-fold Pfis-

ter forms. A consequence of [54] and [35] is the validity of proposition 3 and of
theorem 9 for all i.

However these announcements do not imply a generalization of theorem 1 to
higher degree or a proof of the conjecture in an obvious way.

In a sequel to this paper, we plan to complete the present results by determin-
ing Ker η4 and Cokerη4 in the cases pending here, and by refining results on real
quadrics. In particular, we shall show that Kerη4

2 is always generated by its sym-
bols. For this, we shall use a method different from that of this paper, based on
the following result:

Theorem ([19]). Let X be a quadric and let C be a conic such that there exist a

morphism C → X. Let D be the quaternion algebra associated to C. Then there is

a canonical isomorphism

Ker η4
2

∼−→ H0(X,KD
2 )

K2D
.

Here H0(X,KD
2 ) is the intersection of the kernels of the residue maps

K2(D ⊗F F (X)) → K1(D ⊗F F (x)),

where x runs through the points of codimension 1 in X .

This paper is organized as follows. In part I we recall some known results on
Chow groups, in particular of Karpenko, and of K- and H-cohomology of quadrics,
supplying proofs when they don’t appear in the literature. Part II is devoted to
the proof of theorem 1 and corollary 2, and part III to the proof of proposition 3,
theorem 5, and theorem 6. In appendix A we consider Cokerηi for quadrics of
dimension 0 and 1. In appendix B we consider the case F = R. In appendix C we
prove theorem 9.

Notation and conventions. For any scheme X , H iX denotes the i-th étale co-
homology group of X with coefficients Z/2. We use the abbreviation H i(X, j) for
Hi

ét(X,Q/Z(j)) and similarly Hp(X,Hq(j)) for the E2-term of the coniveau spec-
tral sequence with divisible coefficients. If X is smooth over a field F , we denote
by CH iX its i-th Chow group, the group of cycles of codimension i over X mod-
ulo rational equivalence. We denote by cliX (resp. cl′iX) the cycle map with Z/2

coefficients CH iX/2 → H2iX (resp. with divisible coefficients CH iX ⊗ Q/Z →
H2i(X,Q/Z(i))). We set X = X ×F Fs, where Fs is a separable closure of F . The
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word “quadric” means smooth, projective and absolutely irreducible quadric. If X
is an even-dimensional quadric over F (assumed of characteristic 6= 2), we denote
by d(X) ∈ F ∗/F ∗2 the (signed) discriminant d±q of any quadratic form q defining
X . If ϕ : A → B is a homomorphism between two abelian groups, we sometimes

allow ourselves to write B/A or
B

A
for Cokerϕ, even if ϕ is not injective.

Acknowledgements. The first author wishes to thank Andrei Suslin for a conversa-
tion which catalyzed the use of divisible coefficients in this paper, and gratefully
acknowledges the hospitality of the Tata Institute of Fundamental Research, where
this work was completed. The third author acknowledges the partial support of a
NATO grant.

Part I. Collected results on quadrics

In this part, we state general results on Chow groups, H- and K-cohomology of
quadrics, most of which are “classical”. The reader is advised to skip it and to use
it only for reference purposes. We merely give references when published proofs are
available, and provide proofs otherwise.

We say that a quadric X is anisotropic (resp. isotropic, split) if a quadratic form
defining X is anisotropic (resp. is isotropic, has maximal index).

1. Chow groups

The following proposition is mainly a reformulation of results of N. Karpenko [20].

Proposition 1.1. Let X be a quadric over a field F of characteristic 6= 2. Let h
denote the class of a hyperplane section in CH 1X.

a) For any i ≥ 0, the natural map CH iX → CH iX has kernel the torsion

subgroup of CH iX (which is 2-primary).

b) For i < dimX/2, CH iX/ torsion is generated by hi; CH iX → CH iX is

surjective.

c) For i > dimX/2, CH iX/ torsion is generated by hi if i ≤ dimX−n and by the

class of a rational linear subspace of codimension i if i > dimX − n. Here n
is the Witt index of a quadratic form defining X. Coker(CH iX → CH iX) ≃
Z/2 if i ≤ dimX − n and CH iX → CH iX is surjective if i > dimX − n.

d) For i = dimX/2 and d(X) = 1 one has

CH iX/ torsion ≃ Z⊕ Z,

with basis (hi, 2tl), where t ≥ 0 and l is the class of some maximal linear

subspace of X. Moreover Coker(CH iX → CH iX) ≃ Z/2t. We have t = 1 if

i = 1 and X is anisotropic, and t = 2 if i = 2 and X is anisotropic.

e) For i = dimX/2 and d(X) 6= 1 one has

CH iX/ torsion ≃ Z

generated by hi. The map CH iX → (CH iX)GF is surjective, where GF is

the absolute Galois group of F .

Proof. a), b), and c) follow easily from [20, (2.1), (2.2), and (2.7)]; d) and e) follow
from the same references plus [20, (2.4) and (5.5)].
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Corollary 1.2. Let X be a quadric over F , D a divisible group and i ≥ 0. If

i 6= dimX/2 or i = dimX/2 and d(X) = 1, there is an exact sequence

0 → Tor(D,Coker(CH iX → CH iX)) → D ⊗ CH iX → D ⊗ CH iX → 0.

This is clear, since CH iX is torsion-free and the map CH iX → CH iX has
torsion kernel and cokernel.

Corollary 1.3. Let X be a quadric of dimension 2i over F such that d = d(X) 6= 1,

E = F (
√
d) and Γ = Gal(E/F ). Then the Γ-module CH iXE/ torsion is isomorphic

to IndΓ
1 Z if XE is split, and to Z ⊕ Z(ε) otherwise, where Z(ε) is the Γ-module

of support Z with the nontrivial action of Γ. On the other hand, the GF -module

CH iX is always isomorphic to IndGF

GE
Z. The maps

CH iX/ torsion → (CH iX)GF

and

CH iX ⊗ Q/Z → H0(F,CH iX ⊗ Q/Z)

are isomorphisms.

Proof. By prop. 1.1 d), CH iXE/ torsion is a free Z-module with basis (hi, 2tl) for
some t ≥ 0. It is clear that t = 0 if and only if l is rational over E, i.e., iff XE

is split. In this case, another basis of CH iXE/ torsion is (l, l′) where l′ = hi − l
is the class of another linear section, and this basis is permuted by Γ, hence the
first claim. If t > 0, another basis of CH iXE/ torsion is given by (hi, 2t−1hi − 2tl),
and 2t−1hi − 2tl is a −1-eigenvector for Γ. This proves the second claim. The
isomorphism CH iX/ torsion ∼−→ (CH iX)GF has been seen in prop. 1.1 a) and e).
To get the other, we consider the short exact sequence of GF -modules

0 → CH iX → CH iX ⊗ Q → CH iX ⊗ Q/Z → 0

obtained by tensoring the exact sequence 0 → Z → Q → Q/Z → 0 by the flat

Z-module CH iX. Since CH iX ≃ IndGF

GE
Z, we have H1(F,CH iX) = 0 by Shapiro

lemma, hence we get an isomorphism

CH iX ⊗ Q/Z ∼−→ (CH iX)GF ⊗ Q/Z ∼−→ H0(F,CH iX ⊗ Q/Z).

Corollary 1.4. Let X be an anisotropic quadric over F , K = F (X) and i1(X)
the Witt index of qK , where q is a quadratic form defining X.

a) For i < dimX/2, CH iX/ torsion → CH iXK/ torsion is bijective.

b) For i > dimX/2, CH iX/ torsion → CH iXK/ torsion is bijective if i ≤
dimX − i1(X) and Coker(CH iX/ torsion → CH iXK/ torsion) ≃ Z/2 if

i > dimX − i1(X).

c) For i = dimX/2, CH iX/ torsion → CH iXK/ torsion is bijective if d(X) 6= 1.

If d(X) = 1, Coker(CH iX/ torsion → CH iXK/ torsion) is cyclic of order 2s

for some s ≤ t, where t is as in prop. 1.1 d). For i = 1 or 2 we have s = 1.

d) For i = dimX/2 and d = d(X) 6= 1, let E = F (
√
d). Then

CH iXE/ torsion → CH iXKE/ torsion

is bijective if XE is isotropic and has cokernel as in c) otherwise.
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Proof. Everything directly follows from proposition 1.1, except for the last sen-
tence of c) and for d). Assume dimX = 2. Then X is defined by an anisotropic
quaternion form, (= a 2-fold Pfister form). hence i1(X) = 2, which implies s = 1
in this case by proposition 1.1 d). Assume dimX = 4. Then X is defined by an
anisotropic Albert form ϕ, hence i1(X) = 1. Let Y be the quadric over K given
by the anisotropic part of ϕK (dim Y = 2). By [20, (2.2)] (cf. lemma 2.1 below),
there is an isomorphism CH 1Y ∼−→ CH 2XK . This isomorphism is natural under
change of base field, as can be seen from the proof of lemma 2.1. In particular, the
diagram

CH 1Y
∼−−−−→ CH 2XK

y
y

CH 1Y
∼−−−−→ CH 2XK

commutes, which shows that Coker(CH 2XK → CH 2XK) ≃ Z/2. Moreover, since
Coker(CH 2X −→ CH 2X) ≃ Z/4 and CH 2X ∼−→ CH 2XK , this indeed shows that
s = 1. Finally, d) is obvious since, if XE is isotropic, the extension KE/E is purely
transcendental (compare [20, proof of (3.12)]).

Proposition 1.5. Let X be a quadric over F , where F is separably closed (of
characteristic 6= 2). Then HjX = 0 for j odd and the cycle maps

cliX : CH iX/n→ H2i(X,µ⊗i
n )

are isomorphisms for any n prime to charF and i ≥ 0.

Proof. This follows from proposition 2.2 a) and the computation of H∗
ét(X,Zl) [11,

th. 3.3].

Proposition 1.6. Let X be a quadric over F .

a) (classical) CH 1X is torsion-free.

b) ([20, (6.1)]) (CH 2X)torsion ≃ Z/2 if X is defined by a neighbour of an an-

isotropic 3-fold Pfister form, and is 0 otherwise.

c) ([20, (2.6)],[21],[22]) (CH 3X)torsion ≃ 0 or Z/2. If dimX = 3 or dimX >
10, (CH 3X)torsion = 0.

2. K- and H-cohomology

We denote by H i(X,Kj) and H i(X,Hj(µ⊗k
m )) the cohomology groups of the

localization complexes with terms
⊕

x∈X(i)

Kj−iF (x) resp.
⊕

x∈X(i)

Hj−i(F (x), µ⊗(k−i)
m ).

These cohomology groups are defined for any equidimensional, not necessarily
smooth variety. For the long exact excision sequences and for homotopy invari-
ance we refer to [42]. The interpretation for smooth X as Zariski cohomology
groups is not needed here.

