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Abstract

In this work we study anti-unification for unranked terms and hedges, permitting con-
text and hedge variables. Hedges are sequences of unranked terms. The anti-unification
problem of two hedges s̃ and q̃ is concerned with finding their generalization, a hedge g̃
such that both s̃ and q̃ are instances of g̃ under some substitutions. Context variables
are used to abstract vertical differences in the input hedges, and hedge variables are used
to abstract horizontal differences. A rule based system in Huet’s style will be presented,
which computes a set of generalizations of input hedges and records all the differences.
The computed generalizations are least general among a certain class of generalizations.

1 Introduction

The anti-unification problem for two terms requires finding their generalization: A term whose
substitution instances are the original terms. The interesting generalizations are least general
ones (lggs). Anti-unification algorithms are supposed to compute such generalizations.

In 1970, Plotkin [9] and Reynolds [10] independently came up with essentially the same
anti-unification algorithm. It was designed for first-order ranked terms (i.e., where function
symbols have a fixed arity) in the syntactic case, and was formulated in the imperative style.
Later, Huet [4] proposed another algorithm for the same problem, expressing it as a pair of
recursive equations. Since then, a number of algorithms and their modifications have been
developed, addressing the problem in various theories and from different application points of
view.

In this paper, we consider anti-unification for unranked terms and hedges. The terms are
constructed from function symbols that do not have a fixed arity. Hedges are finite sequences
of unranked terms. They may contain two kinds of variables: one for hedges, and the other one
for contexts. Contexts are hedges with a single occurrence of the distinguished symbol “hole”.
They are functions which can apply to a context or to a hedge, which are then “plugged” in the
place of the hole.

Algorithms for computing lggs for unranked terms and hedges have been described earlier,
see, e.g., [7, 11, 2]. The languages there do not permit higher-order variables. This imposes a
natural restriction on solutions: The computed lggs do not reflect similarities between input
hedges, if those similar pieces are located under distinct heads or at different depths. For
instance, fpa, bq and gphpa, bqq are generalized by a single variable, although both terms contain
a and b and a more natural generalization could be, e.g. Xpa, bq, where X is a higher-order
variable.

Some applications of anti-unification indeed require higher-order features. For instance,
reuse of proofs in program verification needs anti-unification with higher-order variables [8]. A
restricted use of higher-order variables in generalizations turned out helpful for analogy making
with Heuristic-Driven Theory Projection [6]. Anti-unification with combinator terms plays a
role in replaying program derivations [3].
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Unranked anti-unification can be used to detect similarities, for instance, between pieces of
software code, or between XML documents. These pieces and documents can be abstracted by
unranked trees. It can often be the case that, say, the sequence of arguments of a subtree at
depth d1 in one tree is similar to the sequence of arguments of a subtree at depth d2 in the other
tree. It is desirable to detect these similarities. However, The current algorithms for unranked
generalization are not designed for that. This is the problem what we address here, permitting
the use of context variables to abstract vertical differences between trees, and hedge variables
used to abstract horizontal differences.

The algorithm described in this paper first constructs a “skeleton” of a generalization of the
input hedges, which corresponds to a hedge embedded into each of the input hedges. Next,
it inserts context and/or hedge variables into the skeleton, which are supposed to uniformly
generalize (vertical and horizontal) differences between input hedges, to obtain an lgg (with
respect to the given skeleton). The skeleton computation function is the parameter of the
algorithm: One can compute an lgg which contains, for instance, a constrained longest common
subforest [1], or an agreement subhedge/subtree [5] of the input hedges.

In this paper we focus on the step of computing an lgg of two hedges, when the skeleton
is already constructed. We assume that the latter is given in the form of an admissible align-
ment. We need to restrict variable occurrences in the generalization to guarantee that for each
admissible alignment a single lgg is computed. The restriction forbids consecutive hedge vari-
ables, chains of context variables, and puts a couple of other constraints (Definition 3.1). It
may happen that the skeleton computation function returns a set of admissible alignments, not
necessarily a single one. In this case we compute lggs with respect to each admissible alignment,
and then minimize the obtained set, to get lggs (not necessarily a single one) with respect to
the entire set of admissible alignments.

