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Abstract 

 

Neurodegenerative disorders (NDs) are proteinopathies characterized by the 

accumulation of misfolded and aggregated proteins. Either through loss of normal protein 

function and the generation of abnormal protein interactions, the protein network 

deteriorates inside neurons and subsequently along the neuronal networks.  Parkinson’s 

disease (PD) is the second most frequent ND and is associated with the misfolding and 

aggregation of alpha-Synuclein (aSyn), a pre-synaptic protein whose function is still 

unclear. Importantly, aSyn dysregulation is also involved in other NDs, as Dementia with 

Lewy Bodies and Multiple System Atrophy, jointly referred to as Synucleinopathies. Thus, 

the study of aSyn became crucial for understanding the etiology of those pathologies. 

There is ample debate as to what the toxic species of aSyn are, although it has been 

postulated that misfolded oligomeric species of aSyn represent the toxic genus.  

This thesis aimed to generate new insights into the role of aSyn in health and disease, at a 

molecular level.  To visualize aSyn in the biological orchestra of the cell, we first studied 

its intracellular dynamics in a cellular model through photoactivation microscopy. Using 

photoactivatable green fluorescent protein as a reporter, we found that the availability of 

the aSyn amino-terminus modulates its shuttling into the nucleus.  This finding has 

important implications regarding both the species of aSyn that enter the nucleus and also 

the function of the protein within that compartment.  aSyn was recently suggested to 

exist naturally as a tetramer. Due to the nuclear pore size, only monomeric or dimeric 

forms of aSyn can enter the nucleus, and this has been related to a deleterious effect and 

neurotoxicity, due to transcription deregulation. Interestingly, intracellular dynamics of 

aSyn was finely modulated by the HSP70 chaperone, PD-associated mutations and by the 

phosphorylation state of the protein on S129 site. We found that the molecular 

chaperone HSP70 accelerates the entry of aSyn into the nuclear compartment. Also, A30P 

and A53T aSyn mutations increased the speed at which the protein moves between the 

nucleus and cytoplasm, respectively. Finally, specific kinases potentiate the shuttling of 

aSyn between nucleus and cytoplasm. Importantly, a mutant aSyn form that blocks S129 

phosphorylation, S129A, results in the formation of cytoplasmic inclusions, suggesting 
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that phosphorylation modulates aggregation, and thus, alter the normal aSyn intracellular 

dynamics.  

To better understand the aggregation process in disease, we focused on the initial steps 

of aSyn aggregation, thought to be the causative agents of pathology. We used cell-based 

models of Synucleinopathy to investigate the molecular mechanisms underlying aSyn 

oligomerization. In particular, we screened, in an unbiased manner, a subset of the 

human genome-wide collection of lentiviral RNA-interference constructs, targeting genes 

involved in signal transduction players, to identify modifiers of aSyn oligomerization, 

using the bimolecular fluorescence complementation assay (BiFC) as readout.  Through 

this approach we identified 9 genetic modifiers of aSyn oligomerization. Interestingly, the 

hits we identified were functionally related, and associated with neuronal trafficking 

processes. We then characterized these hits with respect to their effects on aSyn 

aggregation, toxicity and protein levels. After this first level of general characterization, 

we further investigated the mechanism of action of the hits by assessing their effects on 

aSyn secretion, a central aspect in the spreading of aSyn pathology. aSyn is secreted 

under physiological conditions, via non-classical exocytosis, in association with exosomes, 

and possibly via other less conventional mechanisms. However, it was demonstrated that 

pathological and aggregated aSyn species can also be secreted, suggesting that 

aggregated and misfolded aSyn may be the key agent for propagation of aSyn pathology, 

possibly in a prion-like manner. Thus, in our study we selected four trafficking hits, based 

on the literature and on their relevance to secretory pathways. Ras-related Protein in 

Brain 8b (Rab8b), Rab11a, Rab13 and Synaptotagmin-Like Protein 5 were found to 

promote the clearance of aSyn inclusions and reduce aSyn toxicity. Moreover, we found 

that endocytic recycling and secretion of aSyn was enhanced upon expression of Rab11a 

or Rab13 in cells accumulating aSyn inclusions. Importantly, in cells with inclusions, the 

trafficking proteins co-localized with aSyn in inclusions. Altogether, our findings suggest 

specific trafficking steps may prove beneficial as targets for therapeutic intervention in 

Synucleinopathies, and should be further investigated in other models.  

Here, we also studied the effects of monoclonal aSyn antibodies on the early stages of 

aggregation using the BiFC assay. Our results support passive immunization against 

Synucleinopathies by demonstrating that extracellular administration of monoclonal 

antibodies can inhibit early steps in the aggregation process of aSyn. As aSyn seems to 
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behave as a prion-like protein, immunization can be a mid-term strategy to delay the 

progression of Synucleinopathies. 

The present study uncovered novel aspects about the intracellular dynamics of aSyn and 

allowed the identification of new genetic players involved in the aggregation, toxicity, 

secretion and immunization of aSyn, opening novel avenues towards the understanding 

of the molecular bases of Synucleinopathies. 

 

Key-words:  Alpha-Synuclein, Parkinson’s Disease, Oligomerization, Aggregation. 
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Resumo 

 

As proteínas são os principais efectores biológicos na célula e  regulam os processos vitais 

na mesma. Assim, a desregulação funcional daquelas em regiões específicas do cérebro 

pode culminar numa descontextualização espacial e temporal dos processos celulares. A 

acumulação destas proteínas disfuncionais pode, por sua vez, originar agregados de 

proteínas, que caracterizam as doenças neurodegenerativas (DNs). 

A relação entre o misfolding  de determinadas proteínas e a evolução para uma patologia 

cerebral não é totalmente compreendida. A função alterada de uma proteína neuronal  

pode culminar na formação de deposições proteicas no interior ou no exterior do 

neurónio, levando à perturbação dos mecanismos de síntese e transporte de moléculas, 

dos mecanismos de controlo de qualidade da célula e a uma perturbação na comunicação 

interneuronal. No seu conjunto, estas doenças designam-se também de doenças 

conformacionais, e representam grandes desafios para a Medicina actual, que tenta 

encontrar terapias apropriadas que minimizem o impacto da deposição de agregados 

proteicos nos neurónios. Em alguns casos, a deposição de agregados proteicos parece 

perturbar fisicamente o funcionamento de alguns grupos de células específicos e 

estender-se posteriormente para os respectivos tecidos e regiões adjacentes. Noutros 

casos, a ausência de proteína funcional, devido ao seu recrutamento para os agregados 

acumulados, resulta na falha de processos celulares cruciais. Segundo a hipótese 

amilóide, a agregação de proteínas numa estrutura fibrilhar em DNs está relacionada com 

interacções proteicas aberrantes que culminam na disfunção neuronal e, em última 

instância, em neurodegeneração. Apesar de a célula possuir mecanismos de defesa e de 

reparação que o próprio organismo acciona contra essas proteínas tóxicas, as DNs surgem 

quando já nenhum mecanismo de defesa funciona na sua plenitude, e quando já há 

saturação dessas proteínas disfuncionais nos neurónios. Assim, no contexto das doenças 

neurodegenerativas, a hipótese amilóide postula que as proteínas podem ser convertidas, 

sob certas circunstâncias, em estruturas não nativas com propensão para a instabilidade.  

Nestas patologias, as proteínas podem apresentar estados conformacionais alternativos 

ou misfolding que podem estar associados a disfunção celular, mas os mecanismos 

exactos são apenas alusivos. Apesar dos componentes proteicos variarem, a formação de 
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inclusões nas DNs partilham vias de formação comuns, como seja perda de função das 

proteínas envolvidas e formação de interações aberrantes. Assim, a comunicação entre as 

proteínas deteriora-se intraneuronalmente e, por conseguinte, entre neurónios. Perante 

este panorama, é essencial explicar a etiologia das DNs ao nível bioquímico e molecular, 

para que haja impulso para o desenvolvimento de novas estratégias terapêuticas.  

A doença de Parkinson (DP) é a segunda DN mais frequente e está associada ao 

misfolding  e agregação de alfa-Sinucleína (do inglês alpha-Synuclein, aSyn), uma proteína 

neuronal cuja função não é totalmente conhecida. É de notar que a disfunção proteica de 

aSyn também foi relacionada posteriormente com outras DNs, como sejam Demência 

com Corpos de Lewy e Atrofia Sistémica Múltipla, sendo no seu conjunto designadas de 

Sinucleinopatias. Assim, o estudo da aSyn tornou-se essencial para compreender a 

etiologia e o denominador comum daquelas doenças. Existe uma forte controvérsia 

relativamente à identificação das espécies tóxicas de aSyn; no entanto, as espécies 

oligoméricas e misfolded têm sido postuladas nos últimos anos como as mais tóxicas. 

Apesar de a função da aSyn ser pouco clara, existem várias implicações fisiológicas 

propostas para a mesma, sendo uma das mais relevantes o seu envolvimento na 

plasticidade sináptica, na medida em que ratinhos knockout para a aSyn possuem défices 

de produção de vesículas celulares. Além disso, a aSyn parece actuar como um regulador 

negativo da neurotransmissão de dopamina. Outros estudos sugerem o envolvimento da 

aSyn no recrutamento de complexos necessários para o transporte entre o retículo 

endoplasmático e o complexo de Golgi e para a fusão vesicular com a membrana 

plasmática. Por outro lado, a disfunção de aSyn está associada a défices funcionais do 

proteossoma, aumento da produção de espécies  de oxigénio reactivas e disfunção 

mitocondrial. 

Assim, esta tese teve como principais objectivos entender a nível molecular e celular, a 

função da aSyn na normalidade e na patologia. Para tal, estudou-se a dinâmica 

intracelular da aSyn em modelos celulares, através de microscopia de fotoactivação. 

Assim, usando uma forma fotoactivável da proteína verde fluorescente como repórter da 

aSyn, verificou-se que a disponibilidade da sua extremidade amino-terminal determina a 

sua deslocação para o núcleo. Esta evidência tem importantes implicações no que se 

refere às espécies de aSyn que efectivamente entram no núcleo e à sua função no interior 

do mesmo. Se a recente hipótese que defende que a conformação natural de aSyn é um 
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tetrâmero está certa, deve-se considerar que apenas monómeros ou dímeros de aSyn 

podem entrar no núcleo, tendo em conta o tamanho descrito para o poro nuclear. Por 

outro lado, a presença de aSyn no núcleo está associada a neurotoxicidade, porque 

promove desregulação transcriptional.  Curiosamente, verificamos que a dinâmica 

intracelular de aSyn é elegantemente modulada pela chaperone HSP70; a presença desta 

acelera a entrada de aSyn no compartimento nuclear. Para além disso, mutações 

associadas a DP e o estado de fosforilação da proteína no local S129 alteraram o 

comportamento dinâmico da aSyn na célula. Especificamente, as mutações A30P e A53T 

aumentaram a velocidade a qual a proteína se desloca para o núcleo e para o citoplasma, 

respectivamente. Por último, verificámos que certas cinases que fosforilam aSyn, também 

têm um efeito na dinâmica intracelular da mesma. O resultado mais claro acerca do efeito 

do estado de fosforilação na dinâmica da aSyn foi obtido com uma forma mutante que 

bloqueia a fosforilação no local S129, designada por S129A. A expressão desta forma 

mutante resultou na formação de inclusões citoplasmáticas, sugerindo que a fosforilação 

modula a agregação e assim, altera a dinâmica intracelular de aSyn. 

Para melhor compreender o processo de agregação e a sua evolução num contexto 

patológico, estudou-se de seguida os passos iniciais de agregação de aSyn na célula. 

Segundo a hipótese amilóide, o inicio da patologia reside na formação de espécies 

diméricas e oligoméricas, diferentes da conformação nativa de aSyn. Assim, pensa-se que 

são estas espécies, que se acumulam de forma aberrante, as causadoras de toxicidade e 

de propagação da patologia. Para estudar os mecanismos moleculares por detrás da 

formação de espécies oligoméricas tóxicas, usaram-se modelos celulares de 

Sinucleinopatias. Em particular, efectuou-se um screening de interferência de RNA contra 

genes envolvidos em vias de transdução de sinalização na célula. O objectivo foi 

identificar de forma não enviesada, moduladores da oligomerização de aSyn, que foi 

monitorizada através do método de complementação biomolecular por fluorescência.  

Nove moduladores genéticos da oligomerização de aSyn, funcionalmente relacionados e 

associados ao tráfego neuronal, foram identificados e validados. Assim, estes 

moduladores foram caracterizados no que diz respeito aos seus efeitos na agregação de 

aSyn, toxicidade e níveis proteicos. Após este primeiro nível de caracterização, investigou-

se o mecanismo de acção destes moduladores a nível da secreção de aSyn, um paradigma 

central relativamente à progressão das Sinucleinopatias. A secreção de aSyn em 
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condições fisiológicas está descrita como ocorrendo por exocitose não-convencional, em 

associação com exossomas e possivelmente por outras vias menos convencionais. 

Contudo, está também demonstrado que as espécies patológicas e agregadas de aSyn 

podem ser secretadas, sugerindo-se que estas espécies podem ser um poderoso agente 

de propagação da patologia de aSyn, possivelmente à semelhança dos agentes priónicos. 

Assim, neste projecto, selecionaram-se quatro moduladores de tráfego, com base na 

literatura e na sua relevância para as vias secretórias da célula: Ras-related protein in 

Brain 8b (Rab8b, Rab11a, Rab13 e Synaptotagmin-Like Protein 5.  Estas proteínas, quando 

sobre-expressas, promoveram a remoção das inclusões proteicas de aSyn e reduziram a 

toxicidade celular associada a aSyn. Para além disso, verificou-se um aumento do uso da 

via endocítica e da secreção de aSyn  quando Rab11a e Rab13 foram expressas num 

modelo de agregação de aSyn. Por fim, verificou-se que no mesmo modelo, aqueles 

quatro moduladores de tráfego co-localizaram com inclusões de aSyn. 

Na sua totalidade, este trabalho sugere que certas vias específicas de tráfego celular são 

benéficas para a intervenção terapêutica a nível das Sinucleinopatias, e devem ser 

validadas noutros modelos.  

Estudou-se também o efeito de anticorpos de aSyn em estados precoces de agregação da 

mesma, através de complementação biomolecular por fluorescência. Os resultados aqui 

descritos apoiam a imunização passiva contra Sinucleinopatias como sendo uma 

estratégia eficaz a médio prazo para atrasar o progresso de Sinucleinopatias.  

O presente estudo põe a descoberto a dinâmica intracellular da aSyn, uma vez que a 

localização sob-celular dos muitos complexos proteicos que existem numa célula pode 

ajudar a desvendar as suas funções e mecanismos de acção que culminam na patologia 

de muitas DNs. Por outro lado, permitiu a identificação de novos moduladores genéticos 

que envolvem oligomerização, agregação, toxicidade, secreção e imunização de aSyn, 

contribuindo para o complemento do complexo esquema mecanístico que pode vir a 

explicar as bases moleculares das Sinucleinopatias. 

 

Palavras-chave: Alfa-Sinucleína, Doença de Parkinson, Agregação, Oligomerização 
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1 Protein Misfolding Diseases  

 

Cell viability depends on the maintenance of proteins integrity, which is directly 

dependent on the strict balance between protein synthesis, folding and degradation 

mechanisms. Protein folding and degradation are key quality control systems of the cell. 

The former is performed by molecular chaperones such as heat shock proteins (HSPs), 

and the later comprises the ubiquitin-proteasome and autophagy-lysosome pathways. 

Misfolded and damaged proteins can be targeted to the ubiquitin-proteasome system 

(UPS) to avoid accumulation and subsequent potentially toxic effects on cells, or can be 

processed by the autophagy-lysosome system (Figure 1A). The first is mainly involved in 

the nuclear/cytosolic protein degradation, and the latter in the clearance of cytosolic 

organelles and long-lived proteins. Three major types of autophagy are described (Figure 

1B): Chaperone-mediated autophagy (CMA) selectively degrades proteins containing a 

pentapeptide motif (KFERQ) that is recognized by the heat shock cognate protein 70 

(Hsc70); microautophagy implies the direct sequestration of cytoplasmic cargo by 

engulfment of the lysosomal membrane; finally, in macroautophagy, double-membrane 

vesicles termed autophagosomes are formed and sequester portions of cytosolic content 

or intact organelles (Juenemann & Reits 2012, Yang & Klionsky 2010) . Fine-tuned 

regulated macroautophagy is required for the survival of neurons, as lack of it leads to 

degeneration, but, if increased, it can turn into a cell death mechanism (Hara et al 2006, 

Komatsu et al 2006).  

Although the native state of proteins is energetically favored, misfolding of proteins can 

arise when quality control systems fail their surveillance due to metabolic changes related 

to aging, cancer, stress conditions or genetic alterations (Hartl & Hayer-Hartl 2009). In 

those conditions, partially folded or misfolded proteins tend to aggregate and state for 

aberrant intra- or intermolecular interactions. Protein aggregation is driven by 

hydrophobic forces and can lead to the formation of amorphous or fibrillary structures. 

These highly ordered, cross-beta structures are called amyloid deposits and 

histopathologically define protein misfolding diseases (PMDs).  
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Figure 1. The role of protein quality control systems in PMDs. A. When destabilization of the 

native state of nascent proteins occurs, molecular chaperones are able to reverse it. In aging and 

disease, protein quality control systems are more prone to fail and proteins form amorphous 

aggregates, toxic oligomers or amyloid fibrils as a consequence of misfolding of the native states. 

Different HSPs can modulate the oligomerization state. In several diseases, Hsp70 and HSP90 are 

known to contribute to the correct folding of misfolded proteins, preventing the formation of 

aggregated forms. Oligomers are toxic soluble aggregated species that can occur as off-pathway 

intermediates of amyloid fibril formation. These may be either directly targeted by Hsp 

chaperones or they may also be directed for proteasomal degradation. Oligomeric and/or 

aggregated species that are not degraded by the proteasome may be processed by chaperone-

mediated autophagy. B. Three different types of autophagy are represented: in macroautophagy, 

specialized vacuoles called autophagosomes are formed for cargo transportation. These vacuoles 

deliver proteins, lipids and organelles to the lysosome. Through Hsc70 complex, Chaperone-

mediated autophagy recognizes proteins with KFERQ-like motif and targets them to lysosomal 

degradation. Finally, in microautophagy, cargo is directed engulfed by lysosomal membrane. AA: 

aminoacids, FFA: free fatty acids. Adapted from (Gonçalves et al 2012, Wirawan et al 2012).  

  

1.1 Loss of Neuronal Proteostasis and Neurodegeneration 

 

Neurons are long-lived post-mitotic cells and thus particularly susceptible in PMDs, as 

they are not able to dilute toxic proteins through cell division. Thus, they require fine-

tuned quality control mechanisms when proteostasis is compromised.  Autophagy-

lysosome system is the ubiquitous and most well characterized mechanism to guarantee 

proteostasis in neurons. Notwithstanding, a specific “sort-and-degrade” mechanism has 

also been postulated (Wang et al 2013). Neuron-specific proteins, such as the regulator of 

membrane trafficking V0a1, the subunit a1 of V0-ATPase (a multi-subunit protein-

complex that regulates endosomal to lysosomal pH), seems to be a neuron-specific health 

sustainer, as mutations in v0a1 homolog in Drosophila cause neurodegeneration 

(Williamson et al 2010). Lysosomes, the terminal organelles on the endocytic pathway, 

digest macromolecules and make their components available to the cell as nutrients. 

Hydrolytic enzymes specific to a wide range of targets reside within the lysosome; these 

enzymes are activated by the highly acidic pH (Wang & Hiesinger 2012).  
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Similarly, mutations in the synaptic vesicle SNARE neuronal Synaptobrevin seems to cause 

cargo overload in neurons. SNAREs are the core regulation proteins in membrane fusion. 

Overall, the “sort and degrade” mechanism is active in parallel to ubiquitous 

endolysosomal and autophagosomal degradation and is essential for the normal 

neurotransmitter release (Haberman et al 2012).  

The most prevalent PMDs in the brain are Alzheimer’s disease (AD), Parkinson’s disease 

(PD), Huntington’s disease (HD) and Amyotrophic Lateral Sclerosis (ALS). Clinically they 

result from the aggregation of different proteins in distinct neurons that can disrupt 

essential cellular functions. Aggregates can be extracellular, as plaques in AD, or 

intracellular, neurofibrillary tangles in AD or Lewy bodies in PD. The intracellular 

aggregates can be rapidly devastating to neurons as they can sequester essential cellular 

components as molecular chaperones or trafficking players. Moreover, they can promote 

oxidative stress, inhibit degradation systems and physically impair the release of 

neurotransmitters thus inhibiting the communication to the adjacent neurons (Gonçalves 

et al 2012). 

It is not clear if fibrils are the toxic species in NDs, or if they arise from a defensive answer 

of cells aimed to protect themselves from toxic oligomeric species. Even if the 

mechanistic explanation of pathology in those disorders is variable, the common 

denominator among these NDs is the gain of toxic properties associated to misfolding. 

The aberrant conformation favors environmental stress which is aggravated by aging 

(associated with the decline in protein homeostasis capacity) and, in a long-term 

perspective, it promotes further protein accumulation and the potential self-propagation 

of aggregates to other neighboring neurons (Hartl et al 2011). 

 

1.2  Synucleinopathies 

 

Synucleinopathies are neurodegenerative disorders (NDs) characterized by the abnormal 

neuronal accumulation of a small protein called alpha-Synuclein (aSyn). This protein is 

abundant in the central nervous system and its abnormal accumulation can occur in 

neurons, nerve fibers or glial cells. The major Synucleinopathies are PD, dementia with 

Lewy bodies (DLB) and multiple system atrophy (MSA) (Figure 2). AD and other 

neurodegenerative disorders related with iron accumulation in brain may also present 
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aSyn aggregation (Baba et al 1998, Irwin et al 2013, Spillantini et al 1997, Wakabayashi et 

al 1998).  

Abnormal protein deposits were identified in brains from PD patients by Freiwdrich Lewy 

in the beginning of the twentieth century. However, only later aSyn was identified as the 

main component of Lewy bodies (LBs) (Lewy 1912, Spillantini et al 1997). Structurally, LBs 

are eosinophilic cytoplasmic large inclusions of 5-25 µm size compose of a halo of radial 

fibrils (Spillantini et al 1998b).  The main component of LBs is phosphorylated (at S129), 

nytrosylated and also C-terminally truncated aSyn (Crowther et al 1998, Duda et al 2000, 

Fujiwara et al 2002, Giasson et al 2000, Spillantini et al 1997). However, the role of those 

post-translational modifications is not totally understood. In addition, molecular 

chaperones, proteasomal and lysosomal subunits were identified in LBs (Goedert et al 

2013, Lowe et al 1988). 

