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Abstract 

Digital cell lineages reconstructed from 3D+time imaging data of the developing zebrafish 

embryo are used to uncover mechanical cues and their role in morphogenesis. A continuous 

approximation of cell displacements obtained from cell lineages is used to assess tissue 

deformation during gastrulation. At this stage, embryonic tissues display multi-scale 

compressible fluid-like properties. The deformation rate at the mesoscopic level of the cell’s 

immediate surroundings appears noisy, in both space and time. The patterns identified by 

clustering the cells, according to the cumulative deformation rate along their trajectory 

throughout gastrulation, lead to a robust, ordered and coherent biomechanical map. The timing 

and amplitude of the biomechanical deformations provide a measurement of the phenotypic 

variability in small cohorts of specimens. We show that the biomechanical map matches the 

embryonic fate map of the zebrafish presumptive forebrain, in both wild type and Nodal pathway 

mutants (zoeptz57/tz57), where it reveals the biomechanical defects that lead to cyclopia.. The 

comparison of biomechanical patterns and the expression pattern of a transgenic reporter for the 
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transcription factor goosecoid (gsc), supports the hypothesis that embryonic cells acquire, at an 

early developmental stage, a biomechanical signature that contributes to defining their fate. 

 

Introduction 
 

Embryonic morphogenesis depends on the mechanical properties of the cells that make up 

tissues, in conjunction with the generation and transduction of forces that control their 

interactions1,2. Mechanical stimuli affect all levels of biological organization, including gene 

expression and the signaling activities that underlie both cell proliferation and cell death3,4. Cell 

stiffness, contractility, protrusive activity and adhesive properties define the mechanical 

properties of tissues. The robustness of embryonic development depends on the coordination of 

biochemical and biomechanical processes in space and time5-8. Live microscopy 3D+time 

imaging permitted the automated reconstruction of digital cell lineages and cell shapes9-16, which 

opened the way to a more quantitative and formal approach of cell dynamics and tissue 

deformation17,18. The quantitative analysis of cell displacements and shape changes has been 

used to characterize the tissue deformation rates in 2 dimensions (2D) in Drosophila or zebrafish 

embryos, and how certain mutations affect these parameters18-20. The construction of models that 

describe tissue properties and cell contacts succeeded to evaluate mechanical stresses in 2D21-25 

and more recently in 3D26. The challenge27-28 that remains is to tackle processes in 4D (3D over 

time), and then correlate biomechanical patterns with other spatiotemporal features, such as 

changes in gene expression and determination of cell fate29-31. Because its embryos develop 

rapidly and are transparent, the zebrafish is the vertebrate model of choice to acquire live 

imaging data and investigate the spatial and temporal dynamics of tissue deformation that 

underlie vertebrate gastrulation32-34. 
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Kinematic descriptors computed from digital cell lineages35,36 show the rates with which tissues 

deform during zebrafish gastrulation. These deformations include compression or expansion, 

rotation and distortion in 3D on the mesoscopic scale of a cell’s immediate surroundings. The 

deformation rates at the level of the cell’s neighborhood fluctuate locally both in space and time. 

We find that these fluctuations are compensated through a cumulative process that operates 

during gastrulation along cell trajectories. We arrive at a set of mechanical descriptors of the 

cell’s neighborhood that constitute its biomechanical profile. We applied machine learning to 

these biomechanical profiles and built a mechanical signature for every single cell along its 

trajectory37,38. The ability to visualize cell populations in space and time, clustered according to 

the similarity of their mechanical signature, showed ordered and coherent patterns. Differences 

observed between wild type (wt) and mutant embryos (zoeptz57/tz57, deficient for the transduction 

of the Nodal pathway39) showed that in mutants, altered deformation patterns anticipate the 

cyclopic phenotype. These findings prompted a comparison with morphological landmarks and 

gene expression patterns. We find that the embryonic fate map can be inferred from cellular 

mechanical history without any knowledge of their identity or fate.  

Results 

Deformation rates provide landmarks for zebrafish gastrulation 

We constructed a biomechanical map of the developing organism with cells’ biomechanical 

profiles calculated from strain descriptors obtained from a tensorial analysis (overview in Figure 

1).  We quantified mechanical strains at the (mesoscopic) scale of the cell and its neighborhood 

from cell lineage trees reconstructed from 4D imaging data of zebrafish embryos developing 

from 6 hfp to 14 hpf36 at 26°C (Figure 1). Our methodology was applied to six wild-type 

embryos (wt1- wt5, wt6)(Supplementary Movie 1, 2), one of them carrying a GFP reporter to 
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monitor the expression of goosecoid (gsc) transcription factor , and five zoeptz57/z57 mutants 

(oep1- oep5, Supplementary Movie 3) with deficiency in the transduction of Nodal signals that 

leads to cyclopia (Supplementary Table 1). Embryos were imaged from the animal pole 

throughout gastrulation (Figure 1A, Supplementary Fig. 1) to observe the development of their 

presumptive head region and forebrain (temporal resolution 2.5 min./frame; voxel size : 1.4 µm3 

(Supplementary Movie 1, Supplementary Table 1)).  

Mechanical strains were calculated from a regularized vector flow field 𝑣!" 	(Figure 1B and 

Figure 2 first column), obtained  through temporal averaging of cell displacements by a Gaussian 

kernel filter (T = 10 min) and their spatial regularization. The optimal regularization term 

resulted in a characteristic spatial scale of interpolation of R = 20 µm. Depending on 

developmental stage, this scale covers one or two rows of neighboring cells as cell size 

diminishes throughout gastrulation. Artifacts can originate from cell tracking errors25 

(Supplementary Fig. 2), which are in part removed by this operation. Tracking errors were 

further corrected automatically to ensure continuity of cell trajectories (Figure 1C). This is 

necessary to analyse the evolution over time of the kinematic descriptors. 

The tensorial analysis was accomplished by first calculating the Incremental Deformation 

Gradient (IDG) tensor field40,41 to build a time-evolving Eulerian description (Figure 1D). The 

Eulerian description of deformation includes expansion and compression rates (𝑃 < 0 and 𝑃 > 0 

respectively), distortion (shear) rate (𝑄#) and rotation discriminant (𝐷) (Figure 1D and 

Supplementary Table 2, 4). The distortion rate descriptor (𝑄#) derived from the deviatoric 

tensor3, allowed quantitation of the amount of mesoscopic shape changes as a consequence of 

intercalation of cells and/or changes in cell shape. 
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The different descriptors were displayed as spatiotemporal maps with our visualization interface 

Mov-IT36. This display showed characteristic patterns of mechanical activity in the zebrafish 

anterior region between 6 and 14 hours post fertilization (hpf) at 26°C (Supplementary Movie 4-

9). The Eulerian descriptor maps provided a new class of spatiotemporal landmarks, 

characteristic of morphogenetic transitions.  

For wild-type embryos, at the onset of gastrulation (6 hpf), planar expansion of the blastoderm 

over the yolk cell showed that tissue shaping still involved epiboly movements only, with cells 

moving away from a source point in the velocity field 𝑣!", located at the animal pole (Figure 2, 

Supplementary Fig. 3, Supplementary Movie 4-9). The zoeptz57/z57 mutant embryos showed a 

similar behavior (Supplementary Fig. 4, Supplementary Movie 10).  As gastrulation proceeded 

(7-8 hpf), tissue compression at the dorsal side of the embryo was the predominant mechanical 

activity. Consequently, a mechanical boundary emerged at the anterior border of the neural plate, 

as revealed by the velocity 𝑣!" and the compression and expansion rate 𝑃. The zoeptz57/z57 mutant 

embryos still showed similar behavior but with this mechanical boundary shifted posteriorly. By 

mid-gastrulation of wild type embryos (8-9 hpf), the distortion rate (𝑄#) indicated shear along 

the midline throughout the tissues, likely the result from the relative movements of hypoblast 

(internal cell layers) and epiblast (external cell layers) (Figure 2, Supplementary Fig. 3, 5, 

Supplementary Movie 11-15). This behavior was not seen in the mutant embryos 

(Supplementary Movie 16, 17), in agreement with their known defect in hypoblast formation. 