A prototype implementation of the algorithm is available from http://www.risc.jku.at/
projects/stout/software/urauc.php.

Example 1.1. The hedge pXpaq, fpXpgpa, xq, cq, xqq is a generalization of the two hedges phpaq,
fphpgpa, b, bq, cq, b, bqq and pa, fpgpa, dq, c, dqq.

2 Preliminaries

Let F be a countable set of unranked function symbols, VH be a countable set of hedge variables
(with arity zero) and VC be a countable set of unranked context variables. Let ˝ be a special
symbol called the hole. F , VH and VC are pairwise distinct. Terms t, hedges s̃ and contexts c̃
are defined by the following grammar:

t :“ φps̃q | x s̃ :“ pt1, . . . , tnq c̃ :“ ps̃1, ˝, s̃2q | ps̃1, φpc̃q, s̃2q
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where φ P F Y VC , x P VH , and n ě 0. The length of a hedge s̃, denoted |s̃|, is the number of
elements in it. We denote by s̃|i the ith element of s̃ and by s̃|ji the subhedge ps̃|i, . . . , s̃|jq. If
i ą j then s̃|ji “ ε.

A substitution σ is a mapping from hedge variables to hedges and from context variables
to contexts, which is identity almost everywhere. When substituting a context variable X by
a context, the context will be applied to the argument hedge of X and the hole in it will be
replaced by that argument hedge. σ can be applied to hedges and contexts in the usual way.
We use postfix notation for application, writing, e.g., s̃σ for the application of σ to s̃.

A hedge s̃ is the instance of another hedge q̃ if there exists a substitution σ with q̃σ “ s̃.
We say that q̃ is more general than s̃ if s̃ is an instance of q̃ and denote this fact by q̃ ĺ s̃ (»
and ă are defined as usual). A hedge g̃ is a generalization of the hedges s̃ and q̃ if s̃ and q̃ are
instances of g̃.

The word representation ωps̃q of a hedge s̃ is defined by the concatenation of the depth-first
pre-order traversals of the constituent terms. For instance, the word representation of pa, fpgpa,
gpb, bqq, cqq would be afgagbbc. Note that generalizations contain certain common subsequences
of the word representation of the input hedges. Observe, e.g., the hedges from example 1.1:

s̃ “ p hpaq, fp hpgpa,b, bq, cq,b, bqq
q̃ “ p a , fp gpa,d q, c ,d qq

g̃ “ pXpaq, fpXpgpa,x q, cq,x qq

We will use this property in the formulation of our algorithm. For simplicity, we formulate all
the notions and the algorithm for two hedges. The extension to more hedges is straightforward.
Hedges to be generalized are assumed to be variable disjoint.

A set of position indexes (or just positions) of a term is a prefix-closed set of integer se-
quences. We use ¨ for sequence concatenation. For a hedge s̃, the position index i¨ I denotes
the position I in s̃|i. With ă we denote the lexicographic ordering and with Ă the strict pre-
fix relation on positions. Given three position indexes I1, I2 and I3, the ternary relation ’ is
defined as

I1 ’I3 I2 :ðñ there is I4 ‰ ε such that I4 Ă I1 and I4 Ă I2 and I4 Ă I3 and
I1, I2, I3 are pairwise not in Ă .

Definition 2.1 (Alignment). Given two hedges s̃ and q̃, an alignment is a sequence of the form
a1xI1, J1y . . . amxIm, Jmy such that:

• I1 ă ¨ ¨ ¨ ă Im and J1 ă ¨ ¨ ¨ ă Jm, and

• ak is the symbol at position Ik in s̃ and at position Jk in q̃ for all 1 ď k ď m.

We write |a| for the length of an alignment a.

Definition 2.2 (Admissible alignment). An alignment a of two hedges s̃ and q̃ is admissible if
there are no collisions of the form defined below:

• A collision appears at two elements aexIe, Jey, af xIf , Jf y of a if either pIe Ă If and
Je Ă Jf q or pIe Ă If and Je Ă Jf q.

