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Abstract: We show that, contrary to popular belief, diffraction-free beams not only may
reconstruct themselves after hitting an opaque obstacle but also, for example, Gaussian beams.
We unravel the mathematics and the physics underlying the self-reconstruction mechanism and
we provide for a novel definition for the minimum reconstruction distance beyond geometric
optics, which is in principle applicable to any optical beam that admits an angular spectrum
representation. Moreover, we propose to quantify the self-reconstruction ability of a beam
via a newly established degree of self-healing. This is defined via a comparison between
the amplitudes, as opposite to intensities, of the original beam and the obstructed one. Such
comparison is experimentally accomplished by tailoring an innovative experimental technique
based upon Shack-Hartmann wave front reconstruction. We believe that these results can open
new avenues in this field.
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1. Introduction

In recent years, the remarkable capacity of a beam to reconstruct itself after encountering an

obstacle (frequently called self-healing) has attracted a good deal of attention [1–3] and has

already found applications in diverse areas [4–8].

Self-healing has been long time considered as a distinctive feature of nondiffracting

beams [9]; most prominently of Bessel beams [10–13], although also Airy [14], caustic [15],

and Mathieu and Weber [16] beams have been examined.

It was subsequently realized that some diffracting beams, including the whole family of

scaled propagation invariant beams [17] optical ring lattices [18], Pearcey beams [19], and

tightly focused [20] and radially polarized [21] Bessel-Gauss beams, can self-reconstruct.

However, there is still the widespread perception that the self-reconstruction hinges on

engineering special beam profiles and, in many instances, it is sensitive to the obstruction size

and shape, thereby limiting applications of this phenomenon [22].

Recently, a complete account of self-healing for Bessel beams has been given in terms of

wave optics [23]. The basic mechanism can be entirely explained in terms of the propagation

of plane waves with radial wave vectors lying on a ring. The results obtained are in agreement

with the standard ones established from a geometrical approach [24, 25], yet they open a new
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scope.

In this paper, still using a wave-optics methodology, we come to the conclusion that self-

healingmay occur, potentially, for almost any kind of beam. Note, though, that it is outside the

scope of most self-healing researches, and the present work is not an exception, the study of self-

reconstruction capabilities of structured optical beams, as multiple-beam assemblies and, more

generally, beams with complex and intricate intensity, polarization, frequency and temporal

structures [26].

Furthermore, we introduce an appropriate degree that quantifies the similarity between the

field of the unperturbed beam (namely, the beam that would propagate as if the obstacle were

not present) and the field of the perturbed one (that is, the beam that propagates behind the

obstruction). In this way, we put in evidence that self-healing is a property of both the intensity

and the phase of the spatial distribution of the beam. We experimentally test these issues

with a Gaussian beam, whose intensity and phase are measured by means of a CCD camera

and a Shack-Hartman wavefront sensor, finding an outstanding agreement with our theoretical

predictions.

2. Self-healing as an eigenvalue problem

Let us first set the stage for our construction. We consider a scalar field Ψ(x , y, z) propagating

along the z-axis. An obstruction, characterized by an amplitude transmission function tO (x , y),

is placed in the plane z = 0. Here and hereafter with obstruction we denote any physical object

that decreases the intensity of a light beam, possibly in a space-dependent manner, without

changing directly phase and polarization of light. The amplitude ΨO (x , y, 0) of the obstructed

field at the plane z = 0 is

ΨO (x , y, 0) = tO (x , y) Ψ(x , y, 0) . (1)

The angular spectrum representation [27] is probably the most germane method to deal with the

field propagation. Accordingly, the amplitude ΨO (x , y, z) of the field transmitted at a distance

z from the obstruction can be expressed as the plane-wave superposition

ΨO (x , y, z) =
1

(2π)2

∞�

−∞

exp(iρ · κ) exp(izkz )

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∞�

−∞

t̂O (κ − κ′)Ψ̂(κ′) d 2
κ
′

⎤⎥⎥⎥⎥⎥⎥⎥⎦ d 2
κ . (2)

The wide hat (not to be confused with the small hat marking unit vectors) will denote throughout

the spatial Fourier transform of the corresponding function evaluated at z = 0; i.e., its angular

spectrum. Two-dimensional transverse vectors, in either real and Fourier space, are denoted

with Greek letters: ρ = x x̂ + yŷ and κ = kx x̂ + ky ŷ. In addition, kz = (k2 − κ2)1/2, with

κ2 = k2
x + k2

y .