The defective hypoblast did not have the proper speed to slide under the epiblast (Supplementary 

Fig. 4). Massive mesoscopic distortion (𝑄#) and drop of compression at the time of tail bud 

closure (10-11 hpf) was consistent with fast convergence of cells toward the midline and with 

their intercalation (Supplementary Fig. 3, 5). The mutant embryos showed an increase in tissue 
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compression at the level of their shifted dorso-ventral mechanical border (Supplementary Fig. 4). 

By 9 to 12 hpf in wt embryos, increasing rotation rates (𝐷) on both sides of the midline marked 

the end of gastrulation and the onset of neurulation, with clockwise rotation contributing to tissue 

convergence toward the midline and antero-posterior axis elongation.  

By 12 hpf, the disappearance of large-scale biomechanical deformations indicated another 

regime of tissue dynamics (Figure 2). zoeptz57/z57 mutant embryos did not display the 

characteristic vortices observed by the end of gastrulation in wt embryos. Together with the 

marked posterior shift of the dorso-ventral mechanical border, this feature suggested that the 

midline in the mutant failed to play its role of repellant and only kept its role of attractor. 

The mechanical patterns unveiled by the Eulerian descriptors (Figure 2, Supplementary Movie 4-

9, 17) in wild-type embryos showed heterogeneities in space and time. While the velocity (𝑣!") 

field was fairly symmetric, at least from 6 to 10 hpf, the pattern of the topology descriptor (𝜏), 

showed bilateral heterogeneity (Supplementary Fig. 3, Supplementary Movie 4-9, 17). This 

descriptor, 𝜏, combines compression (𝑃) and rotation (𝐷) measurements and integrates their 

fluctuations. Its persistence in time was blurred by its instantaneous fluctuations. While 

constrained in the tissue flow of gastrulation, neighboring cells experienced (on a 10 min time 

scale) variable levels of strain. Mutant embryos also showed heterogeneities within a single 

specimen and even more variability across the mutant specimens analyzed (Supplementary Fig. 

4, Supplementary Movie 10, 17). The loss of symmetries seemed to produce greater instability in 

the embryos. 

The robustness of biomechanical cues results from the cumulative rates of deformation 

along cell trajectories 
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We hypothesized that cumulating the mechanical constraints that cells experience over discrete 

time intervals might allow the emergence of more robust and persistent biomechanical patterns 

(Figure 3). We relied on a Lagrangian trajectory-based representation of the descriptors to assess 

the cumulative deformation rates along cell trajectories. This representation defined Lagrangian 

Biomechanical Profiles (LBPs), which will be further classified and averaged in Canonical 

Lagrangian Biomechanical Profiles CLBPs (Figure 1E-G). Computing series of IDG tensors 

along the trajectories integrated from the vector flow field 𝑣!" (Supplementary Movie 18) 

provided a sequence of Finite-Time Deformation Gradient (FTDG) tensor fields. Cumulative 

mechanical cues along the trajectories from an initial temporal reference 𝑡$%$ were then expressed 

by the invariants of the FTDG tensors (Supplementary Table 3, 4). The latter included volume 

changes (𝛥𝑉), rotation angle (𝛥𝛼) and tissue distortion or reshaping (𝛥𝛾1 and 𝛥𝛾2) for the 

amount of distortion and its geometrical configuration respectively (Figure 3, Supplementary 

Fig. 6, Supplementary Movie 19, 20). The cumulative LBPs led to spatially more homogeneous 

territories than the Eulerian descriptors (Supplementary Movie 18-20) suggesting, that 

throughout gastrulation, neighboring cells experienced similar cumulative mechanical 

deformations (Figure 3,  Supplementary Fig. 7). 

Interindividual comparison based on the Lagrangian Biomechanical Profiles of selected cell 

populations 

To further investigate the homogeneity of cumulative versus instantaneous mesoscopic 

mechanical cues in cell populations, and the robustness of the patterns in different wild-type 

zebrafish embryos, we investigated different ways of decreasing the dimensionality of the data. 

This was achieved by defining cell populations either a priori according to embryological 

knowledge or without any a priori hypothesis using machine learning methods. The mean and 
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variance of instantaneous LBPs for similar cell domains encompassing part of the dorsal epiblast 

and hypoblast selected manually in five different embryos42 (tailbud selection, Supplementary 

Fig. 8, Supplementary Movie 21, 22) confirmed temporal markers for the progression of 

gastrulation in both tissues (Figure 4A,  Figure 2). Interindividual comparison confirmed the 

robustness of biomechanical features but also indicated timing differences, which we interpreted 

as a consequence of variability in experimental conditions (e.g. temperature). The onset of 

epiblast compression was taken as a landmark to temporally align the different datasets at an 

initial state (𝑡$%$) between 7-8 hpf) and calculate the cumulative profiles (Figure 4B). As 

expected from results in Figure 3, cumulative LBPs produced more homogeneous and robust 

patterns than the instantaneous ones, reinforcing the hypothesis of spatiotemporal compensation 

of local fluctuations.  

Canonical Lagrangian profiles (CLBPs) characterize cell populations mechanical history  

We further investigated the spatiotemporal coherence of biomechanical patterns by 

systematically categorizing the cumulative LBPs for a selection of cells selected that remain in 

the field of view from 8 to 14 hpf  (shield-stage selection, Supplementary Fig. 9). The selected 

cell population is located at the animal pole of the early gastrula and was expected to encompass 

the presumptive forebrain and the underlying prechordal plate29. Similarities amongst the LBPs 

were estimated based on their dynamic range and temporal evolution. We calculated the LBP 

distance distribution using a cosine metric and unsupervised classification to find groups with 

minimal variance. This classification created categories of LBPs and the corresponding canonical 

Lagrangian Biomechanical Profiles (CLBPs) for each of the descriptors (Figure 5A). Three 

CLBPs sufficed to characterize the diversity of mesoscopic deformation histories within the 

selected cell populations (Figure 5A, Supplementary Fig. 10-12).  For each of the descriptors, 
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one of the canonical profiles appeared to segregate the hypoblast from the epiblast, indicating its 

phenotypic homogeneity (Supplementary Fig. 12). Conversely, the epiblast population appeared 

heterogeneous, as two different canonical profiles were required to characterize its cells’ 

mechanical history (Supplementary Fig. 12). 