 

1.2.1 Parkinson’s Disease 

 

1.2.1.1 Etiology and Pathophysiology of PD 

 

PD was first described in 1817 by James Parkinson as “the shaking palsy” and is the 

second most common neurodegenerative disease affecting 1% of the world population 

over the age of 60. About 90% of PD cases are sporadic, while only a small proportion of 

the cases are known to have dominantly or recessively inherited familial forms caused by 

several mutations in specific genes (de Lau & Breteler 2006, Parkinson 2002). In addition, 

environmental factors as the exposure to pesticides (as rotenone or paraquat), heavy 

metals (iron, manganese, copper, zinc) and brain injury may cause sporadic PD (Critchley 

1957, de Lau & Breteler 2006).  

The neuropathological hallmarks of PD comprise the loss of dopaminergic neurons in the 

substantia nigra pars compacta and the presence of intracellular proteinaceous inclusions 

in the surviving neurons mainly composed of aSyn (Damier et al 1999, Lewy 1912, 

Spillantini et al 1997). The lack of dopamine results in abnormal neurotransmission and 

thus prevents appropriate information transfer from motor command centers in the 

cerebral cortex (Aosaki et al 2010). This leads to different severity degrees of motor 
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symptoms, including muscle rigidity, resting tremor, bradykinesia and postural instability 

(Marsden 1982, Parkinson 2002, Wu et al 2015). Non motor signs are believed to 

manifest prior to motor disabilities, starting with difficulty in problem-solving, attention 

capacities and decision making (Pfeiffer 2016). Autonomic dysfunction is a common non-

motor sign that may precede clinical PD, comprising orthostatic hypotension, 

constipation, insomnia, abnormalities in olfactory and visual perception, urinary 

dysfunctions and sweating abnormalities (Liepelt-Scarfone et al 2015). Later disease 

stages include neuropsychiatric symptoms as depression, anxiety, apathy, and casually, 

dementia (Gelb et al 1999, Kulisevsky et al 2008). 

 

Figure 2. Clinical and histopathological hallmarks of the three main Synucleinopathies. 

Dementia with Lewy bodies (DLB) has the oldest age of onset.  Multiple system atrophy (MSA) has 

the earliest autonomic features. Histologically, Both PD and DLB are characterized by neuronal 

cytoplasmic inclusions (NCIs) and neurites, while MSA has glial cytoplasmic inclusions (GCis) and 

neuronal intranuclear inclusions (NNis). SN, substantia nigra. Images show aSyn immunoreactive 

structures counterstained with cresyl violet. Scale bars: 25 µm. Adapted from (McCann et al 

2014). 
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Histopathologically,  surviving neurons often show protein inclusions, which develop as 

spindle-like Lewy neurites (LNs) (Braak et al 1994) or as globular LBs (Goedert et al 2013, 

Lewy 1912), both in sporadic and familial forms of PD (Spillantini et al 1997). As the 

disease progresses, aSyn aggregates can also be found in other areas of the brain as the 

olfactory bulb, neocortex and the limbic system (Braak et al 2003). Inclusions of aSyn can 

also occur in other regions of the central and peripheral nervous system as the enteric 

plexus of the gastrointestinal system (Dickson et al 2009).  

 

1.2.1.2 Familial PD Genes and their Convergent Role in Trafficking 

 

Counting for 5-10% of the total cases, inherited PD has been correlated to autosomal 

dominant or recessive genetic mutations. Multiple genes have been implicated in PD 

through linkage analysis, genome sequencing and genetic association and the majority 

features mutations in cellular trafficking proteins (Table 1). The discovery of mutated 

genes associated with PD was elucidative on the cellular pathways that upon dysfunction 

triggers to pathology, not only in familial but also in sporadic forms of PD. Consequently, 

three main interconnected cellular processes may trigger PD upon dysfunction: first, 

synaptic transmission (exocytosis and endocytosis), lysosome-mediated autophagy; and 

third, mitochondrial quality control and stress response  (Figure 3)  (Trinh & Farrer 2013).  

The most common autosomal dominant inherited cases of PD present mutations in SNCA 

and LRRK2 genes encoding for aSyn (and discussed below in section 2) and Leucine-rich 

repeat kinase 2, respectively (Polymeropoulos et al 1997, Zimprich et al 2004). LRRK2 is a 

guanosine triphosphate hydrolase (GTPase) and kinase with defined roles in neuronal 

transmission, arborization, endocytosis, autophagy and immunity. Several PD-associated 

mutations in LRRK2 were identified, presenting a clinical phenotype that resembles 

idiopathic PD (Cookson 2012). G2019S mutation in LRRK2 has been shown to interfere 

with chaperone-mediated autophagy in neurons, and to enhance co-localization of aSyn 

with Lysosomal Associated Membrane Protein 2 (LAMP2) (Orenstein et al 2013). 

Interestingly, genome-wide association findings suggest that LRKK2 variability confers 

both significant risk or protection against PD (Trinh & Farrer 2013). Besides, mutations in 
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Vacuolar protein sorting 35 (VPS35), which mediates retrograde transport of endosomes 

to trans-Golgi network, cause late-onset PD (Vilarino-Guell et al 2011b).  

Autosomal recessive cases of PD contributes for less than 4% of PD and involve genes for 

Parkin (PARK2), DJ1 (PARK7) and Pten-induced kinase 1 (PINK1), between others (Abbas 

et al 1999, Bonifati et al 2003, Kitada et al 1998, Valente et al 2004). PINK1 and PARK2 

encode proteins involved in mitophagy. Specifically, Parkin, an E3 ubiquitin ligase, was 

described to facilitate the degradation of damaged mitochondria. PARK2 mutations are 

thought to result in insufficient protein clearance and subsequent protein accumulation 

and cellular damage (Kitada et al 1998). DJ1 is implicated in anti-oxidative stress 

responses, mainly through reactive oxidative species (ROS) scavenging (Ramsey & Giasson 

2008). Mutations in the gene encoding for PINK1, a cytoplasmic but mitochondria-

associated protein kinase, are thought to impair its kinase activity and contribute to 

disruption of mitochondrial trafficking, ROS formation, and protein aggregation (Liu et al 

2009b, Valente et al 2004, Weihofen et al 2009). Moreover, mutant PINK1 is not able to 

translocate into the mitochondria, where it should stimulate mitophagy. Mutations in 

ATP13A2, a lysosomal ATPase, lead to impaired protein degradation (Park et al 2015, 

Ramirez et al 2006). Finally, mutations in ATP6AP2—a gene required for receptor-

mediated endocytosis, membrane trafficking and lysosomal degradation—cause X‑ linked 

Parkinsonism (Korvatska et al 2013). 

Recently, genome-wide studies have compelled the discovery of novel genes and 

polymorphisms associated with PD. One example is the established link between the 

genetic variability of microtubule-associated protein Tau (MAPT) loci and idiopathic PD. 

Tau is involved in microtubule stabilization, elongation and axonal transport (Lanktree et 

al 2011, Vandrovcova et al 2010).  Moreover, carriers of a single Glucocerebrosidase 

(GBA) mutant allele have five times higher risk for PD. GBA is a housekeeping enzyme that 

helps to digest toxic molecules within lysosomes (Klein & Westenberger 2012). 

Remarkably all genetic forms present aSyn pathobiology with LBs, except for cases 

carrying PARK2 and LRRK2 mutations (Table 1 and  Farrer et al 2001, van de Warrenburg 

et al 2001). 
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Table 1. Known genetic loci linked to Parkinson’s disease 

 

Locus gene Protein Brain 

accumulati

on 

Age at 

onset 

Inheritance Genetic 

alterations 

Loci implicated in late-onset Lewy body PD 

Park 1 

Park4 

SNCA aSyn LBs 30-40s, fast 
progression 

AD Missense/gene 
dosage 

Park 3 SPR  Sepiapterin 
reductase 

LBs 60s AD DNA 
polymorphisms 

Park 5 UCH-L1 Ubiquitin 
carboxy-terminal 
L1 

LBs 50s AD Missense 

Park 8 LRRK2 Leucine-rich 
repeat kinase 2 

LBs, not in 
all cases 

40s,  AD Missense 

Park 10 PARK10 ? unknown 50s Risk factor DNA 
polymorphisms 

Park 11 GIGYF2 GRB10 interacting 
GYF protein 2 

unknown late AD Missense 

Park 12 PARK12 ATP6AP2 Taupathy juvenile and 
early onset 

X-chromosome Synonymous 

Park 13 HTRA2 HtrA serine 
peptidase 2 

unknown 50s AD Missense 

Park 16 PARK16 ? unknown ? Risk factor DNA 
polymorphisms 

Park 17 VPS35 Vacuolar protein 
sorting 35 
Homolog 

unknown Late onset AD Missense 

Park 18 EIG4G1 Eukaryotic 
translation 
initiation factor 4 
gamma, 1 

LBs Late onset, 
mild 

AD Missense 

Juvenile and early-onset recessively inherited parkinsonism 

Park 2 PARK2 Parkin LBs, not in 
all cases 

20s, slow 
progression 

AR Missense 

Park 6 PINK1 Pten-induced 
kinase 1 

unknown 30s AR Missense/trun
cating/dosage 

Park 7 PARK7 DJ1 unknown 30s, slow 
progression 

AR Missense/trun
cating/dosage 

Park 9 ATP13A2 ATPase type 13A2 Iron Juvenile, 
atypical 

AR Truncating 

Park 14 PLA2G6 Phospholipase A2, 
group VI 

Iron Juvenile, 
atypical 

AR Missense 

Park 15 FBXO7 F-box protein 7 unknown Juvenile AR Truncating 

Park 19 DNAJC6 HSP40 Auxilin unknown Juvenile, 
atypical 

AR Splice site/ 
Truncating 

 

 

Table 1. Known genetic loci linked to Parkinson’s disease. AD, autosomal dominant. AR, autosomal 

recessive. Table adapted from (Edvardson et al 2012, Quadri et al 2013, Trinh & Farrer 2013). 
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Figure 3. Overview of cellular dysfunction and genes associated with PD. A glutamatergic cortical 

neuron (blue), a dopaminergic substantia nigra neuron (green) and a dendritic spine of a medium 

spiny neuron (yellow) are represented. In presynaptic terminals, aSyn (1) promotes exocytosis and 

can play a part in endocytosis. Post-synaptically, LRRK2 (2) regulates the release of clathrin-coated 

endocytic vesicles through phosphorylation, neuronal polarity and arborization. LRRK2 also has 

roles in chaperone-mediated autophagy and microtubule stabilization. VPS35 (3) is an integral 

part of the retromer, a complex that mediates cargo endosomal-to-Golgi retrieval by forming a 

clathrin-independent carrier. Alternatively, cargoes may be destined for lysosomal degradation or 

exosome secretion. VPS35 mediates cargo recycling from endosomes to the Golgi apparatus or 

plasma membrane, and vesicle transport between mitochondria and peroxisomes. Lysosomal acid 

hydrolases, including GBA (4), also require the retromer for receptor recycling. Loss-of-function 

mutations in Parkin (5), PINK1 (6) and DJ1 (7) affect mitochondrial biogenesis and induction of 

autophagy. Parkin is involved in ubiquitination and proteasomal function, and PINK1 and Parkin 

are involved in mitochondrial maintenance. ATP13A2 (8) has a role in lysosome-mediated 

autophagy. MAPT (9) helps to regulate cargo trafficking and delivery, primarily in axons. 

Abbreviations: GBA, Glucocerebrosidase; LRRK2, Leucine-Rich Repeat Kinase 2; VPS35, Vacuolar 

Protein Sorting 35 (Trinh & Farrer 2013). 
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1.2.1.3 Current Therapies of PD   

 

Most, if not all, currently available therapies for PD are just symptomatic. While they 

improve motor dysfunction symptoms, they do not modify disease progression nor 

prevent disease onset. These therapies include pharmacological modulation of the 

dopamine system, neurosurgery and physical therapy.  

Since shortage of dopamine is one of the major deficits in the PD brain, current 

pharmacologic interventions are aimed either at replenishing dopamine levels in the 

brain or at modulating the dopamine system with specific agonists and antagonists. More 

specifically, the strategies are the immediate or controlled uptake of the stable dopamine 

precursor levodopa and the inhibition of monoamine oxidase B (MAO-B) or catechol-O-

methyltransferase (COMT), which are enzymes that catabolize dopamine (Goetz et al 

2005, Horstink et al 2006). Levodopa and dopamine agonists are the most widely used 

drugs, as they readily cross the blood-brain barrier (BBB) to exert their anti-Parkinsonian 

effects. However, long-term use of levodopa improves motor symptoms but does not 

slow disease progression and is associated with adverse effects such as motor 

fluctuations and dyskinesias (Fahn 2000, Olanow et al 2004). MAO-B inhibitors, such as 

Selegiline or Rasagiline, are thought to be neuroprotective as they can inhibit dopamine 

catabolism. COMT inhibitors also act on the dopamine pathway by inhibiting levodopa 

catabolism and by extending its half-life. For example, Tolcapone and Entacapone are 

effective in alleviating the motor impairments, but they are associated with 

hepatotoxicity (Williams et al 2010). 

Peroxisome proliferator-activated receptors (PPARs) are also attractive targets to treat 

mitochondrial damage and oxidative stress associated with PD. They belong to a nuclear 

receptor superfamily involved in major biological processes such as inflammation, 

mitochondrial function, tissue differentiation, and lipid and glucose metabolism. 

Pioglitazone is a PPAR- agonist which, when administrated to mice before 1-methyl-4-

phenyl1,2,3,6-tetrahydropyridine (MPTP, a prodrug to the neurotoxin MPP+ that causes 

symptoms of PD by destroying dopaminergic neurons in the substantia nigra of the brain) 

injection, prevents dopaminergic neuronal loss and glial cell activation, by inhibiting the 

conversion of MPTP into MPP+. Concordantly, in a rat model of PD, pioglitazone improved 

mitochondrial function, dopamine levels and neuroprotection. In vitro cell studies with 
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Rosiglitazone, another PPAR- agonist, protected human neuroblastoma cells from 

acetaldehyde-induced ROS and apoptosis, through the induction of antioxidant enzymes. 

In in vitro models, ibuprofen and acetaminophen were also shown to impair neurotoxicity 

by binding to PPAR- and PPAR-α. PPAR agonists are thus promising therapeutic targets, 

but further studies are needed to prove their safety and efficacy in PD patients. 

Moreover, although PD is a multifactorial disorder, the widespread involvement of PPAR 

in cell biology must be carefully regarded to avoid putative severe side effects (Chaturvedi 

& Beal 2008). 

Surgical approaches such as deep brain stimulation (DBS) are presently used, where a 

neurostimulator delivers electric stimuli to targeted brain areas that are responsible for 

motor control. This strategy constitutes an alternative treatment in patients who meet 

specific criteria. A clinical trial comparing drug therapy with a combined drug therapy and 

DBS showed that patients of the latter group have an improved quality of life, regarding 

motor impairment and dyskinesias although this is only a symptomatic treatment (Lozano 

et al 2010). 

PD is a progressive ND and treatment is only efficient for a limited stage of the disease 

(Tambasco et al 2012). In order to develop novel therapeutic strategies for PD it is crucial 

to gain a detailed understanding of the molecular mechanisms involved in the disease. 

Since aSyn-induced cytotoxicity seems to be mainly associated with its misfolding and 

aggregation, it is important to understand how cells respond to the accumulation of these 

protein species. 

Notwithstanding, regular body exercising and healthy nutrition are associated with the 

delay of disease progression. Moreover, coffee consumption seems to reduce the risk of 

PD as caffeine is an inhibitor of adenosine A2 receptors, that are responsible for 

decreased dopaminergic activity and inhibition of neuronal excitation. Thus, by inhibiting 

A2 receptors, caffeine increases brain functions such cognition, learning, and memory and 

improves motor deficits in a mouse model of PD (Ribeiro & Sebastiao 2010). Resveratrol, 

a non-flavonoid polyphenol found in red wine and grapes also protects dopamine 

neurons through its antioxidant and anti-inflammatory properties. Resveratrol-mediated 

neuroprotection seems to act by inhibiting both lipopolysaccharide-induced neurotoxicity 

and microglia activation (Zhang et al 2010). 
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1.2.2 Dementia with Lewy bodies  

 

DLB is a ND characterized by dementia, cognitive impairment, visual hallucination and 

Parkinsonian motor symptoms. Patients with DLB also present LBs in midbrain but mainly 

in neocortical areas and brainstem. It is thought to account for up to 30% of dementia 

cases (Zaccai et al 2005). The most prominent difference between PD and DLB is that 

dementia can affect PD patients after more than one year with motor symptoms of 

parkinsonism while DLB patients suffer from it before or during the parkinsonism 

manifestation (Aarsland & Kurz 2010). Moreover, although most cases of DLB are 

sporadic, a genetic association is described whose profile overlaps with AD and PD ones. 

Thus, SNCA and LRKK2 mutations are found in DLB cases (Hyun et al 2013, Nervi et al 

2011). 

APOE Ɛ4 allele is a strong risk factor for DLB, while APOE Ɛ2 is protective. Moreover, 

mutations in GBA are a risk factor for DLB (Berge et al 2014, Bras et al 2014, Tsuang et al 

2013). 

The realization that patients with Parkinson’s disease often develop cognitive deficits and 

dementia has led to extensive research efforts and new diagnostic criteria for PD and DLB. 

Improving diagnosis by developing new biomarkers, clarifying terminology and criteria, 

and determining protective and risk factors are crucial for an accurate diagnosis.  

 

1.2.3 Multiple System Atrophy 

 

MSA is a sporadic progressive disease with mid-age onset. Clinically, patients can have a 

variable combination of autonomic and cognitive dysfunction, cerebellar ataxia or 

Parkinsonism. Histopathologically, MSA is characterized by the loss of neurons in the 

cerebellum, pons, basal ganglia and spinal cord. Genetic factors may play a role in the 

etiology of the disease, as SNCA variations were associated with MSA risk, as well as  

MAPT gene, encoding for Tau protein (Ross et al 2010, Vilarino-Guell et al 2011a). In 

addition, analysis of familial MSA has identified mutations in COQ2, a protein involved in 

the synthesis of coenzyme Q10 (Multiple-System Atrophy Research 2013). However, until 

now no gene was associated to MSA.   
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The neuropathological hallmark of MSA is the presence of filamentous glial cytoplasmic 

inclusions of aSyn, called glial cytoplasmic inclusions (GCIs) (Trojanowski et al 2007). 

Actually, this aspect is sufficient to diagnose the disease. Although aSyn is the main 

component of GCIs, other proteins as ubiquitin, Nucleosporin p62 (p62) and tubulin 

polymerization-promoting protein (TPPP or p25) are also found. GCIs are located 

surrounding the nucleus randomly arranged with packed filaments (Papp et al 1989). 

Interestingly, aSyn can also form glial nuclear inclusions (GNIs), or be aggregated in 

neurons (Papp & Lantos 1992). While the presence of aSyn in oligodendrocytes is still not 

well understood given the fact that those cells do not express aSyn mRNA, it was 

suggested that a neuron-to-oligodendrocyte transfer of aSyn may occur (Reyes et al 

2014). GCIs are associated with myelin degeneration, microglia activation and ultimately 

to cell death. Once this happens, aSyn inclusions can be uptake by surrounding neurons 

and the process of inflammation and neuronal and oligodendrial dysfunction perpetuates 

to other brain regions (Brundin et al 2008, Streit et al 2004). 

Patients with MSA usually do not respond well to dopamine replacement, probably 

because other populations than dopamine-producing cells are affected, including spiny 

neurons in the striatum (Sato et al 2007).  
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2 The Role of Alpha-Synuclein in Health and Disease 

  

2.1  Structure and Function of Alpha-Synuclein 

 

aSyn was first isolated from the fish Torpedo californica, being found in both synapses 

and nuclear envelope, whose predominant locations gave rise to the name “Synuclein” 

(Maroteaux et al 1988). In humans, it was first identified as being the non-amyloid-beta 

(aβ) component (NAC) of AD amyloid precursor (Ueda et al 1993).  

aSyn is part of  the Synuclein family, which consists of aSyn, beta-Synuclein (bSyn) and 

gamma-Synuclein (gSyn) (Jakes et al 1994, Lavedan et al 1998). They are structurally 

similar to apolipoproteins and abundant in neuronal cytosol. The existence of three 

Synuclein isoforms may count to the modest phenotype of aSyn knockout mice. 

Concordantly, a triple Synuclein knockout mice show a substantial dopamine release in 

vivo not observed with the single knockouts (Anwar et al 2011). 

Structurally, aSyn is a 140-amino acid protein with a molecular weight of 14.5 kDa, but a 

112-amino acid splice variant has been identified in heart, skeletal muscle and pancreas 

(Ueda et al 1994). Being natively unfolded, aSyn acquires an alpha-helical secondary 

structure in the presence of phospholipids (Weinreb et al 1996).  It contains three 

putative domains, a highly conserved amino-terminal (N-terminal), a hydrophobic NAC 

and an acidic carboxy-terminal (C-terminal) domain (Figure 4). The N-terminal 

amphipathic region is  involved in lipid interaction,  and it is where all PD-associated 

mutations are localized; the property of binding to phospholipids is promoted by an 11-

mer of a seven imperfectly repeated hexamer, KTKEGV (George et al 1995); moreover, a 

putative mitochondrial target sequence exists within the first 32 aminoacids of the N-

terminal of aSyn (Devi et al 2008). Interestingly, the PD-associated A30P mutation impairs 

association of aSyn with membranes, which supports a role for membrane binding by the 

N-terminus (Jo et al 2002).  The hydrophobic NAC domain (residues 61-95) by itself can 

form amyloid fibrils and when exposed determines aggregation of aSyn (Giasson et al 

2001, Yoshimoto et al 1995). Finally, the acidic C-terminal domain (residues 96-140) 

contains the binding sites for calcium and copper  (residues 109-140), exhibits chaperone-
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like functions and is subject to phosphorylation at serine and tyrosine residues (Goedert 

et al 2013, Hoyer et al 2004, Souza et al 2000b).  

 

 

Figure 4. Structure of aSyn. A. The N-terminal domain contains all human missense mutations 

associated to familial PD (represented in blue). Although a typical mitochondrial targeting 

sequence is absent in aSyn, the first 32 aminoacids region is a putative mitochondrial-targeting 

signal (MTS, represented in orange) as its deletion abolishes aSyn entrance in mitochondria. The 

central hydrophobic core (NAC domain) promotes aggregation of the protein when exposed. I-VII 

(in green) represents KTKEGV repeats. The C-terminal domain (gray) is an acidic tail that contains 

phosphorylation and calcium binding sites. The phosphorylation sites described for aSyn are 

represented in purple. B. Structure of aSyn solved using nuclear magnetic and electron 

paramagnetic resonance. Adapted from (Emanuele & Chieregatti 2015, Hunn et al 2015).  

 

aSyn is expressed predominantly in the brain, more abundantly in cell bodies during 

development and at nerve terminals in adulthood.  It is also detected in cerebrospinal 

fluid, blood plasma, platelets and lymphocytes (Galvin et al 2001).  At a cellular level, aSyn 

was initially found to occur in a pre-synaptic and nuclear localization in Torpedo 

californica (Maroteaux et al 1988). Further studies confirmed the presence of aSyn in the 

nucleus in mice, Drosophila and in different cell types (Goers et al 2003, McLean et al 

2000, Seo et al 2002, Takahashi et al 2003). The physiological role of aSyn at the synapse 

has been extensively investigated but few studies have focused on its function within the 

nucleus.  