Given the function tO (x , y), one can always define the transmission function tA(x , y) of an

aperture complementary to the obstruction [28] via the Babinet principle tA (x , y)+tO (x , y) = 1.

Therefore, (1) yields

ΨO (x , y, 0) = [1 − tA(x , y)]Ψ(x , y, 0) ≡ Ψ(x , y, 0) − ΨA(x , y, 0). (3)

Taking the absolute value squared of both sides of this equation and integrating over the whole

xy-plane, we obtain

I[ΨO] = I[Ψ] + I[ΨA] − 2 Re

∞�

−∞

Ψ
∗ (x , y, 0)ΨA (x , y, 0) dxdy, (4)

where I[h] =
∞�

−∞

h∗ (x , y, z)h(x , y, z) dxdy is the average beam intensity at the plane z.
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Conventionally, a beam is dubbed self-healing when it has the ability to recover its

amplitude or intensity profile after being obscured by an obstacle. Quite obviously, perfect

self-reconstruction is impossible, even in principle, because, as Eq. (4) distinctly shows, the

intensity of the transmitted field is unavoidably reduced unless I[ΨA] = 0. We thus content

ourselves with the condition

ΨO (x , y, z) ≈ λ0Ψ(x , y, z) , ∀z ≥ z0 , (5)

where z0 denotes the so-called minimum reconstruction distance and the scaling factor λ0 =

{I[ΨO]/I[Ψ]}1/2 accounts for the average intensity reduction caused by the obstruction.

The left-hand side of (5) is given by (2), while the field in the right-hand side can be jotted

down as

Ψ(x , y, z) =
1

2π

∞�

−∞

exp(iρ · κ) exp(izkz )Ψ̂(κ) d 2κ. (6)

Consequently, (5) can be equivalently recast as

Ψ̂O (κ) ≈ λ0Ψ̂(κ) . (7)

Notice carefully, though, that (7) does not contain the variable z, whereas the relation (5) is

supposed to be valid only for z ≥ z0. The latter requirement cannot be ignored because (5)

cannot be satisfied at z = 0, where instead (3) must be fulfilled. Of course, in (3) we are

implicitly excluding the trivial case of a spatially-uniform semi-transparent intensity obstruction

(think of, e.g., a neutral-density filter) such that ΨA(x , y, 0) = (1 − λ0)Ψ(x , y, 0).

Hence, we are apparently faced with a contradiction here. In fact, (7) constitutes more a

statement about the obstruction rather than the field. This can be seen by rewriting (7) in the

more enlightening form

1

2π

∞�

−∞

t̂O (κ − κ′)Ψ̂(κ′) d 2κ′ ≈ λ0Ψ̂(κ) . (8)

With the equality sign, this is a homogeneous Fredholm integral equation [29] for the function

Ψ̂(κ), which has to be an eigenfunction with eigenvalue 2πλ0, of the integral kernel t̂O (κ − κ′)
describing the obstruction. This means that the requirement (5) is indeed too much restrictive

because it can be satisfied only by those beams whose angular spectrum (the eigenfunction) is

unaffected by the interaction with the obstruction, apart from a trivial proportionality factor (the

eigenvalue), as shown in (8).

3. Minimum reconstruction distance

Let us have a closer look at the minimum reconstruction distance z0, after which a self-

reconstructing beam is supposed to restore its profile. For a single plane wave exp(ik · r), with

wave vector k = k ( x̂ sin θ cos φ+ ŷ sin θ sin φ+ ẑ cos θ), this parameter can be straightforwardly

estimated in the context of either geometrical and wave optics [23].

