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Unraveling the deep learning gearbox in optical
coherence tomography image segmentation
towards explainable artificial intelligence
Peter M. Maloca 1,2,3,4✉, Philipp L. Müller 4,5, Aaron Y. Lee6,7,8, Adnan Tufail4, Konstantinos Balaskas4,9,
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Hendrik P. N. Scholl1,3, Tobias K. Schnitzer10, Thomas Singer10, Pascal W. Hasler2,3 & Nora Denk3,10

Machine learning has greatly facilitated the analysis of medical data, while the internal

operations usually remain intransparent. To better comprehend these opaque procedures, a

convolutional neural network for optical coherence tomography image segmentation was

enhanced with a Traceable Relevance Explainability (T-REX) technique. The proposed

application was based on three components: ground truth generation by multiple graders,

calculation of Hamming distances among graders and the machine learning algorithm, as well

as a smart data visualization (‘neural recording’). An overall average variability of 1.75%

between the human graders and the algorithm was found, slightly minor to 2.02% among

human graders. The ambiguity in ground truth had noteworthy impact on machine learning

results, which could be visualized. The convolutional neural network balanced between

graders and allowed for modifiable predictions dependent on the compartment. Using the

proposed T-REX setup, machine learning processes could be rendered more transparent and

understandable, possibly leading to optimized applications.
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M
achine learning (ML) algorithms learn to perform a
specific task without being explicitly programmed to
use conventional logic rules1,2. In artificial intelligence

(AI), the technique of deep learning (DL) that utilizes multi-
layered artificial neural networks or convolutional neural net-
works (CNNs) for image segmentation is considered to be one of
the most promising tools in medicine3–6.

Giving that the modern ophthalmic diagnostic increasingly relies
on imaging, especially the use of optical coherence tomography
(OCT)7 and image analysis, the field of ophthalmology is particu-
larly suited to be focused on by ML applications. OCT is a non-
invasive imaging technology that utilizes low-coherence laser light
to produce cross-sectional images in biological tissues8–10. There
have been successful reports with regard to implementation of ML-
based analysis of OCT data and its diagnostic accuracy for neo-
vascular age-related macular degeneration11–13, diabetic retino-
pathy14–18, or retinal vein occlusion19–21, among others22. Machine
learning increased OCT information throughput and showed
similar performance as human graders in annotation of complex
OCT images23–26. Recently, the OCT image assessment capabilities
of ML were complemented by the introduction of a three-
dimensional CNN and the ML approach showed a performance
in making a referral recommendation that was at least as good as
human experts23. Despite the potential of ML applications26–37, it is
not yet useful in clinical routine. As hitherto applications take place
in a relatively narrow and predictive environment38,39 under tightly
defined rules and conditions40–43, the flexibility and inferential
reasoning in unforeseen and critical situations is still unknown.
Thus, a better understanding of possible challenges44 when
deploying ML will be helpful in order to evaluate the field of
application, limitations, and the reliability37,45.

The discrepancy between how a computer works and how
humans think is known as the “black box problem”46: in com-
munication technology and engineering language a system is
usually considered as a “black box” that features an input and
output path and shows a particular or at least statistically definable
sort of operation. However, such a solution either is not specified
in all details or cannot be visualized, so that its mode of working
remains unidentified or hidden or in a way that is not (yet)
comprehensible to humans. This can cause a major issue due to
the frequent incomplete knowledge and interpretability of the
algorithm’s internal workings, in particular, for DL models6,47.

Investigating the AI black box48–50 has become known as
explainable AI (XAI)51–53, which provides tools that reveal the AI
decisions. The call for transparency of AI models is especially
high in medicine, where uncertainty, ambiguity, and the
unknown are inherent to the discipline. XAI distinguishes
taxonomies53,54 such as understanding referring to comprehend
the inner mechanisms of an AI model; explaining revealing “why”
a machine technically decided for an outcome based on a col-
lection of features that contributed to the AI decision; and
interpreting mapping the abstract (and technical) XAI concepts to
a human understandable format. While humans often cannot
explain the reasoning behind a decision, understanding an AI
model’s decision process will provide confidence and acceptance
of the machine.

Further knowledge is achieved by causability approaches55,
which measure the quality of explanations produced by XAI
techniques in the human intelligence domain, e.g., with the Sys-
tem Causability Scale56. Post hoc XAI techniques such as LIME57,
BETA58, GradCAM59–61, LRP62,63, Deep Taylor decomposi-
tion64, or TGAV65 highlight and visualize regions of the input
data that lead to relevant prediction decisions after the neural
network training process (post hoc).

In contrast to the previously mentioned reports, in this work,
we enhance ML explainability with a post hoc XAI technique,

which we suggest terming Traceable Relevance Explainability (T-
REX) of graders. Supervised machine learning requires labeled
ground truth data, which is usually annotated by humans in a
highly time-consuming process. However, in some domains there
is no absolute consensus on what the true ground truth labels
should be. This is particularly true in medical imaging. Different
experts might judge the same medical images slightly differently
and come to different conclusions as to where for example the
borders of certain medical structures should be marked24. In
some cases, the ambiguity might be irresolvable, i.e. there is no
unambiguous ground truth criterion, since it is impossible to
determine the exact location of these structures without applying
invasive and destructive procedures to the patient. In these cases,
we might want to better understand how an ML algorithm reacts
to ambiguity in the ground truth data.