Different physiological roles have been proposed for aSyn: 1) regulation of synaptic 

plasticity and neuronal differentiation. This arose from the fact that aSyn was found in the 

cell body of neuronal precursors in embryonic mice and humans, but in presynaptic 
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terminals in postnatal and adult cortex (Bayer et al 1999, Hsu et al 1998). In PC12 cells 

induced to neuronal differentiation, aSyn levels are substantially increased (Stefanis et al 

2001). Also, aSyn is upregulated in phases of critical neuronal plasticity, both during song 

learning period in the case of a bird model, or in early postnatal rat brain, when synapse 

formation is crucial (George et al 1995, Petersen et al 1999). Probably, aSyn mediates 

synaptic plasticity through the inhibition of phospholipase D2 (PLD2). This was the first 

identified interactor of aSyn, which is involved in the hydrolysis of Phosphatidylcholine, a 

class of phospholipids abundant in biological membranes (Jenco et al 1998). 2) aSyn 

knockout mice presents normal behavior and no changes in the nervous system, although 

it has deficits in the dopamine system at substantia nigra (Abeliovich et al 2000). This 

suggests a role in the regulation of dopamine release, probably through regulation of 

dopamine vesicles. 3) aSyn was shown to be involved in the regulation of cell viability, as 

it was demonstrated its interaction with 14-3-3 chaperones, extracellular signal-regulated 

kinases (ERK), B-cell lymphoma 2 (Bcl-2)-associated death protein (BAD), a Bcl2 

homologue that controls mitochondrial function, and protein kinase C (Ostrerova et al 

1999). Consistent with this is the fact that overexpression of aSyn might lead to 

mitochondrial dysfunction in a hypothalamic neuronal cell line, leading to the generation 

of radical oxygen species. Actually, under basal conditions, aSyn interacts with 

mitochondria, but mitochondria isolated from PD patients presents a higher fraction of 

aSyn bound (Hsu et al 2000); 4) an important suggested function is the regulation of 

neurotransmitters exocytosis at the synapse, by interacting with Cysteine-string protein-

alpha, which together  chaperone SNARE complex assembly at the membrane interface. 

SNARE complex assists vesicles fusion with the membrane, after which they dissociate to 

an unfolded state (Chandra et al 2005).  

Despite the neuroprotective role suggested to aSyn in a healthy state, misfolding, 

mutations or overexpression can promote neurodegeneration, cumulatively with age-

related impairment of cell maintenance or environmental insults (Burre 2015). 

The true physiological species of aSyn remains enigmatic. Originally, aSyn was described 

as a natively unfolded protein that may adopt a helical form in contact with membranes. 

Recent studies point out that aSyn exists in vivo as a tetramer. This was verified in human 

cell lines, red blood cells, mouse cortex and is corroborated by the existence of 

physiological tetramers in human cortex of 60 kDa, and, in minor quantity, of 80-100 kDa. 
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Such multimers are richer in alpha-helices than recombinant aSyn (Bartels et al 2011, 

Dettmer et al 2013, Luth et al 2015). They suggested aSyn monomers may be prone to 

aggregation and that stabilization of the tetramer may illuminate new strategies of 

therapy in pathology. The controversy arose when Burré and colleagues suggested that 

misfolded and boiled aSyn also migrate at 55 kDa on native-PAGE, supposedly because of 

the unstructured state of monomeric aSyn, and they contraposed by mass spectrometry 

that purified mouse brain aSyn has 16 kDa, consistent with a monomeric form of the 

protein  (Fauvet et al 2012b). At this point, it remains possible that aSyn effectively 

adopts a physiological tetrameric state, where the presence of membranes is ubiquitous, 

but it can exist in its intrinsically disordered and unfolded form when a membrane 

interaction does not happen. Functionally, it is being established a pathway in which aSyn 

exists in different levels of folding. This pathway ranges from  a natively unfold state in 

cytosol and membrane-bound physiological multimers that act to chaperone for instance 

SNARE-complex assembly (Burre et al 2010, Diao et al 2013). 

  

2.2  Genetic Association Between Alpha-Synuclein and Parkinson’s 

Disease 

 

The first link between aSyn dysfunction and PD was established in 1997 when A53T 

missense mutation in aSyn gene (SNCA) was shown to cause a dominant, inherited form 

of PD (Polymeropoulos et al 1997). On the same year, aSyn was identified as the main 

component of LBs and LNs (Spillantini et al 1997). Another linkage analysis studies have 

identified other PD-associated mutations (including A30P, E46K, H50G and G51D) (Appel-

Cresswell et al 2013, Kruger et al 1998, Lesage et al 2013, Proukakis et al 2013, Zarranz et 

al 2004).  A18T and A29S substitutions were also associated with Polish PD patients 

(Hoffman-Zacharska et al 2013). Moreover, duplications of SNCA were co-related with 

late-onset PD. Triplication of aSyn, rather than duplication, causes an exceptionally severe 

phenotype, with earlier onset, cognitive as well as motor severe impairments. (Chartier-

Harlin et al 2004, Ross et al 2008, Singleton et al 2003). In these cases, aSyn was found in 

its wild-type form, predicting that a simple increase in the protein rather than a change in 

its properties is sufficient to pathology.  
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Additional functional variability in non-coding regions were associated with an eventual 

susceptibility to idiopathic PD. Specifically, single nucleotide polymorphisms (SNPs) in 

intron 4 or in the 3’ untranslated region, or dinucleotide repeats in the 5’ promoter of 

SNCA, were found in linkage association with the disease (Chiba-Falek et al 2003, Pals et 

al 2004, Rajput et al 2009, Sotiriou et al 2009, Winkler et al 2007). 

 

2.3  Alpha-Synuclein post-Translational Modifications  

 

Post-translational modifications (PTMs) are known to modulate protein conformational 

changes and function (Figure 1). For example, the activation of some proteins depends on 

PTMs as phosphorylation or methylation, and their degradation is regulated by 

ubiquitylation. Thus, if the normal PTMs are altered, pathological conditions may arise. 

Therefore, it is of great importance to investigate the physiological role of PTMs of the 

major players in PD, namely aSyn. 

The best well characterized PTM of aSyn is the phosphorylated S129 (Fujiwara et al 2002). 

Other described post-translational modifications of aSyn include oxidation, ubiquitylation, 

nitration, sumoylation, and glycation. However, the exact role of post-translational 

modifications in aSyn function in both physiological and pathological conditions remains to 

be unravel (Gonçalves et al 2012). 

 

2.3.1 Phosphorylation 

 

Phosphorylation can affect protein conformational states, their fate, subcellular 

localization and can also precede or succeed further modifications in signaling pathways. 

Thus, phosphorylation is a complex mechanism that can affect the biological processes 

happening inside the cell in a dynamically regulated process (Salazar & Hofer 2009). 

Approximately 90% of aSyn is phosphorylated in LB of PD patients, contrasting with only 

4% of phosphorylated aSyn under physiological conditions in vivo (Anderson et al 2006, 

Fujiwara et al 2002). However, it is still unclear whether phosphorylation of this residue is 

either a trigger or a late event in aSyn oligomerization and whether modulating the 

activity of kinases/phosphatases can increase or decrease aSyn oligomerization and 
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toxicity. The studies using genetic mutants that attempt to mimic or block 

phosphorylated-S129 (S129D or S129E and S129A, respectively) associated 

phosphorylation with pathology, in Drosophila melanogaster and mice models (Chen & 

Feany 2005, Chen et al 2009, Freichel et al 2007, Salazar & Hofer 2009). Intriguingly, 

opposite results were obtained in different models, as yeast, rat and Caenorhabditis 

elegans (C. elegans) (Azeredo da Silveira et al 2009, Fiske et al 2011, Gorbatyuk et al 2008, 

Kuwahara et al 2008, Kuwahara et al 2012, Sancenon et al 2012). Similarly, the same 

controversy arises regarding the effect of phosphorylation on aSyn aggregation, both in 

cell and animal models. In fact some reports show a direct relationship (Arawaka et al 

2006, Smith et al 2005, Wu et al 2011a) while others claim that unphosphorylated forms 

of aSyn increase aggregation (Azeredo da Silveira et al 2009, Tenreiro et al 2014). Those 

discrepancies might reflect the complex biological background involved in aSyn function; 

potentially, phosphorylation can be a secondary or a cumulative cause of aSyn pathology. 

This is concordant with a proposed model of inclusions occurring prior to phosphorylation 

and aggregated aSyn being a specific substrate for kinases but not phosphatases (Mbefo 

et al 2010, Waxman & Giasson 2011). 

S87 and Y125 are now emerging as targets for phosphorylation, and demand further 

investigation. Similarly to S129, S87 studies lead to discrepant results: the most recent 

study points phosphorylated S87 being increased in Synucleinopathies rodent models and 

in human brains of ALS, DLB and MSA (Paleologou et al 2010) while previous studies 

claimed that phosphorylation on this residue was not detected in human brains or mouse 

models of Synucleinopathies (Anderson et al 2006, Fujiwara et al 2002). It was observed 

that Y125 phosphorylation decreases upon aging and is absent in the brains of patients 

with dementia with Lewy bodies (Chen et al 2009). In agreement, phosphorylation of 

Y125, Y133 and Y136 suppresses eosin-induced oligomerization (Negro et al 2002). 

However, it was also demonstrated that there is no differences in the levels of 

phosphorylated Y125 between PD brains and controls and further investigations may be 

needed to clarify the relationship between Y125 phosphorylation, aggregation and 

pathology of aSyn (Mahul-Mellier et al 2014). In the same study, Y39 was identified as a 

new phosphorylated residue in human brains but with no significant differences between 

PD and control brains. Notwithstanding, a new mechanistic clue arose from these reports 
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as the authors were able to relate Y39 and Y125 phosphorylation with aSyn clearance 

through proteasomic and autophagic pathways. 

Several kinases were shown to phosphorylate aSyn at S129, as G-protein coupled 

receptor kinases (GRK1, GRK2, GRK5 and GRK6) (Inglis et al 2009, Krantz et al 1997, Pronin 

et al 2000, Sakamoto et al 2009), Casein kinases 1 and 2 (CK1, CK2) (Okochi et al 2000), 

polo-like kinases (PLKs) (Inglis et al 2009, Mbefo et al 2010) and LRKK2 (Qing et al 2009).  

The more well studied kinases in the context of PD are GRK5, which colocalizes with aSyn 

in LBs of PD patients (Arawaka et al 2006), and PLK2, which is correlated with increased 

levels of aSyn phosphorylation in disease (Basso et al 2013, Mbefo et al 2010).  

The emerging objective is now to mechanistically explain the overall phospho-regulation 

of aSyn and to correlate the subsequent phosphorylation events between the kinases 

pool available and with disease. 

 

2.3.2 Nitration and Nitrosylation 

 

In PD, nitrated aSyn was found in LBs. It was proposed that protein 

nitration/nitrosylation, the reaction between a nitro group and tyrosine or cysteine 

residues, may be one of the oxidative mechanisms responsible for the formation of di-

tyrosine crosslinks which contribute for aSyn oligomerization (Giasson et al 2000, Hodara 

et al 2004, Souza et al 2000a). Moreover, soluble nitrated aSyn is not efficiently processed 

by proteases, leading to partial unfolding, accumulation and fibril formation. Interestingly, 

activated microglia is found to induce nitric oxide (NO)-dependent oxidative-stress in 

different cell types and consequently lead to nitration of aSyn that ultimately results in 

neurodegeneration (Hodara et al 2004).  

 

2.3.3 Sumoylation 

 

aSyn can be modified by small ubiquitin-like modifiers (SUMO) in a process known as 

sumoylation. Sumoylated aSyn can be found in LBs suggesting that SUMO may act as a 

proteasome-mediated antagonist of aSyn degradation. Four different SUMO isoforms 

(SUMO-1 to SUMO-4) are expressed in humans. SUMO-4 is highly homologous to SUMO-3 
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and believed to be a SUMO-3 pseudogene (Bohren et al 2004, Su & Li 2002). SUMO 

recognizes a specific consensus motif, and polySUMO chains may be formed since SUMO2 

and SUMO-3 contain this recognition motif (Rodriguez et al 2001, Tatham et al 2001). 

Parkin is an important player in sumoylation since it is shown to regulate the turnover of 

SUMO E3 ligase Ras-related nuclear binding protein 2 (RanBP2), ubiquitylating and 

promoting its proteasomal degradation (Um & Chung 2006). DJ1 is also a target for 

sumoylation in residue K130, and mutations in this residue block its correct sumoylation. 

Since DJ1 activity may rely on its correct sumoylation, dysregulation of the SUMO 

pathway may contribute to the degeneration of oxidative stress-sensitive neurons. 

Interestingly, the oxidation levels of the cell regulate DJ1 expression, whereas SUMO E1 

and E2 activities are reversibly inhibited (Shinbo et al 2006). This suggests that a 

combination of sumoylation in Parkin and DJ1 pathways may play a role in PD 

pathogenesis. 

 

2.3.4 Ubiquitylation 

 

There is an intense debate on whether ubiquitylation is a requirement for aSyn 

degradation by the UPS or whether it may enter the 20S proteasome system directly. 

Nonetheless, aSyn ubiquitylation occurs in specific lysine residues K6, K10, K12, K21 and 

K23 (Anderson et al 2006).  

Interestingly, monoubiquitylation of aSyn by Seven in Absentia Homolog Protein (SIAH) 

increases the formation of aSyn inclusion bodies within dopaminergic neurons and 

enhances its toxicity (Rott et al 2008). These results suggest that monoubiquitylation may 

be a triggering event in aSyn aggregation.  

Moreover, several mutations in genes associated with the ubiquitin-proteasome system 

are described as PD associated. Thus, ubiquitylation of aSyn may be a pathological event 

associated with the formation of LBs in a process that is modulated by different gene 

products, all of which might constitute targets for intervention.  
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2.3.5 Glycation 

 

Other PTMs are known to occur in the cell, such as glycation, a spontaneous reaction 

between reducing sugars and free amino-groups. Since glycation agents such as 

methylglyoxal, a by-product of the glycolytic pathway, are known protein cross-linkers, 

glycation may contribute to the chemical crosslinking and proteolytic resistance of the 

protein deposits found in the LBs (Vicente Miranda & Outeiro 2010). This suggests that 

modulating the amounts of glycation agents in neurons also regulates the formation of 

inclusion bodies. One possible strategy to interfere with glycation involves the regulation 

of the enzymes responsible for the catabolism of glycation agents (mainly the glyoxalases 

and aldose reductase) (Maeta et al 2005). These enzymes are glutathione- or 

nicotinamide adenine dinucleotide phosphate (NADPH) -dependent, which are important 

compounds involved in the response to oxidative stress. Strategies aimed at increasing 

the levels of both glutathione and NAPDH may be important to control oxidative stress 

and carbonyl stress, which may in turn prevent the aggregation of proteins such as aSyn. 

Interestingly, one aging-related event in PD is the decrease in glutathione levels 

(Thornalley 1998) contributing to an increase in the formation of advanced glycation end-

products (AGE), the final products of glycation. Besides glutathione levels, the expression 

of glyoxalase I in normal individuals increases until the age of 55 and progressively 

declines with aging, contributing to AGE formation (Kuhla et al 2006). These species are 

specifically recognized by the receptors for AGE that trigger an inflammation and 

oxidative stress response via the Nuclear Factor kappa-light-chain-enhancer of activated B 

cells (NF-B) induction and the formation of ROS. These receptors are highly expressed in 

PD patients when compared to age-matched controls, suggesting a role in the 

development and/or progression of the disease (Dalfo et al 2005). Interestingly, a 

synthetic derivative of vitamin B1, benfothiamine, was shown to prevent AGE formation 

in different models. In an Alzheimer’s disease mouse model, this compound was shown to 

improve cognitive function and reduce aβ deposition and tau phosphorylation (Pan et al 

2010).  
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2.4  Alpha-Synuclein Aggregation and Cellular Dysfunction 

 

In the context of NDs, the “amyloid hypothesis” states that the aggregation of proteins 

into an ordered fibrillar structure is causally related to aberrant protein interactions that 

culminate in neuronal dysfunction and ultimately neurodegeneration (Hardy & Selkoe 

2002). When proteins fail to adopt a proper and functional structure, and thus are not 

efficiently detected by molecular chaperones nor eliminated by the cellular degradation 

systems, they might undergo aberrant and harmful interactions (Bandopadhyay & de 

Belleroche 2009, Outeiro & Tetzlaff 2007). At this point, they can spontaneously form 

more stable and insoluble amyloid assemblies, which are rich in beta-sheet structures. 

More recently, smaller protein assemblies, known as oligomeric species, have entered the 

central stage (Outeiro et al 2008, Wong et al 2008). Available evidence suggests oligomers 

as either precursors for the formation of amyloid fibrils or off-pathway intermediates in 

the amyloidogenic cascade (Figure 1) (Ross & Poirier 2004, Taylor et al 2002).  

aSyn also deposits in other NDs. Up to 60% of AD patients show LBs, but more restricted 

to amygdala (Uchikado et al 2006). The hiperphosphorylated microtubule-associated Tau 

(MAPT) is a major component of neurofibrillary tangles and plaque neurites in AD 

(Grundke-Iqbal et al 1986). The microtubule-binding domain of Tau was shown to bind to 

aSyn via its C-terminal. Consequently, only Tau that is not bound to microtubules 

interacts with aSyn. In addition, aSyn promotes the phosphorylation of Tau by protein 

kinase A, which impairs binding of Tau to microtubules. On the other side, N-terminal of 

aSyn binds to aβ and brain vesicles (Biernat et al 1993, Jensen et al 1999, Yoshimoto et al 

1995). Synphilin-1 is another interacting partner of aSyn, whose function might be 

involved in vesicle transport or cytoskeletal function. Importantly, it is present in LBs of 

PD brains. In vitro, Synphilin-1 co-expression with aSyn promotes cytosolic eosinophilic 

inclusions that resemble LBs (Engelender et al 1999, McLean et al 2001, Wakabayashi et 

al 2000). 

Similar to aSyn, bSyn and gSyn can deposit in both PD and DLB. Lack of studies and 

contradictory results did not consolidate yet the characterization regarding toxicity 

effects of bSyn and gSyn, still it is suggested that may cause degeneration (Ninkina et al 

2009, Nishioka et al 2010). While bSyn has been suggested to ameliorate aSyn-induced 

toxicity through effects on its aggregation and expression (Fan et al 2006, Hashimoto et al 
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2001), other studies in cultured neurons reveal bSyn is as toxic as aSyn (Taschenberger et 

al 2013).  

NDs with brain iron accumulation due to mutations in Pantothenate Kinase Type 2, 

involved in the Coenzyme A biosynthetic pathway, are also positive for aSyn, bSyn and 

gSyn in Lewy bodies, which can suggest that Synucleins are involved in transversal cellular 

pathways or they participate in the attempt to respond to injury (Galvin et al 2000). 

 

2.5  Alpha-Synuclein and Neuronal Trafficking 

 

Trafficking processes govern the physiological homeostasis of neuronal cells in the brain, 

impacting on cell survival. Vesicular trafficking underlies the function of numerous 

essential cellular processes such as the export of newly synthesized proteins from the 

endoplasmic reticulum (ER) to the Golgi and to the cell surface; and the recycling, 

transportation and fusion of membrane receptors to lysosomal vesicles for degradation. 

Thus, dysfunction of key intracellular trafficking processes may impact on normal 

neuronal function, especially in highly specialized cells such as dopaminergic neurons that 

appear to be particularly vulnerable in PD (Matsuda et al 2009). The burden imposed by 

trafficking processes in dopaminergic neurons might be larger than in other neuron types, 

as these neurons are estimated to establish 1-2.5 million synapses per neuron in the 

striatum, and present complex axonal arborisations (Hunn et al 2015). Indeed, defects in 

exocytosis, endocytosis, sorting and recycling of endosomal receptors at synaptic 

transmission sites have already been associated PD (Figure 5).  

In PD, a consequence of vesicular transport impairment is the functional deficit of the 

nigrostriatal dopamine system. Dopamine, through a decrease of the vesicular 

neurotransmitter uptake, is stalled in the ER-Golgi compartments. This is associated with 

aSyn dysfunction in dopaminergic neurons, as transgenic human aSyn in rat and mouse 

models of PD attenuates the mobility, dispersion and the size of synaptic vesicle recycling 

pools (Nemani et al 2010, Scott & Roy 2012).  In this case, Dopamine is rapidly oxidized to 

generate ROS, contributing for cell damage and death, an observation that is aggravated 

in transgenic mice expressing A30P, A53T and truncated forms of aSyn (Garcia-Reitbock et 

al 2010, Platt et al 2012, Taylor et al 2014). 
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Figure 5 Intracellular trafficking is impaired in PD. A. The pathological and physiological species 

of aSyn remains unknown. However, increasing evidence suggests that oligomers and monomers 

are responsible for the deleterious effects in disease. B. aSyn impairs key events in the soma, such 

as endoplasmic reticulum–Golgi trafficking, endosomal trafficking, and autophagolysosome 

formation. C. Tau protein regulates microtubule stability, allowing efficient axonal transport.  

Variants in the gene for the MAPT protein confer PD susceptibility.  Increased aSyn also impairs 

axonal transport. D. At the synapse, aSyn disturbs Dopamine and autophagosomes trafficking and 

synaptic vesicle distribution. Adapted from (Hunn et al 2015). 
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Actually, ER stress was pointed as the earliest aSyn-induced defect in a yeast PD model 

and was further confirmed in fly, rat and worm (Cooper et al 2006). Moreover, through an 

ribonucleic acid interference (RNAi) screen in a C. elegans model of PD, based on the 

expression of wild type-, A30P-, or A53T-aSyn, components of the endocytic pathway 

were identified to play an important role in the worm neurotoxicity, growth and 

movement coordination (Kuwahara et al 2008). This is supported by the observation that 

aSyn induced disruption of ER-to-Golgi trafficking occurs through direct interaction of 

aSyn and SNARE complexes (Thayanidhi et al 2010). Interestingly, aSyn is believed to 

assist the folding of SNARE proteins, involved in the fusion of vesicles, thereby modulating 

the release of synaptic neurotransmitters (Bonini & Giasson 2005). 

Ras-related proteins in brain (Rab) GTPases are major players in those cellular processes. 

This highly conserved family of proteins is composed by more than 60 members in 

mammals (Zerial & McBride 2001). Overexpression of Rab1 in yeast, C. elegans, 

D.melanogaster and primary neuronal cultures, suppresses aSyn-induced toxicity (Cooper 

et al 2006). Moreover, different studies showed that dysregulation of Rab members as 

Rab3a (involved in exocytosis of synaptic vesicles), Rab5 (important for endocytosis), 

Rab7 (implicated in the formation and fusion of late endocytic structures with lysosomes) 

and Rab8 (involved in trans-Golgi transport), can be involved in aSyn pathology (Dalfo et 

al 2004b). In addition, Rab3b overexpression in rat can rescue the neurotoxicity of 6-

hydroxydopamine, a neurotoxin that selectively kills dopaminergic and noradrenergic 

neurons (Chung et al 2009, Kuwahara et al 2008).  Importantly, Rab7L1 has been shown 

to interact with LRRK2 and VPS35, and seems to play a role in endosomal–lysosomal 

trafficking (MacLeod et al 2013).  