Actually, let us consider an arbitrary obstruction on the xy-plane with an area O. As sketched

in Fig. 1, for a simply connected region O, we can always find the incircle (the largest circle

inscribed in O) and the excircle (the smallest circumscribed circle), both centered on the beam

axis [30]. The respective radii are b (inradius) and a (exradius). Then, elementary considerations

lead us to [24, 25]

z0 ∝
a

tan θ
, (9)

where the proportionality factor essentially depends on the shape of the obstruction.
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O

Fig. 1. Obstruction of area O represented in red. This region is circumscribed by the blue

circle of radius a (exradius) and it inscribes the yellow circle of radius b (inradius). Both

circles are centered along the z-axis of the beam at x = y = 0.

Next, notice that for our single plane wave

1

tan θ
=

kz
(k2

x + k2
y )1/2

=
(k2 − k2

x − k2
y )1/2

(k2
x + k2

y )1/2
, (10)

provided that k2
x + k2

y ≤ k2. This condition is necessary to maintain kz real-valued and it

limits the applicability of the equation above to beams whose angular spectrum does not contain

evanescent waves [27]. We can thus regard z0 as a function of κ = (k2
x + k2

y )1/2 in the k-space,

namely

z0 ∼ a Z (κ) := a

(
k2 − κ2

)1/2

κ
. (11)

For an arbitrary beam, the transverse wave vector κ has a density distribution function given

by |Ψ̂(κ) |2. So, we can define the minimum reconstruction distance z0 as the expected value of

the function a Z (κ); namely,

z0

a
= 〈Z (κ)〉 =

� (
k2 − κ2

)1/2

κ
|Ψ̂(κ) |2 d 2κ

�
|Ψ̂(κ) |2 d 2κ

, (12)

where both integrals are limited to the disk k2
x + k2

y ≤ k2. We stress that this formula assigns a

definite value of z0 to any density |Ψ̂(κ) |2: self-healing does occur for any beam.

4. Gaussian beams

As the Gaussian beam is the simplest example of a transversally unbounded diffracting beam,

we shall use it as our thread to test the proposed concepts. We take it to be a Gaussian of waist

w0, so it can be written as

Ψ(x , y, z) = exp(ik z)ψ(x , y, z) , (13)

with ψ(x , y, z) being the fundamental solution of the paraxial wave equation:

ψ(x , y, z) =
1

z − izR
exp

[
i
k

2

(
x2
+ y2

z − izR

)]
, (14)
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x/w0x/w0 x/w0

z/zRz/zRz/zR

|ψ(x, 0, z)|2 |ψA(x, 0, z)|2 |ψO(x, 0, z)|2

Fig. 2. Intensity distributions (evaluated at y = 0), of (from left to right): the incident field

ψ(x , 0, z), the “virtual” field transmitted by the aperture complementary to the obstruction

ψA (x , 0, z), and the field transmitted behind the obstacle ψO (x , 0, z). The plots correspond

to a Gaussian beam w0 = 0.26 mm and a soft-edge Gaussian obstruction with full width

a/w0 = 0.28. At z/zR = 2, the intensity profiles of ψ(x , 0, z) and ψO (x , 0, z) appear very

similar.

and zR = kw2
0
/2 denotes the Rayleigh range.

To facilitate the calculations, the obstruction is taken as a soft-edge Gaussian obstacle of full

width 2a located along the axis of the beam at z = 0. This is described by the transmission

function

tO (x , y) = 1 − exp

(
− |ρ − ρ0 |2

2a2

)
, (15)

where ρ0 = x̂ x0 + ŷy0 represents the displacement of the obstacle with respect to the

beam propagation axis. The Fourier transformations are straightforward and we finally get the

following expression for the beam transmitted by the virtual aperture complementary to the

obstruction:

ψA (x , y, z) =
aR

zR

1

z − iaR

exp

[
i
k

2

(
x2
+ y2

z − iaR

)]
, (16)

where, for the sake of clarity, we have chosen ρ0 = 0 and we have defined the modified Rayleigh

range aR as

aR =
zR

1 +
zR
ka2

≤ zR . (17)

The self-healing mechanism of the Gaussian beam is vividly illustrated in Fig. 2. A close

inspection of this figure reveals how the self-reconstruction works. From (17) it follows that

aR ≤ zR . Therefore, the “virtual” field ψA (x , y, z) transmitted by the complementary aperture

spreads in the xy-plane, while propagating along the z-axis, much more rapidly than the

unperturbed field ψ(x , y, z) and then for z/zR � 2 the intensity profile of the obstructed beam

almost coincides with the profile of the unperturbed one.