To shed light on this issue, we trained a CNN from ambiguous
ground truth consisting of labels from three human graders who
acted as three CNN “teachers”. In particular, we applied the pro-
posed XAI method T-REX to automatic OCT image segmentation.
Using our XAI technique T-REX, we propose to post hoc record
and evaluate the variability of the CNN predictions relative to the
human graders by using Hamming distances and then visualizing
and analyzing the measured variability with heatmaps and multi-
dimensional scaling (MDS) plots. Using this approach, we highlight
similarities of the trained CNN to the varying human graders (or
“teachers”) that the CNN has learned from which could be referred
to as a kind of ML neural recording. We assessed and visualized
how a CNN learned from ambiguous ground truth data and
independently positioned itself between the human graders with
respect to how the humans labeled the ground truth.

In summary, the specific contributions of the study are as
follows:

DL model for species-specific retina OCT image segmentation,
the first time for non-human primates, i.e., cynomolgus monkeys.

CNN training from ambiguous OCT ground truth labeled by
several independent human expert graders.

Proposing the XAI technique, termed T-REX, for the recording
and visualization of the predictive performance of a CNN with
respect to ambiguous ground truth generated by multiple graders.

Applying T-REX to reveal that a CNN trained on ambiguous
ground truth learned a form of consensus among the human
graders, which is eye compartment-specific (vitreous, retina,
choroid, sclera).

Results
The graders were 42 years old on average (range from 35 to 53
years). Average medical work experience was 14 years. Grader 1
was an experienced male retina specialist with a work experience
in ophthalmology of 25 years. Grader 2 and 3 were females (one
veterinary physician and one neuroscientist) with a work
experience in ophthalmology of 6 and 13 years. Expertise in OCT
imaging was 22, 6, and 2 years, respectively, for grader 1, 2, and 3,
respectively.

The proposed CNN showed a successful implementation of
automated segmentation of retinal OCT images in animals. The
performance results (i.e., Hamming distance) of the three human
graders and the proposed CNN with respect to the test set (200 B-
scans of eight eyes) are summarized in Fig. 1.

With respect to the reliability of confining the correct com-
partments, the variability of the vitreous and the retina com-
partments was smallest with values below 0.7% for all gradings.
The distinctively higher overall variability, presented above, might
therefore originate from the delimitation of the choroid and sclera
compartments, which are separated by the annotated choroidal
sclera interface (CSI) line (Figs. 2 and 3).
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Interestingly, the relative variability (i.e. the level of variability
of one pair in dependence on the overall level of pairwise varia-
bility) partly changed with the compartment (Fig. 3): While g1
and g3 always showed high and g2 and g3 low relative inter-
grader variability, the relative inter-grader variability of g1 and g2
was high in the vitreous and the retina, but low in the choroid and
the sclera. While the relative variability of g2 and CNN was
consistently in the lower half for each compartment, the relative
variability of g1 and CNN and g3 and CNN differed in depen-
dence of the compartment. Initial experiments on the smaller
ground truth set based on 800 B-scans yielded very similar results
indicating reproducibility of the results.

The MDS plots in Fig. 4 show mappings of the three human
graders (g1, g2, and g3) and the CNN as points into a Cartesian
coordinate system such that the physical distance between the
points corresponds to the mean Hamming distance and is pre-
served as well as possible. If all markers were on top of each other
in a MDS plot, all human graders and the CNN would have made
identical gradings; hence, the farther away the markers are, the
more differences exist between two gradings. The distance from
the CNN (red dot) to the human markers g1, g2, and g3 (black
triangles) visualizes the similarities between the CNN predictions
and the human gradings and correspond to the above-described
relationships. The overall CNN training variability is shown in
Fig. 4a, where it is visible that the CNN is similarly close to g1 and
g2. For the vitreous (Fig. 4b), the CNN lies similarly close to g2
and g3; for the retina (Fig. 4c) the CNN lies closest to g2, which is
not far from g3; for the choroid and sclera (Fig. 4d, e), the CNN
lies closest to g1, which is not far from g2.

To better understand how the recorded predictive performance
of the CNN relates to the ambiguity in the ground truth data,
individual Hamming distances per B-scan are shown in Fig. 5,
shifting the attention from the mean performance of the CNN
across the whole test set to a more thorough investigation on a
per B-scan level. Investigating the mean predictive performance
of a CNN does not trivially allow deducing general properties
about a CNN’s predicting behavior with respect to ambiguity in
ground truth data. This is only possible by an analysis of the
recorded CNN predictions per B-scan: at a glance, it is visualized
that the CNN shows little variation to human graders over each

single B-scan. However, it is recorded and depicted that among
human graders the variation per image can be much higher which
is not obvious when considering only mean Hamming distances:
The plot shows that the human graders g1 and g2 labeled rela-
tively similarly and that g2 and g3 labeled relatively similarly as
well (Hamming distances highlighted by predominantly green
color). On the other hand, the labels between g1 and g3 are more
different (Hamming distances highlighted by predominantly
yellow color). CNN predictions generally represent some sort of
average among the three human graders. The mean of the three
grader-CNN Hamming distances was smaller than the mean of
the three inter-grader Hamming distances in 78.5% of the B-
scans. The CNN predictions are usually closer to g1 and g2
(Hamming distances highlighted by predominantly green color)
than to g3 (small to moderate Hamming distances are highlighted
by green and yellow colors).