Lemma 2.1. Let X be an isotropic quadric of dimension n ≥ 2 over a field F
of characteristic 6= 2; write q ≃ q′ ⊥ xnxn+1 for a quadratic form defining X and
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Z ⊆ X for the codimension 2 subquadric with equation q′ = 0. Then, for 0 < i < n,
j ≥ i and k ∈ Z, there are isomorphisms:

KjF
∼−→ H0(X,Kj),

Hi−1(Z,Kj−1)
∼−→ H i(X,Kj),

Kj−nF
∼−→ Hn(X,Kj),

Hj(F, µ⊗k
m ) ∼−→ H0(X,Hj(µ⊗k

m )),

Hi−1(Z,Hj−1(µ⊗(k−1)
m )) ∼−→ H i(X,Hj(µ⊗k

m )),

Hj−n(F, µ⊗(k−n)
m ) ∼−→ Hn(X,Hj(µ⊗k

m )).

These isomorphisms commute with change of base field, transfer and cup-product

by K∗F (resp. H∗(F, µ⊗l
m )).

Remark. If n = 2, the “subquadric” Z is SpecE, with E = F [t]/t2 − d, where
d = d(X) is the (signed) discriminant of the 2-dimensional form q′. E is a quadratic
extension of F if d 6= 1 and F × F otherwise.

Proof. (compare [16, lemma 3.3], [51, prop. 3.2.1] for dimX = 3, and [20, (2.2)] for
i = j). We do it only for K-cohomology, the case of H-cohomology being identical.
Let Y be the hyperplane section xn+1 = 0 and P = (0 : · · · : 0 : 1 : 0). We have
excision exact sequences:

· · · → H i−1(Y,Kj−1) → H i(X,Kj) → H i(X \ Y,Kj) → H i(Y,Kj−1) → · · ·

· · · → H i−n(P,Kj−n) → H i−1(Y,Kj−1) → H i−1(Y \ P,Kj−1) →
→ H i−n+1(P,Kj−n) → · · ·

On the other hand, X \ Y is isomorphic to the affine space and P makes the
projection Y \P → Z a vector bundle with affine line fibres. Homotopy invariance
of K-cohomology yields new exact sequences and isomorphisms:

Hi−1(Y,Kj−1)
∼−→ H i(X,Kj) if i > 1,(2.1)

0 → H0(X,Kj) → KjF → H0(Y,Kj−1) → H1(X,Kj) → 0(2.2)

and

Hi−1(Z,Kj−1)
∼−→ H i−1(Y \ P,Kj−1) if i < n− 2,(2.3)

0 → Hn−2(Y,Kj−1) → Hn−2(Z,Kj−1) → Kj−nF → Hn−1(Y,Kj−1) → 0.(2.4)

The composition KjF → H0(X,Kj) → KjF is the identity, so that the ex-
act sequence (2.2) splits as two isomorphisms. Similarly, for n > 0, Kj−nF →
Hn−1(Y,Kj−1)

∼−→ Hn(X,Kj) is induced by the inclusion of the closed point P in

X and composition with the norm Hn(X,Kj)
N−→ Kj−nF is the identity, so the

exact sequence (2.4) also splits as two isomorphisms. Putting all this together, we
get the isomorphisms of lemma 2.1. The naturality statements are clear from the
construction of these isomorphisms.

Proposition 2.2. Let X be a split quadric over a field F of characteristic 6= 2,
and h ∈ CH 1X the class of a hyperplane section.
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a) CH iX ≃ Z for i 6= dimX/2, and CH iX ≃ Z ⊕ Z if i = dimX/2; hi is a

generator of CH iX for i < dimX/2 and twice a generator for i > dimX/2.

For i = dimX/2, a basis of CH iX is given by the classes l, l′ of two maximal

linear subspaces of X such that hi = l + l′.
b) The natural maps

Kj−iF ⊗ CH iX → H i(X,Kj)

given by the Brown-Gersten-Quillen spectral sequence and cup-product are

isomorphisms.

c) The natural maps

Hj−i(F, µ⊗k
m ) ⊗ CH iX → H i(X,Hj(µ⊗(i+k)

m ))

given by the coniveau spectral sequence and cup-product are isomorphisms for

all m ≥ 1.

Proof. a) follows from proposition 1.1. Let us prove b) (as above, the proof of c) is
identical and omitted). (See [29, prop. 1 and prop. 3] for another approach.) The
quadric X is isomorphic to

Xn :

{
x0x1 + · · · + xnxn+1 = 0 if n is even

x2
0 + x1x2 + · · · + xnxn+1 = 0 if n is odd

where n = dimX . As a consequence of lemma 2.1, the diagram

Hi−1(Xn−2,Kj−1)
∼−−−−→ H i(Xn,Kj)

∪
x ∪

x

Kj−iF ⊗ CH i−1Xn−2
∼−−−−→ Kj−iF ⊗ CH iXn

for 0 < i < n

commutes for i ≤ j. Inductively we get the commutative diagrams

H0(Xn−2i,Kj−i)
∼−−−−→ H i(Xn,Kj)

∪
x ∪

x for 2i ≤ n,

Kj−iF ⊗ CH 0Xn−2i
∼−−−−→ Kj−iF ⊗ CH iXn

H2i−n(X2i−n,Kj+i−n)
∼−−−−→ H i(Xn,Kj)

∪
x ∪

x for 2i ≥ n.

Kj−iF ⊗ CH 2i−nX2i−n
∼−−−−→ Kj−iF ⊗ CH iXn

Still by lemma 2.1, Kj−iF ⊗ CH 0Xn−2i
∪−→ H0(Xn−2i,Kj−i) and

Kj−iF ⊗ CH 2i−nX2i−n
∪−→ H2i−n(X2i−n,Kj+i−n)

are isomorphisms (note that for 2i = n, X0 is a disjoint union of two points so
CH 0X0 ≃ Z ⊕ Z). The claim follows.

Lemma 2.3. Let i > 0 and X be a quadric over F , with dimX 6= 2i or dimX = 2i
and d(X) = 1. Then, for all j ≥ i, the map Kj−iF ⊗ CH iX → H i(X,Kj) has

2-primary torsion kernel and cokernel. If dimX = 2i and d(X) = d 6= 1, the

composition

(Kj−iE ⊗ CH iXE)Γ → H i(XE ,Kj)Γ
N−→ H i(X,Kj)
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has 2-primary torsion kernel and cokernel, where E = F (
√
d), Γ = Gal(E/F )

and N is the transfer in K-cohomology.

Proof. Assume first that dimX 6= 2i or dimX = 2i and d(X) = 1. Let K be
a splitting field for X that is finite and Galois over F , with [K :F ] a power of 2
(some multiquadratic extension will do) and G = Gal(K/F ). In the commutative
diagram

Kj−iF ⊗ CH iX −−−−→ H i(X,Kj)

Res

y Res

y

(Kj−iK ⊗ CH iXK)G −−−−→ H i(XK ,Kj)
G

the bottom horizontal map is an isomorphism by proposition 2.2 and the right ver-
tical map has 2-primary torsion kernel by the usual transfer argument. Therefore,
to prove the claim, it is enough to show that the left vertical map has 2-primary
torsion kernel and cokernel. But this map decomposes as

Kj−iF ⊗ CH iX → Kj−iF ⊗ CH iXK →
→ (Kj−iK)G ⊗ CH iXK = (Kj−iK ⊗ CH iXK)G

since CH iXK ≃ Z or Z⊕ Z with trivial Galois action by propositions 1.1 and 2.2.
The same proposition shows that the left map has 2-primary torsion kernel and
cokernel, while the transfer argument shows the same for the right map. This
implies the same for their composition.

Assume now that dimX = 2i and d(X) = d 6= 1. By the above, the left map in
the composition of lemma 2.3 has 2-primary torsion kernel and cokernel, and the
same holds for the right one still by a transfer argument. This concludes the proof
of lemma 2.3.

Proposition 2.4. Let i > 0 and X be a quadric over F , with dimX 6= 2i− 2 or

dimX = 2i− 2 and d(X) = 1. Then there is an exact sequence:

H1(F, 1) ⊗ CH i−1X → H i−1(X,Hi(i)) → (CH iX)torsion → 0.

If dimX = 2i− 2 and d(X) = d 6= 1, there is an exact sequence:

(H1(E, 1) ⊗ CH i−1XE)Γ → H i−1(X,Hi(i)) → (CH iX)torsion → 0,

where E = F (
√
d), Γ = Gal(E/F ) and the left map is cup-product followed by

transfer.

Proof. Tensoring the maps of lemma 2.3 with Q/Z we get surjections:

K1F ⊗ CH i−1X ⊗ Q/Z −→→ H i−1(X,Ki) ⊗ Q/Z

if dimX 6= 2i− 2 or dimX = 2i− 2 and d(X) = 1,

(K1E ⊗ CH i−1XE ⊗ Q/Z)Γ = (K1E ⊗ CH i−1XE)Γ ⊗ Q/Z

−→→ H i−1(X,Ki) ⊗ Q/Z

if dimX = 2i− 2 and d(X) = d 6= 1.
By Kummer theory, K1F ⊗ Q/Z ≃ H1(F, 1). The claim now follows from the

short exact sequence [5, 3.6]

0 → H i−1(X,Ki) ⊗ Q/Z → H i−1(X,Hi(i)) → (CH iX)torsion → 0.
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Proposition 2.5.

a) ([8, prop. 1.2]) If the quadric X is isotropic over F , then ηi
2 and ηi are

isomorphisms for all i ≥ 0.
b) In general, Ker ηi and Coker ηi have exponent ≤ 2.
c) (cf. [10, lemma 1.3]) Suppose X and X ′ are two quadrics such that X ′ be-

comes isotropic over F (X). Then there is a natural commutative diagram for

all i, k:

Hi
nr(F (X)/F, k)

ηi
X ր

Hi(F, k)
x

ηi
X′ ց

Hi
nr(F (X ′)/F, k)

so that Ker ηi
X′ ⊆ Ker ηi

X and Coker ηi
X′ maps to Coker ηi

X . If X also becomes

isotropic over F (X ′), then Ker ηi
X = Ker ηi

X′ and Coker ηi
X ≃ Coker ηi

X′ .

Proof. a) comes from the fact that the extension F (X)/F is purely transcendental
if X is isotropic (compare [7, th. 4.1.5]). b) follows from a) and a transfer argument,
using a quadratic extension of F which makes X isotropic. We give a proof of c)
which is more elementary than [10, lemma 1.3]. Consider the diagram of fields

F (X)

ր ց

F F (X ×F X ′)

ց ր

F (X ′)

There are natural maps

Hi
nr(F (X)/F, k) → H i

nr(F (X ×F X ′)/F, k)

and

Hi
nr(F (X ′)/F, k) → H i

nr(F (X ×F X ′)/F, k).

If X ′ becomes isotropic over F (X), then F (X ×F X ′)/F (X) is a purely transcen-
dental extension. Therefore, by [8, prop. 1.2] or [7, th. 4.1.5], the first quoted map
is an isomorphism, which proves the first claim. If X is also purely transcenden-
tal over F (X ′), then H i

nr(F (X ′)/F, k) → H i
nr(F (X)/F, k) is clearly the inverse of

Hi
nr(F (X)/F, k) → H i

nr(F (X ′)/F, k), hence the second claim.

Part II. Ker η4

2
for higher-dimensional quadrics

3. Generalities on Ker ηi

2

We fix a number i and assume that the invariant er
F is is well-defined for r ≤ i−1

and an isomorphism for r ≤ i− 2 (for all fields F ).