The integrals in (12) can be evaluated analytically; the final result is

z0

a
=
π

2θ 2
0

I0(1/θ 2
0

) + I1(1/θ 2
0

)

sinh(1/θ 2
0

)
, (18)

where θ0 = 2/(kw0) is the angular spread of the Gaussian beam [27] and Iν (z) is the modified
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0.00

0.05

0.10

0.15

0.20

0.25

θ0

(ka)−1z0/zR
10−3 z0/a
√

π/2 θ0

10−3
√
2π / tan θ0

Fig. 3. Minimum reconstruction distance z0/a as a function of θ0 as well as the paraxial

approximation. We also plot z0/zR , which shows a perfect linear behavior. The numerical

factor 10−3 is introduced to fit both curves in the same scale.

Bessel function of the first kind of order ν. In the paraxial regime, θ0 ≪ 1 and then

z0

a
≈
√

2π

tan θ0
, (19)

which is consistent with the expected geometrical optics result. A plot of z0/a is given in Fig. 3,

as well as the paraxial approximation, which works pretty well. Notice that z0 is larger for

smaller θ0, which might appear counterintuitive. The reason is that for smaller θ0, zR becomes

larger. To bypass this drawback, we have also plotted z0/zR , which can be easily obtained from

(18). For θ0 ≪ 1, we get

z0

zR
≈ ka

√
π

2
θ0 . (20)

The goodness of this linear approximation can be appreciated in Fig. 3.

5. Quantifying self-healing

We still have a conundrum pending from the end of Sec. 2: how is it possible to obtain the

simultaneous validity of both (1) and (5)?

Indeed, what one really needs is simply to satisfy (5) on the xy-plane in the neighborhood

of the propagation axis z. This statement may be formalized as follows. Consider again the

obstruction represented in Fig. 1 that occupies the region O in the xy-plane. Let E be an

arbitrary area in the xy-plane strictly contained within O. For example, E can be the region

confined by the inner circle of radius b, although different symmetries in the problem may

dictate different choices. Then, as a necessary condition for self-healing, we require that the

amplitude ΨO (x , y, z) of the obstructed beam is proportional to the amplitude Ψ(x , y, z) of the

unperturbed beam only within E; viz,

ΨO (x , y, z)
∣∣∣∣
(x ,y )∈E

≈ λ0Ψ(x , y, z)
∣∣∣∣
(x ,y )∈E

∀z ≥ z0 . (21)

From a mathematical point of view, (21) makes much more sense than (5). In fact, the field

configuration at z = 0 completely determines the field distribution at z > 0. Then, if at a

certain distance z, (5) were satisfied upon all the xy-plane, then it should be also valid at z = 0.

But the latter statement is clearly false because at z = 0 one has, by definition, ΨO (x , y, 0) =

tO (x , y)Ψ(x , y, 0) � Ψ(x , y, 0). Therefore, the desideratum of satisfying both equations (1) and

(5) over all the xy-plane cannot be true.
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)

ζ

Fig. 4. (a) Plots of the degree of self-healing DSH(z) for a Gaussian field of waist w0 and

different radii b of the integration region E. The continuous blue line represents the limit

value for b→ 0. (b) The limit value of DSH(z) for b→ 0, given in (26), for several values

of the width a of the soft-edge Gaussian obstruction.