As specified below, the statistical permutation tests revealed
that the mean human inter-grader Hamming distances were
significantly larger than the mean Hamming distances between
the humans and the CNN across all compartments and for the
compartments vitreous, choroid, and sclera separately. The
recovered p values were all 2e−5 with a 99% confidence interval
of (0, 1e−4) for the p values. This is, of all the permutations
drawn, not a single time did the mean Hamming distance
between humans and the CNN exceed the mean human inter-
grader Hamming distance. On the other hand, for the retina
compartment the mean inter-grader Hamming distance was
remarkably smaller than the mean Hamming distance between
the humans and the CNN. The recovered p value was again 2e−5
with a 99% confidence interval for the p value of (0, 1e−4).

Discussion
In the past few years, OCT has been rapidly implemented into
diagnosis7,13,66 and monitoring of retinal diseases67,68. Currently,
such measurements are widely used in humans69–71, but not
routinely employed in animals (Fig. 6). Hence, this is the first
report of an automated DL segmentation of vitreo-retinal and
choroidal compartments in healthy cynomolgus monkeys, a
species commonly used as animal models of human disease as
well as for safety assessment in preclinical trials. The translation
of a previously developed and reproducible ML framework in
humans24 to animals was successful. This suggests that the basic
DL framework was also applicable to animals after the ML was
specifically adjusted and trained on animal data.

While ML enhanced the discovery of complicated patterns in
OCT data and showed similar performance to humans37, there is
still an unmet need for a better understanding on how ML exactly
learns72–74. Typically, data are inserted into an ML environment
and the results produced on the other side are often associated
with a great degree of uncertainty about what is happening in
between. This is referred to as ML black box (BBX). Clarifying
this black box entails creating a comprehensive ML approach
ideally designated for the human cognitive scale.

Thus, to solve part of this black box issue and to foster
transparency, we propose an ML display concept which is
designated as T-REX technique. T-REX is based on three main
components or gears: ground truth generation by several inde-
pendent graders, computation of Hamming distances between all
graders and the machine’s predictions, and a sophisticated data
visualization which is termed as neural recording (NR) of
machine learning. In analogy to a mechanical gearbox, consisting
of an arrangement of machine parts with various interconnected
gears, we understand an ML gearbox to be composed of fine-
tuned software elements which, when properly linked, should
provide insight into the inner workings of the entire machine. In

Fig. 1 Heatmap table of the test set grading variability. The deviations are

shown in percentage (%) between human graders (g1–g3) and the CNN

with regard to the ocular compartments. The percentages are equivalent to

the Hamming distance and represent the difference in labeled pixels

between two gradings. In particular, the inter-human grader variability and

the variability between the human graders and the CNN are shown. The

overall average inter-human grader variability between (g1, g2), (g1, g3)

and (g2, g3) was 2.02% and 1.75% between the CNN and the human

graders, i.e., (g1, cnn), (g2, cnn), and (g3, cnn). Overall, the results of grader

g2 and g3 were most similar, followed by the differences in the gradings of

g2 and g1. The segmentation of grader g1 and g3 differed most. When

comparing the segmentations of the human graders and the CNN, the

Hamming distance increased from CNN compared to g2, to CNN compared

to g1 to CNN compared to g3. Regarding individual compartments,

agreement in vitreous and retina are higher than in sclera and choroid.
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this sense, the ML learning process would receive a better and
appropriate appreciation to determine what characteristic data
the algorithm uses to make decisions. Given the overlap between
neuroscience and ML, we understand by the notion of NR the
registration and visual display of the predictive performance of a
machine learning algorithm and human graders related to the
ambiguity in the ground truth data, so that the values are pre-
sented in a comprehensive way to ML experts but are also suitable
for people with a lower level of ML expertise. This is even more
important to reach a larger audience so that researchers outside
the ML domain who are less familiar with ML complexities can
obtain a more straightforward approach to the findings.

To facilitate understanding of the Hamming distance values,
visual representations of the data were conducted using MDS plots
(Fig. 4) and a heatmap plot (Fig. 5). With regard to the

aforementioned, this form of neural recording enables data sci-
entists, regulators, and end users like medical doctors to better
understand the impact each human grader had on the predictive
performance of a trained machine learning model and thereby
enhancing the understanding of a machine’s decision process.
Therefore, an interesting added value of this study is that it is now
possible to develop a more detailed understanding of what a CNN
values in learning from each single OCT image annotation. Thus,
with regard to the decision-making process of a CNN, the depth of
the level of detail considered; in short, the ML decision granularity
was increased. The proposed T-REX methodology showed which
part of the ground truth was more important: generally, graders 1
and 2 were more relevant than grader 3 because the CNN was
almost always located closer to g1 and g2 (Figs. 4 and 5). Thus, g1
and g2 seem to have influenced the CNN more during learning.