The biomechanical map of oeptz57/tz57 mutants predicts their cyclopic phenotype 

The temporal and spatial coherence and robustness of the cumulative descriptor patterns 

suggested that unsupervised machine learning could reveal morphogenetic domains with distinct 

mechanical histories. The cell trajectories were hierarchically classified according to their 

signature in terms of CLBPs (Supplementary Fig. 13). This uncovered four main populations 

ordered in space and time. These populations were coherent and formed bilaterally symmetrical 

domains that can now be compared with the state-of-the-art brain fate map29-31 (Figure 5B, 

Supplementary Fig. 14-16, Supplementary Movie 23-25). We used our interactive visualization 

tool Mov-IT to compare the CLBP based categories to morphological compartments, as 

identified by fluorescent staining of the cell membrane. The fluorescently stained domain was 

confined at the posterior midline by 8 hpf. We interpret this as having captured the prechordal 

plate and the ventral forebrain, i.e. presumptive hypothalamus. This region undergoes an early 

increase in distortion and rotation, followed by a rigid anterior displacement over the yolk. The 

similar mechanical histories of these two fields highlight the role of the prechordal plate in the 

formation of the hypothalamus and in the separation of bilateral eyes. The three other 

populations (Fig. 5; yellow, pink and red) matched the eye field and probably the ventral 

telencephalon. The eye field appeared to contain three domains with different mechanical 

histories: i) a most ventral domain (yellow) that underwent the steepest temporal increase in 

rotation by the end of gastrulation, ii) a ventral medial domain (pink) that underwent a late 
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distortion and low-to-intermediate compression, and iii) a ventral lateral (red) subjected during 

gastrulation and early neurulation to the highest increase in compression (Supplementary Fig. 15, 

16, Supplementary Movie 23-25). Altogether, we propose that the unsupervised classification of 

canonical LBPs identifies morphogenetic fields and anticipates their regionalization based on a 

characterization of the cumulative mechanical cues along cell trajectories (Supplementary Fig. 

16, 17).   

We hypothesized that morphogenetic defects such as cyclopia should lead to major 

biomechanical perturbation at an early stage of development. This was shown by the 

biomechanical map of zoeptz57/tz57 mutants. zoeptz57/tz57 mutants defective in the transduction of 

Nodal signals lack endoderm and endomesodermal cells of the prechordal plate43 

(Supplementary Movie 26). The calculation of CLBPBs showed a reduced distortion activity in 

mutants compared to wild type embryos (Figure 5A bottom row, Supplementary Fig. 17). As a 

consequence, the biomechanical map constructed for zoeptz57/tz57 embryos gathered 3 fields 

instead of 4 in wild type (Figure 5B). The main perturbation at an early step of gastrulation in 

zoeptz57/tz57 embryos is the absence of the green domain at the midline, characterized by its high 

shear activity. This defect leads to a cascade of abnormalities that include delayed convergence 

of cells towards the midline and antero-posterior extension of the body axis. We interpret from 

the biomechanical map, that the midline acts as an attractor-repeller structure in wild type 

embryos and that it retains only its attractor activity in zoeptz57/tz57 mutants. This leads to the 

absence of the vortices normally observed in the cell flow in wild type embryos (Supplementary 

Movie 9, 10) and to the absence of separation of the red biomechanical domain at the midline 

(Fig. 5B, red domain) consistent with a unique eye field that leads to cyclopia. We hypothesized 
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that the green biomechanical domain should match with the prechordal plate. It was assessed in 

gsc:egfp transgenic embryos with labeled prechordal plate44.  

 

Insights from the comparison between gene expression and biomechanical maps  

We constructed the biomechanical map of a gsc:egfp transgenic embryo (Figure 6, 

Supplementary Movie 27). The level of expression of the fluorescent reporter along cell 

trajectories was estimated (Methods). Three domains were identified with different levels of 

expression (high in green, medium in cyan and low in blue) (Figure 6A, Supplementary Fig. 18). 

In each group, artifacts in the intensity of the reporter expression due to depth and bleaching 

were compensated according to the intensity of nuclear staining that is expected to be 

homogeneous in space and constant in time (Figure 6B, 6C). The gsc reporter expression 

domains overlaps the green biomechanical domain. This supports the hypothesis that the 

biomechanical impact of the prechordal plate in tissue morphogenesis is essential to the 

formation of the forebrain (Figure 6D, 6E).  

Concluding remarks 

Digital reconstruction of cell lineage trees, based on 3D+time imaging of a developing organism 

is a new approach to study the cell and tissue dynamics that underlie morphogenesis45. The 

quantitative aspects of such datasets enable the construction of models with predictive value. The 

exploitation of these massive quantitative data sets for maximum effect requires the development 

of new interdisciplinary approaches State-of-the-art computational workflows were designed to 

process time-lapse imaging data sets and achieve cell tracking in space and time. Nonetheless 

these approaches have their limitations and do not produce error-free lineage trees35,36, especially 
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in the case of vertebrate organisms with high cell density and thick tissues. A typical 2% error 

rate of false links per time step requires manual corrections to retrieve the cell’s complete clonal 

history. We show that this somewhat noisy data set readily ends itself to kinematic analysis, 

based on an approximation of the tissue flow46. Gastrulating tissues in zebrafish display a fluid-

like behavior, as suggested also for other vertebrate species (e.g. chicken47). A constitutive 

equation that would capture the relationship between spatially and temporally heterogeneous 

stresses/strains within embryonic tissues has yet to be formulated. To do so will require stress 

measurements in the whole organism, a major challenge. Our 3D framework for automated 

kinematic analysis of tissue deformation can uncover a possible role for mechanical cues in 

morphogenesis. Although the forces that drive zebrafish gastrulation remain to be determined, 

our 3D kinematic analysis shows that displacement of the hypoblast relative to the epiblast at the 

dorsal midline generates bilateral jet-vortices that shape the anterior brain, including bilateral 

eyes. Our 3D kinematic patterns and their comparison with gene expression maps provide a new 

set of tools to study what establishes morphogenetic fields and the resulting presumptive organs. 

More generally, 3D instantaneous and cumulative tissue deformation patterns, as validated here 

for zebrafish gastrulation, can provide insights in morphogenesis for unknown species. The 

method is well suited for large-scale collective cell displacements, imaged and reconstructed 

with state-of-the-art tools. 

Biomechanical fate maps integrate diversity, robustness and spatio-temporal organization of 

mechanical patterns. Our results establish that mechanical interactions at the cell scale and at the 

tissue scale play a key role in driving developmental outcomes. 

Methods  

3D+time imaging data of a cohort of zebrafish embryos 
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Wild-type or oeptz57/tz57 mutant Danio rerio (zebrafish) embryos were stained as described by48, 

RNA injection at the one-cell stage with 100pg H2B-mCherry and 100pg eGFP-HRAS mRNA 

(Supplementary Fig. 1) prepared from PCS2+ constructs48,49. gsc:egfp embryos were 

counterstained with H2B-mCherry. Embryos raised at 28.5°C for the next 3 hours were 

dechorionated and mounted in a 3-cm Petri dish filled with embryo medium. To position the 

embryo, the Petri dish had a glass coverslip bottom, sealing a hole of 0.5mm at the dish center, 

holding a Teflon tore (ALPHAnov) with a hole of 780 μm. The embryo was maintained and 

properly oriented by infiltrating around it 0.5% low-melting-point agarose (Sigma) in embryo 

medium50. Temperature in the Petri dish slightly differed for the 6 wildtype specimens (wt1: 

about 25°C estimated, wt2: 26°C wt3: 26°C wt4: 28.6°C wt5: 24.7°C wt6: 26ºC) given by a 

temperature probe in the Petri dish (OKOLAB). After the imaging procedure, the embryo 

morphology was checked under the dissecting binocular and the animal was raised for at least 24 

hours to assess morphological defects and survival. The different datasets encompassed the same 

developmental period (4-6 hpf to 14-16 hpf). All the specimens were imaged from the animal 

pole and the imaged volume encompassed the forebrain with some differences depending on the 

animal positioning in its mold. Variability in the development speed reflects temperature 

differences as well as intrinsic variability of embryonic development. Imaging was performed as 

described36 with 2-photon laser scanning51 on Leica SP5 upright microscopes and high numerical 

aperture 20x water dipping lens objectives. Image acquisition parameters are summarized in 

Supplementary Table 1. 