Rab proteins were also previously found to colocalize with aSyn inclusions in yeast cells, 

further supporting the possibility that aSyn, or other components of inclusions, might 

sequester Rab GTPases from their normal cellular functions. Also in yeast, it was found 

that deletion of Ypt6p, Ypt7p, and Ypt51p, homologues of mammalian Rab6, Rab7 and 

Rab5, respectively, that are involved in the endocytic pathway, increased aSyn 

aggregation (Soper et al 2011). Other studies also reported the interaction between a 

A30P mutant version of aSyn and Rab3a, Rab5 and Rab8, in transgenic mice (Dalfo et al 

2004a, Dalfo et al 2004b).  
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It was not new that Rab proteins are linked to neuropathies; for instance, mutations in 

RAB7 can cause Charcot-Marie-Tooth type 2B (Verhoeven et al 2003). In LRRK2-mediated 

PD, different steps of the endolysosomal pathway, regulated by Rab5 and Rab7, are 

impaired. LRRK2 silencing causes impairment of Rab5-dependent synaptic vesicle 

endocytosis (Shin et al 2008). Moreover, Lrrk2 seems to be a negative regulator of Rab7-

mediated perinuclear clustering and localization of lysosomes, which is vital for multiple 

cellular functions, including autophagy (Dodson et al 2012).   

Rab11a is also a recycling endosome (RE) regulator that has been related with aSyn 

pathology. Together with HSP90, it has been show to associate with aggregated species of 

aSyn and to mediate the secretion of aSyn in vitro (Liu et al 2009a). 

In a rat model of aSyn and in human tissue of brain with sporadic PD, it was demonstrated 

that there is a reduction in axonal transport proteins, as Kinesin, a protein to which Tau 

interacts (Chu et al 2012, Dixit et al 2008). This impaired axonal trafficking gains 

importance when for instance aSyn aggregates in the synapse need to retrogradely be 

cleaned through the autophagy-lysosome pathway (Maday et al 2012). Concordantly,  in 

fly, aSyn and Tau co-localized in ubiquitin-positive aggregates and it was also associated 

with deficits in axonal transport and cytoskeleton (Roy & Jackson 2014). 

Altogether, these findings suggest that aSyn aggregation can interfere with the cellular 

trafficking and, therefore, modulating vesicular trafficking function may constitute a valid 

therapeutic approach.  

 

2.6  Intercellular Propagation of Pathologic Alpha-Synuclein 

 

As millions of copies of each protein are made during the lifetime of any cell, a random 

event can eventually occur shifting the conformation of a protein into a toxic 

configuration. Remarkably, the toxic configuration is often able to interact with other 

native copies of the same protein and catalyze their transition into the toxic state. The 

newly made toxic proteins repeat the cycle in a self-sustaining loop, amplifying 

the toxicity and thus leading to a catastrophic effect that eventually kills the cell or 

impairs its function.  Because of this ability, they are known as prion-like proteins or 

prions. Thus, prions are misfolded forms of an endogenous protein that normally suffers 
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the conversion of alpha-helical to a beta-sheet rich structure. This shift propitiates 

infectivity, a property that enables refolding of native proteins into the prionic state.  

Emerging evidence points that prion-like mechanisms of disease propagation exist in AD 

and PD, and possibly other disorders. In PD, this hypothesis is consistent with Braak’s 

suggestion of pathology progression from the anterior olfactory bulb and lower brainstem 

into the dorsal motor nucleus of the vagus nerve, through midbrain and basal forebrain, 

eventually reaching the cortex (Figure 6). As this topographic sequence occurs following a 

non-random process, the severity of the clinical manifestations increase accordingly 

(Braak et al 2003). Supporting this line of thought, it is suggested that aSyn fibrils can act 

as seeds of surrounding monomeric aSyn. Moreover, A30P fibrils can induce assembly of 

WT-aSyn fibrils with the same conformational character as A30P fibrils (Wood et al 1999, 

Yonetani et al 2009). Importantly, LBs were found in foetal neural grafts in post-mortem 

PD brains 10 to 22 years after transplantation (Kordower et al 2008, Li et al 2008).  

It is known that PD pathology also affects the peripheral nervous system (PNS), in 

particular the enteric nervous system (ENS). Indeed, Lewy pathology can be found both 

throughout the PNS as well in cases of asymptomatic incidental DLB (Beach et al 2010, 

Dickson et al 2009, Parkkinen et al 2005). Braak et al propose that PD pathology starts in 

the gastric system and precedes clinical Parkinsonism, affecting vulnerable neurons with a 

long and unmyelinated axon in CNS (Braak et al 2006, Braak & Del Tredici 2004).  

The concept of intercellular propagation of aSyn has risen when this protein was found in 

cerebrospinal fluid (CSF) and blood plasma of both PD and normal cases, thus implicating 

that aSyn was being released by neurons in the extracellular space (Borghi et al 2000, El-

Agnaf et al 2003). Although aSyn intercellular transition in PD is being well documented 

(Figure 7), the mechanism that leads to a general spreading in brain remains to be 

elucidated. Exocytosis of monomeric, oligomeric and aggregated forms of aSyn has been 

proven through exosomes in vitro (Danzer et al 2012, Emmanouilidou et al 2010, Lee et al 

2005). Moreover, oligomeric and fibrillary aSyn enter neurons through conventional 

endocytosis, travel through endosomal pathway and eventually they can be degraded by 

lysosomes (Lee et al 2008). In rodents, it was also proved the spreading of aSyn 

pathology. In a first study, injection of synthetic aSyn into dorsal striatum of wild type 

mice led to the appearance of LBs in substantia nigra and motor deficits. Similarly, 

cultured dopaminergic neurons grafted into aSyn transgenic mice were also positive for 
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aSyn (Desplats et al 2009, Hansen et al 2011). These findings were not limited to neurons 

but were also shown in astrocytes where it triggers an inflammatory response (Lee et al 

2010). Furthermore, it was demonstrated using a mouse model for a Synucleinopathy 

that inoculation of young asymptomatic mice with brain homogenates from old and 

symptomatic mice accelerated aggregation, promoted hyperphosphorylation of aSyn at 

S129 and decreased longevity. Importantly, this disease progression did not occur if 

inoculation was made in aSyn knockout animals, which suggests that endogenous aSyn is 

crucial for an effective transmission of pathology from an affected to an unaffected site, 

being consistent with a prion-like mechanism underlying the disease propagation 

(Mougenot et al 2012). Similarly, by striatal injection of fibrillary aSyn in mice, Lewy body 

pathology was monitored first in the injected area and later in ventral striatum, cortex 

and brainstem. Cell loss was rapidly noticeable in substantia nigra as characteristic in PD 

(Luk et al 2012). 
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Figure 6. Schematic of Parkinson’s disease progression as proposed by Braak and colleagues. 

According to the Braak model, aSyn deposits in specific brain regions starting from the lower 

brainstem through susceptible regions of the midbrain (including substantia nigra) and forebrain 

(as amygdala) and into the cerebral cortex. It is hypothesized that the disease initiates in the 

periphery, gaining access to the CNS through retrograde transport along projection neurons from 

the gastrointestinal tract. Adapted from (Visanji et al 2013). 

 

 

 

 

Figure 7. Neuron-to-neuron transmission of aSyn. aSyn can be released into the extracellular 

space via (1) leakage from injured cells. Extracellular aSyn is able to directly translocate the cell 

membrane and gain access to neighboring neurons (2), can be transmitted from cell-to-cell via 

conventional exocytosis and endocytosis (3) or can be packaged into exosomes which are 

released and taken up by surrounding cells (4). Tunneling nanotubes can form a direct connection 

between two cells potentially allowing aSyn to transfer freely from one cell to another (5). Finally, 

aSyn could be transmitted by direct synaptic contact (6). Adapted from (Visanji et al 2013). 
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2.7  Cellular Models of Alpha-Synuclein Oligomerization and 

Aggregation 

 

In neurodegeneration, protein-protein interactions (PPIs), which lead to the formation of 

oligomeric species and amyloid-like protein aggregates, are thought to lie at the heart of 

cytotoxicity (Outeiro et al 2008, Wong et al 2008). Thus, animal and cellular models are 

necessary vehicles to study PD progression. Ideally, a live model with a complex nervous 

system where the key features of PD can be recapitulated could be a valuable tool to 

study the therapeutic solutions for the disease. However, mechanistic explanations of the 

disease are still lacking and thus, in vitro models than can mimic simple and few cellular 

pathways of disease etiology are in the edge of knowledge breakthroughs rather than in 

vivo models. 

The formation of macroscopic proteinaceous inclusions has been reported in several 

models of NDs such as cell cultures, flies, worms, or mice (Feany & Bender 2000, Masliah 

& Hashimoto 2002). However, the detection and observation of oligomeric and 

prefibrillar species directly in living cells was only recently achieved (Chen et al 2006, 

Outeiro et al 2008). 

We have witnessed the development of novel experimental approaches to directly detect 

PPIs. Traditional approaches such as co-immunoprecipitation (coIP) and co-purification, or 

even the recently developed protein microarrays, require the removal of proteins from 

their natural environment. The identification of PPIs is therefore performed under non-

native conditions. Major limitations of these approaches include the possibility that the 

interaction observed does not reflect a physiological event and fail to provide information 

on the subcellular localization of the interactions. Methods that overcome this 

disadvantage, including functional analysis of compensatory mutations, imaging-based 

techniques or protein-fragment complementation assays (PCAs) have led to the 

identification of several PPIs (Remy & Michnick 2004). These methods have the advantage 

of allowing the various biological players to remain intact in the cellular environment.  

Traditional imaging-based methods used to visualize interactions of protein complexes in 

cells include fluorescence- or bioluminescence- resonance energy transfer microscopy 

(FRET or BRET, respectively), fluorescence correlation spectroscopy (FCS) (Langowski 



I. Introduction  | 55 
 

2008) and image correlation spectroscopy (Petersen et al 1993). FRET measures the 

distance between two interacting proteins in vivo, which are labeled with two different 

fluorophores. One of the proteins is labeled with a donor fluorophore that, upon 

excitation, transfers energy to the acceptor fluorophore that labels the second protein. 

The distance between the two interactors is calculated based on the difference between 

the lifetime of the two fluorophores. As the emission spectrum of the donor must overlap 

the excitation spectrum of the acceptor, this technique can identify interactions that 

occur within <10 nm (Rino et al 2009). FRET-based techniques enabled investigating the 

effect of mutations in the gene coding for the amyloid precursor protein (APP) on its 

interaction with Presenilin-1 (Herl et al 2009). These techniques were also used to 

characterize intra- and inter-molecular interactions of aSyn (Klucken et al 2006, Outeiro et 

al 2009).  

FCS is a powerful bioimaging technique that measures fluctuations and diffusion rates of 

fluorescently-labeled molecules, using sophisticated theoretical analysis (Langowski 

2008). These fluctuations are characteristic of particular physical interactions and 

aggregation patterns of the interacting partners. FCS has been used to investigate the 

formation of polyglutamine oligomers and amyloid-beta (a) peptide aggregates (Funke 

et al 2007, Takahashi et al 2007). PCAs, such as the yeast two hybrid system (Y2H) (Fields 

& Song 1989) and the split ubiquitin system (SUS) (Johnsson & Varshavsky 1994), have 

also allowed the detection of transient PPIs in living cells. The Y2H system, in particular, 

led to several important discoveries in the field of NDs (Fombonne et al 2009, Greggio et 

al 2008). In both the Y2H and the SUS assays, PPIs activate reporter genes that will either 

enable growth on specific media or mediate a colorimetric reaction. Although the Y2H 

system requires the interactors to be localized in the nucleus, the derivative SUS 

technique affords the opportunity to investigate cytoplasmic or membrane-

compartmentalized interactions. Nevertheless, these PCAs do not necessarily provide 

information regarding the normal subcellular localization of the interaction, which can 

only be achieved with imaging-based methods. 

In vitro mammalian models of PD are multiple and complex to design as the expression of 

aSyn does not induce cytoplasmic inclusions or cytotoxicity per se. However, 

overexpressed aSyn can modulate toxicity, ROS production and the formation of 

cytoplasmic inclusions (Junn & Mouradian 2001, Xu et al 2002).  
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Along this work, we based our cell models in neuroglioma cells expressing aSyn oligomers 

and cytoplasmic inclusions. Bimolecular fluorescence complementation (BiFC) was used 

to directly visualize aSyn oligomerization in living cells, allowing to study the initial events 

leading to aggregates formation. Stabilization of aSyn oligomers via BiFC results in 

increased cytotoxicity, which can be rescued by Hsp70 in a process that reduces the 

formation of aSyn oligomers (Outeiro et al 2008). 

Aggregates formation can instead be modeled co-expressing aSyn and Synphillin-1, an 

interactor of aSyn also found in LBs, which positively react for ThioflavinS staining 

(McLean et al 2001). 

 

2.7.1 Bimolecular Fluorescence Complementation 

 

The BiFC assay was introduced in 2002 to investigate interactions between basic leucine 

zipper (bZIP) and Rel family transcription factors in their normal cellular environment, 

using the COS-1 cell line (Hu et al 2002). Since then, BiFC has been used successfully in 

different model organisms, including mammalian cell lines, plants, nematodes, yeast, and 

bacteria (Bracha-Drori et al 2004, Chen et al 2007). Importantly, this technique can also 

be used as a platform for genetic or chemical screens (Gehl et al 2009). 

The development of the BiFC assay constituted a powerful technological advance; indeed, 

it allows the study of PPIs and their functional roles in the context of living cells (Chen et 

al 2006, Kerppola 2006, Outeiro et al 2008). This assay involves the fusion of two non-

fluorescent fragments of a reporter protein to the proteins of interest. In the event of an 

interaction between two proteins of interest, the reporter fragments come together, fold 

into a quasi-native structure, and thereby reconstitute the activity of the reporter protein 

(Chen et al 2006, Kerppola 2006) (Figure 8). 

 

2.7.1.1 Advantages and Disadvantages of BiFC 

 

The BiFC assay, through the formation of a fluorescent complex from non-fluorescent 

constituents, affords the possibility of overcoming some of the limitations of several 

techniques previously used for the study of PPIs. These limitations are most commonly 
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related to the size of protein complexes and the optical resolution of microscopes. There 

are two major advantages over the methods mentioned above: (i) it is unlikely that 

cellular conditions that are not related to protein–protein interactions cause changes in 

fluorescence intensity or lifetime, because the signal is generated uniquely upon 

complementation of two non-fluorescent fragments; and (ii) the fluorescent complexes 

can be directly visualized in living cells without the need for staining with exogenous 

molecules (Kerppola 2006). 

 

 

Figure 8. HSP70 inhibits aSyn oligomerization in living cells. A. Confocal microscopy showing 

aSyn dimers produced by BiFC; B. the presence of Hsp70 significantly reduces the fluorescence 

produced by the dimerization of aSyn. To emphasize the specificity of aSyn-aSyn interaction 

through BiFC, the negative control with one construct (C.) and the positive controls with the 

entire GFP (D. and E.) are shown. Scale bar: 20µm. 
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One limitation of BiFC is that it does not enable the direct identification of novel 

interacting partners because fluorescence complementation requires that the proteins 

are tagged with a fluorophore fragment. The generation of libraries similar to those 

available for Y2H screens, in which different cDNAs are fused to each of the fluorescent 

protein fragments, presents one possible way to overcome this limitation.  

 

2.7.1.2 Visualization of PPIs with BiFC – Reporter Proteins 

 

Several reporter proteins have already been successfully used for detection, including 

green fluorescent protein (GFP), cyan fluorescent protein (CFP), yellow fluorescent 

protein (YFP) and red fluorescent protein (RFP) (Chu et al 2009).  

The first version of the BiFC assay used GFP and encompassed an initial incubation at 

30ºC. In some experimental settings, this might constitute a disadvantage. However, this 

disadvantage is now overcome with the development of a number of fluorescent proteins 

(FP) including Cerulean (CFP variant) (Rizzo et al 2004), Citrine (Griesbeck et al 2001), 

VENUS (Nagai et al 2002) (YFP variants) and mLumin (a far-red variant) (Chu et al 2009) 

whose improved biophysical properties enable the maturation of the fluorophore at 

37ºC. This is particularly important for studies in mammalian cells which typically prefer 

this later temperature and, therefore, for the study of neurodegeneration in mammalian 

models.   

Multicolor BiFC was later developed to investigate both the dimerization selectivity of 

different members of the leucine zipper family, and the subcellular localization of such 

interactions (Hu & Kerppola 2003). Multicolor BiFC has been further applied to other 

areas such as neurobiology, where it is now giving its first steps. For instance, it has been 

used to study changes in A2A (adenosine) and D2  (dopamine) heteromeric receptors 

formation upon drug stimulation (Vidi et al 2008).  

 

2.7.1.3 Application of BiFC in the Study of NDs 

 

One potential limitation of BiFC is the trapping of particular PPIs, because the 

reconstitution of the fluorophore by BiFC can lead to stabilization of the protein complex 
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(Kerppola 2006, Outeiro et al 2008, Tetzlaff et al 2008). This, together with the need for a 

maturation period, limits its usefulness for visualizing dynamic interaction changes. 

However, this disadvantage might actually turn out to be useful for some studies, because 

it allows the selective enrichment of dimeric/oligomeric species, thereby facilitating their 

study. In particular, for the study of NDs, the stabilization of certain PPIs could be 

extremely useful since it enables the study of species that might be transient, such as 

those generated in the protein aggregation process. BiFC, in contrast to other techniques, 

enables the visualization of small dimeric/oligomeric species in living cells without the 

need for antibody staining. However, it does not allow one to visually distinguish dimers 

from oligomers or another higher order species. In order to discern between species, BiFC 

can be coupled to other techniques such as FCS (Outeiro et al 2008, Tetzlaff et al 2008), 

sodium dodecyl sulfate (SDS)- or native-polyacrylamide gel electrophoresis (PAGE) 

(Anderie et al 2007, Chen et al 2006, Tetzlaff et al 2008). Immunoprecipitation (IP) (Chen 

et al 2006, Tetzlaff et al 2008), flow cytometry (Morell et al 2008), FRET (Shyu et al 2008) 

and BRET (Gandia et al 2008), when combined with BiFC, might provide insight into the 

dimeric/oligomeric state of the different protein species. 

Thus, approaches, which use BiFC in combination with other complementary 

methodologies, hold a strong potential for unveiling phenomena, which would otherwise 

be difficult to investigate, such as oligomer composition in living cells. Indeed, BiFC was 

used to elucidate G protein-coupled adenosine receptor (A2A) stoichiometry; in the same 

study, A2A oligomers, containing more than two promoters, were observed using BiFC 

coupled to BRET (Gandia et al 2008). In the field of NDs, where the formation of 

oligomeric complexes seems to play an important role in the pathological process, the 

BiFC assay constitutes a simple and easy-to-adapt tool to investigate the biochemical 

events involving the formation of those oligomeric species (Gandia et al 2008).  

 

2.7.1.4 BiFC in the study of Alzheimer’s disease  

 

AD is the most common cause of dementia, and it continues to affect an increasing 

number of people due to aging of the human population. Patients suffer progressive and 

severe neuronal loss in the cerebral cortex and hippocampus (Gunther & Strittmatter 

2010). The pathological hallmarks of AD are extracellular amyloid plaques mainly 
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composed of a and neurofibrillary tangles, which are made primarily of 

hyperphosphorylated tau. The triggering signals and the molecular mechanisms that 

determine the formation of these two types of protein aggregates remain unclear 

because the majority of AD cases are sporadic and have no clear genetic determinant. In 

order to investigate the nature of the aggregates and to distinguish prefibrillar oligomers 

and fibrils, conformation-dependent antibodies have been developed (Kayed et al 2007). 

We posit that BiFC holds great potential for the study of the PPIs involved in the 

oligomerization and aggregation of these AD-associated proteins, affording the 

opportunity for direct visualization of PPIs in living cells. The a precursor protein 

interacts with Notch2 (N2), a transmembrane receptor involved in neuronal function and 

embryonic and adult development (Oh et al 2005). The use of BiFC was crucial in 

determining the nature of the interaction between APP and N2. With this technique, not 

only were APP dimerization and APP–N2 heterodimerization visualized in living cells, but 

these interactions were shown to occur at the endoplasmic reticulum, Golgi, and plasma 

membrane (Chen et al 2006). Furthermore, the same group, using BiFC in Presenilin null 

fibroblasts, demonstrated that the APP–N2 interaction is Presenilin-independent (Oh et al 

2010).  

 

BiFC in the study of Parkinson’s disease  

 

In order to unravel the molecular mechanisms involved in the formation of intermediary 

species that range from monomeric to aggregated forms of aSyn, BiFC has been used to 

visualize aSyn oligomers and to observe their modulation of other proteins (Figure 8) 

(Outeiro et al 2008). Another study applied BiFC to investigate the effect of carboxyl 

terminus of Hsp70-interacting protein (CHIP) on aSyn oligomerization; this study 

concluded that co-expression of aSyn with CHIP leads to a reduction in both aSyn 

oligomerization and toxicity (Outeiro et al 2008, Tetzlaff et al 2008). Due to its 

characteristics, BiFC is also used as readout to identify modifiers of aSyn oligomeric 

process, through the use of genetic screens (Goncalves et al 2016).  

Multicolor BiFC has been used to investigate dopamine D2 and adenosine A2A receptor 

oligomerization (Vidi et al 2008). G protein-coupled receptor oligomerization has been 

shown to be altered following long-term administration of drugs such as L-3,4-
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dihydroxyphenylalanine (known as L-DOPA) which are used in the treatment of PD. This 

study identified a shift in the type of oligomers formed upon drug application: A2A–D2 

heterodimers decreased in comparison to A2A homodimers after stimulation by D2 

agonists; the opposite effect was observed upon stimulation with D2 antagonists. Thus, it 

was suggested that long-term exposure to drugs might lead to an alteration of A2A–D2 

receptor oligomerization.  