• A collision appears at three elements aexIe, Jey, af xIf , Jf y, agxIg, Jgy of a if Ie ’Ig If
and Jf ’Je Jg.
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Note that for any two elements aexIe, Jey, af xIf , Jf y of an admissible alignment a, Ie ă If
iff Je ă Jf and Ie Ă If iff Je Ă Jf . A longest admissible alignment (laa) of two hedges is their
admissible alignment with a longest length.

Theorem 2.1. Let a be an alignment of the hedges s̃ and q̃. A generalization g̃ of s̃ and q̃ with
a bijective name-preserving mapping from all the symbols in a to the set of all function symbols
of g̃, respecting ă and Ă between the positions in a, exists iff a is admissible. (We call g̃ a
supporting generalization of a.)

Example 2.1. Let s̃ “ pa, apb, bqq and q̃ “ papapbpbqqq, b, bq.

• bx2¨ 2, 1¨ 1¨ 1y ax1, 1y is not an alignment of s̃, q̃.

• ax1, 1y ax2, 1¨ 1y bx2¨ 1, 1¨ 1¨ 1y bx2¨ 2, 3y is a non-admissible alignment of s̃, q̃.

• ax1, 1y bx2¨ 2, 3y is an admissible alignment of s̃, q̃ and papxq, y,Xpbqq is a supporting gen-
eralization for this alignment.

• ax2, 1y bx2¨ 2, 1¨ 1¨ 1¨ 1y would be another admissible alignment of s̃, q̃, with px, apy, Y pbqq, zq
being a supporting generalization of it.

• ax1, 1¨ 1y bx2¨ 1, 2y bx2¨ 2, 3y is an laa of s̃, q̃ and pXpapxqq, Y pb, bqq is a supporting general-
ization for this alignment.

In our prototype implementation we compute only one kind of generalizations: Those which
support longest admissible alignments. The laa’s are computed with the aid of a function that
for two hedges returns a set of common alignments with maximum length, not exceeding a given
upper bound k P N. Setting k initially large enough (e.g. k is the number of all symbols in one
of the given hedges) this function returns all longest common alignments. If this set contains
no admissible alignments, then we reduce k and repeat the computation. Otherwise we return
the subset of admissible alignments. The algorithm can be described in four steps:

1. k :“ |ωps̃q|.

2. A :“ Rpk, s̃, q̃q.

3. If A ‰ H and collfreepAq “ H and k ą 0 then
k :“ maxpt|a| : a P Auq ´ 1 and go to 2.

4. return collfreepAq.

To test whether an alignment is admissible or not, we use definition 2.2 and its two cases
of collisions. With collfreepAq we denote the subset of admissible alignments (those without
collisions). Other classes of admissible alignments may be obtained in a similar way, if a function
can be formulated which computes some alignments and takes an upper bound k, that can be
reduced if none of the computed alignments is admissible.

Example 2.2 (Computing laa of two hedges). We illustrate the computation of laas with the
two hedges s̃ “ pfpa, fpb, bqq, cq and q̃ “ pfpa, bq, b, gpcqq.

1. k :“ |fafbbc| “ 6.

2. A :“ Rp6, pfpa, fpb, bqq, cq, pfpa, bq, b, gpcqqq “
tfx1, 1yax1¨ 1, 1¨ 1ybx1¨ 2¨ 1, 1¨ 2ybx1¨ 2¨ 2, 2ycx2, 3¨ 1yu.

16



Unranked Anti-Unification with Hedge and Context Variables Baumgartner and Kutsia

3. collfreepAq “ H ùñ k :“ 5´ 1 and go to 2.

2. A :“ Rp4, pfpa, fpb, bqq, cq, pfpa, bq, b, gpcqqq “
tfx1, 1yax1¨ 1, 1¨ 1ybx1¨ 2¨ 1, 1¨ 2ybx1¨ 2¨ 2, 2y, fx1, 1yax1¨ 1, 1¨ 1ybx1¨ 2¨ 1, 1¨ 2ycx2, 3¨ 1y, . . . u.