Digital cell lineages 

The 3D+time datasets featured a constant time step ∆𝑡 of approximately 2.5 minutes, defining a 

discrete time scale for the cohort and a voxel size between 1.2 and 1.4 µ𝑚& (Supplementary 
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Table 1). Given this time interval in comparison with the temporal lengthscale of the 

gastrulation, we assume instantaneous observation, therefore ∆𝑡~𝛿𝑡. Digital cell lineages (Figure 

1, Supplementary Fig. 1) were obtained through the BioEmergences automated image processing 

workflow36. Cell positions were given by the approximate nucleus centers after applying the 

nuclei segmentation module of the workflow. The cell lineage data including cell positions at 

each time step, linkage from one time step to the other and linkage between mother and daughter 

cells at the time of cell division was computed by the cell tracking module and presented in a 

comma-separated-values (.csv) table format (cell identifier and position, mother identifier called 

as such whether the cell divides or not). As reported in Faure et al.36, after manual corrections 

made through the tool Mov-IT, the BioEmergences tracking method yielded an error rate of 

approximately 2% representing the percentage of false or missing links between two consecutive 

time steps [𝑡 , 𝑡 + 𝛿t].  
Flow field approximation of cell lineage 

We used the cell lineage to provide the complete structured spatiotemporal information about cell 

trajectories, including cell divisions. Specifically, we proposed a generalized data record for each 

cell nucleus within the lineage as follows: 

{𝑐𝑒𝑙𝑙𝑖𝑑, 	𝑚𝑜𝑡ℎ𝑒𝑟𝑖𝑑, 𝑥, 𝑦, 𝑧, 𝑡}$ 	
where i indexes the detected cells (a new i is created at each mitosis and allocated to one of the 

daughter cells), cellid is the corresponding unique identifier of the local node representing cell i at 

the (𝑥, 𝑦, 𝑧, 𝑡) spatio-temporal nucleus position in the lineage tree, and motherid is the identifier of 

the linked nucleus position at the previous time step (mother cell). The set of detected nuclei forms 

a discrete spatiotemporal map 

Gaussian filtering of the velocity field with temporal information 
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Given a temporal resolution of the time-lapse data of 𝛿𝑡 ~ 2.5 minutes, singular cell displacements 

produced by divisions or tracking errors occurred at a frequency close to the sampling’s Nyquist 

frequency and were thus assumed to generate high-frequency noise. In order to filter out this noise, 

we performed a temporal smoothing of the displacements along the cell lineage with a Gaussian 

kernel 𝑁(0, 𝑇), where T is a scale in the order of minutes. By testing several parameters, we set 𝑇 

= 10 min to  modify the samples of the original velocity field at 𝑥$ and generate a smoothed velocity 

field 𝑣!(𝑥$) with the same temporal resolution and spatial distribution. In addition, displacements 

over the threshold MaxMov = 9 𝜇𝑚/𝛿𝑡 were removed as outliers. Overall, this filtering helped 

remove and smooth out vectors resulting from segmentation and tracking errors. 

𝑣!(𝑥$(𝑡)) = '
(!,#∑)$∈	,	 𝑤$,!(𝑡.)𝑣!(𝑥$(𝑡 + 𝑡′)) (1) 

𝑤$,! = 𝑒/ %&

&'& if i is well tracked 

𝑤$,! = 0 if not 

𝛱 =	 {𝑡 + 𝑘𝛿𝑡	|	𝑘	𝑖𝑛𝑡𝑒𝑔𝑒𝑟	𝑘𝛿𝑡 ∈ 	 [−2𝑇, 2𝑇]}	

𝛼$,!(𝑡) = 	 V
)$∈	,

𝑤$,!(𝑡´)	
 

Regularization of the velocity field with spatial information 

The vector field 𝑣! was further filtered around the position of each nucleus 𝑥$ 	through a spatial 

Gaussian kernel 𝑁(0, 𝑅) obtaining smoothed versions of the velocity field 𝑣!"(𝑥$) with the same 

temporal resolution and the same spatial distribution of samples. Through a regularization process 

based on the Gaussian filtering characterized by the parameter 𝑅 and a second-order structure 

function derived from the field, we tested the differentiability of the new vector field 𝑣!"(𝑥$) and 

adjusted the parameter 𝑅 to minimally modify the samples velocity field.  

The spatial Gaussian filtering was defined as follows: 
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𝑣!"(𝑥$(𝑡)) = '
0!,#∑1	∈	2#($) 𝑤$,"Y𝑥1Z𝑣!(𝑥$(𝑡)) (2) 

𝑤$," = 𝑒/ %&

&#&  

𝛽$,!(𝑡) = 	 V
)$∈	2#

𝑤$,"Y𝑥1Z	

where	𝑁"(𝑖) = {𝑥1}		is the set of neighbors interpolated, 𝑤$,"Y𝑥1Z is the weight of each neighbor 

according to the 𝑁(0, 𝑅) distribution and 𝛽$," the sum of all the weights. In order to preserve 

boundaries within the displacement field, a binary function 𝑆Y𝑥1 , 𝑥$Z was used to discard outlier 

displacements: 

𝑁"(𝑖) = {𝑗	|	‖𝑥1 − 𝑥$‖ < 2𝑅, 𝑆Y𝑥1 , 𝑥$Z 	= 1}  (3) 

where 𝑆Y𝑥1 , 𝑥$Z comprises three thresholds based on data observation: the maximum angle of 

deviation against the reference (π/2), a minimum speed (0.2 µ𝑚/𝑚𝑖𝑛) and a maximum ratio of 

speed against the reference (3𝑣!(𝑥$)).  
To calibrate the spatial filtering 𝑁(0, 𝑅) and impose local differentiability of the velocity field 

around each sample 𝑥$, we used a second-order structure function. As the initial velocity field, the 

vector field 𝑣!"(𝑥$) represents a discrete and inhomogeneously sampled field. The differentiability 

of a random field is directly related to the differentiability of its covariance 𝑅 at the origin. 

Experimentally, from a practical point of view, it is easier to accurately measure the structure 

function than the covariance, which is why we use the structure function. The two functions are 

related as 𝑅(𝑙) 	= 	𝑅(0)	– 	𝑆2(𝑙)/2 so it does not matter from a fundamental point of view which 

one is used. The classic result is that 𝑣 is continuous if 𝑆2(𝑙)	−> 	0 with 𝑙−> 0 and that 𝑣 is 

differentiable if 𝑆2(𝑙)~	𝑙5	as generally described in 52. Structure functions are often used in noisy 

flow fields (e.g. turbulence) to determine whether the velocity field is smooth (𝑢(𝑥 +
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𝑙)	– 	𝑢(𝑥)	~	𝑙) as opposed to Holder continuous ((𝑢(𝑥 + 𝑙)	– 	𝑢(𝑥)	~	𝑙)( 	with 𝛼 < 1) within a 

certain lengthscale range (𝑙). Thus, to fit our inhomogeneous and sparse field, we quantify the 

differentiability of this field using a second-order structure function built in terms of the average 

velocity differences within 𝑛 concentric rings around each 𝑥$. Local differentiability is therefore 

observed when the structure function follows a power law with exponent ≥ 2. The structure 

function is defined as:  

𝑆2$[𝑛] = {〈‖𝑣!"(𝑥6) − 𝑣!"(𝑥$)‖5〉}7(,!, (4) 

where 𝑛	 ∈ [1,10] and 𝜑%,$ denotes that we calculated the discretized function 𝑆2$[𝑛] around each 

position 𝑥$ in concentric rings with the same radius 𝑑8, i.e. 