Lemma 3.1. A symbol (a1, . . . , ai) 6= 0 lies in Ker ηi
2 if and only if q is similar to

a subform of 〈〈a1, . . . , ai〉〉.
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Proof. Let ϕ = 〈〈a1, . . . , ai〉〉. Since (a1, . . . , ai)F (X) = 0, [16, remark p. 555] implies
ϕF (X) ∼ 0, and the claim follows by the Cassels-Pfister theorem [26, th. IX.1.3].

As observed in the introduction, for dim q ≤ 2i−2 the group Ker ηi
2 does not

consist of symbols in general. The following proposition and corollary indicate that
this bound on dim q might be sharp. Recall that two n-fold Pfister forms ϕ, ψ are
linked if there exist a1, . . . , an−1, an, bn ∈ F ∗ such that ϕ ≃ 〈〈a1, . . . , an−1, an〉〉
and ψ ≃ 〈〈a1, . . . , an−1, bn〉〉. We define the notion of linked symbols (in Galois
cohomology) similarly.

Proposition 3.2. Let dim q ≥ 2i−2 + 1, let X be the projective quadric with equa-

tion q = 0 and let ϕ, ψ ∈ Ker
(
W (F ) → W (F (X))

)
be two i-fold Pfister forms.

Then ϕ and ψ are linked, hence ϕ ⊥ −ψ is Witt-equivalent to a third i-fold Pfister

form (up to similarity).

Proof. (cf. Fitzgerald [15, proof of th. 2.1]) The forms ϕ and ψ are multiplicative
and split over F (X). Therefore q is isomorphic to subforms of ϕ and of ψ (assuming
q represents 1). Hence the split form q ⊥ −q is a subform of ϕ ⊥ −ψ and the Witt
index n = i(ϕ ⊥ −ψ) is ≥ 2i−2 + 1. By [13, th. 4.5], n is a power of 2, hence
n ≥ 2i−1. Therefore ϕ and ψ are linked, again by loc. cit..

Lemma 3.3. For dim q ≥ 2i−2 + 1 the following are equivalent:

a) Ker ηi
2 consists of symbols;

b) Ker ηi
2 is additively generated by symbols.

Proof. Let α, β ∈ Ker ηi
2 be two symbols and α̃, β̃ Pfister forms such that ei(α̃) =

α, ei(β̃) = β. By [16, remark p. 555], α̃, β̃ ∈ Ker(W (F ) → W (F (X)). By

proposition 3.2, α̃ and β̃ are linked, so α and β are linked and α+β is a symbol.

Proposition 3.4. Assume that for dim q = 2i−2 + 1 the group Ker ηi
2 consists of

symbols. Then

(1) Ker ηi
2 consists of symbols for dim q > 2i−2.

(2)
∣∣Ker ηi

2

∣∣ ≤ 2 for dim q > 2i−1.

(3) Ker ηi
2 = 0 for dim q > 2i.

Remark. The hypothesis of proposition 3.4 is satisfied for i ≤ 3 by [1]. For i = 4
it will be proved in the next three sections (theorem 6.3).

Proof. (1) Let dim q′ ≥ 2i−2 +1 and let q be a subform of q′ of dimension 2i−2 +1.
The claim follows now from proposition 2.5 c) applied to the associated quadrics
X ′ resp. X .

(2) + (3) If dim q > 2i−1, for any nonzero symbol (a1, . . . , ai) ∈ Ker ηi
2, q

is a neighbour of the Pfister form 〈〈a1, . . . , ai〉〉 by lemma 3.1. But q can be a
neighbour of at most one Pfister form, up to isomorphism, cf. [24, 7.4]. Moreover
if 〈〈a1, . . . , ai〉〉 ≃ 〈〈b1, . . . , bi〉〉, then (a1, . . . , ai) = (b1, . . . , bi) [1, Satz 1.6]. Hence∣∣Ker ηi

2

∣∣ ≤ 2, and if it is nontrivial then dim q ≤ 2i.

4. 6-dimensional spinors

For generalities on Clifford algebras and the special Clifford group see [45].
Let q : V → F be 6-dimensional, let C0(q) be the even Clifford algebra of q, and

let Z(q) be the center of C0(q). Then Z(q) is a quadratic extension of F and C0(q)



16 BRUNO KAHN, MARKUS ROST, AND R. SUJATHA

is an Azumaya algebra of degree 4 over Z(q). The standard involution x 7→ xt is
an involution of second kind. Denote by

Nrd: C0(q) → Z(q)

the reduced norm.
Let

SΓ(q) = { x ∈ C0(q)
∗ | xV x−1 = V }

be the special Clifford group and let

GΓ(q) = { x ∈ C0(q)
∗ | xxt ∈ F ∗ }.

Then SΓ(q) ⊂ GΓ(q) and there is an exact sequence

1 → Spin(q) → SΓ(q)
sn−→ F ∗

where sn(x) = xxt is the spinor norm.
Suppose d±(q) = 1. Then Z(q) = F × F and C0(q) = A × A′ where A and A′

are algebras of degree 4 over F . The standard involution identifies A′ with Aop, so
that there is an isomorphism

C0(q) = A×Aop(4.1)

under which the standard involution reads as (a, b)t = (b, a). The reduced norm
C0(q) → Z(q) is then componentwise the reduced norm on A. The group GΓ(q)
becomes the group of pairs

{ (a, a−1f) ∈ A×Aop | a ∈ A∗, f ∈ F ∗ }.
Let π : C0(q) → A be the projection onto the first factor. Then

GΓ(q) = A∗ × F ∗

via x 7→ (π(x), xxt).
We call an element x ∈ SΓ(q) plane if x ∈ SΓ(q̃) where q̃ is a regular 2-

dimensional subform of q. If q is anisotropic, then x is plane if and only if x is
the product vw of two vectors v, w ∈ V \ 0.

Lemma 4.1. Nrd(x) = (xxt)2 for x ∈ SΓ(q).

Proof. The action of SΓ(q) on V induces an exact sequence

1 → F ∗ → SΓ(q) → SO(q) → 1.(4.2)

Since O(q) is generated by reflections, it follows that SΓ(q) is generated by prod-
ucts x = vw where v, w ∈ V are anisotropic vectors. For generic v, w, the subspace
of V generated by v, w is regular of dimension 2. Therefore it suffices to check the
claim for plane elements.

So suppose x ∈ C0(q̃) for a regular 2-dimensional subform q̃. Write L = C0(q̃).
The standard involution leaves L invariant and restricts to the canonical involution
of L/F . Hence x 7→ xxt restricts on L to the norm of L/F . The claim follows
now from the fact that C0(q) is of degree 4 and L ⊗ Z(q) ⊂ C0(q) is of degree 2
over Z(q).

Proposition 4.2.

a) SΓ(q) = { x ∈ C0(q)
∗ | xxt ∈ F ∗, Nrd(x) = (xxt)2 },

b) Spin(q) = { x ∈ C0(q)
∗ | xxt = 1, Nrd(x) = 1 }.
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Proof. The inclusions “⊂” are clear from lemma 4.1.
We may assume that F is algebraically closed. In this case it easy to see that

SΓ(q) = Spin(q) · F ∗ and similarly for the righthand sides. Hence b) ⇒ a).
The righthand side of b) becomes under (4.1) the group of pairs

{ (a, a−1) ∈ A×Aop | a ∈ A∗, Nrd(a) = 1 } = SL(1, A).

This way b) reads as the classical isomorphism Spin(6) = SL(4) [55, 12, 25].

Corollary 4.3. If d±(q) = 1 and A is as above, there is an exact sequence

1 → SΓ(q) → A∗ × F ∗ ω−→ F ∗

where ω(a, f) = Nrd(a)/f 2.

Corollary 4.4. Let A be a biquaternion skewfield and let a ∈ A∗ and f ∈ F ∗ with

Nrd(a) = f2.

Then there exist a1, a2, a3 ∈ A∗ with the following properties:

• a = a1a2a3,

• Every ai lies in a quadratic subfield Li ⊂ A,

• NL1/F (a1)NL2/F (a2)NL3/F (a3) = f .

Proof. If A = (a, b) ⊗ (c, d), let q = 〈−a,−b, ab, c, d,−cd〉. We are then in the
situation of corollary 4.3. The form q is anisotropic. Since every element in SO(q)
is a product of 6 reflections, it follows that every element in SΓ(q) is a product of 3
plane elements xi. Their images ai = π(xi) in A∗ do the job.

We will have to make use of the following variant of the Cartan-Dieudonné
theorem for anisotropic forms.

Lemma 4.5. Let q : V → F be anisotropic of dimension n and let V1 ⊂ V2 ⊂
· · · ⊂ Vn = V be a sequence of subspaces with dimVi = i. Then every α ∈ O(q) is

a product

α = τik
· · · τi1

where 1 ≤ i1 < · · · < ik ≤ n and τj is a reflection in O(q|Vj).

Proof. By induction on n. Let v 6= 0 be orthogonal to Vn−1. If α /∈ O(q|Vn−1),
let τ be the reflection at the hyperplane orthogonal to α(v) − v. Then τα ∈
O(q|Vn−1).

5. Ker η4

2
and H2(X, K3)

The following theorem reduces the computation of Ker η4
2 for dim q ≥ 5 to a K-

cohomology computation. The statement is essentially a reformulation of arguments
in [27], where the result has been applied to Albert forms. The principal idea has
already been used in [16] for 5-dimensional Pfister neighbours.

Theorem 5.1. Let X be a smooth quadric of dimension ≥ 3. Then there exist

isomorphisms

ρ3 : Ker(H2(X,K2) → H2(X,K2))
∼−→ Ker(H3F → H3F (X)),

ρ4 : Ker(H2(X,K3) → H2(X,K3))
∼−→ Ker(H4F → H4F (X)).

These are functorial with respect to base change F → F ′ and with respect to transfer

for finite extensions F ′/F .
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Moreover they commute with multiplication with K1 in the following sense:

ρ4({a} · x) = (a) · ρ3(x)

for a ∈ F ∗ and x ∈ Ker(H2(X,K2) → H2(X,K2)).

Proof. The (inverse of the) map ρ4 has been described in [27, p. 71] in terms of
a diagram chase. It is also proven that the map is an isomorphism (it should be
noted that condition (7) in [27, p. 71] is superfluous). From this definition the
compatibility with respect to base change and transfer is easy to see.

One proceeds in a similar way for ρ3 (see also [16, diagrams (3.5), (4.2)]), just
by repeating the diagram chase in one degree less. The product formula is then
obvious.

Remark. It can be shown that the maps ρi are functorial with respect to linear
morphisms j : X ⊂ X ′ of quadrics. Namely then Ker ηi

X′ ⊂ Ker ηi
X (proposi-

tion 2.5 c)) and the maps ρi commute with these inclusions and with the pull back
maps j∗ on H2( ,Ki−1).

Our aim is to compute the map ρ4 for dimX = 3.
Let q be a form defining X and let A = C0(q) be its even Clifford algebra (a

biquaternion algebra). We denote by h ∈ CH 1(X) the class of a hyperplane section.
If A is split, then X is split. In this case CH 2(X) = Z, generated by the class l of
a line and one has h2 = 2l.