3. collfreepAq ‰ H.

4. return collfreepAq “
tfx1, 1yax1¨ 1, 1¨ 1ybx1¨ 2¨ 1, 1¨ 2ycx2, 3¨ 1y, fx1, 1yax1¨ 1, 1¨ 1ybx1¨ 2¨ 2, 1¨ 2ycx2, 3¨ 1yu.

The result of this computation is a set which consists of the two longest admissible align-
ments of s̃ and q̃. In the next section an algorithm will be presented to compute supporting
generalizations for given admissible alignments.

3 Computing Least General Rigid Generalizations

Two symbols µ, ν of a hedge are horizontal consecutive if their position indexes Iµ¨ iµ and Iν ¨ iν
are in the relation Iµ “ Iν and iµ`1 “ iν . They are in a vertical chain if their position indexes
Iµ and Iν are in the relation Iν “ Iµ¨ 1 and there is no term at position Iµ¨ 2.

Definition 3.1 (Rigid generalization). Given two hedges s̃, q̃ and an admissible alignment a,
we say that a hedge g̃ is a rigid generalization of s̃ and q̃ with respect to a, if either a is an
empty sequence and g̃ is a hedge variable, or g̃ is a supporting generalization of a such that:

• No context variable in g̃ applies to the empty hedge.

• There are substitutions σ1, σ2 with g̃σ1 “ s̃, g̃σ2 “ q̃ where all the contexts in σ1, σ2 are
terms (not arbitrary hedges).

• g̃ doesn’t contain horizontal consecutive hedge variables.

• g̃ doesn’t contain vertical chains of variables.

• g̃ doesn’t contain context variables with a hedge variable as the first or the last argument.

This definition puts some restrictions on the usage of the variables. For instance Xpa, bq is a
rigid generalization of pfpgpa, b, cqqq and pa, bq with respect to ax1¨ 1¨ 1, 1ybx1¨ 1¨ 2, 2y. Xpa, b, xq
and XpY pa, bqq are not rigid generalizations.

Definition 3.2 (Rigid lgg with respect to A). A generalization g̃ of two hedges s̃, q̃ is called a
rigid lgg with respect to a set A of alignments, if g̃ is a rigid generalization of s̃, q̃ with respect
to some a P A and there is no rigid generalization h̃ of s̃, q̃ with respect to some b P A with
g̃ ă h̃.

The rule based systemG works on a quadruple P ; Q; S; σ, where P is a set of anti-unification
problems (AUPs), Q is a set called the vertical store, S is a set called the horizontal store and
σ is a substitution. An AUP has the form x : s̃ fi q̃; X : c̃ fi d̃; a, where x is a hedge variable,
X a context variable, c̃, d̃ are contexts and a is an admissible alignment of the hedges s̃, q̃.

In the following rules, we use the symbols Y,Z for fresh context variables and y, z for fresh
hedge variables. We use the brackets rs for context application and the symbol Ÿ stands for
disjoint union.
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Dec-H: Decompose Hedge
tx : s̃ fi q̃; X : c̃ fi d̃; a1xi1¨ I1, j1¨ J1y . . . akxik¨ Ik, jk¨ Jky
ak`1xik`1¨ Ik`1, jk`1¨ Jk`1y . . . amxim¨ Im, jm¨ Jmyu ŸP ; Q; S; σ ùñ

ty : s̃|iki1 fi q̃|jkj1 ; Y : ˝ fi ˝; a1xpi1 ´ i
- -
1 q¨ I1, pj1 ´ j

- -
1 q¨ J1y . . .

akxpik ´ i
- -
1 q¨ Ik, pjk ´ j

- -
1 q¨ Jkyu Y

tz : s̃|im
i``
k

fi q̃|jm
j``
k

; Z : ˝ fi ˝; ak`1xpik`1 ´ ikq¨ Ik`1, pjk`1 ´ jkq¨ Jk`1y . . .