𝜑%,$ = {𝑘	|	(𝑛 − 1)𝑑8 < ‖𝑥6 − 𝑥$‖ < 𝑛𝑑8 	}	 (5) 

We determined the regularized vector field 𝑣!" and the kernel width R considering the local 

differentiability of all field samples. To this end, we computed a time-dependent ensemble average 

of the 𝑆2$[𝑛]	function for each ring 𝑆2(𝑛, 𝑡) = 〈𝑆2$[𝑛]〉7($ , where 𝜑%.  is the subset of all the rings 

derived from 𝜑%,$ after removal of outlier rings. We labeled a ring as an outlier when the function 

𝑆Y𝑥1 , 𝑥$Z described above for the cells within the ring was negative for the majority of them, 

indicating largely divergent information in the ring that, if included in the regularization term, 

could over smooth the field globally. Testing several parameters, an optimal kernel width was 

found, R = 20 µm, that ensured differentiability while minimally worsening the spatial resolution 

of the displacement field (Supplementary Fig. 2). 

Instantaneous deformation descriptors 

The differentiability of the vector flow field 𝑣!" allowed us to apply principles of continuum 

mechanics to quantify cell motion and tissue deformation. We calculated the Incremental 

Deformation Gradient (IDG) tensor field 𝑓(𝑥$) by a numerical method (least squares error 
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minimization) considering the displacements of the neighboring cells within the volume defined 

by 2R. The IDG tensor for the cell i at position 𝑥$) and time t defines a mapping from the material 

(i.e., Lagrangian) vector difference 𝑑𝑥$) onto the vector 𝑑𝑥$)9∆): 

𝑑𝑥$)9∆) = 𝑓𝑑𝑥$) (6) 

𝑥$)9∆) = 𝑥$) +	𝑣!" 	(𝑥$))	𝛿𝑡	
We obtained flow topology descriptors as Galilean invariants derived from the tensor Incremental 

Gradient of Displacements ℎ = 𝑓 − 𝐼 (Supplementary Table 2, Figure 1). These invariants are 

tensor metrics that are independent of the reference frame orientation and velocity. They are 

therefore suitable for visualizing and comparing complex 3D flows. The first, second and third 

principal invariants in 3D (referred here as invariants) are interpreted as follows. The first invariant 

of ℎ (𝑃 as described in 41) quantifies the compression/expansion rate at the mesoscopic scale, 

corresponding to an overall decrease/increase of cell size change in the vicinity of each nucleus. 

The second invariant (𝑄 as described in 41) gives information about deformation, not producing 

volume changes at the mesoscopic scale, associated with both irrotational and vortical motions. 

We identified the deformation produced by rotation the discriminant of the deformation tensor (𝐷), 

which is positive in regions of mesoscopic rotation. Finally, we designed a topology index 

descriptor 𝜏 that takes four different values representing the combinations of the signs of the 

descriptors 𝑃 and 𝐷 (Figure 2, Supplementary Fig. 3-5): expansion-rotation (green label), 

expansion-no rotation (blue label), compression-rotation (yellow label) and compression-no 

rotation (red label). 

To further characterize the strain rates, we calculated the symmetric part of the tensor ℎ that stands 

for the irrotational, incremental strain tensor 𝜀 and its principal components. This symmetric tensor 

generally provides information about shears and changes in volume through its second invariant 

𝑄;. For tissues that may change volume and in order to distinguish between reconfigurations of 
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the tissues (cell intercalation and cell shape changes) and volume changes (cell size), we calculated 

the deviatoric tensor 𝑑 that subtracts volume changes from the strain rate. The eigenvectors 

{𝑑', 𝑑5, 𝑑&} and second invariant 𝑄# of this tensor provided information on the tissue distortion 

associated to collective cell intercalation and cell shape changes (Supplementary Table 2, Figure 

2, Supplementary Fig. 3-5).  

The description of the vertical motion can be complemented with the angular velocity , computed 

from the skew-symmetric tensor 𝛺 derived from ℎ. The infinitesimal rotation angle 𝛿𝛼 was derived 

from . 

Building Lagrangian Biomechanical Profiles 

We defined a Lagrangian representation of the flow field by approximating the reconstructed cell 

trajectories by the flow path lines of the regularized vector flow field. Lagrangian analysis of non-

compressible (𝑃=0) two-dimensional flows have been successfully applied to discover Lagrangian 

Coherent Structures in fluid transport53-54. Here, we proposed Lagrangian metrics based on the 

computation of finite-time deformation tensors to unfold the biomechanical history along the 

lineage. Because of cell divisions and incomplete cell trajectories, the reconstructed cell lineage 

had to be regularized to build a continuous flow description. We interpolated the cell trajectories 

with the information of the flow field displacements to generate complete trajectories given an 

interval of time [𝑡%, 𝑡<] (Supplementary Movie 17). Thus, we generated a bijective spatio-

temporal map 𝑇𝑟𝑎𝑗%< = o𝑡𝑟𝑎𝑗1p suitable to express the dynamics in terms of trajectories 

(Lagrangian) 𝑣!"Y𝑡𝑟𝑎𝑗1Z instead of spatial points (Eulerian). 

We built Lagrangian Biomechanical Profiles (LBPs) independent of spatial coordinates using the 

trajectory flow field. LBPs expressed the instantaneous and cumulative biomechanical activity 

along each trajectory (Figure 3, Supplementary Fig. 6, 7, Supplementary Movie 18, 19). The 
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cumulative activity was computed for each trajectory by setting a temporal reference 𝑡$%$ and by 

incrementally enlarging the interval of analysis to generate a sequence of FTDG tensors 

𝐹)!(!(𝑡𝑟𝑎𝑗1) (varying along the time interval of the trajectory) and their corresponding descriptor 

fields. The computation of the FTDG tensor and its invariants (Supplementary Table 3, 4) for each 

interval [𝑡$%$ , 𝑡] is described below. 

Computation of FTDG tensors and descriptors 

The IDG tensor field was expressed in Lagrangian terms using the trajectory field 𝑓Y𝑡𝑟𝑎𝑗1Z or 𝑓1). 

We composed the tensors along each trajectory and the corresponding time interval with the chain 

rule (forward-projection matrix operation) to generate a Finite Time Deformation Gradient 

(FTDG): 

		𝐹1[)!(!,)]{𝑡𝑟𝑎𝑗1} = 𝑓1)/'…𝑓1)!(!9'𝑓1)!(!  (7) 

The third invariant of the tensor (∆𝑉 as described in 40) characterized the volume change during 

the time interval. The finite rotation (tensor 𝑅) was segregated from elongation (tensor 𝑈) through 

a polar decomposition 𝐹 = 𝑅𝑈42. The rotation was described with the angle of rotation ∆𝛼 and the 

axis of rotation (Euler’s theorem as described in 40): 

∆𝛼 = t)?(")/'5 u	 (8) 

The strains were obtained with the right Cauchy-Green tensor 𝐶 = 	𝐹!𝐹 and the left Cauchy-Green 

tensor 𝐵 = 𝐹𝐹! and their principal components. The invariants of these tensors integrated volume 

changes and shear strains. Therefore, we calculated the isochoric deformation tensor and the 

corresponding isochoric Cauchy-Green tensors (𝐶x and 𝐵y ) to identify the distortion along the 

trajectories from the volumetric changes: 

𝐹y = 𝐽/)*𝐹	 (9) 
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The first and second 𝐶x and 𝐵y  (∆𝛾' and ∆𝛾5 as described in 37) represented the tissue shape changes 

along the time intervals. The descriptor ∆𝛾' evolved linearly with the amount of distortion whereas 

the descriptor ∆𝛾5 added second-order terms when the distortion had more than one dimension. 