 

2.7.2 An in Vitro Model of aSyn Aggregation 

 

McLean et al described a carboxy-terminally truncated aSyn-GFP fusion protein (aSynT) 

that altered the widespread subcellular distribution and solubility of aSyn by inducing the 

formation of cytoplasmic inclusions. These could be positively modulated by proteasome 

inhibitors and A53T mutation but negatively by A30P. Importantly, they have found that 

overexpression of Synphilin-1, an aSyn interacting protein also found in Lewy bodies, 

enhances and colocalizes with aSynT in discrete cytoplasmic inclusions (McLean et al 

2001). Since then, this model is being largely used to induce aSyn aggregates 

spontaneously in cytoplasm (Chutna et al 2014b, Goncalves et al 2016, Smith et al 

2005)(Figure 9).  
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Figure 9. A cellular model of aSyn aggregation. Overexpression of carboxy-terminally truncated 

aSyn-GFP fusion protein and Synphilin-1 spontaneously form cytoplasmic inclusions in neuroglial 

cells. Co-transfected cells were detected by immunocytochemistry using anti-V5 antibody and a 

rhodamine-linked secondary antibody for Synphilin-1 (red) and Sc7012 primary and a fluorescein-

linked secondary antibody for aSyn T (green). Scale bar 10 µm. 
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PD is a neurodegenerative condition associated with the misfolding and aggregation of 

aSyn, a neuronal protein whose function is not totally characterized. There is ample debate 

of what are the toxic species of aSyn that triggers to pathology, although it has been 

postulated that misfolded oligomeric aSyn are the most toxic species.  

The work described here aimed to investigate the molecular mechanisms underlying aSyn 

pathogenesis, at its earlier stages. The molecular contextualization of aSyn early events of 

aggregation might guide us to a deeper and more assertive understanding of the role of 

aSyn in health and in disease conditions. Thus, the aims of this study were: 

 

A. To monitor and characterize the subcellular dynamics of aSyn between the 

nucleus and cytoplasm in living cells using photoactivation microscopy (Chapter 

III, section A).  

I. By tracking the dynamics of aSyn-WT and PD-associated familial 

mutations, phosphorylated aSyn or aSyn in the presence of known 

interactors. 

 

B. To establish a cell model of aSyn oligomerization, based on bimolecular 

fluorescence complementation (BiFC), as readout for a lentiviral RNAi screen 

(Chapter III, section B). 

 

I. Based on that, to identify genetic modulators of aSyn oligomerization 

and to further characterize them regarding aSyn subcellular localization, 

secretion and cytotoxicity; 

II. To test the robustness of the identified genetic modulators on the 

context of aSyn aggregation, using a cell model of aSyn insoluble 

inclusions. 

 

 

 

 



 
  

66  |  II. Aims 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
  

 
  

 

 

 

III. Results 

______________________ 
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A. Alpha-Synuclein Subcellular Dynamics in Living Cells  

 

3.1. Assessing the Subcellular Dynamics of Alpha-Synuclein using 

Photoactivation Microscopy 

  

Abstract  

 

Alpha-Synuclein (aSyn) is implicated in Parkinson’s disease and several other 

neurodegenerative disorders. To date, the function and intracellular dynamics of aSyn are 

still unclear. Here, we tracked the dynamics of aSyn using photoactivatable green 

fluorescent protein as a reporter. We found that the availability of the aSyn N-terminus 

modulates its shuttling into the nucleus. Interestingly, familial aSyn mutations altered the 

dynamics at which the protein distributes throughout the cell. Both the A30P and A53T 

aSyn mutations increase the speed at which the protein moves between the nucleus and 

cytoplasm, respectively. We also found that specific kinases potentiate the shuttling of 

aSyn between nucleus and cytoplasm. A mutant aSyn form that blocks S129 

phosphorylation, S129A, results in the formation of cytoplasmic inclusions, suggesting 

that phosphorylation modulates aggregation in addition to modulating aSyn intracellular 

dynamics. Finally, we found that the molecular chaperone HSP70 accelerates the entry of 

aSyn into the nuclear compartment. 

 

Introduction  

 

Misfolded and aggregated alpha-Synuclein (aSyn) is the major component of 

intraneuronal inclusions known as Lewy bodies (LBs), the pathological hallmark of 

Parkinson’s disease (PD) and other Synucleinopathies (Spillantini et al 1997). Despite the 

growing knowledge on aSyn, the normal function of the protein remains largely unclear. 

However, it is thought to play a role in synaptic function and plasticity, cell differentiation 

and vesicular trafficking (Crews et al 2008, Schneider et al 2007). The subcellular 

distribution of aSyn is also controversial and, although it is considered a pre-synaptic 

protein, it has also been found to be evenly distributed throughout the cells in different 
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cellular models and in mice (Goers et al 2003, Klucken et al 2006, Smith et al 2010, Unni 

et al 2010, Vivacqua et al 2011).  

Although the majority of PD cases are idiopathic, three missense mutations in aSyn gene 

(A30P, E46K and A53T), restrained in the N-terminal domain, have been identified in rare, 

autosomal-dominant inherited forms of PD, as well as duplications and triplications of the 

aSyn-containing locus (Kruger et al 1998, Polymeropoulos et al 1997, Singleton et al 2003, 

Zarranz et al 2004). In vitro studies revealed that the A30P mutation blocks the 

membrane association and inhibits the synaptic localization of aSyn by destabilizing its 

first helical structure (Smith et al 2010, Ulmer & Bax 2005). Conversely, A53T and E46K 

mutations enhance the binding to phospholipids (Bodner et al 2010). 

In the normal brain, 4% of aSyn is phosphorylated at serine 129 (S129), contrasting with 

90% of aSyn that is found to be phosphorylated in LBs. This suggests that S129 

phosphorylation might interfere with the oligomerization and aggregation process and 

contribute to the pathogenesis of PD (Anderson et al 2006, Fujiwara et al 2002). Among 

others, G protein-coupled receptor kinases (GRKs) and Polo-like kinases (PLKs) were 

found to phosphorylate the S129 residue of aSyn (Inglis et al 2009, Pronin et al 2000). 

Although it was proposed that S129 phosphorylation inhibits aSyn-induced regulation of 

tyrosine hydroxylase activity (Lou et al 2010), the exact role of this PTM in both 

physiological and pathological conditions remains unclear.  

Other known modifiers of aSyn aggregation are molecular chaperones, such as HSP70, 

which modulates the misfolding, aggregation and toxicity of aSyn in different model 

systems (Auluck et al 2002, Dedmon et al 2005, Flower et al 2005, Klucken et al 2006, 

Klucken et al 2004). However, the mechanisms by which HSP70 suppresses aSyn toxicity 

are still unclear.  

The new era of time-lapse bioimaging tools combined with GFP-derived fluorescent labels 

enables the characterization of protein kinetics in real time, providing invaluable insights 

into the molecular processes in which they are involved. Photoactivaton (PA) microscopy 

is an emerging technique in the field of neuroscience (Roy et al 2012) in which a non-

fluorescent molecule is converted into an activated and fluorescent state by the use of an 

intense and brief irradiation in a selected region of the cell. This process enables the 

direct tracking of a protein by photo-inducing fluorescence, instead of interfering with a 

steady state fluorescent signal, as photobleaching (PB) methods do. The newly activated 
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pool, obtained through the use of an ultraviolet laser, contrasts with a background of 

non-activated molecules, and can be followed within the cells as they reach their kinetics 

equilibrium (Lippincott-Schwartz et al 2003, Patterson & Lippincott-Schwartz 2002) 

(Figure 10A). 

In order to further understand the biology of aSyn, we investigated the dynamics of aSyn 

between the nucleus and cytoplasm in living cells using PA microscopy (Figure 10B). We 

found that the N-terminal of aSyn wild-type (WT) determines its entry into the nuclear 

compartment. Moreover, aSyn shuttles between the nucleus and cytoplasm at rates 

which depend on mutations, phosphorylation state and on the presence of HSP70. 

Altogether, our novel approach provides novel insights into the biology of aSyn in living 

cells and may enable the development of novel strategies for therapeutic intervention in 

Synucleinopathies.  

 

 

 

 

Figure 10. Strategy for nuclear and cytoplasmic photoactivation of PAGFP-labeled proteins. A. 

PAGFP displays negligible fluorescence in the spectral range where the activated fluorescence is 

detected. Upon photoactivation (PA) of a selected nuclear or cytoplasmic region with a 405 laser, 

PAGFP-labeled proteins become visible and the dynamics and fate of the activated molecules can 

be followed over time. B. PAGFP constructs used in this study. We used WT-, A30P-, E46K-, A53T- 

and S129A-aSyn variants. 
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Results 

 

Blocking the N-terminal of aSyn modulates nuclear localization 

To assess whether the subcellular localization of aSyn-WT is affected by appending 

different tags to either the N- or C-terminus, we performed immunocytochemistry 

analysis in cells expressing either untagged aSyn-WT or GFP-, Myc- or V5-tagged versions. 

Both tagged and non-tagged aSyn-WT were widely distributed throughout the cell, 

including the nucleus (Figure 11A-D). To further investigate the intracellular dynamics of 

aSyn-WT, we generated fusions with a photoactivatable green fluorescent protein 

(PAGFP) in order to follow the movement of a specific pool of aSyn over time at the N- or 

C-termini (aSyn-WT-PAGFP and PAGFP-aSyn-WT, respectively). H4 cells were transiently 

transfected with plasmids encoding aSyn-WT-PAGFP, PAGFP-aSyn-WT or PAGFP alone, as 

a control. As aSyn is widely distributed in the cell, we characterized the shuttling of aSyn 

between the nucleus and the cytoplasm. Reporter proteins were photoactivated in the 

nucleus or cytoplasm for 2 seconds (s) using a 405-nm laser, their cellular trafficking was 

monitored and the fluorescence intensities quantified. After PA, the PAGFP control was 

quickly detected in the cytoplasm or in the nucleus after nuclear or cytoplasmic PA, 

respectively, reaching equilibrium of PAGFP molecules between the two cellular 

compartments after 500 s. In contrast, we observed different trafficking behaviours for 

aSyn-WT-PAGFP and PAGFP-aSyn-WT (Figure 11E and Annex 5.1.1A; Videos S1, S2, S3, S4, 

S5 and S6, available online following doi: 10.1007/s12035-013-8406-x). WT-aSyn-PAGFP 

displayed different dynamics depending on the region where PA was performed. Upon 

cytoplasmic PA, aSyn-WT-PAGFP molecules entered into the nucleus and after 1,000 s 

were evenly distributed between the two subcellular compartments. Conversely, upon 

nuclear PA, aSyn-WT-PAGFP was maintained in this compartment for the remainder of 

the time analysed (1,000 s). In contrast with the behaviour observed for photoactivated 

aSyn-WT-PAGFP, PAGFP-aSyn-WT was not detected in the contiguous compartment to 

where the PA was performed and remained in the same subcellular region (Figure 11E 

and Annex 5.1.1A). Immunoblotting analysis of nuclear and cytoplasmic extracts from 

cells expressing either protein confirmed the predominant localization observed with 

microscopy (Annex 5.1.2A). To further validate the observations obtained using PA, we 

performed fluorescence recovery after PB (FRAP) experiments in H4 cells expressing aSyn- 

http://dx.doi.org/10.1007%2Fs12035-013-8406-x
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WT-GFP, GFP-aSyn-WT or GFP alone. Upon PB of aSyn-WT-GFP in the nucleus, we found 

that the recovery of fluorescence in this compartment occurred after 500 s, while 

fluorescence was not significantly recovered in the cytoplasm after PB in this region. For 

GFP-aSyn-WT, PB in nucleus slightly recovered fluorescence of the reporter protein after 

1,000 s (about 20% of recovery) while no cytoplasmic recovery was observed upon PB in 

this region (Figure 11F; Videos S7, S8, S9, S10, S11 and S12, available online following doi: 

10.1007/s12035-013-8406-x).  

Altogether, our novel PA and FRAP experiments show, for the first time, that the 

movement of aSyn between the nucleus and the cytoplasm depends on the availability of 

the N terminus of the protein.  

 

PD-associated mutations alter the subcellular trafficking of aSyn 

Since we established a model to study aSyn intracellular dynamics, we next investigated 

whether PD familial mutations (A30P, E46K and A53T) in aSyn affected its trafficking in 

the cell (Figure 12). In comparison to the aSyn-WT-PAGFP, cytoplasmic aSyn-A30P- and 

aSyn-E46K-PAGFP are shuttled into the nucleus in half of the time (500 s) of the WT 

protein (at time points 500 s and 1,000 s after PA, p values between 0.0044 and <0.0001, 

respectively, α=0.05; Annex 5.1.3A). Because of this rapid movement into the nucleus, the 

fluorescence intensities in the cytoplasm and nucleus equalized earlier than in the control 

situation and remained in equilibrium for several minutes. In contrast to A30P and E46K 

mutants, aSyn-A53T-PAGFP remained in the compartment where the PA was performed, 

similarly to the WT protein.  

In the fusions where PAGFP was on the N-terminus of aSyn, the behavior of A30P was 

similar to that of aSyn-WT. Additionally, upon cytoplasmic PA, there was a slight increase 

in molecules that remained on the nucleus (p value = 0.0185 at 1,000 s after nuclear or 

cytoplasmic PA, α=0.05, Annex 5.1.3A and Figure 12A). In contrast, PAGFP-aSyn-E46K was 

translocated from the nucleus to the cytoplasm after nuclear PA (p value = 0.001 at 1,000 

s after nuclear PA, α=0.05, Annex 5.1.3A). The same occurred with PAGFP-aSyn-A53T, 

although at a more pronounced rate, since the fluorescence intensity was higher in the 

cytoplasm than in the nucleus, starting at 700 s after PA (p value = 0.0013 at 1,000 s after 

PA, α=0.05, Annex 5.1.3A and Figure 12A). In order to investigate if the dynamics results 

were influenced by differences in the levels of WT and mutant aSyn, we performed 

http://dx.doi.org/10.1007%2Fs12035-013-8406-x
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immunobloting analysis. We verified that the levels of total aSyn did not differ between 

the WT and mutant forms of the protein (Figure 12B). 
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Figure 11. Blocking the N-terminus of aSyn reduces its shuttling into the nucleus. 

Immunofluorescence imaging of H4 cells showing the subcellular localization of transiently 

transfected aSyn (A.) N- and C-terminally tagged to Myc and V5, respectively, (B.)  tagged on both 

terminals with Myc (N-terminal) and V5 (C-terminal) and (C.) untagged aSyn-WT. D. Live cell 

imaging of aSyn N- and C-terminally tagged to GFP. E. Measurements of fluorescence intensities 

over time in the nucleus (light grey line) and in the cytoplasm (dark grey line) of control PAGFP 

(dashed line) or fusion proteins of aSyn-WT with PAGFP (solid line). Values represent mean ± 

standard deviation of up to 15 cells analyzed per condition. F. Measurements of fluorescence 

recovery after photobleaching over time in the nucleus (light grey line) and in the cytoplasm (dark 

grey line) of control GFP (dashed line) or fusion proteins of aSyn-WT with GFP (solid line).  Scale 

bars: 10 µm. 

 

As expected, subcellular fractionation followed by immunobloting analysis confirmed the 

presence of the protein in both cytoplasmic and nuclear compartments (Annex 5.1.2B). 

Altogether, these experiments show that A30P and E46K, but not the A53T mutation, 

promoted a faster shuttling of aSyn with a free N-terminus into the nucleus when 

compared to aSyn-WT. On the other hand, aSyn-A53T and aSyn-E46K with a free C-

terminus, but not aSyn-A30P, were delayed in the cytoplasm.  

 

aSyn phosphorylation by GRK5 or PLK2 modulates its subcellular trafficking  

In order to assess the role of S129 aSyn phosphorylation on the intracellular dynamics of 

the protein, we co-expressed GRK2, GRK5, PLK2 or PLK3 kinases with aSyn-WT tagged 

with PAGFP on either its N- or C-terminal. The kinases tested did not significantly alter the 

dynamics of aSyn-WT-PAGFP. For aSyn-WT-PAGFP, co-expression with PLK2 did not alter 

the dynamics obtained in the absence of the kinase, but resulted in a more rapid 

progression towards the equilibrium fluorescence. The other kinases tested, GRK2, GRK5 

and PLK3, did not induce significant differences (Annexes 5.1.3B and 5.1.4). 

In contrast, stronger effects were observed for PAGFP-aSyn-WT. Overexpression of GRK2 

did not affect the shuttling of aSyn-WT constructs between the nucleus and the 

cytoplasm as the values of fluorescence intensity were similar in the presence or absence 

of the kinase during the 1,000 s of imaging. Interestingly, GRK5 promoted the trafficking 

of PAGFP-aSyn-WT into the nucleus upon cytoplasmic PA, although the difference did not 
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reach statistical significance. Nuclear PA in cells overexpressing GRK5 did not significantly 

alter the dynamics of PAGFP-aSyn-WT (Figure 13A; Annex 5.1.3B). 
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Figure 12. Effect of aSyn mutations on its subcellular trafficking in living cells. A. Fluorescence 

intensities after photoactivation in the nucleus (light grey line) and in the cytoplasm (dark grey 

line) of aSyn-A30P-, aSyn-E46K- and aSyn-A53T PAGFP-tagged proteins (solid line) over time. 

Fluorescence intensities of photoactivated control aSyn-WT PAGFP fusion proteins are shown in 

dashed line. Values represent mean ± standard deviation of up to 15 cells analyzed per condition. 

B. Immunobloting analysis of total aSyn levels in cells expressing WT- and mutant- aSyn reporter 

proteins.  

 

Co-expression of PAGFP-aSyn-WT with PLK2 promoted its shuttling to the cytoplasm upon 

nuclear PA (similar nuclear and cytoplasmic fluorescence levels were reached 500 s after 

PA, p value=0.0141, α=0.05, Annex 5.1.3B and Figure 13A). Upon cytoplasmic PA, PLK2 

slightly accelerated the movement into the nucleus 500 s after PA (Annex 5.1.3B).  

Co-expression of PAGFP-aSyn-WT with PLK3 promoted its shuttling to the cytoplasm upon 

nuclear PA but this movement was faster in the presence of PLK2. Although the 

difference was already significant 500 s after PA (p value=0.0198, α=0.05, Annex 5.1.3B), 

at 1,000 s the levels of fluorescence were still higher in the nucleus than in the cytoplasm. 

Upon cytoplasmic PA, the presence of PLK3 did not alter the dynamics of PAGFP-aSyn-WT 

(Figure 13A; Annex 5.1.3B).  We performed immunoblotting analysis to investigate if the 

results on the dynamics of aSyn were influenced by differences in expression in the 

presence and absence of the kinases tested. We verified that the levels of total aSyn were 

not altered in the presence of the kinases (Figure 13B).  As expected, we also confirmed 

that the levels of aSyn phosphorylated at S129 were increased in the presence of both 

kinases (Annex 5.1.2C). 

An important difference between GRK5 and PLKs was that the former induced a tendency 

of aSyn to traffic from the cytoplasm to the nucleus and the later had a strong effect in 

promoting the trafficking of aSyn from the nucleus to the cytoplasm.  

Next, we tested the dynamics of S129A-aSyn, a phosphorylation-incompetent mutant, in 

order to further assess the effect of S129 phosphorylation in the trafficking of aSyn. No 

differences were observed on the dynamics of aSyn-S129A-PAGFP except for the 

existence of more photoactivated protein in the nucleus when compared to aSyn-WT 

immediately after nuclear PA (Annex 5.1.3A and 5.1.4D). However, PAGFP-aSyn-S129A 
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moved into the cytoplasm after 1,000 s of PA if PA was performed in the nucleus while 

the aSyn-WT did not.  Moreover, PAGFP-aSyn-S129A remained in the cytoplasm if PA was 

performed in that compartment (p value = 0.0099, α=0.05, Annex 5.1.3A and Figure 13C).  
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Figure 13. Effect of S129 phosphorylation on the subcellular dynamics of aSyn. A. Fluorescence 

intensities after photoactivation in the nucleus (light grey line) and in the cytoplasm (dark grey 

line) of PAGFP-aSyn-WT fusion protein co-expressed with GRK2, GRK5, PLK2 and PLK3 (solid line) 

or an empty vector (dashed lines) over time. Values represent mean ± standard deviation of up to 

15 cells analyzed per condition.  B. Immunobloting analysis of total aSyn levels in cells co-

expressing aSyn-WT reporter proteins with the four tested kinases. C. Fluorescence intensities 

after photoactivation in the nucleus (light grey line) and in the cytoplasm (dark grey line) of 

PAGFP-aSyn-S129A fusion protein over time. Fluorescence intensities of photoactivated control 

(PAGFP-aSyn-WT) are shown in dashed lines. Values represent mean ± standard deviation of up to 

15 cells analyzed per condition. D. Immunobloting analysis of total aSyn levels in cells expressing 

PAGFP-aSyn-WT or PAGFP-aSyn-S129A. E. Cytosolic inclusions in cells expressing PAGFP-aSyn-

S129A. Images were taken 500 seconds after photoactivation in the nucleus in order to detect the 

cytosolic inclusions. Scale bar: 10 µm. 

 

These findings were in agreement with the fact that both aSyn-S129A fusion proteins 

were only marginally detected in the nuclear protein fraction, in contrast to aSyn-WT 

(Annexes 5.1.2A, 5.1.2D and 5.1.4E), although the total protein levels of aSyn-WT and 

aSyn-S129A were comparable (Figure 13D and Annex 5.1.4F). 

Interestingly, we found that expression of either the N- or C-terminal S129A fusion 

proteins promoted the formation of cytosolic inclusions scattered around the nucleus 

(Figure 13E and Annex 5.1.4G). 

 

HSP70 modifies the trafficking of aSyn 

HSP70 modulates the accumulation of oligomeric and aggregated forms of aSyn in 

different model systems. Thus, we next asked whether HSP70 could interfere with the 

subcellular dynamics of aSyn. HSP70 did not change the intracellular dynamics of aSyn-

WT-PAGFP (Annex 5.1.3B and Figure 14A). Conversely, upon cytoplasmic PA, PAGFP-aSyn-

WT was shuttled into the nucleus in the presence of HSP70 within 100 s after PA (p value 

< 0.0001, α=0.05, Annexes 5.1.1B, 5.1.3B and Figure 14A). Although the total levels of the 

protein were not altered in the presence of the chaperone (Figure 14B), the levels of aSyn 

were higher in the nucleus for both fusion proteins in this situation.  Interestingly, HSP70 

was present in the nuclear fraction only when aSyn was present (Annex 5.1.2E). Upon 

nuclear PA, the tendency was for the protein to move into the cytoplasm, but not as 
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quickly as in the former situation (p value at 100 s = 0.7836, p value at 1,000 s = 0.0014, 

α=0.05, Annexes 5.1.1B, 5.1.3B and Figure 14A). 

In summary, HSP70 increased the shuttling of PAGFP-aSyn-WT between the nucleus and 

cytoplasm. 

 

 

 

Figure 14. Modulation of the dynamics of aSyn by HSP70. A. Fluorescence intensities after 

photoactivation in the nucleus (light grey) and in the cytoplasm (dark grey) of aSyn-WT PAGFP 

fusion proteins co-expressed with HSP70 (solid line) over time. Fluorescence intensities of 

photoactivated control aSyn-WT reporters after co-transfection with an empty vector are shown 

in dashed lined. Values are mean ± standard deviation of up to 15 cells analyzed per condition. B. 

Immunobloting analysis of total aSyn levels in cells co-expressing aSyn with HSP70 or with an 

empty vector. Scale bar: 10 µm. 