To circumvent this difficulty, we first define a scalar product in the space of functions L2(E)

as

〈 f |g〉 :=

∫

E

f ∗ (x , y, z)g(x , y, z) dxdy . (22)

With this definition, the scalar product 〈 f |g〉 naturally becomes a function of z. Of course, the

choice of the integration domain E is partially discretionary (the only constraint is to be entirely

contained within O). However, it is useful to remind here that the concept of self-healing and

minimum reconstruction distance suffer from the same kind of arbitrariness. In other words,

since both (1) and (5) are impossible to satisfy over the whole xy-plane, one is forced to chose

where these equations should be satisfied. This is because in the total average the field does not

heal. This follows from Babinet’s principle, the perturbation is somewhere. The beam shape

becomes more similar to what it would have been without obstruction because the effect of the

obstruction is spread out. To some extent this is the core of any self-healing claim and defining

the healing locally at the position of the obstruction bypasses the problem.

The scalar product (22) allows us to introduce in a natural way the corresponding distance

D( f , g) between two functions in L2(E) as D( f , g) = ‖ f − g‖, where ‖ f ‖ = 〈 f | f 〉1/2. This

distance somehow quantifies the similarity between the obstructed and the unobstructed field.

In quantum information [31] there are many measures of the “closeness” of two (normalized)

states we want to compare. Probably, one of the most popular one is the fidelity, a modified

version thereof has been proposed in this context by Chu and Wen [32]. However, the standard

fidelity fails to furnish a quantitative description of self-healing because it is defined in terms

of a scalar product resulting from integration upon the whole xy-plane and this erases any z-

dependence.

In this paper, we shall use instead the notion of relative distance, which we define as

Dr (Ψ,ΨO) =
‖Ψ − ΨO ‖
‖Ψ + ΨO ‖

=
〈ΨA |ΨA〉1/2

[〈ΨA |ΨA〉 + 4〈Ψ|Ψ〉 − 4 Re〈Ψ|ΨA〉]1/2
, (23)

where the scalar products are defined as in (22). A direct application of the parallelogram

law [33] [‖ f − g‖2 + ‖ f + g‖2 = 2(‖ f ‖2 + ‖g‖2)] immediately confirms that 0 ≤ D
2
r ≤ 1.

If ΨO ≃ λ0Ψ, with 0 ≤ λ0 ≤ 1, then

Dr (Ψ,ΨO) ≃ 1 − λ0

1 + λ0

. (24)
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Fig. 5. (Left panel) Experimental setup used to check the self-healing of a fundamental

Gaussian beam created by the He-Ne laser. (Right panel) Intensity scans recorded by the

CCD camera at increasing distances ζ = 0, 0.5, 1.5, 4 and 6.5 (from left to the right).

The beam has a waist w0 = 0.24 mm, divergence θ0 = 0.84 mrad, and Rayleigh range

zR = 285 mm. The upper row corresponds to the obstructed beam (with α = 0.206),

whereas the lower row is for the unobstructed beam. In the first two scans, the images are

very small, so we have included insets (in white frames) with enlarged pictures to better

appreciate the patterns.

On that account, we find it convenient to introduce a z-dependent degree of self-healing:

DSH(z) =

√
1 − D

2
r (Ψ,ΨO) , (25)

and one can check that 0 ≤ DSH(z) ≤ 1. We underline that this concept of distance measure

has been successfully used in assessing a number of key concepts in quantum optics. In general,

a distance measure quantifies the extent to which two physical states behave in the same way.

While these distance measures are usually given by certain mathematical expressions, they often

possess a simple operational meaning, i.e., they are related to the problem of distinguishing

the two states. The notions of nonclassicality [34], entanglement [35], polarization [36], and

localization [37], to cite only a few relevant examples, have been systematically formulated

within this framework.

For a Gaussian beam, with cylindrical symmetry about the propagation axis z, we can choose

for E a disk of radius b ≤ a. The function DSH(z) can be calculated analytically, although

the final expression is complicated and of little use for our purposes. When b goes to zero, we

obtain the asymptotic form

DSH(ζ ) = ζ

√
1 − β2

β2 + ζ2
, (26)

where we have used the dimensionless variables

ζ =
z

zR
, α =

a

w0

, (27)

and β = α2/(1 + α2). It is interesting to notice that this function does not depend explicitly on

the angular spread θ0 of the Gaussian beam.