Fig. 2 Optical coherence tomography image segmentation. Visualization of an exemplary test set result from a cynomolgus monkey’s left macula.

OCT B-scan image a, with corresponding image segmentation results derived from three human graders: b g1, c g2, d g3, and e the CNN. There was an

excellent inter-grader and grader-CNN agreement for the segmentation (vitreous, orange; retina, blue; choroid, yellow; sclera, gray). The highest variability

was found in the delineation of the choroidal sclera interface separating choroid and sclera. f highlights pixels in red color that were labeled differently by

g1 and g3. The number of pixels in red color divided by the total number of pixels in the image is the Hamming distance between g1 and g3.
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Interestingly, these findings also correlate with the level of OCT
expertise. Grader g1 and g2 have a higher level of expertise in
OCT imaging than grader g3. So, it could be assumed that g1 and
g2 generated more consistent annotations, which could have
drawn the CNN predictions closer to them than to grader g3.
This adaptive performance can be assumed to be directed, i.e., it
seems to be “aim-oriented”. Such a mode of behavior is usually
attributed to the term “intelligence”.

Overall, a good predictive performance was observed: The
minor overall average per-pixel variability between the trained
CNN and the human graders (1.75%) was notably lower than the
inter-human variability (2.02%). The gross range of variability
was congruent to previous reports75,76. Our results unraveled the
CNN’s problem-solving skills and behavior as a form of learning

a kind of robust average among all the human graders. This fact
further supports the utilization of DL-based tools for the task of
image segmentation, especially as the CNN performs the same
task repeatedly producing the same output—independent from
any physical or mental state compared to humans.

For comparing our results of the OCT segmentation to previous
works, we put our results in the context of an analogous study in
humans24. The study design differs, but still, the comparison gives
insight into the CNN performance. In the study with humans24, a
CNN was trained based on only one experienced grader, and
verified with multiple human graders at three points in time. In
contrast, in this study, the CNN was trained and verified with the
same three human graders that labeled the images at one single
point in time. In the human study, the overall inter-human

Fig. 3 Boxplots of Hamming distances as the percentage of pixels that were labeled differently. The distribution of variability is shown between

segmentations of the human graders (g1–g3) and the CNN predictions. Boxplots show pairwise comparisons of g1 with g2, g1 with g3, g2 with g3, g1 with

CNN, g2 with CNN, and g3 with CNN. a shows the variability over all compartments, b for the vitreous compartment, c for the retina compartment, d for

the choroid compartment, and e for the sclera compartment. Rectangular boxes in boxplots represent interquartile ranges (IQR) and extend from quartile

Q1 to quartile Q3 with green lines and green triangles indicating median (Q2) and mean, respectively. Upper whiskers extend to the last datum which is

less than Q3+ 1.5 × IQR. Lower whiskers extend to the first datum which is greater than Q1− 1.5 × IQR. Data beyond whiskers are considered as outliers

and are plotted as individual circles. Note: the retina and vitreous axes are zoomed in to demonstrate the compartment-specific variability. Overall and for

each compartment but the retina, the total inter-grader difference was larger than the difference between human graders and the CNN.
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variability was 2.3%, and the overall human–CNN variability was
2.0%, while the variability of three runs of the ground truth grader
with the CNN was 1.6%. The range of variability was also con-
gruent to previous reports75,76. As these numbers are higher than
in the monkey study presented here, the actual improvements in
the study design consequently might increase the performance of
the presented CNN. The balancing behavior pattern during the
CNN prediction, as unveiled with T-REX, reveals that in such an
ML study, it is advisable to train the CNN with several graders—
not just with a single gold standard expert. The proposed study
design makes a CNN more robust and inherently includes an
external validation37.

By analyzing the ML Hamming distance patterns, evidence has
not only been found to support an actively balanced type of
computational ML regime that can underlie any ML procedure. A
similar performance was also shown in cortical circuits although
of course artificial neural networks represent very rough simpli-
fications of brain functions77. Dependent on the compartment,
i.e., characteristic data label, the CNN judges the importance of
the labels of the three human graders during training differently.
For the vitreous and retina compartments, g2 and g3 produced
labels relatively similarly, and g1 produced labels relatively dif-
ferently. During training the CNN seems to pay more attention to
the labels of the two graders who labeled similarly since the mean

Fig. 4 Multidimensional scaling plots of mean Hamming distance. Results between labels of grader 1 (g1), grader 2 (g2), grader 3 (g3), and CNN

predictions are depicted. The axes have no unit and represent Hamming distances. Multidimensional scaling places g1, g2, g3, and CNN in a two-

dimensional coordinate system such that distances between g1, g2, g3, and CNN correspond to the mean Hamming distances as accurately as possible.