 

Discussion 

 

Here, we investigated the intracellular dynamics of aSyn in living cells using 

photoactivatable GFP as a reporter. To control for putative effects of tagging aSyn in 

particular domains, we engineered fusions with PAGFP on either the N- or C-terminal of 

aSyn. We found that, although both aSyn fusion proteins were evenly spread throughout 

the cell, aSyn required a free N-terminus in order to move from the cytoplasm into the 

nucleus.  

aSyn is evenly distributed throughout the cell in different in vitro models and in mice 

(Goers et al 2003, Klucken et al 2006, Smith et al 2010, Unni et al 2010, Vivacqua et al 

2011). The N-terminus of aSyn seems to be important for membrane binding in various 
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model organisms, ranging from yeast to rats (Bodner et al 2010, Specht et al 2005, 

Vamvaca et al 2009, Yang et al 2010). Although the role of aSyn in the nucleus has not 

been defined, it is described to interact with histones, inhibiting acetylation and 

enhancing chromatin binding, and promoting neurotoxicity in cellular models, in mouse 

nigral neurons and in Drosophila (Goers et al 2003, Kontopoulos et al 2006, Siddiqui et al 

2012). 

We also investigated whether aSyn mutations, associated with familial forms of PD, 

altered the shuttling of aSyn between the nucleus and cytoplasm. We found that a) the 

A30P mutant is more prone to be located in the nucleus than the aSyn-WT; b) the E46K 

mutant loses the subcellular compartmentalization characteristic of the WT form; and c) 

the A53T mutation is more prone to be located in the cytoplasm than aSyn-WT. 

Until recently, aSyn was thought to be an intrinsically unfolded protein (Bartels et al 2011, 

Wang et al 2011, Weinreb et al 1996). Nevertheless, it acquires two alpha-helical 

structures upon interaction with vesicles, contained in the residues 1-42 and from 45-98 

(Chandra et al 2003, Perrin et al 2000, Ulmer et al 2005, Zhu & Fink 2003). In vitro studies 

showed that A30P disrupts membrane binding (Smith et al 2010, Ulmer & Bax 2005), 

perhaps being more available to shuttle into the nucleus. Thus, it is likely that the 

differences in dynamics between the aSyn familial forms are related with the location and 

effect of the mutation on the secondary structure of aSyn protein. In addition, aSyn 

seems to regulate actin bundling inside the cell, and the A30P mutant affects the 

structure and dynamics of the actin cytoskeleton, potentiating the formation of actin foci 

(Sousa et al 2009). Our results are also consistent with data showing that the A30P 

increases the nuclear localization of the protein (Kontopoulos et al 2006). A53T is 

described to promote the formation of cytosolic aggregates (Lashuel et al 2002, Smith et 

al 2010), which is compatible with its tendency to be localized in the cytoplasm when 

compared to aSyn-WT. 

PTMs are known to modulate the intracellular fate of proteins, including their sub-cellular 

distribution. aSyn is thought to have several residues prone to phosphorylation: Y39, S87, 

Y125, S129, Y133 and Y136. S129 phosphorylation is the most studied, and little 

information exists on the kinases phosphorylating the other residues (Hejjaoui et al 2012, 

Oueslati et al 2012, Mahul-Mellier et al 2014). In LBs, the majority of aSyn is thought to be 

phosphorylated on S129, contrasting with almost no phosphorylation of this residue in 
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normal brain. However, the role of this PTM is still unclear and controversial. 

Phosphorylation of aSyn by GRKs inhibits its interaction with phospholipids (Okochi et al 

2000). In Drosophila, co-expression of GRK2 with aSyn leads to S129 phosphorylation and 

enhanced aSyn neurotoxicity (Chen & Feany 2005). Moreover, the levels of specific PLKs 

are increased in brains of patients with Alzheimer’s or LB disease (Mbefo et al 2010). 

Here, we investigated whether a selected group of kinases, GRK2, GRK5, PLK2 and PLK3, 

modulated the dynamics of aSyn distribution in the cell. The kinases tested only affected 

the dynamics of aSyn with a free C-terminus, although both fusion proteins were 

phosphorylated in S129. This can be due to the fact that when the C-terminal of aSyn is 

free, the protein is more prone to phosphorylation at S129, resulting in a stronger effect 

in its intracellular dynamics. Overall, aSyn phosphorylation by GRKs or PLKs results in 

different dynamics of the protein. While GRK5 potentiates the nuclear localization of 

aSyn, PLKs modulate the shuttling of the protein between the nucleus and cytoplasm. In 

particular, PLK2 modulates the intracellular dynamics of PAGFP-aSyn-WT by increasing 

the movement from the nucleus to the cytoplasm at a higher rate than PLK3.  These 

results are consistent with the fact PLK2 promotes aSyn inclusions in the same cell line 

(Annex 5.1.6) (Basso et al 2013). Since aSyn has more residues prone to phosphorylation, 

the different results obtained with GRK5 and PLKs might reflect different phosphorylation 

patterns in residues other than S129. Due to the limited availability of antibodies these 

studies are still not easy to perform but as novel tools become available one might be 

able to discriminate between the effects of phosphorylation in different residues. 

Interestingly, we also observed that nuclear PAGFP-aSyn-S129A tends to move to the 

cytoplasm while cytoplasmic PAGFP-aSyn-S129A remains in this subcellular compartment. 

This tendency might at least partially explain the cytoplasmic inclusions detected in the 

cells expressing this mutant aSyn and suggest that the phosphorylation status on S129 is 

crucial for aggregation, in agreement with recent findings in yeast, in which S129A mutant 

potentiates the formation of aSyn foci (Fiske et al 2011). 

GRKs and PLKs modulate the dynamics of aSyn in different ways and we did not find a 

consistent pattern that can explain the role of S129 phosphorylation on the distribution of 

aSyn. One possibility is that the effects of the kinases are also due to phosphorylation of 

other targets in addition to aSyn. Nevertheless, we verified that the phosphorylation 

status of aSyn on S129 was related with the aggregation state of the protein.  
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Molecular chaperones, such as HSP70, hold great potential as therapeutic targets due to 

their ability to reverse protein aggregation and to refold or promote degradation of 

misfolded proteins (Witt 2010). HSP70 was shown to inhibit formation of toxic pre-fibrillar 

forms of aSyn (Dedmon et al 2005) and to reduce its aggregation in aSyn transgenic mice 

(Klucken et al 2004). In flies, it was shown that co-expression of HSP70 with aSyn-WT 

suppresses the loss of dopaminergic neurons, and hence, the toxicity associated with 

aSyn-WT overexpression (Auluck et al 2002). A similar effect was observed in yeast and in 

mammalian cell models, suggesting that HSP70 inhibits aSyn toxicity by binding to the 

exposed hydrophobic NAC domain (non-aβ component of AD plaques; residues 61-95 of 

aSyn) and sequestering the protein (Flower et al 2005, Lee et al 2004b, Murray et al 2003, 

Zhou et al 2004b).  

Here, we found that HSP70 boosted the shuttling of PAGFP-aSyn-WT to the adjacent 

compartment, suggesting it may assist aSyn to adopt a conformation that is more likely to 

cross the nuclear envelope. The selective effect with PAGFP-aSyn-WT and not with aSyn-

WT-PAGFP suggests the interaction might take place through the C-terminus of aSyn, 

which is not blocked by PAGFP in this fusion protein. 

In conclusion, we showed that PD-associated mutations in aSyn, S129 phosphorylation, 

and HSP70 exert different effects on aSyn trafficking within the cell (Annex 5.1.5; Figure 

15). While additional studies will be important to clarify the relative contribution of each 

condition, our goal was to demonstrate the usefulness of PA microscopy for the study of 

aSyn dynamics in living cells, which is not possible to achieve with other types of 

approaches or with untagged protein. 

Our data provide novel insights into the subcellular dynamics of aSyn by taking advantage 

of a powerful method for monitoring protein dynamics in living cells. A complete 

understanding of aSyn localization, intracellular dynamics and protein-protein 

interactions will be crucial for understanding the normal function of aSyn and may enable 

the development of novel strategies for intervention in PD and other Synucleinopathies. 
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Figure 15. Modifiers of aSyn intracellular dynamics.  aSyn-WT shuttles into the nucleus. This is 

enhanced (thicker arrow) by the presence of A30P mutation or GRK5 kinase, via phosphorylation 

of S129. The mutants A53T and S129A, or overexpression of PLK2 and PLK3 kinases, promote the 

bidirectional shuttling between the nuclear and the cytoplasmic compartments. E46K mutation 

and HSP70 chaperone instigate similar dynamics; however, they promote a faster shutting into 

the nucleus (thicker arrow). 
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Materials and Methods 

 

Plasmids and cloning procedures 

aSyn-WT-PAGFP and PAGFP-aSyn-WT constructs were generated using aSyn-GC and GN-

link-aSyn pcDNA3.1 vectors (Outeiro et al 2008), respectively, and verified by DNA 

sequencing. 

In order to obtain PAGFP-aSyn-WT construct, PAGFP in C1 vector was amplified by PCR 

with primers 5’TAAGCTAGCATGGTGAGCAAGGGCGAGG3’ (which contains a NheI 

restriction site) and 5’GGACTTAAGCTTGTACAGCTCGTCCATGCC3’ (which contains a AflII 

restriction site and eliminates the stop codon from PAGFP). PAGFP PCR product and GN-

link-aSyn were digested with NheI and AflII and ligated using T4 DNA ligase. 

To obtain aSyn-WT-PAGFP, PAGFP in C1 vector was PCR amplified with the primers 

5’GGGTCTAGACTATTACTTGTACAGCTCGTCCATGCC3’ (which contains a XhoI restriction 

site and eliminates ATG site from PAGFP) and 

5’GTATCTAGACTATTACTTGTACAGCTCGTCCATGCC3’ (which contains a XbaI restriction site 

and the stop codon of PAGFP). PAGFP PCR product and aSyn-GC were digested with 

XhoI/XbaI, and ligated using T4 DNA ligase. 

aSyn-A30P/E46K/A53T-PAGFP and PAGFP-aSyn-A30P/E46K/A53T constructs were 

generated using aSyn-WT-PAGFP and PAGFP-aSyn-WT plasmids as backbone. WT-aSyn 

was eliminated from aSyn-WT-PAGFP and PAGFP-aSyn-WT plasmids through NheI/XhoI 

and AflII/XhoI sites, respectively. PD-associated aSyn mutant forms were obtained from 

aSyn-BiFC plasmids (Outeiro et al 2008) and were inserted in the PAGFP backbone 

vectors. 

Mutant S129A, which mimics the constitutively unphosphorylated form of aSyn, was 

generated by site-directed mutagenesis from aSyn-WT constructs using primers 

5’GAGGCTTATGAAATGCCTGCTGAGGAAGGGTATCAAG3’ and 

5’CTTGATACCCTTCCTCAGCAGGCATTTCATAAGCCTC3’ to obtain the S129A substitution. 

All constructs were generated in the pcDNA3.1 vector and verified by DNA sequencing. 

The constructs for human WT-untagged aSyn  (pSI-aSyn-WT), C-terminally tagged aSyn 

(aSyn-WT-V5 and aSyn-WT-GFP), GFP-aSyn-WT and HSP70 were a kind gift of Dr. Bradley 

T. Hyman and were previously described (McLean et al 2001). Myc-aSyn-WT-V5 and Myc-

aSyn-WT have been described previously (Outeiro et al 2009). PLK- and GRK-encoding 
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plasmids were a kind gift from Dr. Hilal Lashuel, Ecole polytechnique Federale de 

Lausanne, Switzerland.  

 

Cell Culture, transfections and immunocytochemistry 

H4 human neuroglioma cells were maintained under standard conditions and passaged 

the day before transfection (Outeiro et al 2008). Transfections with aSyn, GFP and PAGFP 

constructs were performed using Fugene™ 6 reagent from Promega, according to the 

manufacturer’s instructions. Immunocytochemistry experiments were performed as 

described previously for Myc-aSyn, aSyn-V5, Myc-aSyn-V5 and untagged aSyn constructs 

(Outeiro et al 2008). For PA experiments, cells were co-transfected with a mRFP in order 

to identify transfected cells. Cells were incubated for 48h before imaging. 

 

Live Cell Imaging 

Cells were imaged using a Zeiss LSM510 META microscope with a ×63 1.4 NA oil 

immersion objective. aSyn-WT GFP-tagged was excited at 488 nm using an argon laser 

(5% transmission) and a 505- to 550-nm band pass filter. For PA experiments, cells 

transfected with PAGFP constructs were first identified through a 561-10 DPSS laser (1% 

transmission) to detect mRFP (561 nm) using a 575-nm long-pass filter, and 

photoactivated using a diode laser line at 405 nm (100% transmission) either in the 

cytoplasm or in the nucleus, using standard procedures for PA. PAGFP fluorescence 

emission was detected by excitation at 488 nm (5% transmission) using a 505- to 550-nm 

band nm band pass filter. About 500 images from each cell were taken with an interval of 

2 s, and PA was performed after the second image; up to 15 cells per condition were 

analysed. 

For FRAP experiments, cells transfected with GFP constructs were photobleached in the 

nucleus or in the cytoplasm using a diode laser line at 405 nm (100% transmission), using 

standard procedures for FRAP. Recovery fluorescence of GFP constructs was detected by 

excitation at 488 nm (5% transmission) using a 505- to 550-nm band nm band pass filter. 

About 500 images from each cell were taken per condition every two seconds, and FRAP 

was performed after the second image; 15 cells per condition were analysed. 
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Image analysis 

The dynamics of aSyn diffusion (after PA or FRAP) was followed by analysing time-lapse 

series of the PAGFP or GFP reporter protein by measuring the fluorescence intensity over 

time, in the nucleus and in the cytoplasm, using ImageJ LSM toolbox plugin and LSM 

Image browser. 

For PA analysis, the normalized nuclear fluorescence (NF) was obtained as the following: 

NF (t)    =        [N (after PA) – N (before PA)] / [(N+C (after PA)) – (N+C (before PA))]     

 

The normalized cytoplasmic fluorescence (FC) was obtained as the following: 

CF (t)    =        [C (after PA) – C (before PA)] / [(N+C (after PA)) – (N+C (before PA))]     

For FRAP analysis, the normalized NF was obtained as the following: 

NF (t)    =         [N (after PB) ] / [N+C (after PB)]  

 

The normalized FC was obtained as the following: 

NC (t)    =         [C (after PB) ] – [N+C (after PB)]  

 

Where N and C refer to nucleus and cytoplasm, respectively. t= 0 s refers to the time 

lapse immediately after PA or PB. These normalizations correct the loss of fluorescence 

caused by imaging both in PA and in FRAP procedures. 

 

Statistical analysis 

The numerical results are given as mean of NF or CF ± standard deviation of up to 15 

independent experiments. 

The significance of the difference between the experimental and the control values of 

fluorescence was evaluated at three time points, 100, 500 and 1,000 s,  in the nuclear 

compartment using 95% confidence intervals (α=0.05) through single comparisons by the 

two-tailed unpaired Student’s t test followed by a Fisher’s exact test to compare 

variances between the control and experimental groups.  

 

Immunoblot analysis 

H4 total protein extracts were obtained 48-h post-transfection using standard 

procedures. Briefly, cells were washed twice in PBS and lysed in NP40 buffer (glycerol, 
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10%; HEPES, 20mM (pH7.9); KCl, 10Mm; EDTA, 1 mM; NP40, 0.2 %; and DTT, 1mM) 

containing protease and phosphatase inhibitors cocktail (1 tablet/10ml; Roche 

Diagnostics). After centrifugation at 16,000xg for 20min at 4ºC, supernatants were 

collected (cytoplasmic extract). The pellet was resuspended in NaCl buffer (glycerol, 20%; 

HEPES, 20mM (pH7.9); KCl, 10mM; EDTA, 1 mM; NaCl, 400mM; and DTT, 1mM) 

containing protease and phosphatase inhibitors cocktail tablets and then centrifuged 

again. After centrifugation, the supernatant corresponds to the nuclear extract. Protein 

concentration was determined using the BCA protein assay and 20 µg of protein lysates 

were resolved in 12% SDS-PAGE. Resolved proteins were transferred to nitrocellulose 

membranes. After quick washing in Tris-buffered saline and 0.1% Tween 20 (TBS-T), 

membranes were blocked in 5% non-fat dry milk in TBS for 1 hour (h) and then incubated 

with primary antibodies in 5% BSA in TBS overnight at 4°C. The primary antibodies used 

were mouse anti-aSyn, 1:1,000 (BD Transduction); mouse anti-GAPDH, 1:4,000 (Ambion); 

rabbit anti-HSP70, 1:1,000 (Assay Designs); and goat anti-LamininB C20, 1:500 (Santa Cruz 

Biotechnology). The membrane was then washed three times for 10 min each in TBS-T at 

room temperature and probed with ECLTM IgG horseradish peroxidase-conjugated (HRP) 

anti-mouse, anti-rabbit (GE Healthcare) or IgG HRP-conjugated anti-goat (Santa Cruz 

Biotechnology) secondary antibodies (1:10,000) for 1 h at room temperature. The 

membrane was then washed four times for 15 min each with TBS-T, and the signal was 

detected with an ECL chemiluminescence kit (Millipore Immobilon Western 

Chemiluminescent HRP Substrate).  
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B. Insights into the Mechanisms of Alpha-Synuclein Oligomerization and 

Aggregation 

 

3.2. The Small GTPase Rab11 co-Localizes with Alpha-Synuclein in 

Intracellular Inclusions and Modulates its Aggregation, Secretion and 

Toxicity 

 

Abstract 

 

Alpha-Synuclein (aSyn) misfolding and aggregation are pathological features common to 

several neurodegenerative diseases, including Parkinson’s disease (PD). Mounting 

evidence suggests that aSyn can be secreted and transferred from cell to cell, 

participating in the propagation and spreading of pathological events. Rab11, a small 

GTPase, is an important regulator in both endocytic and secretory pathways. Here, we 

show that Rab11 is involved in regulating aSyn secretion. Rab11 knockdown or 

overexpression of either Rab11a wild-type (Rab11a-WT) or Rab11a GDP-bound mutant 

(Rab11a-S25N) increased secretion of aSyn. Furthermore, we demonstrate that Rab11 

interacts with aSyn and is present in intracellular inclusions together with aSyn. 

Moreover, Rab11 reduces aSyn aggregation and toxicity. Our results suggest that Rab11 is 

involved in modulating the processes of aSyn secretion and aggregation, both of which 

are important mechanisms in the progression of aSyn pathology in PD and other 

Synucleinopathies. 

 

Introduction 

 

Alpha-Synuclein (aSyn), a 140-amino-acid protein, is a key molecule involved in the 

pathophysiology of several neurodegenerative diseases, including Parkinson’s disease 

(PD) and Dementia with Lewy bodies (DLB), collectively known as Synucleinopathies 

(Maroteaux et al 1988, Spillantini et al 1998a, Spillantini et al 1998b). Missense mutations 
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and multiplications of the SNCA gene encoding for aSyn are linked to familial forms of PD 

(Pacheco et al 2012). Furthermore, misfolded and aggregated aSyn is found in Lewy 

bodies (LB) and Lewy neurites (LN)—pathognomonic cytoplasmic inclusions characteristic 

of both PD and DLB (Spillantini et al 1998a). Although the mechanisms underpinning the 

pathophysiology of PD are not clearly understood, many studies indicate that aSyn 

aggregation is a critical event involved in this pathology (Marques & Outeiro 2012, Tyson 

et al 2015). aSyn is natively unfolded, but it acquires the a-helical structure on its N-

terminal region upon binding to membranes, both in vitro and in vivo (Bernis et al 2015, 

Davidson et al 1998, Smith et al 2010). Under pathological conditions, aSyn molecules 

associate to form oligomers that grow into protofibrils and, finally, form mature amyloid 

fibrillar structures. The identification of the cytotoxic aSyn species remains a subject of 

intense investigation. Nonetheless, there are several studies suggesting that oligomeric 

intermediates might constitute the most toxic aSyn species (Diogenes et al 2012, Karpinar 

et al 2009, Winner et al 2011). 

While aSyn lacks an endoplasmic reticulum signal peptide and has therefore been 

considered a purely intracellular protein, recent studies have found that it can be actively 

secreted (Ebrahimi-Fakhari et al 2013, Ebrahimi-Fakhari et al 2012, Emmanouilidou et al 

2010, Lee et al 2005). This is in agreement with the presence of aSyn in the cerebrospinal 

fluid and blood plasma of both PD patients and healthy subjects (Brundin et al 2010, El-

Agnaf et al 2003). Notably, aSyn can be externalized via non-classical exocytosis and, in 

part, in association with exosomes (Emmanouilidou et al 2010). In enteric neurons, aSyn 

seems to follow a classical, ER-Golgi network-dependent pathway (Paillusson et al 2013). 

There is evidence that aSyn secretion is calcium-regulated and can be increased under 

conditions of cell stress (Jang et al 2010); however, the exact mechanisms regulating this 

process remain unclear. 

aSyn pathology progresses from the lower brain stem through the midbrain to the 

cerebral cortex (Braak et al 2003), leading to the suggestion that a neurotropic pathogen 

may cause the spreading of LB and LN pathology during PD progression. This hypothesis is 

in agreement with clinical observations of aSyn pathology found in neuronal grafts in PD 

patients several years after transplantation (Li et al 2008). There is mounting evidence 

suggesting that aggregated aSyn is the key agent for propagation of PD pathology by a 

prion-like mechanism, where misfolded aSyn is released from a donor cell and is taken up 
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by a recipient cell where it seeds aggregation of endogenous aSyn (Danzer et al 2009, 

Desplats et al 2009, Hansen et al 2011). Additionally, extracellular aSyn is known to 

stimulate pro-inflammatory activity in microglia, which in turn can lead to a further 

increase in neurotoxicity and pathology progression (Croisier et al 2005, Hirsch et al 2005, 

McGeer et al 1988). Therefore, understanding the regulatory mechanisms involved in 

aSyn secretion might be highly relevant for therapy aimed at attenuating or halting the 

progression of PD pathology. 