In Fig. 4(a) we plot DSH(ζ ), for a fixed value of α, and different radii b of the integration

region E. When b increases, the dependence of DSH(ζ ) with ζ becomes weaker. In Fig. 4(b)

we plot the limit form of DSH(ζ ), given in (26), for different values of α. When α goes to zero,

DSH(ζ ) tends to the unity, as expected from physical considerations.
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Fig. 6. Real and imaginary parts of the energy-normalized field amplitudes at the positions

ζ = 0.05, 0.28, and 0.56 (from left to right). The obstructed field is represented in orange,

while the unobstructed is in blue. The obstruction is characterized by α = 0.14.

6. Experiment

We have checked these predictions in the laboratory. To build up a Gaussian beam with a central

obstruction, a He-Ne laser beam (633 nm, Thorlabs) was used. The beam impinges on a digital

micromirror device (DMD) chip (Texas Instrument), with square micromirrors of 7.6 µm size

each. The obstruction was generated as an off-state region on this chip. A sketch of the setup is

presented in Fig. 5. All the previous treatment can be directly applied to this reflection mode.

First, we observed the intensity self-reconstruction of a Gaussian beam of waist w0 =

0.24 mm, divergence θ0 = 0.84 mrad, and Rayleigh range zR = 285 mm. The beam was

propagated a distance z = zR , where the half-width is wzR = 0.34 mm. Then, the DMD is

inserted at this position where we generate a centered obstruction of either circular or square

shape of half-widths a of 0.09 mm. For both shapes of the obstruction the results are much

the same. Then, the intensity scans are captured in several positions by a CCD camera (Basler)

with 5.5 µm pixel size. Some of these intensity profiles (for the case of a square obstruction) are

depicted in Fig. 5 for different propagating distances from the obstruction.

To experimentally assess the degree of self-healing DSH(ζ ) we must be able to measure the

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.85

0.90
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D
S
H
(ζ
)
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Fig. 7. Experimentally determined degree of self-healing DSH(ζ ) obtained from the field

measurements shown in Fig. 6. The integration region E is a dist of radius b = a = 0.07 mm.

The error bars represent standard deviations.
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whole complex amplitude for both the obstructed and the unobstructed fields, as it is apparent

from (23). To facilitate the measurement, a calibrated beam expander was used, so the new waist

was w0 = 0.6 mm and the Rayleigh range zR = 1787 mm. Then we place alternatively the CCD

camera and a Shack-Hartmann wavefront sensor (consisting of a microlens array with 150 µm

lens pitch) to the same distance from the DMD and measure the intensity and the wavefront

profile of the beam. To increase the wavefront measurement resolution, we used another beam

expander coupled directly to the wavefront sensor.

The field complex amplitude was then reconstructed from these measurements that were

interpolated to the same resolution. The DMD was positioned now at a distance of 560 mm from

the waist with half-width wz = 0.635 mm. For this measurement, we use the obscuration with

α = 0.14, and detection planes at ζ in the range 0.05–0.61. Some of the resulting amplitudes

are shown in Fig. 6, where the real and imaginary parts are plotted.

Once the complex amplitudes are experimentally determined, we can compute the degree

DSH(ζ ). For this purpose, we take the integration region E as a disk of radius b = a = 0.09 mm,

which is the size of the obstruction. Our experimental results are presented in Fig. 7. For each

distance, the measurements have been repeated over 100 times, so we can assign error bars. The

agreement with the theory is pretty good.

7. Concluding remarks

In summary, we have presented a general theory of the so-called self-healing process occurring

in diverse partially obstructed optical beams, whose validity is not limited to diffractionless

beams as, e.g., Bessel beams. From a careful analysis of the physical mechanisms involved,

we could ascertain the minimum propagation distance from the obstacle after which an optical

beam recovers its original intensity profile. Our results, obtained within the framework of wave

optics, confirm and extend the traditional ones based on purely geometrical arguments.

We have quantified self-healing as the closeness between the obstructed and unobstructed

beams, proposing a suitable measure that has been experimentally tested for Gaussian beams,

getting a beautiful agreement with the proposed theory.
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