amxpim ´ ikq¨ Im, pjm ´ jkq¨ Jmyu Y P ;

tX : c̃rs̃|
i - -1
1 , ˝, s̃|

|q̃|

i``
m
s fi d̃rq̃|

j - -
1
1 , ˝, q̃|

|q̃|

j``
m
su YQ; S; σtx ÞÑ pY pyq, Zpzqqu,

if m ą 1 and notpi1 “ ¨ ¨ ¨ “ imq and notpj1 “ ¨ ¨ ¨ “ jmq. Where i1 ‰ ik`1 and j1 ‰ jk`1 and
pi1 “ ik or j1 “ jkq. We write i - - for i´ 1 and i`` for i` 1.

Abs-C: Abstract left Context
tx : ps̃l, φps̃q, s̃rq fi q̃; X : c̃ fi d̃; a1xi¨ I1, J1y . . . amxi¨ Im, Jmyu ŸP ; Q; S; σ ùñ
tx : s̃ fi q̃; X : c̃rs̃l, φp˝q, s̃rs fi d̃; a1xI1, J1y . . . amxIm, Jmyu Y P ; Q; S; σ,

if I1 ‰ ε. Where φps̃q is the term at the positions i and s̃l, s̃r are hedges.

Abs-C: Abstract right Context
tx : s̃ fi pq̃l, φpq̃q, q̃rq; X : c̃ fi d̃; a1xI1, j¨ J1y . . . amxIm, j¨ Jmyu ŸP ; Q; S; σ ùñ
tx : s̃ fi q̃; X : c̃ fi d̃rq̃l, φp˝q, q̃rs; a1xI1, J1y . . . amxIm, Jmyu Y P ; Q; S; σ,

if J1 ‰ ε. Where φpq̃q is the term at the positions j and q̃l, q̃r are hedges.

App-A: Apply Alignment
tx : ps̃l, φps̃q, s̃rq fi pq̃l, ψpq̃q, q̃rq; X : c̃ fi d̃;
a1xi, jya2xi¨ I2, j¨ J2y . . . amxi¨ Im, j¨ Jmyu ŸP ; Q; S; σ ùñ

ty : s̃ fi q̃; Y : ˝ fi ˝; a2xI2, J2y . . . amxIm, Jmyu Y P ;
tX : c̃rs̃l, ˝, s̃rs fi d̃rq̃l, ˝, q̃rsu YQ; S; σtx ÞÑ a1pY pyqqu,

where φps̃q, ψpq̃q are the terms at the positions i, j and s̃l, s̃r, q̃l, q̃r are hedges.

Sol-H: Solve Hedge
tx : s̃ fi q̃; X : c̃ fi d̃; εu ŸP ; Q; S; σ ùñ P ; Q; tx : s̃ fi q̃u Y S; σtX ÞÑ ˝u.

Res-C: Restore Context Variable
P ; tX : pc̃l, c, c̃rq fi pd̃l, d, d̃rqu ŸQ; S; σ ùñ

P ; tX : c fi du YQ; ty : c̃l fi d̃lu Y tz : c̃r fi d̃ru Y S; σtX ÞÑ py,Xp˝q, zqu,
if not ε “ c̃l “ c̃r “ d̃l “ d̃r. Where c, d are those terms where the hole appears.

Mer-H: Merge Hedge Variable
P ; Q; tx1 : s̃ fi q̃, x2 : s̃ fi q̃u ŸS; σ ùñ P ; Q; tx1 : s̃ fi q̃u Y S; σtx2 ÞÑ x1u.

Mer-C: Merge Context Variable
P ; tX1 : c̃ fi d̃, X2 : c̃ fi d̃u ŸQ; S; σ ùñ P ; tX1 : c̃ fi d̃u YQ; S; σtX2 ÞÑ X1p˝qu.

Clr-H: Clear Hedge Variable
P ; Q; tx : ε fi εu ŸS; σ ùñ P ; Q; S; σtx ÞÑ εu.