Theorem 5.2. For dimX = 3 there exist surjections

θ3 : K0A⊕K0F →→ H2(X,K2),

θ4 : K1A⊕K1F →→ H2(X,K3),

functorial with respect to base change and transfer, compatible with multiplication

with K1, and such that θ3 has the following properties:

a) θ3(0, 1) = −h2.

b) If A is split, let y ∈ K0A be the element with Nrd(y) = 1. Then θ3(y, 0) = l.

Proof. All the essential arguments are in [27, p. 74–76]. In fact, in the 5-dimensional
case the situation is somewhat simpler. By [27, prop. 2],

H2(X,K3) = K1(X)(2)/K1(X)(3)

where the superscripts refer to the filtration coming from the Brown-Gersten-
Quillen (BGQ) spectral sequence [41]. In our case one findsK1(X)(2) = K1A⊕K1F .
(We don’t have to care about a computation of K1(X)(3)).

Let

ResF/F : H2(X,Ki) → H2(X,Ki)

be the restriction to a separable closure. Theorem 5.2 a), b) shows

ResF/F ◦ θ3(y,m) = (Nrd(y) − 2m) · l ∈ CH 2(X) = Z · l.
The compatibility of θ3, θ4 with multiplication with K1 yields

ResF/F ◦ θ4(z, {f}) = (Nrd(z) − 2{f}) · l ∈ H2(X,K3) = K1F · l.
This together with theorem 5.1 and theorem 5.2 yields
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Corollary 5.3. There are surjections

ω3 : Ker(K0A⊕K0F
(Nrd,−2)−−−−−−→ K0F ) →→ Ker η3

2 ,

ω4 : Ker(K1A⊕K1F
(Nrd,−2)−−−−−−→ K1F ) →→ Ker η4

2 ,

compatible with base change, transfer and multiplication with K1.

6. Computations for dim X = 3

Let q : W → F be 5-dimensional and A = C0(q). We assume that the determi-
nant of q is −1. Put

q̂ : F ⊕W → F

q̂(t, w) = t2 + q(w).

Then C0(q̂) = A×Aop as in (4.1).
We first compute ω3, ω4 in the case when q̂ is isotropic. In this case q repre-

sents −1 and therefore

q ≃ 〈−1〉 ⊥ c〈〈a, b〉〉
for some a, b, c ∈ F ∗. Moreover A = M2(F )⊗D where D is the quaternion algebra
associated to a, b.

Proposition 6.1. Let y ∈ K0A = K0D be the element represented by the D-

module D (i.e., Nrd(y) = 2) and let ε = (y, 1).

(1) The sequences

K0F
· ε−→ K0A⊕K0F

(Nrd,−2)−−−−−−→ K0F,

K1F
· ε−→ K1A⊕K1F

(Nrd,−2)−−−−−−→ K1F

are exact.

(2) One has

ω3(ε) = (a, b, c),

ω4({e} · ε) = (e, a, b, c), e ∈ F ∗.

Proof. (1) follows from the injectivity of the reduced norm KiD → KiF for i = 0, 1.
Corollary 5.3 shows that ω3(ε) generates Ker η3

2 . Since (a, b, c) ∈ Ker η3
2 , we must

have the first formula in (2). (If (a, b, c) = 0, then q is isotropic and Ker η3
2 = 0.)

The second formula follows from the compatibility with multiplication.

We now assume that q̂ is anisotropic. Via corollary 4.3, the map ω4 of corol-
lary 5.3 reads as a map

ω̃4 : SΓ(q̂) →→ Ker η4
2 .

We compute this map for plane elements x ∈ SΓ(q̂).
Suppose x ∈ L = C0(q̃) for a 2-dimensional subform q̃ of q̂. The map

L∗ = C0(q̃)
∗ = SΓ(q̃) ⊂ SΓ(q̂) → A∗ × F ∗

coincides with the map

K1L→ K1A⊕K1F

given by the inclusion L ⊂ A and the norm for L/F .
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The form q̂L is isotropic. Denote by

εL ∈ Ker(K0(A⊗ L) ⊕K0L
(Nrd,−2)−−−−−−→ K0L)

the generator considered above.
By compatibility with transfer for L/F one finds

ω̃4(x) = CorL/F ((x) · ω3(εL))

Note that if q̃ is a subform of q, then qL is isotropic and therefore ω3(εL) = 0.

We compute ω4(u) for arbitrary u ∈ SΓ(q̂). If u ∈ SΓ(q), then u is a product of
plane elements in SΓ(q) and ω̃4(u) = 0 by the last remark. In general we have

Lemma 6.2. For any u ∈ SΓ(q), there exist a one-dimensional subspace H of W
and a plane element x ∈ SΓ(q̂|(F ⊕H)) such that u ∈ x · SΓ(q).

Proof. There exist by lemma 4.5 and the exact sequence (4.2) a vector v1 ∈ F ⊕W
and vectors v2, . . . , v6 ∈ W such that u = v1 · · · v6.

Write v1 = s(1, 0) + th with s, t ∈ F ∗, 0 6= h ∈ W , and let H be the subspace
generated by h. Then x = v1h has the desired properties.

Since ω4| SΓ(q) = 0, we are reduced to computing ω̃4 on plane elements x ∈
SΓ(q̂|F ⊕ H) as in lemma 6.2. Let h be a basis vector of H and let a = −q(h).
Then L = C0(q̃) = F (

√
a) and q is of the form

q ≃ 〈−a, a1, a2, a3, aa1a2a3〉.
Over L this gives

qL ≃ 〈−1, a1, a2, a3, a1a2a3〉 ≃ 〈−1〉 ⊥ a1〈〈−a1a2,−a1a3〉〉.
Hence

ω3(εL) = ResL/F ((a1,−a1a2,−a1a3))

comes from the ground field (although εL does not). So

ω̃4(x) = CorL/F ((x) · ω3(εL)) = (NL/F (x), a1,−a1a2,−a1a3)

is a symbol.
We have proved:

Theorem 6.3. If dimX = 3, then Ker η4
2 consists of symbols.

Remark. The homomorphism ω̃4 is obviously trivial on the commutator sub-
group [SΓ(q̂), SΓ(q̂)]. Moreover it is easy to see that the map

SΓ(q̂)/ SΓ(q) → O(q̂)/O(q)

is bijective. Hence the map ω̃4 actually induces a surjective homomorphism

Ω: O(q̂)/[O(q̂),O(q̂)]O(q) →→ ker(H4F → H4F (X))

Merkurjev and Tignol have described this map in terms of symplectic involu-
tions [28, 52].

The kernel of the spinor norm

O(q̂)/[O(q̂),O(q̂)] → F ∗/(F ∗)2,

can be identified with SK 1A. The restriction of Ω to SK 1A depends only on q̂ (and
not on the choice of 5-dimensional subform q). It fits into an exact sequence [27]

0 → SK 1A
Ω−→ H4F → H4F (X̂)
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where X̂ is the quadric for q̂.
Further details will appear in [25].

Part III. Coker ηi

2
for higher-dimensional quadrics

7. A relationship between Ker ηi

2
and Coker ηi

2

In this section, we prove a general result which we then apply to quadrics. To
start with, let F have arbitrary characteristic exponent p andX be a smooth variety
over F . We denote by δ = δ(X/F ) the prime-to-p part of the gcd of degrees of
closed points of X . Let n be some integer divisible by δ and prime to p, i ≥ 1 and
let

ηi
n : Hi(F, µ⊗(i−1)

n ) → H0(X,Hi(µ⊗(i−1)
n ))

ηi : Hi(F, i− 1) → H0(X,Hi(i− 1))

be the natural maps.

Proposition 7.1. Let m be another integer divisible by δ and prime to p. For

i ≤ 3, there is an exact sequence

0 → Ker ηi
m ∩ Im

(
Hi(F, µ⊗(i−1)

mn )
n−→ H i(F, µ⊗(i−1)

m )
)
→ Coker ηi

n → Coker ηi

If m, n are powers of 2, this result also holds for i = 4.

Proof. We shall freely use the following fact, which is a consequence of Kummer
theory for i = 2 (resp. the Merkurjev-Suslin theorem for i = 3, the Merkurjev-

Suslin/Rost theorem for i = 4): the map H i(F, µ
⊗(i−1)
n )

ι∗−→ H i(F, i−1) is injective,

where ι′ : µ
⊗(i−1)
n → Q/Z(i− 1) is the natural inclusion. We need:

Lemma 7.2. Under the assumptions of proposition 7.1,

a) Ker ηi
n and Ker ηi

mn are killed by δ.
b) Ker ηi

n → Ker ηi
mn is an isomorphism.

c) Ker(Coker ηi
n → Coker ηi

mn) = Ker(Coker ηi
n → Coker ηi).

Proof. a) If X(F ) 6= ∅, this follows from a classical specialization argument; in
general, it follows from this case and a transfer argument.

b) follows from a).
c) We have a commutative diagram with exact rows:

0→ H i(F, µ
⊗(i−1)
n ) → H i(F, i− 1)

n−−−−→ H i(F, i− 1)

ηi
n

y ηi

y ηi

y

0→H0(X,Hi(µ
⊗(i−1)
n ))→H0(X,Hi(i− 1))

n−−−−→ H0(X,Hi(i− 1))

where the exactness of the bottom row follows from a diagram chase and the injec-

tivity of H i−1(F (x), µ
⊗(i−2)
n ) → H i−1(F (x), i−2) for all codimension 1 points ofX .

Let x ∈ Ker(Coker ηi
n → Coker ηi), x̃ a lift of x in H0(X,Hi(µ

⊗(i−1)
n )) and pick

α ∈ H i(F, i− 1) such that ηiα = image of x̃. Since nα ∈ Ker ηi, we have δnα = 0

by a), hence mnα = 0. If β is the corresponding element of H i(F, µ
⊗(i−1)
mn ), it is

clear that ηi
mnβ is the image of x̃ in H0(X,Hi(µ

⊗(i−1)
mn )).
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Let ι : µ
⊗(i−1)
n → µ

⊗(i−1)
mn (resp. π : µ

⊗(i−1)
mn → µ

⊗(i−1)
m ) denote the natural inclu-

sion (resp. projection). Consider the commutative diagram with exact rows:

0 −→ H i(F, µ
⊗(i−1)
n )

ι∗−→ H i(F, µ
⊗(i−1)
mn )

π∗−→ H i(F, µ
⊗(i−1)
m )0 −→ 0

ηi
n

y ηi
mn

y ηi
m

y

0 −→ H0(X,Hi(µ
⊗(i−1)
n ))

ι∗−→ H0(X,Hi(µ
⊗(i−1)
mn ))

π∗−→ H0(X,Hi(µ
⊗(i−1)
m ))

where H i(F, µ
⊗(i−1)
m )0 = Imπ∗. From lemma 7.2 b) and the snake lemma applied

to this diagram, we derive an exact sequence

0 → Ker ηi
m ∩ Im

(
Hi(F, µ⊗(i−1)

mn )
n−→ H i(F, µ⊗(i−1)

m )
)
→ Coker ηi

n → Coker ηi
mn.