Multidimensional scaling plots are shown for a all compartments, b vitreous compartment, c retina compartment, d choroid compartment, and e sclera

compartment. g1, g2, and g3 are shown as black triangles. CNN is shown as a red circle. Depending on the compartment, the CNN showed a different

averaging behavior with respect to the human graders.
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Hamming distance across the test set of 200 B-scans is closer to
g2 and g3 than to g1 (Fig. 1). On the other hand, for the choroid
and the sclera compartments, g1 and g2 labeled relatively simi-
larly and g2 and g3 labeled relatively similarly. But the labels of g1
and g3 were relatively different. In this case, the CNN learned to
make predictions that are closer to g1 and g2 than to g3. This
behavior can be compared to a gear shift. Depending on the
compartment, i.e. the data label, the CNN applies a different
learning strategy with respect to the ground truth data. This
demonstrates the importance of employing multiple independent
graders for CNN training. Although this is a well-known and
expected phenomenon in machine learning, it is nevertheless
remarkable that this circumstance has become visually repre-
sentable with this work and perceptible in such a way.

T-REX, our proposed XAI approach, can be helpful to narrow
down the numerous possibilities for the development and
enhancement of artificially generated knowledge; for example, to
select which grader provides the best opportunities for ML
development or which intentional manipulations induce a dete-
rioration in performance73. In particular, our T-REX analysis
showed that it is necessary to study not only on the mean pre-
dictive behavior of the CNN but also to consider individual
predictions on a deeper data level (e.g. each single B-scan) to
transform machine learning into valuable learning. Considering
only the mean predictive performance could be misleading since
it would be possible for a CNN to predict certain images like
human grader 1 and others like human grader 2 or 3. Analyzing
the predictive performance of a CNN on individual images allows
to make more precise statements about the factors that impact the

learning process from ambiguous ground truth data. In general,
this will enable the targeted manipulation of the ML framework
in the future to document and display performance to objectively
benchmark ML models and ground truth data against each other
and thus improve and accelerate development. If it is better
understood how the machine works, then it will also be possible
to work out a set of correct premises to guide the deep neural
networks in their learning and to facilitate robustness and
generalization.

In order to be able to compare the ML models of different
research groups, it would be ideal if they would make not only
their code but also their data publicly available. Data sharing is
usually restricted due to privacy of health data or data with
commercial or intellectual property sensitivity. Therefore, “ML
black data” exists beside ML black boxes. T-REX would be an
interesting option here to generate indirect clues about the
characteristics of such restricted data used so that third parties
could better understand and verify the claims made.

Compared to other reports using CNNs a limit of this study
could be the relatively low number of annotated ground truth
data. However, the average Hamming distance between the
human graders and the CNN was 0.0175 corresponding to 1.75%
of pixels being labeled differently by the human graders and the
CNN, respectively. This high predictive performance of the CNN
was confirmed when training on the smaller ground truth data set
of 800 B-Scans, which yielded similar results. This indicates that
the ground truth size of 900 B-scans was sufficient to sustain the
claims proposed in this study. However, it can be speculated that
an even higher number of ground truth data could further

Fig. 5 Illustration of neural recording results. Heatmap of Hamming distances across all compartments for each individual B-scan (test set of 200 B-scans

from 8 eyes). Hamming distances are shown between g1 and g2, g1 and g3, g2 and g3, g1 and CNN, g2 and CNN, and g3 and CNN. Green and red colors

indicate small and large Hamming distances, respectively. Each eye contributed 25 B-scans. Thin vertical lines in black color separate eyes and the

horizontal black line separates inter-human and machine versus human recordings, respectively. The ordering of B-scans within each eye was constant and

no systemic difference was found regarding the location of the B-scan within the retina, i.e. whether it was a peripheral scan or a scan of the macula. There

was very little variation across all individual B-scans (mostly greenish colors). Nevertheless, it is interesting that between the graders a few B-scans are

shown in red, whereas compared to CNN no images were marked in red.

Fig. 6 Multimodal imaging of retinochoroidal zones in a healthy cynomolgus monkey’s eye. a A high-resolution histological hematoxylin and eosin

staining of a paraffin-embedded cross-section of a normal cynomolgus monkey’s eye. b Corresponding OCT B-scan from another cynomolgus monkey’s

eye. Illustrated in both images are the vitreous-retina border (ILM, single arrow), internal part of choriocapillaris (CCi, double arrows), and choroid–sclera

interface (CSI, arrow heads).
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improve the results. Nevertheless, the annotation of ground truth
data by humans is a very time-consuming process and the current
study setup appears to be an acceptable compromise between
human effort and CNN predictive performance, particularly
considering that the development of ML algorithms often aims at
reducing the human workload.

The image quality could also have impacted the results, espe-
cially in intensely pigmented eyes due to signal loss. Moreover,
there are other possible score systems than the Hamming distance
and the Hamming distance does not consider how large the
compartments are. In certain situations, e.g., myopia, the choroid
can be much thinner than the retina, which could possibly lead to
a larger difference, but that was not the scope of this study.