Thus together, the ∆𝛾' and ∆𝛾5 descriptors characterized the amount and geometry of tissue shape 

changes (Supplementary Table 3, Figure 3, Supplementary Fig. 6, 7). Aliases have been proposed 

for finite time descriptors as shown in Supplementary Table 3. 

Visualization of descriptor maps and manual selection of cell domains. 

The BioEmergences custom visualization tool Mov-IT36 was used to explore the 3D+time 

descriptor maps. The maps for the Eulerian descriptors were computed by generating a color map 

for the IDG tensor values at each nuclear center 𝑥$. For the cumulative LBPs, color maps were 

built and visualized with the Mov-IT software by assigning values to the closest nuclear center 𝑥$.  
Mov-IT was also used to manually select cell domains and propagate the selections along the cell 

tracking, in order to perform a statistical analysis of the corresponding LBPs. Two different types 

of cell populations were selected. Expert embryologists selected cell populations at 10-11 hpf 

within the hypoblast and epiblast layers that were approximately similar in position and cell 

number between the five specimens of the cohort. These populations were backtracked to identify 

the corresponding progenitors at the onset of gastrulation (tailbud selection Figure 4, 

Supplementary Fig. 8, Supplementary Movie 21). We also selected in embryo wt1 by the onset of 

gastrulation the largest possible population of cells kept into the imaged volume throughout the 

whole imaging sequence (shield selection, Figure 5, Supplementary Fig. 9, Supplementary Movie 

22, 23). This selection was used to categorize the different types of profiles with unsupervised 

classification. 

Categorization of Lagrangian Biomechanical Profiles 



22 

A trajectory field defined from the shield cell selection (Supplementary Fig. 9) was further 

characterized by identifying subdomains with similar LBPs 𝑙1 = 𝑙)?@1+(𝑡)	 (descriptor along the 

trajectories). The subdomains were identified by generating a distance 𝑑ABC distribution between 

the LBPs (𝑙1 , 𝑙6) of pairs of cells for each descriptor with a cosine metric, selected because it 

properly weighted both the magnitude of the descriptor and its deviations along time: 

𝑑ABC = 𝑑DE;(𝑙1 , 𝑙6) 	= 1 −	 8+8,.
FG8+8+.H(8,8,.)

 (10) 

We applied unsupervised k-means clustering to classify the trajectories minimizing the variance 

of the distance distribution, so that trajectories with similar profiles according to the metric were 

classified together. The behavior of each cluster was defined using the mean of the trajectory 

profiles along time, which is considered suitable because the variance was minimized. Several 

values of the number of clusters k were tested (Supplementary Fig. 10-12), finding that 3 clusters 

provided a suitable representation of Canonical Lagrangian Biomechanical Profiles (CLBPs) 

(Figure 5, Supplementary Fig. 10-12). 

Identifying morphogenetic domains from their mechanical signature 

We generated a mechanical signature 𝜁1({𝐶𝐿𝐵𝑃})	for each trajectory as a binary feature vector 

based on the corresponding set of CLBPs (Figure 5, Supplementary Fig. 13). Trajectories were 

then compared using the Euclidean distance between their mechanical signatures and classified 

into four representative domains using hierarchical clustering55.  

The obtained classification was used to label the nuclei at the onset of gastrulation (𝑡$%$), 
generating Lagrangian Biomechanical Maps (Figure 5, Supplementary Fig. 14-16). The spatio-

temporal evolution of the mechanical domains was visualized with Mov-IT by propagating the 
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corresponding labels along the cell trajectories (Figure 5, Supplementary Fig. 14-16, 

Supplementary Movie 22-24). 

Identifying morphogenetic domains from their gsc signature 

Analogously, goosecoid (gsc) profiles were computed from vectors sampling the level of gsc 

reporter expression41 channel along the trajectories (Figure 6). Each vector was computed by 

computed the average value of a spatial region around each trajectory point. Thus, the genetic 

expression was expressed in a Lagrangian representation to be compared with the mechanical 

profiles. A clustering module with the same configuration used for CLBPs returned the main gsc 

profiles. Figure 6 showed the spatio-temporal distribution of the clustered gsc domains in the 

embryo in comparison with the mechanical domains. Supplementary Fig. 18 shows the average of 

the Lagrangian descriptors normalized between 0 and 1 over time. 

Lagrangian comparison of embryo specimens based on their LBPs 

A comparison between specimens was made using the CLBPs of one embryo as the reference 

specimen (wt1). A time-varying similarity score was defined for each trajectory in the compared 

embryo 𝛽ABC?IJ(𝑡). The score 𝛽ABC?IJ(𝑡) represented the similarity of the CLBPs of the compared 

embryo with the reference CLBPs at each time point along the interval [𝑡$%$ , 𝑡J$%]. The similarity 

score was here defined and computed as the distance of each descriptor CLBPj to the 

corresponding CLBPs of the reference. Then, the smallest distance resulting from each CLBPi was 

taken as the score. 

𝛽ABC?IJ(𝑗, 𝑡) = o𝑑Y𝐶𝐿𝐵𝑃1(𝑡), 𝐶𝐿𝐵𝑃$?IJ(𝑡)Zp	 

An aggregated similarity score	𝛽@KI?IJ(𝑡) was computed for each embryo as the average of the 

distance of all CLBPs per time step for each descriptor. Thus, the similarity score of each compared 

embryo to the reference was presented as a time evolving vector that conveys the information 
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about the timing and temporal distribution of the variability of mechanical activity based on the 

reference. We used the CLBPs of the reference wild-type embryo (wt1) to compare two different 

wild-type embryos and two mutant embryos (Supplementary Fig. 17). 

Code availability 

Movies, raw images and cell lineage data are available on the BioEmergences website: 

http://bioemergences.eu/kinematics/  login: kinematics password: AGBYeL4y 

All code is available upon request or already available at the BioEmergeces workflow36. 
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Figure 1: Construction of the biomechanical map from the reconstructed cell lineage  

(A, B, C) WT specimen wt1 imaged live between 6 and 12 hpf, animal pole (AP) view, 3D 

rendering with the Mov-IT software. Scale bar 50 𝜇𝑚. (A) 3D+time microscopy imaging of 

zebrafish embryos, nuclear staining (green), snapshots at 8, 10 and 12 hpf indicated top right. 

Insets schematize the imaged volume and the xy field of view. (B) Regularized displacement field 

(see Methods, Supplementary Fig. 2). Colormap for the speed intensity from 0 (dark blue) to 2 

(white) µ𝑚/𝑠𝑒𝑐. (C) Left Panel: 3D rendering of the original cell tracking; right panel: trajectories 

completed using the regularized velocity field. Each cell nucleus approximate center is represented 

by a cube, the cell trajectory for the next 5 time steps is represented by a line. (D) Schematics of a 

typical cell distribution in 2D (top-left panel); deformation patterns quantified with the IDG tensor, 

instantaneous descriptors indicated top right of each panel: expansion (𝑃 > 0), compression (𝑃 <
0),  simple shear (bottom left panel) and pure shear (bottom middle panel) (𝑄#), rotation (𝐷 > 0). 