Proposition 7.1 now follows from lemma 7.2 c).

Proposition 7.3. Let charF 6= 2, i ≥ 0 and α ∈ H iF be a decomposable element

(i.e., a sum of symbols). Then α ∈ Im(H i(F, µ
⊗(i−1)
4 )

p−→ H iF ) if and only if

(−1) ·α = 0 ∈ H i+1F . Here p is the map induced by the surjective homomorphism

of Galois modules µ
⊗(i−1)
4 → µ

⊗(i−1)
2 ≃ Z/2.

Proof. Let ∂ (resp. ∂′) be the boundary map H iF → H i+1F corresponding to the

short exact sequence 0 → Z/2 → µ⊗i
4 → Z/2 → 0 (resp. 0 → Z/2 → µ

⊗(i−1)
4 →

Z/2 → 0). It follows from [18, lemma 1] that ∂α − ∂ ′α = (−1) · α. If α is
decomposable, then it obviously comes from H i(F, µ⊗i

4 ) (reduce to a symbol (a1) ·
. . . · (ai), where ak ∈ F ∗, and observe that each (ak) comes from the Kummer class
of ak in H1(F, µ4)), hence ∂α = 0 and the lemma follows.

Proposition 7.4. Suppose charF 6= 2 and δ = 2 in proposition 7.1 (e.g., X is a

quadric). For i ≤ 4, the group

Ker ηi
2 ∩ Im

(
Hi(F, µ

⊗(i−1)
4 )

2−→ H iF
)

coincides with the group (Ker ηi
2)0 of the introduction. We have an exact sequence

0 → (Ker ηi
2)0 → Coker ηi

2 → Coker ηi.

Proof. Let q be a quadratic form defining X and q′ = 〈a, b〉 be any binary subform
of q. Then Ker ηi

2 ⊆ Ker(H iF → H iF (
√
−ab)) = (−ab) ·H i−1F . Since H i−1F is

generated by symbols [31, 32], we see that every element of Ker ηi
2 is decomposable.

Finally, the last claim follows from this and proposition 7.1.

Remark. The arguments in this section show in fact that proposition 7.4 follows
for a given i from the Milnor conjecture in degree i (see the remark at the end of
introduction).

8. Constructing some maps

In this section, we show how the Chow ring acts on étale and H-cohomology
with divisible coefficients. This action will be repeatedly used in the sequel.

Let X be a smooth variety over F , r ≥ 1, i, j ≥ 0 and k, k′ ∈ Z. We first recall
that Galois cohomology of F acts on the Hochschild-Serre and coniveau spectral
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sequences

HS
p,q
2 (Z/2r(k)) := Hp(F,Hq(X,Z/2r(k))) ⇒ Hp+q(Xét,Z/2

r(k))

BO
p,q
1 (Z/2r(k)) :=

∐

x∈X(p)

Hq−p(F (x),Z/2r(k − p)) ⇒ Hp+q(Xét,Z/2
r(k))

in the following sense. There are pairings

Hn(F,Z/2r(j)) ⊗ HS
p,q
2 (Z/2r(k)) → HS

p+n,q
2 (Z/2r(j + k))

Hn(F,Z/2r(j)) ⊗ BO
p,q
1 (Z/2r(k)) → BO

p,q+n
1 (Z/2r(j + k))

coming from the cup-product in Galois cohomology (and the restriction maps
H∗(F ) → H∗(F (x)) for the coniveau spectral sequence). These pairings commute
with differentials and induce compatible pairings

Hn(F,Z/2r(j)) ⊗ HS p,q
s (Z/2r(k)) → HSp+n,q

s (Z/2r(j + k))

Hn(F,Z/2r(j)) ⊗ BOp,q
s (Z/2r(k)) → BOp,q+n

s (Z/2r(j + k))
for s ≤ ∞

which are also compatible at the E∞-level with the pairings on the abutments

Hn(F,Z/2r(j)) ⊗Hp+q(Xét,Z/2
r(k)) → Hp+q+n(Xét,Z/2

r(j + k))

(obtained from the maps H i(F,Z/2r(k)) → H i(X,Z/2r(k)) and cup-product in
the étale cohomology of X). This is classical for the Hochschild-Serre spectral se-
quence; for the coniveau spectral sequence, it is immediate from its exact couple
construction out of étale cohomology with supports (this supersedes the sophisti-
cated argument of [17, end of introduction]).

If E/F is a finite extension, there are also compatible transfer maps.
We now play with these pairings a little bit. Using the cycle map

CH jX/2r → H2j
ét (X,Z/2r(j))

we get composite pairings

Hi(F,Z/2r(k)) ⊗ CH jX → H i(F,Z/2r(k)) ⊗H2j
ét (X,Z/2r(j))

∪−→ H i+2j
ét (X,Z/2r(k + j))

hence, at the inductive limit:

Hi(F, k) ⊗ CH jX → H i+2j(X, k + j).(8.1)

Recall now that BO
j,j
2 (Z/2r(j)) ≃ CH jX/2r. We get therefore a pairing (similar

to those in proposition 2.2):

Hi(F,Z/2r(k)) ⊗ CH jX → Hj
(
X,Hi+j(Z/2r(k + j))

)
.

Passing to the inductive limit, we get pairings:

Hi(F, k) ⊗ CH jX → Hj(X,Hi+j(k + j)).(8.2)

It is not difficult to check that the maps of proposition 2.4 are special cases
of (8.2).

We have:

Lemma 8.1. Let (H∗(X, k+j)(m))m≥0 be the decreasing filtration on H∗(X, k+j)
defined by the coniveau spectral sequence. Then

a) The image of the map (8.1) is contained in H i+2j(X, k + j)(j).
b) The image of the map (8.2) consists of universal cycles.
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c) The diagram

Hi(F, k) ⊗ CH jX −−−−→ Hj(X,Hi+j(k + j))d=0
y

y

Hi+2j(X, k + j)(j) −−−−→ BOj,i+j
∞

commutes, where the subscript d = 0 denotes universal cycles and BO j,i+j
∞

denotes the E∞-term of the coniveau spectral sequence.

d) For i = 0, 1, the triangle

Hi(F, k) ⊗ CH jX −−−−→ Hj(X,Hi+j(k + j))
y ւ

Hi+2j(X, k + j)

commutes, where the vertical map is (8.1), the horizontal map is (8.2) and the

diagonal map is the edge homomorphism from the coniveau spectral sequence.

Recall that, in a spectral sequence (Er), an element x ∈ Ep,q
r is called a universal

cycle if dp,q
s x = 0 for all s ≥ r (this definition makes sense inductively).

Proof. It is enough to prove this for the maps defined at the finite coefficients level.
By the multiplicativity of the coniveau spectral sequence, we are reduced to the
case i = k = 0. Then a), b), and c) follow from the fact that BO

p,q
1 = 0 for p > q.

Finally, d) follows from c) and the definition of the edge homomorphism.

Let A be a discrete topological GF -module and M an abelian group. There is a
pairing

Hi(F,A) ⊗M → H i(F,A ⊗M)

for all i ≥ 0, coming from the natural map M → HomGF (A,A⊗M).

Lemma 8.2.

a) If M is torsion-free, the above pairing is an isomorphism.

b) If A is divisible, it is surjective.

c) If A and H i(F,A) are divisible, it is bijective.

Proof. a) Reduce to the case where M is finitely generated, hence free.
b) Reduce to the case whereM is torsion-free by using the commutative diagram:

Hi(F,A) ⊗M −→→ H i(F,A) ⊗ (M/ torsion)
y ≀

y

Hi(F,A ⊗M)
∼−−−−→ H i(F,A ⊗ (M/ torsion)).

c) Use the same diagram, noting that now the top horizontal map is bijective as
well.

Define a map

α = αi,j,k : Hi(F, k) ⊗ CH jX −→ H i(F,H2j(X, j + k))(8.3)
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as the composite

Hi(F, k) ⊗ CH jX → H i(F,CH jX ⊗ Q/Z(k))

→ H i(F,CH jX ⊗ Q/Z(k))
Hi(F,cl′j

X
(k))

−−−−−−−−−→ H i(F,H2j
ét (X, j + k)).

We have:

Lemma 8.3. Let (H∗(X, k+j)[m])m≥0 be the decreasing filtration on H∗(X, k+j)
defined by the Hochschild-Serre spectral sequence. Then

a) The image of the map (8.1) is contained in H i+2j(X, k + j)[i].
b) The image of αi,j,k consists of universal cycles.

c) The diagram

Hi(F, k) ⊗ CH jX
αi,j,k

−−−−→ H i(F,H2j(X, k + j))d=0
y

y

Hi+2j(X, k + j)[i] −−−−→ HS i,2j
∞

commutes, where the subscript d = 0 denotes universal cycles and HS i,2j
∞

denotes the E∞-term of the Hochschild-Serre spectral sequence.

d) Suppose that H2j+1(X, k + j) = 0. Then, for i = 1, the triangle

H1(F, k) ⊗ CH jX
α1,j,k

−−−−→ H1(F,H2j(X, k + j))
y ր

H1+2j(X, k + j)

commutes, where the vertical map is (8.1) and the diagonal map is the edge

homomorphism from the Hochschild-Serre spectral sequence.

Proof. We argue as above: it is enough to prove this for the maps defined at the
finite coefficients level (we could have defined α as a limit, as before). By the
multiplicativity of the Hochschild-Serre spectral sequence, we are reduced to the
case i = k = 0. Then a) is trivial, and b) and c) hold because α0,j,0 factors through
the (F -rational) cycle map. Finally, d) follows as in the proof of lemma 8.1 from c)
and the definition of the edge homomorphism.

The map α is the most important of the three maps introduced above in (8.1),
(8.2), and (8.3). We are interested in its kernel and cokernel.

Lemma 8.4. If the geometric divisible cycle map is bijective, then

Cokerαi,j,k ≃ Coker
(
Hi(F,CH jX ⊗ Q/Z(k)) → H i(F,CH jX ⊗ Q/Z(k))

)
.

If moreover GF acts trivially on CH jX, this cokernel is a quotient of

Coker(H i(F, k) ⊗ CH jX → H i(F, k) ⊗ CH jX).

Proof. The first claim follows from the definition of αi,j,k and lemma 8.2. The
second one follows from the commutative diagram

Hi(F, k) ⊗ CH jX−→→ H i(F,CH jX ⊗ Q/Z(k))
y

y

Hi(F, k) ⊗ CH jX−→→H i(F,CH jX ⊗ Q/Z(k)).
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Lemma 8.5. Let X be a quadric and k = i ≤ 3. Then

a) If dimX 6= 2j or dimX = 2j and d(X) = 1, αi,j,i is surjective.

b) Suppose dimX = 2j and d(X) = d 6= 1. Let E = F (
√
d). Then the composi-

tion

Hi(E, i) ⊗ CH jXE
αi,j,i

E−−−→ H i(E,H2j(X, i+ j))
CorE/F−−−−−→ H i(F,H2j(X, i+ j))

is surjective. For i = 0, α0,j,0 is itself surjective.

c) If dimX > 2j, αi,j,i is bijective.