Rab11 is a member of the Rab small GTPase protein family, which plays critical roles in 

regulating transport, docking and fusion of vesicles with their target membranes 

(Esseltine & Ferguson 2013, Stenmark 2009). Rab11 associates with recycling endosomes, 

trans-Golgi membranes and secretory vesicles (Jung et al 2012, Ullrich et al 1996, Urbe et 

al 1993, Wilcke et al 2000). As is the case with Rab5, Rab11 is localized to synaptic vesicles 

in neuronal cells (Khvotchev et al 2003). Apart from a well-documented function in 

endosomal recycling, several studies indicate that Rab11 also plays a role in exocytic 

secretory pathways. It has been described to be involved in Ca2+-regulated and 

constitutive exocytosis (Khvotchev et al 2003), in insulin granule secretion (Sugawara et al 

2009), in exosome release (Savina et al 2002) and in stretch-regulated exocytosis 

(Hasegawa et al 2011). These studies suggest that Rab11 is an important regulator in the 

crosstalk between endocytic and secretory pathways. 

aSyn has recently been detected in endosomal compartments, co-localizing with Rab5a, 

Rab7 and Rab11a—markers of early, late and recycling endosomes, respectively 

(Hasegawa et al 2011). Notably, Rab11 regulates the secretion of aSyn from neurons, 

after internalization from the extracellular milieu, back to the extracellular space (Liu et al 

2009a) and a portion of endogenous aSyn is trafficked via the recycling pathway regulated 

by Rab11 (Hasegawa et al 2011). Interestingly, recent work has found that Rab11 is 

neuroprotective in an in vivo model of Huntington′s disease (HD), another 

neurodegenerative disease with pathological protein aggregation (Richards et al 2011, 

Steinert et al 2012). Rab11 was sequestered in LC3-positive amphisome-like structures in 

dendritic spines in the presence of mutant Huntingtin (Htt) aggregates, followed by 

impairment of Rab11-dependent endosomal recycling (Richards et al 2011). In addition, 

Rab11 overexpression rescued dendritic dysfunction, dystrophy and neurodegeneration 

caused by mutant Htt aggregation, providing a neuroprotective effect in a Drosophila 
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model of HD (Richards et al 2011, Steinert et al 2012). Moreover, Rab11 dysfunction was 

shown to slow trafficking of the neuronal glutamate transporter EAAC1 to the cell 

surface, causing oxidative stress and cell death in HD (Li et al 2010). 

In the present study, we investigated the role of Rab11 in modulating aSyn secretion and 

aggregation. We found that Rab11 can regulate secretion of intracellular aSyn, and that 

Rab11 physically interacts with aSyn and co-localizes with aSyn in intracellular inclusions. 

Our results also suggest that Rab11 is involved in modulating aSyn aggregation. In total, 

our study provides molecular support for the protection afforded by Rab11 against aSyn-

mediated behavioral and functional deficits in flies (Breda et al 2014), highlighting its 

potential as a therapeutic target in Synucleinopathies. 

 

Results 

 

Rab11 interacts with aSyn in vivo and modulates aSyn secretion 

Co-localization of aSyn with Rab5a, Rab7 and Rab11a in endocytic compartments has 

recently been described in HEK293T and SH-SY5Y cells (Hasegawa et al 2011). In order to 

study if there is a direct interaction between Rab11 and aSyn in vivo, we performed a co-

immunoprecipitation (co-IP) analysis of aSyn and Rab11 proteins from rat brain lysate. 

Following the immunoprecipitation of endogenous aSyn, endogenous Rab11 was 

detected using a Rab11-specific antibody (Figure 16A). This result suggests that these two 

proteins interact in vivo in addition to being present in the same subcellular 

compartment. Rab11 is an important regulator of various trafficking steps at the interface 

between endocytic and secretory pathways. Recently, it has been suggested that the 

endocytic pathway is involved in aSyn secretion (Emmanouilidou et al 2010, Hasegawa et 

al 2011). Thus, we next investigated whether Rab11 is involved in this process. 

To determine whether Rab11 plays a role in aSyn secretion, we used SH-SY5Y cells 

expressing wild-type (WT) aSyn under control of the Tetracycline-off regulatory 

expression system (Emmanouilidou et al 2010, Vekrellis et al 2009). First, we knocked 

down Rab11 expression using three adenoviral vectors encoding for Rab11 miRNAs and 

measured the levels of intracellular as well as extracellular aSyn in the supernatant of the 

conditioned media (CM) by immunoblot analysis (Figure 16B). Rab11 knockdown led to a 
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parallel decrease in intracellular aSyn and an increase in levels of aSyn in the CM (Figure 

16B and 16C). To assess whether this increase in extracellular aSyn was due to increased 

release of aSyn from dying cells, we measured the release of lactate dehydrogenase (LDH) 

into the CM as an indicator of cell-membrane permeability/dysfunction, which is typical 

of dying cells (Figure 16D). We found that Rab11 knockdown modestly increased LDH 

levels in the CM when compared with the control; however, this was not correlated to 

the increase in extracellular aSyn levels. Moreover, the construct for Rab11 knockdown 

leading to the highest aSyn extracellular levels displayed LDH levels comparable with 

control (kd 3, Figure. 16B and 16D). These data suggest that the increase in extracellular 

aSyn levels in Rab11 knockdown condition occurs due to an active secretory process. 

Next, we investigated the effect of Rab11 on aSyn secretion by expressing EGFP-tagged 

wild-type Rab11a (Rab11a-WT), or the GDP-bound, dominant negative Rab11a mutant 

(Rab11a-S25N). While in the case of Rab11 knockdown, we decreased the total levels of 

endogenous Rab11, Rab11a-S25N altered the Rab11 function by introducing a GDP-bound 

Rab11a mutant that competes with the endogenous active Rab11 GTPase, therefore 

eliminating its activity. The levels of aSyn in the cell lysates, as well as in the 48 h—CM, 

were measured by immunoblot analysis (Figure 16E). In agreement with the results from 

Rab11 knockdown, the amount of externalized aSyn was significantly increased in the 

presence of Rab11a-S25N (Figure 16F), compared with the EGFP control. Interestingly, we 

also observed significantly higher levels of aSyn in the CM of Rab11a-WT expressing cells 

(Figure 16F). These results are consistent with previous findings showing increased 

secretion of overexpressed human growth hormone (hGH) in PC12 cells upon co-

expression of Rab11a-WT or Rab11a-S25N, with Rab11a-WT having a moderate and 

Rab11a-S25N a more pronounced effect on hGH secretion (Khvotchev et al 2003). To 

further confirm that the increase in extracellular aSyn was not due to increased cell 

death, we performed LDH assays to assess its levels in the CM (Figure 16G). There was no 

significant difference in the LDH levels in the CM of the EGFP, EGFP-Rab11a-WT or EGFP-

Rab11a-S25N transfected cells, indicating that the expression of Rab11a-WT or its 

dominant negative mutant form leads to increase in aSyn secretion due to an active 

process and not due to cell death.  
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Figure 16. Rab11 interacts with endogenous aSyn in vivo and modulates aSyn secretion. Rat 

brain lysate was analyzed for aSyn and Rab11 protein interaction by co-immunoprecipitation. A. 

Following the immunoprecipitation (IP) of endogenous aSyn, the co-IP with endogenous Rab11 is 

demonstrated with a Rab11-specific antibody. Highlighted are the unspecific signals from the 

heavy chain (HC) and light chain (LC) in the IGG control sample. Rab11 knockdown leads to 

increased secretion of aSyn into the CM. B. Representative immunoblot of cell lysate 

(intracellular) and CM (extracellular) of Rab11 knockdown SH-SY5Y cells overexpressing aSyn-WT 

is shown. C. Graphical representation of aSyn secretion (extracellular levels/intracellular levels 

normalized to GAPDH). D. LDH levels in the CM of Rab11 knockdown SH-SY5Y cells overexpressing 

aSyn-WT. E and F. Overexpression of Rab11a-WT and dominant negative mutant (Rab11a-S25N) 

leads to increased aSyn secretion. G. LDH levels in the CM of SH-SY5Y cells overexpressing aSyn 

WT transfected with EGFP, EGFP-Rab11a-WT or EGFP-Rab11a-S25N. All the data shown are 

representative of at least three independent experiments (mean ± standard deviation, ∗ P, <0.05, ∗∗ P < 0.01, ∗∗∗ P < 0.001). 

 

Rab11-mediated increases in aSyn secretion do not occur via the endocytic-recycling 

pathway 

To investigate whether the increased secretion of aSyn observed upon co-expression of 

Rab11a-WT or Rab11a-S25N occurred through changes in endocytic recycling, we 

measured endocytic-recycling dynamics using fluorescently labeled human transferrin. 

Transferrin is internalized by endocytosis after binding to its receptor on the cell surface 

and is recovered to the extracellular milieu by endocytic recycling (Ciechanover et al 

1983). Twenty-four hours post transfection with EGFP-Rab11a-WT, EGFP-Rab11a-S25N or 

EGFP alone, aSyn expressing SH-SY5Y cells were loaded for 15 min with Alexa-546-labeled 

human transferrin and pulse chased for 10 min with non-labeled human transferrin 

(Figure 17A). We evaluated the percentage of Alexa-546-transferrin positive cells in each 

condition by fluorescence microscopy, as a measure of endosomal recycling dynamics. 

Compared with control transfected cells, there was no significant difference in the 

percentage of fluorescently labeled transferrin cells in the case of EGFP-Rab11a-WT 

expression (Figure 17B). In contrast, we observed a significantly higher proportion of 

Alexa-546-transferrin-labelled cells expressing EGFP-Rab11a-S25N when compared with 

EGFP expressing cells (Figure 17B). These results indicate that endocytic recycling is 
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impaired in the presence of the dominant negative, GDP-bound Rab11a mutant, as less 

transferrin was secreted from the cells, while the expression of Rab11a-WT did not affect 

endocytic recycling. Therefore, we conclude that increased secretion of aSyn from SH-

SY5Y cells mediated by Rab11a is not due to increased trafficking of aSyn via the 

endosomal recycling pathway. 

 

aSyn secretion by exosomes is not increased in the presence of Rab11a-WT and Rab11a-

S25N 

It has been previously shown that aSyn can be secreted from cells in association with 

exosomes (Alvarez-Erviti et al 2011, Danzer et al 2012, Emmanouilidou et al 2010). 

Exosomes are small vesicles of various sizes (40–100 nm in diameter) that are formed as 

intra-luminar vesicles by budding into multivesicular bodies (MVBs) and are released by 

fusion of MVBs with the plasma membrane (PM) (Raposo & Stoorvogel 2013).  

Because of their endosomal origin, exosomes are characterized by the presence of 

endosome associated proteins such as Rab GTPases, SNAREs, annexins and flotillin, some 

of which are involved in MVB biogenesis (Alix and Tsg101) (Raposo & Stoorvogel 2013). 

Rab11 modulates MVB fusion and exosome release in erythroleukemic cell lines, but the 

exact step in which it is involved is not known (Savina et al 2002). 

To test the hypothesis that Rab11a-WT or Rab11a-S25N expression leads to increased 

secretion of aSyn by exosomes, CM from EGFP, EGFP-Rab11a-WT or EGFP-Rab11a-S25N 

expressing cells was subjected to an established protocol of serial centrifugation steps for 

exosomal extraction (Emmanouilidou et al 2010). The pellet resulting from the last 

100,000 g centrifugation step containing exosomes was subjected to immunoblot analysis 

using antibodies against the exosomal marker TSG101, Rab11 and aSyn (Figure 18). 

Quantification of aSyn in the exosomal fraction revealed lower levels of aSyn in exosomes 

in cells expressing EGFP-Rab11a-S25N (~30% of the control), while in cells expressing 

EGFP-Rab11a-WT aSyn exosomal levels were comparable with control (~90%) (Figure 18). 

Rab11a was also found present in the exosomal fraction (Figure 18), as expected by the 

endosomal origin of exosomes. 
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Figure 17. Rab11a-S25N inhibits endosomal recycling in aSyn expressing cells. A. aSyn-WT 

expressing SH-SY5Y cells were transfected with mock (EGFP), EGFP-Rab11a-WT or EGFP-Rab11a-

S25N expressing plasmids (green). 24 h post-transfection, cells were incubated with Alexa-546 

human transferrin (red) for 15 min and pulse-chased with non-labeled human transferrin to 

measure endocytic recycling dynamics. Cells were fixed and subjected to fluorescence microscopy 

analysis. Scale bar = 10 um. B. Data are represented as percentage of Alexa-546-transferrin-

positive cells at 10 min pulse-chase. All the data shown are representative of at least three 

independent experiments (mean ± standard deviation, ∗∗ P < 0.01). 

 

These results show that the Rab11a dominant negative mutant reduces the levels of aSyn 

released in association with exosomes, while Rab11a-WT does not have a major effect on 

exosomal release of aSyn. Therefore, we concluded that Rab11a regulates aSyn secretion 

by another, independent pathway. 
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Figure 18. Rab11a-S25N inhibits aSyn secretion by exosomes. aSyn-WT expressing SH-SY5Y cells 

were transfected with mock (EGFP), EGFP-Rab11a-WT or EGFP-Rab11a-S25N expressing plasmids. 

24 h post-transfection, the culture medium was replaced with 2% FBS exosome-depleted medium 

and conditioned for 48 h. CM was subjected to sequential centrifugation with final step at 

100,000 g to extract exosomal pellet. Exosomal pellet was resuspended in RIPA buffer and 

analysed by immunoblotting using antibodies for the indicated proteins. A representative 

immunoblot of cell lysates and exosomal pellet is shown. Graph represents immunoblot 

quantification of aSyn levels in exosomal fraction. All the data shown are representative of at least 

three independent experiments. 

 

Brefeldin A treatment leads to increased release of aSyn and this effect is attenuated by 

Rab11a-WT and Rab11a-S25N expression 

Several studies showed that treatment with Brefeldin A (BFA)—a fungal metabolite 

blocking classical, ER/Golgi-to-PM secretory pathway—does not block aSyn secretion 

(Emmanouilidou et al 2010, Jang et al 2010, Lee et al 2005). Based on these findings, it 

was suggested that aSyn is secreted from neuronal cells via an unconventional, ER/Golgi-

independent pathway. However, results from a recent study show that in enteric neurons 

aSyn is secreted via conventional, ER/Golgi-dependent exocytosis sensitive to BFA 

inhibition (Paillusson et al 2013). 
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Thus, to investigate whether Golgi-dependent exocytosis contributes to aSyn secretion in 

the presence of Rab11a-WT and Rab11a-S25N expression, aSyn expressing SH-SY5Y cells 

were transfected with EGFP-Rab11a-WT or EGFP-Rab11a-S25N and 24 h post-transfection 

were treated with 1 mg/ml BFA for 6 h. The levels of extracellular aSyn in the CM were 

measured by immunoblotting (Figure 19A). At the same time, the CM was used for LDH 

assay to assess cell death (Figure 19C). Similar to previous reports, we verified that BFA 

treatment did not block aSyn secretion (Figure 19A). In fact, we observed higher levels of 

extracellular aSyn following BFA treatment. This observation could be attributed to 

increased cell death after BFA treatment, as we also observed an increase in LDH activity 

in CM upon BFA treatment (Figure 19C). However, despite a similar increase in cell death 

in all conditions, the levels of aSyn in the CM did not increase significantly in case of 

Rab11a-WT and -S25N expression in contrast to the control (Figure 19A and 19B). These 

results might indicate that in the presence of Rab11a-WT and -S25N expression, there is 

in fact inhibition of aSyn secretion when the classical secretory pathway is blocked by BFA 

and this effect is masked by leakage of aSyn from dying cells. Altogether, our data suggest 

that Rab11a plays a role in regulating aSyn secretion. 

 

Rab11a modulates aSyn aggregation and co-localizes with aSyn in intracellular 

inclusions 

Although the process of aSyn aggregation has been extensively studied in vitro, it is still 

unclear which cellular pathways are involved. We used an established cell model that 

enabled us to assess aSyn inclusion formation in an intracellular context. EGFP-Rab11a-

WT, EGFP-Rab11a-S25N or EGFP alone was co-expressed in H4 human neuroglioma cells 

along with a C-terminal modified version of aSyn (aSynT) and Synphilin-1. This is an 

established paradigm of aSyn aggregation that results in the formation of LB-like 

inclusions (Klucken et al 2012, McLean et al 2001, Outeiro et al 2006). In this model, we 

counted the percentage of cells presenting aSyn inclusions versus cells that presented 

homogeneous aSyn staining, with no inclusions (Figure 20A). We found that both Rab11a-

WT and Rab11a-S25N decreased the percentage of cells with aSyn inclusions, with a 

higher proportion of cells presenting homogenous aSyn staining without the presence of 

intracellular inclusions (Figure 20B). Interestingly, we observed the opposite effect when 

Rab11 was knocked down, as this resulted in an increased percentage of cells displaying 
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aSyn inclusions (Figure 20C). Together, these results suggest that Rab11a can modulate 

aSyn aggregation. 

To study the sub-cellular localization of aSyn and Rab11 in the absence or presence of 

aSyn aggregation, EGFP-Rab11a was co-expressed together with wild-type aSyn (aSyn-

WT) or with aSynT/Synphilin-1 in H4 cells, as described above. In the presence of aSyn-

WT, Rab11a was normally distributed in the cell, as in the control situation (Figure 21A). 

Strikingly, the subcellular localization of Rab11a was changed in the presence of aSyn 

inclusions (Figure 21A). We found that Rab11a was co-localized inside these inclusions, 

together with aSyn (Figure 21B). 

 

 

 

Figure 19. BFA treatment leads to increased release of aSyn in control condition, but not in 

Rab11a-WT and Rab11a-S25N expressing cells. aSyn-WT expressing SH-SY5Y cells were 

transfected with mock (EGFP), EGFP-Rab11a-WT or EGFP-Rab11a-S25N expressing plasmids. 24 h 

post-transfection, cells were pre-treated with BFA for 1 h before the culture medium was 

replaced and conditioned for additional 5 h in the presence of BFA. A. Representative immunoblot 

of cell lysate (intracellular) and CM (extracellular) is shown. B. Graphical representation of fold 

change of aSyn extracellular levels following BFA treatment (+BFA/-BFA). aSyn release was 
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significantly increased following BFA treatment in the control condition, but not in the presence 

of Rab11a-WT or Rab11a-S25N. C. LDH levels in the CM (fold change) following BFA treatment 

(+BFA/-BFA). Dotted line represents extracellular levels of aSyn (B) or LDH (C) in the absence of 

BFA treatment normalized to 100%. All the data shown are representative of at least three 

independent experiments (mean ± standard deviation, ∗ P < 0.05, ∗∗ P < 0.01). 

 

 

 

Figure 20. Rab11 modulates aSyn aggregation. A. Representative images of cells with 

homogenous aSyn staining (no inclusions) and with aSyn positive inclusions (with inclusions) are 

shown. Scale bar = 10 um. B and C. Graphs representing the percentage of cells with and without 

inclusions in the total population of cells positive for aSyn are shown. All the data shown are 

representative of at least three independent experiments (mean ± standard deviation, ∗ P < 0.05, ∗∗ P < 0.01). 

 

Rab11a reduces aSyn cytotoxicity 

Considering the neuroprotective effect of Rab11 against mutant Htt in HD (Richards et al 

2011, Steinert et al 2012), we investigated whether Rab11 protected against aSyn toxicity 

in a cell model (Outeiro et al 2006, Outeiro et al 2007). H4 cells were transfected with a 

plasmid expressing aSyn-WT or mock-transfected with empty vector (control), together 
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with EGFP, EGFP-Rab11a-WT or EGFP-Rab11a-S25N (Figure 22A). aSyn-induced toxicity 

was significantly reduced in the presence of Rab11a-WT or Rab11a-S25N (Figure 22A). 

Conversely, we observed a significant increase in aSyn toxicity upon Rab11 knockdown 

(Figure 22B).  

 

 

 

Figure 21. Rab11a co-localizes with aSyn in intracellular inclusions, H4 cells were co-transfected 

either with aSyn-WT or aSynT and Synphilin-1 together with EGFP-Rab11a (green). Cells were 

fixed 48 h post-transfection and subjected to immunocytochemistry for aSyn (red) followed by 

confocal microscopy analysis. Scale bar = 10 um. A. Rab11a changes its subcellular localization in 
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the presence of aSyn inclusions. B. Rab11a co-localizes with aSyn positive inclusions (yellow). 

White arrowheads point to inclusions where aSyn and Rab11 co-localize. Scale bar = 10 um. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22. Rab11 modulates aSyn toxicity. A and B. H4 cells were transfected with aSyn-WT or 

empty vector (control) and co-transfected with EGFP-Rab11a-WT, EGFP-Rab11a-S25N or EGFP. 

For Rab11 knockdown, cells were transduced with an adenovirus containing miRNA construct 

against Rab11a or scrambled construct (control). LDH extracellular levels were measured to assess 

cytotoxicity. A. Rab11a-WTand Rab11a-S25N decrease aSyn toxicity. B. Rab11 knockdown 

increases aSyn toxicity. C and D. Cytotoxicity was assessed in the aSyn aggregation model (aSynT + 

Synphilin-1) described above. C. Rab11a-WTand Rab11a-S25N do not affect aSyn cytotoxicity in 

the aSyn aggregation model. D. Rab11 knockdown increases aSyn toxicity in the aSyn aggregation 

model. All the data shown are representative of at least three independent experiments (mean ± 

standard deviation, ∗ P< 0.05, ∗∗ P < 0.01, ∗∗∗ P < 0.001). 
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Discussion 

 

Several recent studies indicate that a large number of proteins without an N-terminal 

signal sequence for ER entry are efficiently released from cells. These include proteins 

such as IL-1b, acyl-CoA binding protein (AcbA), ubiquitin carboxy-terminal hydrolase, 

visfatin and also aSyn (Prydz et al 2013). Several mechanisms have been proposed for the 

transfer of molecules from the cytoplasm to the extracellular space, such as direct 

translocation through pores in the PM, uptake into the internal vesicles of MVBs 

(subsequently released as exosomes), passage via recycling endosomes or 

autophagosomes, incorporation into microvesicles budding outward from the PM and 

export via secretory lysosomes (Prydz et al 2013). aSyn has been observed inside cells in 

vesicles of unknown identity (Lee et al 2005) and is known to be actively secreted into the 

extracellular space either in free or vesicle-bound form (Emmanouilidou et al 2010, Jang 

et al 2010, Lee et al 2005). However, little is known about the route(s) aSyn follows to 

leave the cell or the mechanisms regulating aSyn secretion. It has been suggested that an 

endocytic pathway is involved in aSyn (Ebrahimi-Fakhari et al 2013, Emmanouilidou et al 

2010, Lee et al 2005). Indeed, blocking the endosome-lysosomal pathway by methyalmine 

or chloroquine leads to increased aSyn secretion (Emmanouilidou et al 2010). Exosomes, 

small secreted vesicles originating from the endocytic pathway, have also been shown to 

carry aSyn (Emmanouilidou et al 2010), although it seems that only a small portion of 

aSyn is secreted by this route (Emmanouilidou et al 2010, Hasegawa et al 2011, Jang et al 

2010). In addition, impairment in MVB formation has been found to increase aSyn 

secretion (Hasegawa et al 2011). Notably, aSyn localization has been observed in 

endocytic compartments, including the recycling endosomes (Hasegawa et al 2011). 