Clr-C: Clear Context Variable
P ; tX : ˝ fi ˝u ŸQ; S; σ ùñ P ; Q; S; σtX ÞÑ ˝u.

The system is initialized with tx : s̃ fi q̃; X : ˝ fi ˝; au; H; H; tx ÞÑ Xpxqu, where a is
an admissible alignment of the hedges s̃, q̃ for which we want to compute the generalization.
X is a fresh context variable and x is a fresh hedge variable. The rules are applied exhaustively.
When no more rule is applicable, then the final state has been reached and xσ is the com-
puted generalization. The stores Q and S will contain the vertical and horizontal differences
respectively.
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The decomposition rule splits an AUP into two parts. We will explain it on an example and
therefore consider the hedges pgpaq, fpa, gpbqq, c, gpbq, eq and pe, e, hpa, eq, fpbq, a, c, d, bq and the
admissible alignment ax2¨ 1, 3¨ 1ybx2¨ 2¨ 1, 4¨ 1ycx3, 6ybx4¨ 1, 8y of these hedges.

The very left and right subhedges, which do not have any corresponding alignment elements
will be moved into the store. In the example these are the subhedges gpaq and e in the first
hedge, and pe, eq in the second hedge. The splitting will be performed in a way such that one
of the new AUPs (the left part of the split hedges) is minimal, in the sense that one of the two
sides will be a term. (Note that there are no collisions at three elements of an alignment.) In
our example, the clips which are marked by the blue dashed rectangles will become this new
minimal AUP. The remaining rest will form another AUP (the red dotted rectangles in the
example).

The abstract context rules record and reduce vertical differences. We consider the blue
dashed clippings fpa, gpbqq fi phpa, eq, fpbqq of the figure above. The alignment is ax1¨ 1, 1¨ 1y
bx1¨ 2¨ 1, 2¨ 1y. The abstract left context rule will detect and record the vertical displacement f
at the left hedge and reduce the problem to pa, gpbqq fi phpa, eq, fpbqq, with ax1, 1¨ 1ybx2¨ 1, 2¨ 1y
as new alignment.

The rule apply alignment finally uses the head element of an alignment and adds this
element to the substitution σ. It is only applicable if all the vertical differences are resolved
and no decomposition is possible, which means that all the other elements of the alignment are
“descendants of the head element”. The AUP will be reduced such that the head element of the
alignment and the corresponding elements in the hedges will be removed. The subhedges at the
left and right side of the corresponding elements (Note that they cannot have any corresponding
alignment elements) will be moved into the store, like in the decomposition rule.

Theorem 3.1 (Correctness of G). Given two hedges s̃ and q̃ and their admissible alignment a,
the rule based system G terminates and computes a rigid lgg g̃ of s̃ and q̃ with respect to tau.
Moreover, g̃ is unique modulo » w.r.t. tau.

Example 3.1. We illustrate how to compute the rigid lgg which corresponds to the laa fx1, 1y
ax1¨ 1, 1¨ 1ybx1¨ 2¨ 1, 1¨ 2y of the hedges pfpa, fpb, bqqq and pfpa, bq, bq.

tx: pfpa, fpb, bqqq fi pfpa, bq, bq; X: ˝ fi ˝; fx1, 1yax1¨ 1, 1¨ 1ybx1¨ 2¨ 1, 1¨ 2yu; H; H; tx ÞÑ Xpxqu

ñApp-A ty1: pa, fpb, bqq fi pa, bq; Y1: ˝ fi ˝; ax1, 1ybx2¨ 1, 2yu; tX: ˝ fi ˝, bu; H; tx ÞÑ XpfpY1py1qqqu

ñ
Res-C
Clear ty1: pa, fpb, bqq fi pa, bq; Y1: ˝ fi ˝; ax1, 1ybx2¨ 1, 2yu; H; tz: ε fi bu; tx ÞÑ fpY1py1qq, zu

ñ
Dec-H
Clear ty2: paq fi paq; Y2: ˝ fi ˝; ax1, 1y, y3: pfpb, bqq fi pbq; Y3: ˝ fi ˝; bx1¨ 1, 1yu;