Proof. In case a), the geometric cycle map is bijective by proposition 1.5 and GF

acts trivially on CH jX by proposition 1.1, hence, by lemma 8.4, it is enough to see
that the map

Hi(F, i) ⊗ CH jX → H i(F, i) ⊗ CH jX

is surjective. But, since i ≤ 3, the group H i(F, i) is divisible by bijectivity of the
2-primary Galois symbol in this case. Surjectivity now follows from corollary 1.2,
applied with D = H i(F, i).

In case b), αE is surjective by a). It remains to prove that

Hi(E,H2j(X, i+ j))
CorE/F−−−−−→ H i(F,H2j(X, i+ j))

is surjective. By the geometric cycle map, the coefficients can be identified with
CH jX ⊗ Q/Z(i) ≃ IndGF

GE
Q/Z(i) by corollary 1.3. Using Shapiro’s lemma, the

corestriction map can therefore be identified with

Hi(E, i) ⊕H i(E, i)
Σ−→ H i(E, i)

which is obviously surjective. Finally, the last claim is corollary 1.3.
In case c), the three maps out of which α is defined are bijective: the first

one is by lemma 8.2 c), the second one by proposition 1.1 b) and the last one by
proposition 1.5.

In section 11 we shall need the following lemma and its corollary for (j, k) =
(2, 1).

Lemma 8.6. Let X be a quadric over F . Then:

a) If F contains all 2-primary roots of unity, α0,j,k is surjective for any j, k.
The same holds if k is even and F (

√
−1) contains all 2-primary roots of

unity.

b) In general, Cokerα0,j,k is

(i) 0 if dimX > 2j;
(ii) cyclic of order ≤ 2 if dimX < 2j;
(iii) cyclic of order ≤ 2t if dimX = 2j and d(X) = 1, where t is the integer

of proposition 1.1 d).

Proof. By lemma 8.4,

Cokerα0,j,k ≃ Coker
(
H0(F,CH jX ⊗ Q/Z(k)) → H0(F,CH jX ⊗ Q/Z(k))

)
.

Assume first that we are not in the case dimX = 2j and d = d(X) 6= 1. Apply-
ing proposition 1.1 and corollary 1.2 with D = Q/Z(k), we see that the map on
coefficients

CH jX ⊗ Q/Z(k) → CH jX ⊗ Q/Z(k)
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can be identified with multiplication by
∣∣Coker(CH jX → CH jX)

∣∣ on Q/Z(k), ex-
cept if dimX = 2j and d(X) = 1, where it is diag(1, 2t) on Q/Z(k) ⊕ Q/Z(k)
with t as in prop. 1.1 d). If F contains all 2-primary roots of unity, this shows that
α0,j,k is surjective, and similarly if k is even and F (

√
−1) contains all 2-primary

roots of unity. For arbitrary F , if dimX > 2j then CH jX → CH jX is surjective
(prop. 1.1) hence α0,j,k is an isomorphism. If dimX < 2j (resp. dimX = 2j and

d(X) = 1), the map CH jX → CH jX has cokernel cyclic of order ≤ 2 (resp. ≤ 2t),
so that Cokerα0,j,k is cyclic of order ≤ 2 (resp. ≤ 2t).

Assume now that dimX = 2j and d = d(X) 6= 1; let E = F (
√
d). By corol-

lary 1.3, α0,j,k can be identified with the map H0(F, k) → H0(E, k), so is surjective
when F and E have the same number of 2-primary roots of unity, in particular if
F contains all 2-primary roots of unity; similarly if k is even and F (

√
−1) contains

all 2-primary roots of unity.

Corollary 8.7. Let X be a quadric over F . Consider the composition

γ : Hj(X,Hj(j + k)) → H2j(X, j + k) → H0(F,H2j(X, j + k))

where the first (resp. second) map is an edge homomorphism of the coniveau (resp.
Hochschild-Serre) spectral sequence. Then:

a) If F contains all 2-primary roots of unity or if k is even and F (
√
−1) contains

all 2-primary roots of unity, γ is surjective.

b) In general, Cokerγ is:

(i) 0 if dimX > 2j;
(ii) cyclic of order ≤ 2 if dimX < 2j;
(iii) cyclic of order ≤ 2t if dimX = 2j and d(X) = 1, where t is the integer

of proposition 1.1 d).
(iv) cyclic of order ≤ 2tE if dimX = 2j and d(X) = d 6= 1, where tE is the

integer of proposition 1.1 d) for XE, with E = F (
√
d).

Proof. By lemmas 8.1 and 8.3, the composition

H0(F, k) ⊗ CH jX → Hj(X,Hj(j + k))
γ−→ H0(F,H2j(X, j + k))

coincides with α0,j,k. Therefore corollary 8.7 follows directly from lemma 8.6, except
when dimX = 2j, d(X) = d 6= 1 and F does not contain enough roots of unity.
But in this case, we have a commutative diagram:

H0(E, k) ⊗ CH jXE −−−−→ Hj(XE ,Hj(j + k))
γE−−−−→ H0(E,H2j(X, j + k))

CorE/F

y CorE/F

y

H0(F, k) ⊗ CH jX −−−−→ Hj(X,Hj(j + k))
γ−−−−→ H0(F,H2j(X, j + k))

where the left Cor is best described from the E1-term of the coniveau spectral
sequence. By lemma 8.6, CokerγE is cyclic of order ≤ 2tE . But

CorE/F : H0(E,H2j(X, j + k)) → H0(F,H2j(X, j + k))

is surjective: this follows from the bijectivity of the geometric cycle map and the
fact that the Galois module CH jX is isomorphic to IndGF

GE
Z. This concludes the

proof of corollary 8.7.
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9. The case i = 2: Proof of theorem 4

Let X be a smooth variety over F such that H1(X,Q/Z) = 0. We have a cross
of exact sequences

0
y

H2(F, 1)
y ց η2

0 −−−→ H1(X,H1(1)) −−−→ H2(X, 1) −−−→ H0(X,H2(1)) −−−→ 0

α0,1,0 ց
y

H0(F,H2(X, 1))
y

H3(F, 1)
y

H3(X, 1)

where the horizontal (resp. vertical) line is given by the coniveau (resp. Hochschild-
Serre) spectral sequence with coefficients Q/Z(1). The group H1(X,H1(1)) can
be identified with CH 1X ⊗ Q/Z and H1(X,H1(1)) → H2(X, 1) with cl′1X . The
composite

H1(X,H1(1)) −→ H2(X, 1) → H0(F,H2(X, 1))

defined by the above cross can therefore be identified with the map α0,1,0 (8.3) of
section 8.

Proposition 9.1. For X as above, there is an exact sequence

0 → Coker η2 → Cokerα0,1,0 → H3(F, 1) → H3(X, 1).

Proof. This follows from the “lemma of the 700th” [33].

Corollary 9.2. For any (projective) quadric X over F , η2 is surjective.

Proof. α0,1,0 is surjective for all quadrics by lemma 8.5.

10. The case i = 3: Proof of theorem 5

Let X be a smooth variety over F such that H1(X,Q/Z) = H3(X,Q/Z) = 0. In
the following cross of exact sequences the (broken) horizontal sequence comes from
the coniveau spectral sequence and the vertical sequence from the Hochschild-Serre
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spectral sequence with coefficients Q/Z(2).

H3(F, 2)
y ց η3

0 −−−−→ H1(X,H2(2)) −−−−→ H3(X, 2) −−−−→ H0(X,H3(2))

β ց
y

y

H1(F,H2(X, 2)) H2(X,H2(2))
y

y

H4(F, 2) H4(X, 2)
y

H4(X, 2).

In this diagram, one can identify the group H2(X,H2(2)) with CH 2X ⊗Q/Z and
accordingly the map H2(X,H2(2)) → H4(X, 2) with cl′2X . The above cross defines
a composite homomorphism:

β : H1(X,H2(2)) −→ H3(X, 2) → H1(F,H2(X, 2)).

Proposition 10.1. For X as above, there is a natural surjection

Coker η3 → Ker cl′2X → 0.

Denote by (Coker η3)1 the kernel of this surjection. Then there is a natural exact

sequence

0 → (Coker η3)1 → Cokerβ → H4(F, 2) → H4(X, 2).

Proof. The first claim is obvious and the second again follows from the lemma of
the 700th [33].

Corollary 10.2. For any (projective) quadric X over F , there is a natural iso-

morphism Coker η3 ∼−→ Ker cl′2X .

Proof. We prove that β is surjective for all quadrics. For this, we remark that the
composition

H1(F, 1) ⊗ CH 1X → H1(X,H2(2))
β−→ H1(F,H2(X, 2)),

where the first map is (8.2), coincides with α1,1,1 by lemmas 8.1 and 8.3. If dimX 6=
2 or dimX = 2 and d(X) = 1, lemma 8.5 says that α1,1,1 is surjective, hence β is
surjective. If dimX = 2 and d = d(X) 6= 1, we use the same trick as in the proof of

corollary 8.7: the composite CorE/F ◦α1,1,1
E is surjective, still by lemma 8.5, where

E = F (
√
d). But there is a transfer map H1(XE ,H2(2))

CorE/F−−−−−→ H1(X,H2(2))
making the following diagram commute:

H1(E, 1) ⊗ CH 1XE −−−−→ H1(XE ,H2(2))
βE−−−−→ H1(E,H2(X, 2))

CorE/F

y CorE/F

y

H1(F, 1) ⊗ CH 1X −−−−→ H1(X,H2(2))
β−−−−→ H1(F,H2(X, 2)),

which concludes the proof in this case.
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Proposition 10.3 (cf. [17, th. 3]). For a quadric X over a field of characteristic

6= 2, the cycle map

cl′2X : CH 2X ⊗ Q/Z → H4(X, 2)

is injective, except if X is defined by an anisotropic Albert form. In this case,

Ker cl′2X ≃ Z/2.

Proof. In view of corollary 10.2, we may assume X anisotropic (prop. 2.5). If
dimX > 4 or dimX = 4 and d(X) 6= 1, the map

CH 2X ⊗ Q/Z → H0(F,CH 2X ⊗ Q/Z)

is an isomorphism by proposition 1.1 and the claim follows from the injectivity of
the geometric cycle map (proposition 1.5). If dimX = 1, CH 2X = 0 and the claim
is trivial. If dimX = 3 and Y is a hyperplane section of X , then the restriction
map CH 2X ⊗ Q/Z → CH 2Y ⊗ Q/Z is an isomorphism by proposition 1.1 again,
so that injectivity for dimX = 2 implies injectivity for dimX = 3. Let us assume
dimX = 2. As in [17], we may assume d(X) = 1 since, if d = d(X) 6= 1, the
map CH 2X → CH 2XF (

√
d) is bijective (prop. 1.1 and 1.6). In this case, CH 2X

is generated by h2, where h ∈ CH 1X is the class of a hyperplane section (ibid.).
Since Ker cl′2X is killed by 2 (cor. 10.2 and prop. 2.5), it is enough to prove:

Lemma 10.4. If X is an anisotropic quaternion quadric (= defined by a 2-fold
Pfister form), the image of cl2X(h2) ∈ H4X in H4(X, 2) is 6= 0.