It is worth noting that the individual elements used in this
study, i.e. U-Net, Hamming distance, MDS, and heatmap plots,
might not be considered as a methodological novelty on them-
selves. However, the scientific originality of our work can be
viewed as a unique combination of pre-existing components78 or
as a permutation of new and old information79: T-REX and its
associated scientific discoveries in this study provide subsequent
studies with a distinctive technique and a combination of
knowledge not available from previous reports. In short, the
appropriate conceptualization of the mentioned ML elements into
the proposed framework improved the understanding of the
interface between automatic computing and life sciences and
therefore represents nevertheless a specific degree of originality.

Above all and despite all limits, in medicine, physicians will
only use an AI system for diagnosis and monitoring of diseases if
they can understand and comprehend the internal AI processing.
More importantly, physicians will only make a clinical decision
based on a recommendation of such an AI system if they can fully
identify themselves with the AI. A subset of XAI methods aims at
revealing post hoc insights into “why” a machine has taken a
certain decision. While well-known post hoc approaches such as
LRP or GradCAM visualize relevant regions in the input data, T-
REX, our proposed XAI method, visualized and evaluated simi-
larities between the CNN predictions and the labels of different
humans that the CNN has learned from. Therefore, this study
contributes to a better explainability in the application of AI, such
that a resulting DL model can be better appreciated. T-REX can
provide a rigorous evaluation and re-calibration tool to incor-
porate new DL standards. In a more general sense, it can increase
the quality of explanations that are based on DL systems, which
increases causability55. This in turn can promote safety for doc-
tors and patients. Accordingly, the proposed post hoc XAI
approach T-REX is expected to enable data scientists to model
more transparent DL systems. In return, this leads to further
insights into trained DL models by physicians, which utilize DL
for data-supported clinical decisions.

The proposed method T-REX is not limited to semantic image
segmentation in ophthalmology. In fact, it can be applied to
improve the understanding of any machine learning algorithm
that learns from ambiguous ground truth data. For example, T-
REX could be used in the application of uncovering biases of ML
prediction models in digital histopathology not only with respect
to data set biases but also with respect to varying opinions of
experts labeling the histopathology images80. In applications,
where supervised ML decision models are trained to detect dis-
eases such as Covid-19 (ref. 81) and experts still need to explore
and agree upon specificities of the particular disease, T-REX
would be helpful to visualize the ambiguity of the experts’ opi-
nions, i.e., labels. Hence, T-REX might be especially important if
the ambiguity is irresolvable meaning that domain experts dis-
agree about the true labels, but the differences cannot be elimi-
nated in a straightforward way. In many medical applications, the
true labels cannot be verified because applying invasive

procedures to patients is impossible. Therefore, methods such as
T-REX, which highlight the results of the model training from
ambiguous ground truth, help to improve the understanding of
the objectivity of a trained model and can lead to a reduction of
bias in the ground truth.

In a wider context, T-REX might yield insights into how AI
algorithms make decision under uncertainty, a process very
familiar to humans but so far less understood in the field of AI.

Methods
Animals and husbandry. Retrospective data from 44 healthy and untreated
cynomolgus monkeys (17 females, 27 males) of Mauritian genetic background with
an age range of 30–50 months and weight ranging from 2.5 to 5.5 kg were used.
The use and care of the animals was carried out according to the guidelines of the
US National Research Council or the Canadian Council on Animal Care Studies
and all procedures complied with all relevant ethical regulations. Inclusion criteria
were as follows: cynomolgus monkeys’ retinas showing a healthy and a complete
display on the OCT B-scans of all four compartments (vitreous, retina, choroid,
and sclera), and image quality of at least 25 on an arbitrary unit as indicated by the
manufacturer’s software. The exclusion criteria were any type of pathology of the
retinal layers or choroid recognizable by OCT.

OCT imagery. OCT scans were recorded with the Spectralis HRA+OCT imagery
platform (Heidelberg Engineering, Heidelberg, Germany) centering on the macula.
Each OCT scan was exported to a stack of 25 B-scans with the automatic averaging
and tracking feature. B-scans covered a horizontal and vertical length of 5.12 and
4.96 mm, respectively. Distances between consecutive B-scans are fixed and range
from 4.8 to 5.4 μm among OCT scans. All B-scans were exported as 24-bit
grayscale images with a spatial resolution of 512 × 496 pixels. Each B-scan depicts
vitreous, retina, choroid, and sclera compartments. For the training and testing of
the CNN, we randomly included the full OCT B-scan stack of either the left or the
right eye of one individual.

Human grading of OCT images. To train and test the CNN, three physicians
manually graded a selection of OCT B-scans. Grader 1 is a retina expert (oph-
thalmologist); grader 2 and 3 are a veterinarian and a biologist, respectively,
working with OCT in preclinical research on a daily basis. The graders generated
semantic segmentation maps, i.e., the pixel-wise label annotations, of the vitreous,
retina, choroid, and sclera compartments. For each B-scan, the graders manually
drew three lines defining the four compartments.