(E) Schematic representation of the computation of instantaneous and cumulative descriptors from 

the IDG tensor field. Eulerian compression descriptor 𝑃(𝑇𝑟𝑎𝑗𝑠) at each time step along the cell 

trajectory. Lagrangian compression descriptor ∆𝑉)!(!(𝑇𝑟𝑎𝑗𝑠)	 is calculated from an initial time 

point 𝑡$%$. Colormap: from compression (red) to expansion (blue). (F) Schematic representation of 

instantaneous (left panel) and cumulative (right panel) Lagrangian Biomechanical Profiles (LPBs) 

for a selection of cells and their trajectories between 8 (𝑡$%$) to 14 hpf. Colormap: from 

compression (red) to expansion (blue). (G) Overview of the two-step clustering strategy that leads 

to the identification of Langrangian biomechanical domains. First, Lagrangian Biomechanical 

Profiles (LPBs) displayed in (F) are split into 3 main clusters called CLBPs (dark grey, brown, 

light grey). Second, CLBPs are used to classify trajectories and label cells accordingly (red, 

magenta, green and yellow). 
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Figure 2: wt and zoeptz57/tz57 biomechanical landmarks of gastrulation 

Comparison between a wild-type embryo wt1 (columns 1 and 3) and a zoeptz57/tz57 mutant embryo 

oep1 (columns 2 and 4). Time point (7, 8, 9, 10, 11 and 12 hpf) indicated to right. Descriptor 

indicated top left of each pair (wt1 and oep1) of panels. Velocity field (𝑣!") colormap from from 

dark (zero speed) to white (2 µ𝑚/𝑠𝑒𝑐). 𝑃 colormap goes from compression (red) to neutral (grey) 

to expansion (blue). 𝑄# colormap from dark (no distortion) to bright (maximum distortion). 

Comparison at 9 hpf (top-left panel) features velocity field (up) and 𝑃 (down). Rotation 

discriminant 𝐷 colormap from blue (no rotation) to green-yellow (maximum rotation observed). 

Scale bar 50 𝜇𝑚. 

Figure 3: Cumulative descriptors of wt development 

Comparison between Eulerian and Lagrangian descriptors for wild-type embryo wt1. Time points 

(9, 10, 11 and 12 hpf) indicated top right of each panel. 6 sub-panels per time point with descriptor 

indicated top left. Similar display in the 4 panels with Eulerian descriptors (𝑃𝑄#, ,	𝐷) left column 

in each subpanel and Lagrangian descriptors (𝛥𝑉, 𝛥𝛾1 and 𝛥𝛼) on the right. Eulerian descriptors, 

same colormap as in Figure 2: 𝑃 colormap from compression (red) to neutral (grey) to expansion 

(blue); 𝑄# from dark (no distortion) to bright (maximum distortion); 𝐷 colormap goes from blue 

(no rotation) to green-yellow (maximum rotation). Lagrangian descriptors: 𝛥𝑉 colormap from 

compression (red) to neutral (grey) to expansion (blue); 𝛥𝛾1 colormap from dark (no distortion) to 

bright (maximum distortion); 𝛥𝛼	colormap from blue (no rotation) to green-yellow (maximum 

rotation). Scale bar 50 𝜇𝑚. 
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Figure 4: Quantitative comparison of Lagrangian Biomechanical Profiles (LBPs) in a cohort 

of zebrafish embryos 

(A, B) Comparison of the LBPs’ mean (line) and variance (shaded area), calculated for selected 

cell populations (selection at the tail bud stage, Supplementary Fig. 8, Supplementary Movie 22), 

hypoblast (red) and epiblast (blue) in embryos wt1-wt5 (row 1 to 5 respectively). (A) Instantaneous 

LBPs. Time in hpf. The vertical dashed black line indicates the onset of epiblast compression 

chosen as the initial time (𝑡$%$). (B) LBPs cumulated from (𝑡$%$) for the next 6 hours, mean (line) 

and variance (shaded area). The 5 plots are aligned in time at 𝑡$%$. Hypoblast was not analyzed in 

embryo wt2 as it was not present at 𝑡$%$ because of the embryo position in the field of view.  

Figure 5: Order and coherence of the Lagrangian biomechanical map in normal and oep 

mutant embryos 

(A) Mean (m) for each of the three LBP clusters (number of clusters identified as optimal, 

Supplementary Fig. 10-12) defined the CLBPs for each Lagrangian descriptor (e.g. ∆𝑉<' to ∆𝑉<&,, 

etc) for the wild type embryo (top row) and the mutant (bottom row); arbitrary color code to 

distinguish the different CLBPs. For 𝛥𝑉,	 values	 higher	 than	 1	 mean	 expansion	 and	 bellow	 1	
compression.	For	𝛥𝛾1 and 𝛥𝛾2,	the	value	range	goes	from	no	distortion	(0)	to	maximum	of	distortion	

(3). For 𝛥𝛼,	the	value	represents	the	angle	of	rotation	between	0º	and	360º. (B) Snapshots of the 

Lagangian biomechanical map built for wt1 and oep1 embryos, cells at 𝑡$%$ = 8 hpf were selected 

in Mov-IT and labeled according to their Lagrangian biomechanical signature; the corresponding 

color code was propagated along the cell lineage; different time points indicated top right. At 8 

and 12 hpf, unlabeled nuclei in blue. At 10 and 13 hpf, labeled nuclear centers are displayed 

together with the membrane raw data (3D rendering in blue), upper sections were removed down 

to 65 µ𝑚 below the embryo surface. Scale bar 50 µ𝑚. First row: wt1 embryo, four clusters 
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identified at 𝑡$%$ = 8 hpf (Supplementary Movie 23-26). Second row: oep1 embryo, three clusters 

identified at 𝑡$%$ = 8 hpf.  

Figure 6: The gsc gene expression domain matches a biomechanical field  

wt6 embryo from the transgenic line gsc:egfp (Methods) imaged from 8 to 13 hpf. (A) 

Quantification of gsc reporter expression at the single cell level (Methods, Supplementary Table 

1) and clustering of cell populations according to the reporter expression level using k-means 

clustering (k=3 green -𝑔𝑠𝑐<'-, light blue -𝑔𝑠𝑐<5- and magenta -𝑔𝑠𝑐<&- for the mean expression 

level in each cluster). (B) Average value of nuclear staining intensity along cell trajectories for 

each of the clusters identified in (A): 𝑛𝑢𝑐<', 𝑛𝑢𝑐<5 and 𝑛𝑢𝑐<&. (C) Average value of the gsc 

reporter expression after being corrected by the nuclear staining intensity (𝑔𝑠𝑐𝑁<', 𝑔𝑠𝑐𝑁<5 and 

𝑔𝑠𝑐𝑁<&). (D, E) Visualization of the Lagrangian Biomechanical Maps with the Mov-IT 

software. Cells at 8 hpf are labelled according to their cluster and the color propagated along the 

cell lineage. Scale bar 50 𝜇𝑚. (D) Spatial organization of the three gsc expression clusters (green 

-𝑔𝑠𝑐<'-, light blue -𝑔𝑠𝑐<5- and magenta -𝑔𝑠𝑐<&). Snapshots at 8 and 10 hpf indicated top right. 

(E) Lagrangian Biomechanical Map for wt6 computed and displayed as for wt1 and oep1 in 

Figure 5B (𝑡$%$ = 8 hpf). Snapshots at 8 hpf and 10 hpf indicated top right.  