Proof. Indeed, cl2X(h2) = c · cl1X(h) by [17, lemma 2], where c is the Brauer class of
the quadric, and cl1X(h) 6= 0 by [51, lemma 5.3.2 c)]. Therefore cl2X(h2) maps to a

nonzero element of H2(F,H2X) ≃ H2F . Its image in H2(F,H2(X, 2)) ≃ H2(F, 1)
is not 0 since the map H2F → H2(F, 1) is injective (compare beginning of proof of
prop. 7.1). Therefore the image of cl2X(h2) in H4(X, 2) cannot be 0.

It remains to deal with the case of an anisotropic Albert quadric. In this case
we have Ker η3

2 = 0 [1, Satz 5.6] and Cokerη3
2 ≃ Z/2 [17, theorem 2 d)], hence from

proposition 7.4 and corollary 10.2 we get an injection

Z/2 ≃ Coker η3
2 →֒ Ker cl′2X .(10.1)

But propositions 1.5 and 1.1 d) yield a commutative diagram with exact row

0 −−−−→ Z/4 −−−−→ CH 2X ⊗ Q/Z −−−−→ CH 2X ⊗ Q/Z −−−−→ 0

cl′2X

y cl′2
X

y≀

H4(X, 2) −−−−→ H4(X, 2)

It follows that Ker cl′2X is cyclic; as it is of exponent 2 by corollary 10.2 and
proposition 2.5 b), the map (10.1) is an isomorphism.

Theorem 5 follows from corollary 10.2 and proposition 10.3.
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11. The case i = 4

This case is similar to the former two, but more complicated.
For any smooth variety X over F define

H
4
(X, 3) =

H4(X, 3)

H4(F, 3) +H2(X,H2(3)) +
⊕

[E:F ]<+∞
H2(E, 2) ⊗ CH 1XE

,

where H2(X,H2(3)) → H4(X, 3) is the edge homomorphism of the coniveau spec-
tral sequence and the map

⊕
[E:F ]<+∞H2(E, 2) ⊗ CH 1XE → H4(X, 3) comes

from (8.1) via transfer.
Suppose that H1(X,Q/Z) = H3(X,Q/Z) = 0. We then have two exact se-

quences

(11.1) 0 → H1(X,H3(3)) → H4(X, 3)

H2(X,H2(3))
→ H0(X,H4(3)) −→

d0,4
2−−→ H2(X,H3(3)) → H5(X, 3)

(coniveau)

(11.2) 0 → Ker
(
H2(F,H2(X, 3))

d2,2
3−−→ H5(F, 3)

)
→

→ H4(X, 3)

H4(F, 3)
→ H0(F,H4(X, 3))

(Hochschild-Serre).

The exact sequence (11.2) identifies Ker d2,2
3 to a subgroup of

H4(X, 3)

H4(F, 3)
. For

the purpose of stating proposition 11.1 below, let H2(X,H2(3))0 denote its inter-

section with Im

(
H2(X,H2(3)) → H4(X, 3) → H4(X, 3)

H4(F, 3)

)
(the first map in this

composition being an edge homomorphism of the coniveau spectral sequence).

Proposition 11.1. For X as above, there are exact sequences

H
4
(X, 3) → Coker η4 → H2(X,H3(3)) → H5(X, 3)

and

Ker
(
H2(F,H2(X, 3))

d2,2
3−−→ H5(F, 3)

)

H2(X,H2(3))0 +
⊕

[E:F ]<+∞
H2(E, 2) ⊗ CH 1XE

→ H
4
(X, 3) → H0(F,H4(X, 3))

H2(X,H2(3))
,

where the factor
⊕

[E:F ]<+∞
H2(E, 2) ⊗ CH 1XE

comes from
∑

[E:F ]<+∞
CorE/F ◦ α2,1,2

E .

Proof. This follows from the exact sequences (11.1) and (11.2), using lemma 8.3.
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Consider the cross of exact sequences

H1(F, 1) ⊗ CH 2X
y ν ց

H
4
(X, 3) −−−−→ Coker η4 −−−−→ H2(X,H3(3)) −−−−→ H5(X, 3)

y

(CH 3X)torsion
y

0

(11.3)

coming from propositions 2.4 (for i = 3) and 11.1. From diagram (11.3) and the
lemma of the 700th, we deduce a complex

H
4
(X, 3) → Coker η4 → (CH 3X)torsion → Coker ν(11.4)

which is exact at (CH 3X)torsion and whose homology at Coker η4 is a quotient of
Ker ν.

Lemma 11.2. Let X be a quadric. Then H
4
(X, 3) is cyclic of order ≤ 4; it is 0

if dimX = 1, dimX > 4 or if F contains all 2-primary roots of unity.

Proof. By lemma 8.5, α2,1,2 is surjective, except if dimX = 2 and d = d(X) 6= 1; in

this case, CorE/F ◦α2,1,2
E is surjective. It follows that for any quadric, the group on

the left of H
4
(X, 3) in the second exact sequence of proposition 11.1 is 0. Therefore

H
4
(X, 3) injects into

H0(F,H4(X, 3))

H2(X,H2(3))
. But the latter group is cyclic of order as

in the statement of lemma 11.2, by corollary 8.7 and proposition 1.1.

Lemma 11.3. If dimX = 1 or dimX > 4, the map ν of diagram (11.3) is

injective. If dimX > 4, there is a canonical isomorphism

Coker ν ≃ H5(F, 3) ⊕
(
H3(F, 2) ⊗ CH 1X

)
.

Proof. The case dimX = 1 is obvious, since then CH 2X = 0. Suppose dimX > 4.
By lemma 8.1 d), the map ν coincides with (8.1). By lemma 8.5 c), α1,2,1 is bijective.
Therefore, by lemma 8.3 d), ν is (split-) injective. This argument shows that,

in the Hochschild-Serre spectral sequence for coefficients Q/Z(3), the term E1,4
2

is isomorphic to H1(F, 1) ⊗ CH 2X and consists of universal cycles. The same

holds for all the terms Ep,2
2 ≃ Hp(F, 2) ⊗ CH 1X by the same argument, since

CH 1X ∼−→ CH 1X for dimX ≥ 3. Finally the term E0,4
2 also consists of universal

cycles by lemma 11.2. Hence we get a canonical isomorphism:

H5(X, 3) ≃ H5(F, 3) ⊕
(
H3(F, 2) ⊗ CH 1X

)
⊕

(
H1(F, 1) ⊗ CH 2X

)

and the second part of the lemma follows.
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12. Proof of theorems 6 and 7

Proof of theorem 6. Claim (1) follows from (11.4), lemma 11.2 and lemma 11.3.
We now check (2) and (3). Let q be a quadratic form defining the quadric X .

a) If dim q = 3, Coker η4 = 0 by (11.4), lemma 11.2 and lemma 11.3.
b) If dim q > 6, part (1) of theorem 6 implies that Cokerη4 injects into the group

(CH 3X)torsion, hence has order ≤ 2 by Karpenko’s results (proposition 1.6).
If dim q > 12, (CH 3X)torsion = 0 by the same results, and so Coker η4 = 0.

c) If dim q = 8, d±q = 1, and q is not similar to a Pfister form, then CH 3X is
torsion-free by [20, th. 8.3] and Cokerη4 = 0 by (1).

The case of a 2-fold Pfister neighbour and that of an i-fold Pfister neighbour for
i ≥ 4 is covered by a) and b) respectively.

It remains to prove claim (3) in the case of a 3-fold neighbour. We may assume
the quadric to be of dimension at least 5 by proposition 2.5 c). Then the claim
follows from:

Lemma 12.1. Suppose dimX > 4 and X is defined by a neighbour of a 3-fold
Pfister form. Then the map of theorem 6 (1)

(CH 3X)torsion → H5(F, 3) ⊕
(
H3(F, 2) ⊗ CH 1X

)

is injective.

Proof. By the same argument as in the proof of lemma 11.3, we get a canonical
isomorphism

H3(X, 2) ≃ H3(F, 2) ⊕
(
H1(F, 1) ⊗ CH 1X

)

compatible with the maps of section 8. The diagram analogous to (11.3)

H1(F, 1) ⊗ CH 1X
y

0 −−−−→ H1(X,H2(2)) −−−−→ H3(X, 2)
y

(CH 2X)torsion
y

0
yields an injection

(CH 2X)torsion −֒→ H3(F, 2).

Tensoring this injection by CH 1X yields another injection (since CH 1X is
torsion-free)

(CH 2X)torsion ⊗ CH 1X −֒→ H3(F, 2) ⊗ CH 1X.

The way these maps are defined shows that the diagram

(CH 2X)torsion ⊗ CH 1X −֒→ H3(F, 2) ⊗ CH 1X
y

y

(CH 3X)torsion −−−−→ H5(F, 3) ⊕ (H3(F, 2) ⊗ CH 1X)
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commutes, where the left vertical map is multiplication, the right vertical map is
inclusion, the top horizontal map has just been defined and the bottom horizontal
map comes from theorem 6 (1). Since CH 1X ≃ Z and (CH 2X)torsion ≃ Z/2 by
propositions 1.1 and 1.6, this shows that the latter map is nonzero. Since, by
proposition 1.6, (CH 3X)torsion has order at most 2, this map is injective, which is
what we wanted (moreover, we get that CH 1X ⊗ (CH 2X)torsion → (CH 3X)torsion
is bijective, which fits with what Karpenko’s method gives [21]).

Proof of theorem 7. In the case where X is defined by an anisotropic Albert form q,
we define a homomorphism

ρ : H1F −→ Coker η4
2

by cup-product with a representative of Cokerη3
2 ≃ Z/2.

Recall [17] that such a representative e is constructed as follows: let K = F (X)
and qK ∼ aτ , where a ∈ K∗ and τ is a 2-fold Pfister form. Then e = (a) · e2(τ).

The composition H1F → Coker η4
2 → Coker η4 has infinite image if we pass

from F to the rational function field F (t). Indeed, F is infinite since q is anisotrop-
ic. Then, for any α ∈ F , the element

(t− α) · e ∈ H4F (X)(t) →֒ H4(F (X)(t), 3)

is unramified over F (t), and its residue at α is e ∈ H3(F (X), 2). This shows that
the classes of the (t− α) · e in Coker η4

F (t) are linearly independent.

In the case of a virtual Albert form q of discriminant d, we define a homomor-
phism

ρ′ : E∗ −→ Coker η4
2

simply as the composite

E∗ ρ−→ Coker η4
2,qE

CorE/F−−−−−→ Coker η4
2

where Coker η4
2,qE

is the cokernel attached to the form qE (E = F (
√
d)). We show

just as above that Cokerη4
F (t) is infinite, now using rational points of A1

E not defined

over F .
These arguments can be summarized by noting that the groups Coker ηi are

cycle modules in the sense of [42] and using the exact sequence

0 → Coker η4
F → Coker η4

F (t) →
⊕

y∈A1
(0)

Coker η3
Fy

→ 0

cf. the exact sequence (∗) in the introduction.