H; tz: ε fi bu; tx ÞÑ fpY2py2q, Y3py3qq, zu

ñ
App-A
Clear ty4: ε fi ε; Y4: ˝ fi ˝; ε, y3: pfpb, bqq fi pbq; Y3: ˝ fi ˝; bx1¨ 1, 1yu;

H; tz: ε fi bu; tx ÞÑ fpapY4py4qq, Y3py3qq, zu
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ñ
Sol-H
Clear ty3: pfpb, bqq fi pbq; Y3: ˝ fi ˝; bx1¨ 1, 1yu; H; tz: ε fi bu; tx ÞÑ fpa, Y3py3qq, zu

ñAbs-C ty3: pb, bq fi pbq; Y3: fp˝q fi ˝; bx1, 1yu; H; tz: ε fi bu; tx ÞÑ fpa, Y3py3qq, zu

ñApp-A ty5: ε fi ε; Y5: ˝ fi ˝; εu; tY3: fp˝, bq fi ˝u; tz: ε fi bu; tx ÞÑ fpa, Y3pbpY5py5qqqq, zu

ñ
Sol-H
Clear H; tY3: fp˝, bq fi ˝u; tz: ε fi bu; tx ÞÑ fpa, Y3pbqq, zu.

Example 3.2. We illustrate the computation of a rigid lgg which corresponds to the laa
ax1¨ 1, 1yfx2, 2ygx2¨ 1¨ 1, 2¨ 1yax2¨ 1¨ 1¨ 1, 2¨ 1¨ 1ycx2¨ 1¨ 2, 2¨ 2y of the two hedges pUpaq, fpUpgpa,
b, bq, cq, b, bqq and pa, fpgpa, dq, c, dqq. The symbol U denotes a context variable. All the other
symbols are function symbols. (Note that the hedges to be generalized are assumed to be variable
disjoint.)

tx: pUpaq, fpUpgpa, b, bq, cq, b, bqq fi pa, fpgpa, dq, c, dqq; X: ˝ fi ˝;

ax1¨ 1, 1yfx2, 2ygx2¨ 1¨ 1, 2¨ 1yax2¨ 1¨ 1¨ 1, 2¨ 1¨ 1ycx2¨ 1¨ 2, 2¨ 2yu; H; H; tx ÞÑ Xpxqu

ñ
Dec-H
Clear ty1:Upaq fi a; Y1: ˝ fi ˝; ax1¨ 1, 1y; z1: fpUpgpa, b, bq, cq, b, bq fi fpgpa, dq, c, dq; Z1: ˝ fi ˝;

fx1, 1ygx1¨ 1¨ 1, 1¨ 1yax1¨ 1¨ 1¨ 1, 1¨ 1¨ 1ycx1¨ 1¨ 2, 1¨ 2yu; H; H; tx ÞÑ pY1py1q, Z1pz1qqu

ñAbs-C ty1: a fi a; Y1:Up˝q fi ˝; ax1, 1y; z1: fpUpgpa, b, bq, cq, b, bq fi fpgpa, dq, c, dq; Z1: ˝ fi ˝;

fx1, 1ygx1¨ 1¨ 1, 1¨ 1yax1¨ 1¨ 1¨ 1, 1¨ 1¨ 1ycx1¨ 1¨ 2, 1¨ 2yu; H; H; tx ÞÑ pY1py1q, Z1pz1qqu

ñ
App-A
Sol-H tz1: fpUpgpa, b, bq, cq, b, bq fi fpgpa, dq, c, dq; Z1: ˝ fi ˝;

fx1, 1ygx1¨ 1¨ 1, 1¨ 1yax1¨ 1¨ 1¨ 1, 1¨ 1¨ 1ycx1¨ 1¨ 2, 1¨ 2yu; tY1:Up˝q fi ˝u; H; tx ÞÑ pY1paq, Z1pz1qqu