The vitreous compartment was defined as the cavity above the very innermost
segmentation line, the hyperreflective region of the internal limiting membrane
(ILM, Fig. 6). The retina compartment was outlined by the ILM line and the line
placed exactly above the hyporeflective zone referred to the choriocapillaris (CC)82.
The CC appears dark in conventional OCT images owing to the flow and its inner
part was selected as internal CC border (CCi).

The third choroid compartment included the choroid from the CCi line to the
CSI, which was detected as a more or less sharp transition zone in the reflectivity
from choroid to sclera. The hyperreflective choroidal tissue columns were also
included. The sclera compartment was defined below the CSI line. The ILM, CCi,
and CSI one-pixel-wide lines were drawn in a web-based, password-protected
labeling tool, particularly developed for OCT B-scan image annotation (Fig. 7).
B-scans were presented to the graders in a random order so that no continuous
sequence of sections within an eye was possible.

The grading process of the annotated labels was conducted in three stages: (1)
the tutorial set stage, (2) the test set stage, and (3) the CNN training set stage. In the
tutorial set stage, each grader got instructions for the labeling task and then labeled
the same set of 10 B-scans independently. In the test set stage, the data to
benchmark the inter-human and human-machine variability were acquired.
Table 1 describes the number of eyes and scans used for each set. All labeled B-
scans were resized to 8-bit grayscale 512 × 512 pixel images.

Ground truth generation. Semantic segmentation maps obtained in stage three of
the human labeling (900 B-scans of 36 eyes) were used to generate the ground truth
for the CNN algorithm. These data were split by randomly assigning 27 eyes (675
images) to the training set and 9 eyes (225 images) to the validation set. Training
and validation sets were used for training the CNN algorithm and for monitoring
the learning progress during training to prevent overfitting, respectively. The
training set was augmented by (1) vertically mirroring each B-scan and (2)
applying a random rotation to each B-scan with a rotational angle between −8° and
8°, thereby increasing the size of the training set from 675 B-scans to 2025 B-scans.

Ground truth size. Initial experiments were performed to investigate the effect of
ground truth size on CNN learning performance using a smaller data set to which
grader 1 contributed 300 B-scans (12 eyes) and grader 2 and 3 contributed 250 B-
scans (10 eyes) each. This ground truth set was randomly split into training and
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validation sets (25 and 7 eyes, respectively) and augmented applying the same
strategy as for the data set of 900 B-scans described above.

CNN architecture and training. In this study, a U-Net5 architecture was used with
22 convolutions, 5 transposed convolutions, and 5 skip connections, which pre-
viously proved very effective in learning semantic segmentation maps from human
OCT B-scans24.

All model parameters were initialized83 and learned by minimizing an
unweighted pixel-wise cross-entropy loss summed over the entire CNN input of
512 × 512 pixels. The CNN was trained with the Adam optimization algorithm on a
single NVIDIA TITAN-X GPU84,85. A mini-batch size of eight images with an
initial learning rate of 6 × 10−5 was chosen as hyperparameters because it has
proven suitable on preliminary empirical tests. Training was stopped after 1920
iterations (7.6 epochs) when the accuracy evaluated on the validation set reached a
plateau.

Comparison of human labels and CNN predictions with T-REX. The CNN
algorithm learned from ground truth generated from three independent expert
graders whereby each B-scan was labeled by one human grader. The test set,

however, consists of 200 B-scans of eight eyes, labeled by all of the three human
graders separately.

A similar CNN has already been successfully applied and validated to
humans24, whereby the comparison was made at the level of compartments. In that
previous study, the intersection over union (IOU) scores was applied. In the
proposed analysis in cynomolgus monkeys, that score was changed to the
Hamming distance metric to additionally compare global differences across all
compartments and visualize these global differences by means of MDS plots.
Hence, in this study, we quantitatively compare human labels and CNN
predictions to each other: (1) across all compartments and (2) on a per-
compartment level. For two semantic segmentations of a B-scan, the Hamming
distance metric measures the proportion of pixels labeled differently. It thus
corresponds to one minus the pixel accuracy between two sets of labels (see Fig. 2f
for a visualization on a B-scan example). Significant advantages of the Hamming
distance metric are that it is intuitive and allows a global quantification of
differences across all labels (vitreous, retina, choroid, and sclera) at once.

Furthermore, the Hamming distance metric fulfills the criteria of a metric by
mathematical definition (i.e. non-negativity, identity of indiscernibles, symmetry,
and the triangle inequality). This Hamming distances metric is a natural distance
function to measure the difference between two semantic segmentations across all
compartments. This motivates the visualization of Hamming distances through
MDS plots below. The IOU score, on the other hand, which was used in a previous
study24, does not fulfill the criteria of a metric by mathematical definition. Even
though, the IOU can be turned into a metric by mathematical definition by
considering 1–IOU86, also known as the Jaccard distance, the IOU and the Jaccard
distance are usually calculated on a per-class level. The Hamming distance metric
was chosen in the proposed analysis because (1) it is a metric by mathematical
definition, (2) it is intuitively easy to understand, and (3) it takes into consideration
all four classes at once.