Exercise. Let X be an anisotropic quadric, a ∈ F ∗ and E = F (
√
a) a quadratic

extension such that XE is isotropic.

a) Show that extension of scalars defines a homomorphism

θn
E : H0(X,Hn) → HnE

for all n ≥ 0.
b) Define a 0-sequence

H3F
·(a)−−→ Ker θ4E −→ Ker(CH 3X → CH 3XE)

(proceed by a diagram chase, as in [27] for the definition of the map Ker η4
2 →

Ker(H2(X,K3) → H2(XE ,K3))).
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c) Compare the map Ker θ4
E → Ker(CH 3X → CH 3XE) of b) with the map

Coker η4
2 → (CH 3X)torsion deduced from theorem 6.

Appendix A. Quadrics of dimension 0 and 1

Proposition A.1. Let dimX = 1 and suppose the Milnor conjecture holds in

degree i− 2. Then Coker ηi = 0.

Proof. It follows from the cross of exact sequences

Hi(F, i− 1)
↓

0 → H1(X,Hi−1(i− 1)) → H i(X, i− 1) → H0(X,Hi(i− 1)) → 0
↓

Hi−2(F,H2(X, i− 2))

(coniveau and Hochschild-Serre), by using the fact that the composition

Hi−2(F, i− 2) ⊗ CH 1X → H1(X,Hi−1(i− 1)) → H i−2(F,H2(X, i− 2))

is surjective. As above, this is deduced from the divisibility of H i−2(F, i − 2) and
corollary 1.2.

In the following we present analogues of proposition A.1 and proposition 3 for
0-dimensional quadrics. Let L = F (

√
d) be a quadratic extension with Galois group

G = Gal(L/F ).

Proposition A.2. Suppose the Milnor conjecture holds in degree i− 1. Then

a) The restriction map

Hi(F, i− 1) → (H i(L, i− 1))G

is surjective.

b) The restriction map

HiF → (H iL)G

has kernel (d) ·H i−1F and cokernel isomorphic to

{ x ∈ (d) ·H i−1F | (−1) · x = 0 }.
Proof. a) Let σ be the generator of G and consider the exact sequence of Galois-
modules

0 → Z → Z[G]
1−σ−−→ Z[G] → Z → 0.

Tensoring with Q/Z(i− 1) gives a spectral sequence converging to 0, with E1-
term:

0 −→ H0(F,i−1)
Res−−→ H0(L,i−1)

1−σ−−→ H0(L,i−1)
Cor−−→ H0(F,i−1) −→ 0

· · ·

0 −→ Hi−1(F,i−1)
Res−−→ Hi−1(L,i−1)

1−σ−−→ Hi−1(L,i−1)
Cor−−→ Hi−1(F,i−1) −→ 0

0 −→ Hi(F,i−1)
Res−−→ Hi(L,i−1)

1−σ−−→ Hi(L,i−1)
Cor−−→ Hi(F,i−1) −→ 0

· · ·
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Here the d2-differentials go 2 steps right and 1 step up. The norm map

Hi−1(L, i− 1)
Cor−−→ H i−1(F, i− 1)

is computed as the norm map

KM
i−1L⊗ Q/Z

N−→ KM
i−1F ⊗ Q/Z,

which is obviously surjective. Hence

Hi(F, i− 1)
Res−−→ H i(L, i− 1)

1−σ−−→ H i(L, i− 1)

is exact, i.e., ηi is surjective.
This discussion holds for any cyclic extension L/F with the degree [L :F ] prime

to charF .
b) The statement on the kernel is classical [1]; the statement on the cokernel

follows from this one and a), by using proposition 7.4, which is shown to apply in
this case just as in section 7.

Appendix B. Application to real quadrics

In this section, we examine the case when the ground field is the field R of real
numbers. The real anisotropic quadric of dimension d, denoted Qd, is defined by
the (d+ 2)-dimensional form (d+ 2)〈1〉. As all anisotropic quadratic forms over R
are Pfister neighbours, the anisotropic quadrics can be grouped according to the
level of their function fields (cf. [10, §3]). As observed in [10, §3], the unramified
cohomology groups are invariant for the set of quadrics grouped in this manner.
In [10], it was proved that the unramified cohomology group H0(Qd,H3) is 0 for
d ≤ 6 and that the map Z/2 ≃ H3(R) → H0(Qd,H3) is bijective for d > 7. This
result was used to show that the cycle map in codimension two

CH 2Qd/2 → H4Qd

is injective for all quadrics Qd (compare also [17, th. 3]).
We extend these results in this section, and use them to get extra information on

the cohomology of real quadrics. Concerning unramified cohomology, results can
be expressed concisely in a striking way:

Theorem B.1. Let F = R and i ≤ 4. Then, for any d > 0, the map H i(R) →
H0(Qd,Hi) is surjective. If d > 2i−2 it is bijective; if d ≤ 2i−2, H0(Qd,Hi) = 0.

Proof. For i = 2 it is classical and for i = 3 this is the main result of [10]. Note
however that these cases also follow directly from proposition 7.4, theorem 6 and
the fact that there are no anisotropic Albert quadrics over R in view of

Lemma B.2. With notation as above, if F = R then (Ker ηi
2)0 = 0 for all quadrics

X and all i ≥ 1.

Proof. Cup-product by (−1) is injective on H∗R.

Let us now prove theorem B.1 in the case i = 4. For d > 14 and for 6 < d ≤ 14,
this follows from theorem 3.4 and corollary 8. For 3 < d ≤ 6, we may assume d = 3;
then cd(R(Q3)) = 3 [47], hence H4(R(Q3)) = 0 and a fortiori H0(Q3,H4) = 0.
The argument is the same for d ≤ 2.
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Theorem B.1 implies in particular that, in the coniveau spectral sequence

Ep,q
2 = Hp(Qd,Hq) ⇒ Hp+qQd,

E0,q
2 consists of universal cycles for q ≤ 4. This in turn implies:

Theorem B.3.

a) For any d ≥ 1, we have:

dimH1(Qd,H2) + dimH0(Qd,H3) = dimH3Qd;

dimCH 2Qd ⊗ Z/2 + dimH1(Qd,H3) + dimH0(Qd,H4) = dimH4Qd.

b) The “edge homomorphism” H2(Qd,H3) → H5Qd is injective.

Corollary B.4. We have:

dimH1(Qd,H2) =






0 for d = 1

1 for d = 2

2 for 3 ≤ d ≤ 6

1 for d > 6

and

dimH1(Qd,H3) =






0 for d ≤ 3

1 for 4 ≤ d ≤ 6

2 for 7 ≤ d ≤ 14

1 for d > 14.

Sketch of proof. An inductive argument allows one to compute dimH∗Qd. The
method is to first compute the cohomology of the corresponding affine quadric by
reduction to the complex case. The answer is [19]:

dimHnQd =






[n
2

]
+ 1 if d ≥ n

[
2d− n

2

]
+ 1 if d ≤ n.

The corollary follows from this fact, from theorem B.1, theorem B.3, and from (for
the value of dimCH 2Qd ⊗ Z/2) propositions 1.1 and 1.6.

Further results on H2(Qd,H3), H1(Qd,H4) and the cycle map cl3Qd
can be ob-

tained at a higher cost [19].

Appendix C. The unramified Witt ring

In this appendix, we prove theorem 9, which we now recall:

Theorem C.1. Let i ≤ 4. For any quadric X, the composition

Cokerχi → Coker ηi
2 → Coker ηi

is injective, where

χi : IiF/Ii+1F −→ Ii
nr(F (X)/F )/Ii+1

nr (F (X)/F )

is the map induced by extension of scalars and the first map in the composition is

induced by the cohomological invariant ēi.
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Lemma C.2. Let C be a conic over F and K = F (C). Let c ∈ H2F be the class

of the quaternion algebra corresponding to C. Then, for i ≤ 4,

a) Ker ηi
2 = c ·H i−2F .

b) The natural map

Ii+1F → Ii+1
nr (K/F )

is surjective.

Proof. a) has been given earlier in the paper for i ≤ 3 and is proven in [30,
prop. 3.15] for i = 4. Let us prove b). By a result of Parimala [37, 53, 10],
the map W (F ) → Wnr(K/F ) is surjective. Let ϕ ∈ I i+1

nr (K/F ) and, by induction
on i, let ψ ∈ IiF be such that ψK = ϕ. We have ei(ψ) ∈ Ker ηi

2, hence ei(ψ) = c ·x
for some x ∈ H i−2F by a). By the surjectivity of ei−2 and the injectivity of ēi,
we can write ψ = τ ⊗ θ ⊥ ψ′, where τ is the quaternion form corresponding to c,
ei−2(θ) = x and ψ′ ∈ Ii+1F . Then ψ′

K = ϕ, as desired.

Notation. We write ĪiF = IiF/Ii+1F and, for a finitely generated extension L/F ,
Īi
nr(L/F ) = Ii

nr(L/F )/Ii+1
nr (L/F ).

Lemma C.3. Let X be a quadric (of dimension > 0), and let C be a conic lying

on X. Let τ be the quaternion form associated to C. Then, for i ≤ 4, there is a

surjection

τ Īi−2F (X) ∩ Īi
nr(F (X)/F ) −→→ Cokerχi.

Proof. Let K = F (C). Consider the commutative diagram

Īi
nr(F (X)/F ) −−−−→ Īi

nr(K(X)/F )

χi

x ≀
x

ĪiF −→→ Īi
nr(K/F )

In this diagram, the lower horizontal map is surjective by lemma C.2 b) and the
right vertical one is an isomorphism because K(X)/K is purely transcendental. A
diagram chase then yields a surjection

Ker(Īi
nr(F (X)/F ) −→ Īi

nr(K(X)/F )) →→ Cokerχi.

To conclude the proof, it suffices to observe that Ker(ĪiF (X) −→ ĪiK(X)) =
τ Īi−2F (X) by lemma C.2 a) and the bijectivity of ēi−2 and ēi.

Proof of theorem C.1. Consider the commutative diagram

Cokerχi ēi

−−−−→ Coker ηi
2

λ−−−−→ Coker ηi

x
x

x

Īi
nr(F (X)/F )

ēi

−−−−→ H i
nr(F (X)/F )

λ−−−−→ H i
nr(F (X)/F, 2)

χi

x ηi
2

x ηi

x

ĪiF
ēi

−−−−→ H iF
λ−−−−→ H i(F, 2)

where λ is the natural map. Let x ∈ Īi
nr(F (X)/F ). Choose C as in lemma C.3.

By this lemma, we can modify x by an element from I iF so that x = τ ⊗ θ. Let
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y ∈ H i(F, 2) be such that λēi(x) = ηi(y). Let E/F be a quadratic extension such
that CE , hence XE , is isotropic. Then

τE ∼ 0

hence

xE(X) = 0

and

ηi(y)E(X) = ηi(yE) = 0.

Since XE is isotropic, E(X)/E is purely transcendental and yE = 0 (prop.
2.5 a)). Hence 2y = 0 ∈ H i(F, 2) by the usual transfer argument, and y = λ(z) for
some z ∈ H iF . By the surjectivity of ēi, write z = ēi(t) for t ∈ ĪiF . Then

λēi(x) = ηiλēi(t) = λēi(χi(t))

hence x = χi(t) by the injectivity of ēi and λ.
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