ñ
App-A
Clear tz2: pUpgpa, b, bq, cq, b, bq fi pgpa, dq, c, dq; Z2: ˝ fi ˝; gx1¨ 1, 1yax1¨ 1¨ 1, 1¨ 1ycx1¨ 2, 2yu;

tY1:Up˝q fi ˝u; H; tx ÞÑ pY1paq, fpZ2pz2qqqu

ñAbs-C tz2: pgpa, b, bq, cq fi pgpa, dq, c, dq; Z2: pUp˝q, b, bq fi ˝; gx1, 1yax1¨ 1, 1¨ 1ycx2, 2yu;

tY1:Up˝q fi ˝u; H; tx ÞÑ pY1paq, fpZ2pz2qqqu

ñ
Dec-H
Clear tz3: gpa, b, bq fi gpa, dq; Z3: ˝ fi ˝; gx1, 1yax1¨ 1, 1¨ 1y; z4: c fi c; Z4: ˝ fi ˝; cx1, 1yu;

tY1:Up˝q fi ˝; Z2: pUp˝q, b, bq fi p˝, dqu; H; tx ÞÑ pY1paq, fpZ2pZ3pz3q, Z4pz4qqqqu

ñ
App-A
Clear tz5: pa, b, bq fi pa, dq; Z5: ˝ fi ˝; ax1, 1y; z4: c fi c; Z4: ˝ fi ˝; cx1, 1yu;

tY1:Up˝q fi ˝; Z2: pUp˝q, b, bq fi p˝, dqu; H; tx ÞÑ pY1paq, fpZ2pgpZ5pz5qq, Z4pz4qqqqu

ñ
Res-C
Clear tz5: pa, b, bq fi pa, dq; Z5: ˝ fi ˝; ax1, 1y; z4: c fi c; Z4: ˝ fi ˝; cx1, 1yu;

tY1:Up˝q fi ˝; Z2:Up˝q fi ˝u; ty2: pb, bq fi du; tx ÞÑ pY1paq, fpZ2pgpZ5pz5qq, Z4pz4qq, y2qqu

ñMer-C tz5: pa, b, bq fi pa, dq; Z5: ˝ fi ˝; ax1, 1y; z4: c fi c; Z4: ˝ fi ˝; cx1, 1yu;

tY1:Up˝q fi ˝u; ty2: pb, bq fi du; tx ÞÑ pY1paq, fpY1pgpZ5pz5qq, Z4pz4qq, y2qqu

ñ
App-A
Sol-H tz5: pa, b, bq fi pa, dq; Z5: ˝ fi ˝; ax1, 1yu;

tY1:Up˝q fi ˝u; ty2: pb, bq fi du; tx ÞÑ pY1paq, fpY1pgpZ5pz5qq, cq, y2qqu

ñ
App-A
Sol-H H; tY1:Up˝q fi ˝; Z5: p˝, b, bq fi p˝, dqu; ty2: pb, bq fi du; tx ÞÑ pY1paq, fpY1pgpZ5paqq, cq, y2qqu

ñ
Res-C
Clear H; tY1:Up˝q fi ˝u; ty2: pb, bq fi d; y3: pb, bq fi du; tx ÞÑ pY1paq, fpY1pgpa, y3q, cq, y2qqu

ñMer-H H; tY1:Up˝q fi ˝u; ty2: pb, bq fi du; tx ÞÑ pY1paq, fpY1pgpa, y2q, cq, y2qqu

4 Final Remarks
The rule based system G computes a rigid lgg which corresponds to one given admissible
alignment, but the alignment computation may return a finite set of admissible alignments A.
It may be that one admissible alignment in A is a subsequence of another one. Even if this

20



Unranked Anti-Unification with Hedge and Context Variables Baumgartner and Kutsia

is not the case, it may happen that one of the computed rigid lggs (with respect to a certain
alignment) is more general than another one (with respect to another alignment).

Therefore we need a minimization step which filters out the rigid lggs with respect to A and
removes equivalent results. To perform this step we need to solve a hedge-matching problem,
which allows context and hedge variables in both sides of matching equations. To the best of
our knowledge, there is no algorithm to solve this kind of matching problems yet.
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