Hamming distances were calculated between all pairs of human graders (g1 and
g2, g1 and g3, g2 and g3) and between each human grader and the CNN
predictions (g1 and CNN, g2 and CNN, g3 and CNN) for the 200 B-scans of the
test set. See Fig. 2f for a visualization of the Hamming distance across all
compartments on a single B-scan example. For each pair of gradings, the Hamming
distances of all 200 B-scans of the test set were visualized using a single
heatmap plot.

Fig. 7 Display of difference between classification, object detection, and semantic image segmentation. a Image classification is the task of assigning

each image to one class of a set of classes (e.g. healthy or diseased). b Object detection is the task of identifying and localizing objects in an image (e.g. the

fovea identified and located by the red rectangle or the vessels by the green rectangles). c Semantic image segmentation is the task of assigning each pixel

of an image to one class of a set of classes. In this study each pixel of an OCT B-scan was classified as one of the four major compartments vitreous

(orange), retina (blue), choroid (yellow), or sclera (white). d Ground truth was generated by presenting original cross-sectional B-scans to human graders

in an online annotation tool. e Human graders drew lines between the four major compartments using a mouse-driven cursor. Pixels that lie between two

lines were labeled as the compartment located between the two lines. f Overlay of human-generated labels with B-scan. The figure was created with Adobe

Photoshop (Version 2021, licence C5004899101EDCH, Adobe, San Jose, US, and Microsoft Powerpoint 365, licence 1446383959, Microsoft,

Redmond, US).

Table 1 Overview of data sets acquired for this study.

Annotation stage Amount

of eyes

OCT B-

scans

Grading

Tutorial set 10 10 g1, g2, g3: 10

Test set 8 200 g1, g2,

g3: 200

CNN training and

validation set

36 900 g1: 300

g2: 300

g3: 300
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To calculate individual Hamming distance scores for each of the four
compartments (i.e., vitreous, retina, choroid, and sclera), the semantic
segmentation maps were treated as binary maps, where a pixel either does or does
not belong to the respective compartment.

Mean and quartiles of Hamming distances between two gradings of the test set
were calculated and visualized with boxplots. Moreover, mean Hamming distances
were visualized using metric MDS87. MDS is a dimensionality reduction technique
to visualize pairwise distances among data points by mapping those data points
into a Cartesian coordinate system and preserving the original distances as well as
possible. For the visualizations to be meaningful, the underlying distance must
satisfy the criteria of a metric by mathematical definition (i.e. non-negativity,
identity of indiscernibles, symmetry, and triangle inequality), which was fulfilled by
the Hamming distance. Two-dimensional MDS plots were generated to visualize
distances among the four different gradings (g1, g2, g3, CNN) of the test set labels:
(1) across all compartments, (2) for the vitreous compartment, (3) for the retina
compartment, (4) for the choroid compartment, and (5) for the sclera
compartment.

We propose to term the approach described above as T-REX. This is, using the
Hamming distance to evaluate the predictive performance of an ML model trained
on ambiguous ground truth data with respect to each grader that contributed to
that ground truth data set, and, subsequently, visualizing the recorded Hamming
distances by heatmaps or with multidimensional scaling plots.

Definition of neural recording. It can be argued that CNNs currently cannot
function without a computer and their internal mechanisms are often opaque.
With regard to the similarities between neuroscience and ML, the observation and
possible recording of the activity of such computer-based circuits could be
described in a simplified way as “neural recording” (NR). Since every DL model
running on a computer already would fit that description, we propose an NR
framework to better understand and visualize how the recorded predictive per-
formance of the CNN relates to the ambiguity in the ground truth data. Ideally,
such a neural recording is presented in a way that is appropriate for a human
cognitive scale.

Statistics and reproducibility. Statistical significance tests were performed to
assess whether (1) inter-grader Hamming distances and (2) Hamming distances
between humans and the CNN originate from distributions with different means.
For this purpose, the 600 inter-grader Hamming distances (from grader pairs g1
and g2, g1 and g3, and g2 and g3) were combined into group A. The 600 Hamming
distances from human–CNN comparisons (from pairs g1 and CNN, g2 and CNN,
and g3 and CNN) were combined into group B. Statistical significance tests were
performed to compare group A with group B (1) across all compartments, (2) for
the vitreous compartment, (3) for the retina compartment, (4) for the choroid
compartment, and (5) for the sclera compartment. In all five cases, the data were
clearly skewed and thus unsuited for analyses with t-tests. The data were therefore
analyzed with non-parametric, unpaired permutation tests in R88 (URL http://
www.R-project.org, last visited 10 January 2020) with the package perm89 using
99,999 Monte Carlo simulations. The reproducibility of the ML method was pre-
viously reported24.

To assess the reproducibility of this study’s results all experiments were
independently conducted on the smaller training set of 800 B-scans, which was
described above. These additional experiments yielded very similar results to the
results obtained on the larger set of 900 B-scans.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
All source data underlying the graphs and charts presented in the main figures are

available as Supplementary Data 1–5. Any remaining info can be obtained from the

corresponding author upon reasonable request

Code availability
The source code to apply the T-REX methodology described in this study is available on

www.github.com/peter-maloca/T-REX and archived in Zenodo90.
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