 
 
 
 

 



Figures

Figure 1

Construction of the biomechanical map from the reconstructed cell lineage (A, B, C) WT specimen wt1
imaged live between 6 and 12 hpf, animal pole (AP) view, 3D rendering with the Mov-IT software. Scale
bar 50 µm. (A) 3D+time microscopy imaging of zebra�sh embryos, nuclear staining (green), snapshots at



8, 10 and 12 hpf indicated top right. Insets schematize the imaged volume and the xy �eld of view. (B)
Regularized displacement �eld (see Methods, Supplementary Fig. 2). Colormap for the speed intensity
from 0 (dark blue) to 2 (white) µm/sec. (C) Left Panel: 3D rendering of the original cell tracking; right
panel: trajectories completed using the regularized velocity �eld. Each cell nucleus approximate center is
represented by a cube, the cell trajectory for the next 5 time steps is represented by a line. (D) Schematics
of a typical cell distribution in 2D (top-left panel); deformation patterns quanti�ed with the IDG tensor,
instantaneous descriptors indicated top right of each panel: expansion (P > 0), compression (P < 0),
simple shear (bottom left panel) and pure shear (bottom middle panel) (Qd), rotation (D > 0). (E)
Schematic representation of the computation of instantaneous and cumulative descriptors from the IDG
tensor �eld. Eulerian compression descriptor P(Trajs) at each time step along the cell trajectory.
Lagrangian compression descriptor ∆Vtini (Trajs) is calculated from an initial time point tini. Colormap:
from compression (red) to expansion (blue). (F) Schematic representation of instantaneous (left panel)
and cumulative (right panel) Lagrangian Biomechanical Pro�les (LPBs) for a selection of cells and their
trajectories between 8 (tini) to 14 hpf. Colormap: from compression (red) to expansion (blue). (G)
Overview of the two-step clustering strategy that leads to the identi�cation of Langrangian biomechanical
domains. First, Lagrangian Biomechanical Pro�les (LPBs) displayed in (F) are split into 3 main clusters
called CLBPs (dark grey, brown, light grey). Second, CLBPs are used to classify trajectories and label cells
accordingly (red, magenta, green and yellow).µm



Figure 2

wt and zoeptz57/tz57 biomechanical landmarks of gastrulation Comparison between a wild-type embryo
wt1 (columns 1 and 3) and a zoeptz57/tz57 mutant embryo oep1 (columns 2 and 4). Time point (7, 8, 9,
10, 11 and 12 hpf) indicated to right. Descriptor indicated top left of each pair (wt1 and oep1) of panels.
Velocity �eld (νTR) colormap from from dark (zero speed) to white (2 µm/sec). P colormap goes from
compression (red) to neutral (grey) to expansion (blue). Qd colormap from dark (no distortion) to bright



(maximum distortion). Comparison at 9 hpf (top-left panel) features velocity �eld (up) and P (down).
Rotation discriminant D colormap from blue (no rotation) to green-yellow (maximum rotation observed).
Scale bar 50 µm.

Figure 3

Cumulative descriptors of wt development Comparison between Eulerian and Lagrangian descriptors for
wild-type embryo wt1. Time points (9, 10, 11 and 12 hpf) indicated top right of each panel. 6 sub-panels



per time point with descriptor indicated top left. Similar display in the 4 panels with Eulerian descriptors
(PQd, , D) left column in each subpanel and Lagrangian descriptors (ΔV, Δγ1 and Δα) on the right.
Eulerian descriptors, same colormap as in Figure 2: P colormap from compression (red) to neutral (grey)
to expansion (blue); Qd from dark (no distortion) to bright (maximum distortion); D colormap goes from
blue (no rotation) to green-yellow (maximum rotation). Lagrangian descriptors: ΔV colormap from
compression (red) to neutral (grey) to expansion (blue); Δγ1 colormap from dark (no distortion) to bright
(maximum distortion); Δα colormap from blue (no rotation) to green-yellow (maximum rotation). Scale
bar 50 µm.

Figure 4

Quantitative comparison of Lagrangian Biomechanical Pro�les (LBPs) in a cohort of zebra�sh embryos
(A, B) Comparison of the LBPs’ mean (line) and variance (shaded area), calculated for selected cell
populations (selection at the tail bud stage, Supplementary Fig. 8, Supplementary Movie 22), hypoblast
(red) and epiblast (blue) in embryos wt1-wt5 (row 1 to 5 respectively). (A) Instantaneous LBPs. Time in
hpf. The vertical dashed black line indicates the onset of epiblast compression chosen as the initial time
(tini). (B) LBPs cumulated from (tini) for the next 6 hours, mean (line) and variance (shaded area). The 5



plots are aligned in time at tini. Hypoblast was not analyzed in embryo wt2 as it was not present at tini
because of the embryo position in the �eld of view.

Figure 5

Order and coherence of the Lagrangian biomechanical map in normal and oep mutant embryos (A) Mean
(m) for each of the three LBP clusters (number of clusters identi�ed as optimal, Supplementary Fig. 10-
12) de�ned the CLBPs for each Lagrangian descriptor (e.g. ∆Vm1 to ∆Vm3, , etc) for the wild type embryo
(top row) and the mutant (bottom row); arbitrary color code to distinguish the different CLBPs. For ∆V,
values higher than 1 mean expansion and bellow 1 compression. For Δγ1 and Δγ2, the value range goes
from no distortion (0) to maximum of distortion (3). For Δα, the value represents the angle of rotation
between 0º and 360º. (B) Snapshots of the Lagangian biomechanical map built for wt1 and oep1
embryos, cells at tini = 8 hpf were selected in Mov-IT and labeled according to their Lagrangian
biomechanical signature; the corresponding color code was propagated along the cell lineage; different
time points indicated top right. At 8 and 12 hpf, unlabeled nuclei in blue. At 10 and 13 hpf, labeled nuclear
centers are displayed together with the membrane raw data (3D rendering in blue), upper sections were



removed down to 65 µm below the embryo surface. Scale bar 50 µm. First row: wt1 embryo, four clusters
identi�ed at tini = 8 hpf (Supplementary Movie 23-26). Second row: oep1 embryo, three clusters identi�ed
at tini = 8 hpf.

Figure 6

The gsc gene expression domain matches a biomechanical �eld wt6 embryo from the transgenic line
gsc:egfp (Methods) imaged from 8 to 13 hpf. (A) Quanti�cation of gsc reporter expression at the single



cell level (Methods, Supplementary Table 1) and clustering of cell populations according to the reporter
expression level using k-means clustering (k=3 green -gscm1-, light blue -gscm2- and magenta -gscm3-
for the mean expression level in each cluster). (B) Average value of nuclear staining intensity along cell
trajectories for each of the clusters identi�ed in (A): nucm1, nucm2 and nucm3. (C) Average value of the
gsc reporter expression after being corrected by the nuclear staining intensity (gscNm1, gscNm2 and
gscNm3). (D, E) Visualization of the Lagrangian Biomechanical Maps with the Mov-IT software. Cells at 8
hpf are labelled according to their cluster and the color propagated along the cell lineage. Scale bar 50
µm. (D) Spatial organization of the three gsc expression clusters (green -gscm1-, light blue -gscm2- and
magenta -gscm3). Snapshots at 8 and 10 hpf indicated top right. (E) Lagrangian Biomechanical Map for
wt6 computed and displayed as for wt1 and oep1 in Figure 5B (tini = 8 hpf). Snapshots at 8 hpf and 10
hpf indicated top right
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