Here, we first investigated whether aSyn and Rab11 interact in vivo. Co-

immunoprecipitation analysis of rat brain lysate demonstrates that endogenous aSyn 

protein does indeed interact with endogenous Rab11 (Figure 16). We next wished to 

explore whether Rab11 modulates aSyn secretion. It has been shown that Rab11 

regulates the re-secretion of extracellularly added aSyn back into the extracellular space 

after its uptake by the cell (Liu et al 2009a). Furthermore, increased aSyn secretion caused 

by block of MVB formation using a dominant-negative mutant of vacuolar protein 4 could 

be restored to normal levels by simultaneous expression of Rab11a-S25N (Hasegawa et al 
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2011). These results point at the involvement of Rab11-regulated recycling in aSyn 

secretion. Therefore, we investigated the role of Rab11 in aSyn secretion by manipulating 

its function in the cell, either by knocking it down or expressing the Rab11a-WT or the 

GDP-bound inactive form of the protein. We observed that both Rab11 knockdown and 

expression of Rab11-S25N—which both impairs Rab11 function—lead to increased aSyn 

secretion. Surprisingly, the same effect, although to a lesser extent, was observed by 

expressing Rab11a-WT. One possible explanation is that overexpression of Rab11a-WT 

does not lead to an overall increased Rab11 function, as it may be competing with the 

endogenous Rab11 for the interacting molecules, which can be limiting factors for normal 

Rab11 function. This is supported by the results of the transferrin-recycling dynamics in 

our model. While Rab11a-S25N impairs transferrin recycling to the extracellular space, 

expression of Rab11a-WT did not have any effect on this process. These results together 

suggest that increased aSyn secretion observed after expression of Rab11a-WT or 

Rab11a-S25N does not occur via endosomal recycling in SH-SY5Y cells. A similar effect was 

observed using Rab11b-WT or Rab11b-S25N in PC12 cells expressing hGH (Khvotchev et al 

2003). Both Rab11b forms increased the secretion of hGH in these cells, with Rab11a-

S25N having a more pronounced effect. It has been suggested that despite leading to 

similar effect of increasing the constitutive exocytosis of hGH, WT and S25N Rab11b have 

distinct mechanisms of action. Expression of Rab11a-S25N decreased the excessive 

release of aSyn following a block in MVB-formation back to normal levels (Hasegawa et al 

2011). This suggests that aSyn can be secreted by the way of recycling endosomes in a 

Rab11a-function dependent manner. Our results show that impairing Rab11a function by 

knockdown or expression of Rab11a-S25N leads to increased secretion of aSyn, 

suggesting that aSyn secretion follows other pathway(s), independent of RE when Rab11a 

function is impaired. 

It was previously demonstrated that Rab11 has a distinct function in exocytosis 

depending on the cell type (Khvotchev et al 2003). While in neuronal (PC12) cells, GTP- 

and GDP-bound Rab11b stimulated constitutive exocytosis of hGH, in non-neuronal (HEK) 

cells GTP- and GDP-bound Rab11b inhibited constitutive exocytosis and caused an 

accumulation of cellular hGH (Khvotchev et al 2003). In this study, we have used human 

neuroblastoma SH-SY5Y cells, in contrast to HEK cells used by Hasegawa et al (Hasegawa 

et al 2011). Therefore, this might be one reason for the different effects on aSyn secretion 
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observed in these two studies. Another possible explanation is that aSyn can employ 

different pathways for its exocytosis, depending on the state of the cell. When a block in 

one of the pathways occurs, aSyn could be directed to another pathway(s). This would 

allow aSyn release to be carried out by distinct mechanisms, in response to the state of 

the functioning of the cell. This is supported by an observation of changes in aSyn release 

in response to cellular stress conditions (Jang et al 2010). 

Rab11 has been implicated in regulating exosomal release in K562 erythtroleukemia cells; 

however, the exact step remains unknown (Savina et al 2002). Since aSyn was shown to 

be secreted in association with exosomes, we have investigated the impact of Rab11a 

function on exosomal aSyn secretion. We have observed lower levels of aSyn in the 

exosomal fraction in cells expressing the dominant negative Rab11a-S25N mutant, while 

in the case of Rab11a-WT the exosomal levels of aSyn were similar to control levels 

(Figure 18). At the same time, Rab11a-S25N did not lead to an overall decrease in 

exosome release, judged by the levels of the exosomal marker TSG101 (Figure 19). These 

results together might indicate that impaired Rab11a function prevents aSyn entering the 

MVBs and exosomes, while promoting exit of aSyn from the cell through an independent 

pathway. 

It was suggested that aSyn leaves the cell by a Golgi independent transport route. This 

notion is based upon results showing that aSyn secretion is not blocked by BFA, a drug 

that disassembles the Golgi stacks (Emmanouilidou et al 2010, Jang et al 2010, Lee et al 

2005). However, insensitivity to BFA treatment by itself does not unequivocally mean that 

a protein normally reaches the cell surface via a nonconventional route. It is possible that 

certain molecules take a Golgi bypass route when the pathway they normally employ is 

no longer operational. Moreover, results from a recent study show that in enteric 

neurons aSyn is secreted via conventional, ER/Golgi-dependent exocytosis sensitive to 

BFA inhibition (Paillusson et al 2013). Furthermore, although BFA treatment reduced aSyn 

secretion in enteric neurons, it did not block it completely. Therefore, one might 

hypothesize that aSyn can use different pathways for exocytosis, depending on the cell 

type and cell condition. 

We studied the involvement of Golgi-dependent pathway in aSyn secretion in the 

presence of Rab11a-WT or Rab11a-S25N by analyzing extracellular aSyn levels following 

BFA treatment. Although we observed a similar increase in cell death following the BFA 
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treatment in all conditions, aSyn extracellular levels were not significantly increased in 

the case of Rab11a-WT or Rab11a-S25N expression. Therefore, we concluded that part of 

aSyn can be secreted by classical ER-Golgi secretory pathway when Rab11 function is 

altered. Overall, our results indicate that aSyn secretion can be modulated by Rab11a and 

that aSyn can be secreted by different secretory pathways, depending on the condition of 

the cell. 

Interestingly, intravesicular aSyn is more prone to aggregation than aSyn found in the 

cytosol (Lee et al 2005). Moreover, exposing cells to stress conditions promoting 

accumulation of misfolded protein leads to increased translocation of aSyn into vesicles 

and the consequent increase in aSyn secretion (Jang et al 2010). Furthermore, a recent 

study found that inhibition of the autophagy/lysosome pathway leads to increased aSyn 

aggregation and exocytosis (Lee et al 2013). These studies indicate that there is a 

connection between aSyn aggregation and aSyn secretion. Increased secretion could be a 

protective mechanism by the cell to dispose of misfolded and aggregated aSyn. We 

studied the role of Rab11a on aSyn aggregation using a cell model characterized by 

formation of aSyn-positive intracellular inclusions, and observed a reduction in aSyn 

aggregation in the presence of Rab11a-WT or Rab11a-S25N. Since knocking down Rab11 

resulted in an increased proportion of cells presenting aSyn aggregates, our results 

suggest a GTPase independent effect of Rab11 on aSyn aggregation. Moreover, Rab11a 

was found to co-localize with aSyn-positive inclusions, in contrast to its normal 

intracellular localization in the endocytic recycling compartment, as observed in the 

presence of non-aggregating aSyn. 

Furthermore, we addressed the effect of Rab11 on aSyn toxicity. While the presence of 

Rab11a-WT or Rab11a-S25N significantly decreased aSyn-induced toxicity, Rab11 

knockdown resulted in a marked increase in cytotoxicity in aSyn-WT expressing cells. A 

similar effect was observed in the aSyn aggregation model, where Rab11 knockdown lead 

to increase in aSyn toxicity. Interestingly, Rab11a-WT and Rab11a-S25N had no effect on 

aSyn toxicity in this model. Since in this model Rab11 was observed to be localized in 

intracellular inclusions together with aSyn, it is therefore possible that Rab11 was unable 

to exert a protective effect because it was being recruited from its original subcellular 

localization and was sequestered inside the inclusions. 
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Altogether, our results show, for the first time, that Rab11 interacts with aSyn inside the 

cell, co-localizes with aSyn in intracellular inclusions and, furthermore, modulates aSyn 

aggregation and toxicity, while regulating the exit of aSyn from the cell. Since we also 

found that Rab11 modulates aSyn-mediated behavioral deficits in vivo (Breda et al 2014), 

our studies strongly suggest Rab11 holds great potential as a therapeutic target in PD and 

other neurodegenerative disorders. 

 

Materials and Methods  

 

Cell culture 

For aSyn secretion studies, we used SH-SY5Y cells inducibly expressing aSyn wild-type (SH-

SY5Y aSyn-WT) previously described (Vekrellis et al 2009). SH-SY5Y cells overexpressing 

aSyn-WT were cultured in the RPMI1640 medium (Life Technologies) containing 10% fetal 

bovine serum (FBS), penicillin (100 U/ml), streptomycin (100 ug/ml) and 2 mM L-

glutamine in the presence of 250 ug/ml G418 and 50 ug/ml hygromycin B and doxycycline 

(1 ug/ml; Clontech Laboratories). Expression of aSyn-WT was switched on by the removal 

of doxycycline from the media as described previously (Vekrellis et al 2009). For aSyn 

aggregation and aSyn cytotoxicity studies, we used human H4 neuroglioma cells. H4 were 

maintained in OPTI-MEMI (Life Technologies) supplemented with 10% FBS in the 

presence of penicillin (100 U/ml; Life Technologies) and streptomycin (100 ug/ml; Life 

Technologies). 

 

SH-SY5Y aSyn-WT cell line transfection and Rab11 knockdown 

SH-SY5Y aSyn-WT cells were grown in the absence of doxycycline for 6 days to induce 

aSyn-WT expression. Cells were then seeded onto 100 mm diameter dishes (1.5 × 106 

cells/dish) in RPMI 1640 medium containing 10% FBS 24 h prior to transfection or 

transduction. For Rab11 knockdown, cells were transduced with adenovirus with three 

distinct Rab11 miRNA constructs and incubated for 48 h before changing the medium for 

conditioning. For Rab11 overexpression, cells were transfected with pEGFP Rab11a-WT, 

pEGFP Rab11a-S25N (kind gift from Dr Chiara Zurzolo, Institut Pasteur, Paris) or empty 

pEGFP vector using Lipofectamine 2000 (Life Technologies). 4 h after transfection, 

medium was replaced with fresh growth medium. 
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Preparation of CM, LDH cytotoxicity assay and preparation of cell extracts 

24 h after transfection or 48 h after transduction, the medium was changed to RPMI 1640 

medium containing 2% FBS and conditioned for 48 h. The CM from transfected or 

transduced cells was collected and centrifuged at 4,000 g for 10 min at 4ºC to remove cell 

debris. For western blotting, the CM was concentrated using 3 kDa cutoff Amicon Ultra 

filters (Merck Millipore). CM without concentration was used to determine the 

membrane integrity of cells used in the experiments by measuring released LDH as 

described in the manufacturer’s instructions (Clontech Laboratories). For extraction of 

cellular proteins, cells were washed 2× with cold PBS and lysed in NP-40 buffer (50 mM 

Tris pH 8.0, 150 mM NaCl, 1% NP-40) supplemented with protease inhibitor cocktail 

tablet (Roche Diagnostics). 

 

Preparation of exosome-depleted medium and purification of exosomal fraction 

The depletion of the medium from bovine serum-derived exosomes was performed as 

described previously (Emmanouilidou et al 2010). Briefly, RPMI 1640 medium containing 

20% FBS, penicillin/streptomycin and L-glutamine was centrifuged at 100,000 g for 16 h at 

4ºC. The supernatant was carefully removed and sterilized by filtering through a 0.2 mm 

filter (Whatman) and stored at 4ºC until additional use in exosome preparation. Exosomal 

fraction from the CM was prepared as described previously (Emmanouilidou et al 2010). 

Briefly, SH-SY5Y aSyn-WT cells were seeded in three 100 mm dishes in 10% FBS and 24 h 

later transfected as described above. Twenty-four hours post-transfection, the culture 

medium was replaced with exosome-depleted medium diluted 10-fold with RPMI 1640 

medium and conditioned for 48 h. Culture supernatants of cells were collected and spun 

at 300 g for 10 min to remove cells. The supernatants were then sequentially centrifuged 

at 2,000 g for 10 min, 10,000 g for 30 min and 100,000 g for 90 min. The pellet containing 

exosomes was washed once with cold PBS and centrifuged again at 100,000 g for 90 min. 

The resulting pellet was resuspended in 30 ul of radio immunoprecipitation assay (RIPA) 

buffer (50 mM Tris–HCl, pH 7.6, 150 mM NaCl, 1% NP-40, 0.5% Sodium deoxycholate and 

0.1% SDS). All centrifugations were performed at 4ºC. 
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Western blotting 

Protein concentration in cell extracts and concentrated CM was quantified using BCA 

protein assay kit (Thermo Scientific). Equal amount of total protein (250 ug for CM and 15 

ug of cell lysate) was loaded on a 15% polyacrylamide separation gel and separated by 

SDS–PAGE using a Tetra cell (Bio-Rad). For immunoblot analysis of exosomes, whole 

fraction from single exosomal extraction (30 ul) was used each time. After separation by 

SDS–PAGE, proteins were transferred to nitrocellulose membranes using standard 

procedures with a Mini Trans-Blot system (Bio-Rad). Mouse anti-aSyn-1 antibody (BD 

Biosciences, 1:1,000), mouse anti-Rab11 (BD Biosciences, 1:1,000), mouse anti-GAPDH 

(Life Technologies, 1:4,000) and mouse anti-TSG101 (Abcam, 1:1000) were used. 

Secondary anti-mouse antibody coupled to horseradish peroxidase (GE Healthcare, 

1:10,000) was used. Membranes were incubated with ECL Chemiluminescent HRP 

Substrate (Millipore). Densitometry analysis of the corresponding bands was performed 

using the ImageJ software. 

 

BFA treatment 

SH-SY5Y cells expressing aSyn-WT transfected with pEGFP, pEGFP-Rab11a-WT or pEGFP-

Rab11a-S25N were pre-treated with BFA (1 ug/ml; SIGMA-ALDRICH) for 1 h before the 

medium was changed to RPMI 1640 medium containing 2% FBS and conditioned in the 

presence of BFA for further 5 h. CM was collected and processed for western blot and 

LDH analysis as described above. 

 

Transferrin pulse-chase 

SH-SY5Y cells expressing aSyn-WT were seeded on glass cover slips 24 h prior to 

transfection with pEGFP, pEGFP-Rab11a-WT or pEGFP-Rab11a-S25N. 24 h post-

transfection, cells were washed with PBS and incubated with human Alexa-546-

Transferrin (50 ug/ml; Life Technologies) at 37ºC for 5 min. Cells were then washed twice 

with cold PBS and incubated with unlabeled human holo-transferrin (5 mg/ml; SIGMA-

ALDRICH) at 37ºC for 10 min. Cells were washed twice with cold PBS, fixed with 4% 

paraformaldehyde (PFA) for 10 min at room temperature (RT) and then mounted on glass 

microscopy slides in GVA mounting media (Genemed Biotechnologies). Cells were 

analyzed using Zeiss Axiovert 200M widefield fluorescence microscope. The percentage of 
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transfected cells (EGFP positive) positive for Alexa-546-Transferrin was counted using the 

ImageJ software. Minimum of 100 cells were counted per each condition. 

 

H4 cell line transfection, Rab11 knockdown, immunocytochemistry, microscopy analysis 

and cytotoxicity assays 

For intracellular aSyn aggregation experiments, H4 cells were seeded on 35 mm glass 

bottom imaging dishes (ibidi GmbH) 24 h prior to transfection. For Rab11 knockdown, 

cells were transduced with adenovirus with miRNA against Rab11 or with scrambled 

control (Scr). Cells were then co-transfected with aSynT (aSyn-EGFP deletion mutant WT 

aSyn-EGFP-D155) and Synphilin-1 in 1:1 ratio as described previously (McLean et al 2001, 

Outeiro et al 2006) using Fugene 6 (Promega). For Rab11 overexpression, 24 h post first 

transfection with aSynT and Synphilin-1, cells were further transfected with pEGFP, 

pEGFP-Rab11a-WT or pEGFP-Rab11a-S25N. 24 h later, cells were fixed with 4% PFA for 10 

min at RT, washed twice with PBS and subjected to immunocytochemistry analysis. 

Briefly, cells were permeabilized with 0.5% Triton X-100 in PBS for 20 min at RT, blocked 

for 1 h at RT with 1% normal goat serum in 0.1% Triton X-100 in PBS, incubated with 

primary antibody against aSyn (mouse anti-aSyn 1:1,000; BD Biosciences) at 4ºC overnight 

followed by secondary antibody incubation (1:1,000, goat anti-mouse IgG-Alexa568, Life 

Technologies) for 2 h at RT and incubated for 2 min with DAPI 1:1,000 in PBS (SIGMA-

ALDRICH). Cells were then subjected to microscopy analysis using Zeiss Axiovert 200M 

widefield fluorescence microscope. The proportion of cells displaying aSyn-positive 

intracellular inclusions in the aSyn-positive cell population was determined by counting at 

least 100 cells in each condition using the ImageJ software. 

For Rab11a and aSyn co-localization studies, H4 cells were transfected either with pSI-

aSyn, a plasmid encoding for aSyn-WT (gift from Dr Bradley T. Hyman), with empty pSI 

plasmid or co-transfected with plasmids encoding for aSynT and Synphilin-1 as described 

above. 24 h post first transfection, cells were further transfected with pEGFP-Rab11a-WT 

and 24 h later cells were fixed and subjected to immunocytochemistry for aSyn as 

described above. Cells were analyzed for Rab11a and aSyn colocalization using Zeiss LSM 

510 META confocal microscope followed by analysis using the ImageJ software. 

Sequential multi-track frames were acquired to avoid any potential crosstalk from the 

two fluorophores. 
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For aSyn cytotoxicity assay, H4 cells were transduced with adenovirus for Rab11 

knockdown or transfected with pEGFP-Rab11a-WT, pEGFP-Rab11a-S25N or pEGFP as 

described above and co-transfected with pSI-aSyn, a plasmid encoding for aSyn-WT (gift 

from Dr Bradley T. Hyman), or with empty pSI plasmid. 24 h post-transfection, culture 

media were used to determine the levels of released LDH as described in the 

manufacturer’s instructions (Clontech Laboratories). LDH levels in the culture media were 

measured in the presence of Rab11a overexpression or Rab11 knockdown in the aSyn 

aggregation model described above (H4 cells transfected with aSynT and Synphilin-1) in 

the same manner. 

 

Rab11 and aSyn co-immunoprecipitation analysis 

For co-IP experiments, brain tissue from WT Sprague–Dowley adult female rats was used. 

Whole-brain tissue lysates were prepared with immunoprecipitation buffer (50 mM Tris–

HCl pH 7.5; 0.5 mM EDTA; 150 mM NaCl; 0.05% NP40), supplemented with protease 

inhibitor cocktail (Roche Diagnostics) using a HT 24 bead beating homogenizer (OPS 

Diagnostics). Approximately 6 mg of total protein lysates were pre-cleared by incubation 

with 20 ul of protein G beads (Invitrogen) for 30 min at 4ºC in rotation. Supernatants 

were recovered and incubated overnight at 4ºC in rotation, with 2 ug of the 

immunoprecipitation antibody, anti-aSyn (C-20, Santa Cruz Biotechnologies). The next 

day, 40 ul of protein G beads were added for 3 h in a rotator at 4ºC. Beads were washed 

5× with immunoprecipitation buffer, then re-suspended in 20 ul of protein sample buffer 

(50 mM Tris–HCl pH6.8; 2% SDS; 10% glycerol; 1% beta-mercaptoethanol; 0.02% 

bromophenol blue) and boiled at 95ºC for 5 min. Supernatants were resolved on a 15% 

SDS–PAGE gels. Proteins were transferred overnight to nitrocellulose membranes and 

blocked in 5% non-fat dry milk in TBS-Tween for 1 h. In order to test the co-IP with Rab11, 

the membranes were incubated overnight at 4ºC with the primary antibody for Rab11 

(BD Biosciences, 1:1000). Immunoblots were washed with TBS-Tween and incubated for 1 

h at RT with the corresponding mouse-HRP secondary antibody (GE Healthcare, 1:10 000). 

Immunoreactivity was visualized by chemiluminescence using an ECL detection system 

(Millipore) and subsequent exposure to auto-radiographic film. To prove the efficiency of 

aSyn immunoprecipitation, the same membrane was incubated with anti-aSyn (syn-1, BD 

Biosciences 1:1000) for 3 h at RT and developed as described above. 
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Data analysis and statistics 

Statistical analyses were performed using Prism 6 (GraphPad Software). All values in the 

figures are represented as the mean ± standard deviation. All the data shown are 

representative of at least three independent experiments. For transferrin pulse-chase and 

aSyn aggregation assay, minimum of 100 cells were analysed per condition. Statistical 

analysis was performed using one-way ANOVA with Bonferroni’s post hoc comparison 

and two-tailed Student’s t-test for unpaired data (∗ P < 0.05, ∗∗ P < 0.01, ∗∗∗ P < 0.001). 
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3.3. shRNA-Based Screen Identifies Endocytic Recycling Pathway 

Components that Act as Genetic Modifiers of Alpha-Synuclein Aggregation, 

Secretion and Toxicity 

 

Abstract 

 

Alpha-Synuclein (aSyn) misfolding and aggregation is common in several 

neurodegenerative diseases, including Parkinson’s disease and dementia with Lewy 

bodies, which are known as Synucleinopathies. Accumulating evidence suggests that 

secretion and cell-to-cell trafficking of pathological forms of aSyn may explain the typical 

patterns of disease progression. However, the molecular mechanisms controlling aSyn 

aggregation and spreading of pathology are still elusive. In order to obtain unbiased 

information about the molecular regulators of aSyn oligomerization, we performed a 

microscopy-based large-scale RNAi screen in living cells. Interestingly, we identified nine 

Rab GTPase and kinase genes that modulated aSyn aggregation, toxicity and levels. From 

those, Rab8b, Rab11a, Rab13 and Slp5 were able to promote the clearance of aSyn 

inclusions and rescue aSyn induced toxicity. Furthermore, we found that endocytic 

recycling and secretion of aSyn was enhanced upon Rab11a and Rab13 expression in cells 

accumulating aSyn inclusions.   Overall, our study resulted in the identification of new 

molecular players involved in the aggregation, toxicity, and secretion of aSyn, opening 

novel avenues for our understanding of the molecular basis of Synucleinopathies. 

 

Introduction 

 

Aggregation of alpha-Synuclein (aSyn) is associated with a group of disorders known as 

Synucleinopathies, that include Parkinson’s Disease (PD), Dementia with Lewy Bodies and 

Multiple System Atrophy (Maroteaux et al 1988, Spillantini et al 1998a, Spillantini et al 

1998b). The common pathological hallmark among these disorders is the accumulation of 

aSyn in aggregates within neurons, nerve fibers or glial cells (Braak et al 1999, Spillantini 

et al 1997).  Moreover, multiplications (Singleton et al 2003) as well as point mutations 

(A53T, A30P, E46K, H50Q, G51D and A53E) are associated with familial forms of PD 
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(Appel-Cresswell et al 2013, Fares et al 2014, Kruger et al 1998, Mezey et al 1998, 

Pasanen et al 2014, Proukakis et al 2013, Zarranz et al 2004).  

Recent findings suggest that aSyn can oligomerize into a tetramer under physiological 

conditions (Bartels et al 2011, Dettmer et al 2015a, Dettmer et al 2015b, Outeiro et al 

2008, Wang et al 2011), although this finding remains controversial (Binolfi et al 2012, 

Fauvet et al 2012a, Fauvet et al 2012b). In pathological conditions, it is widely established 

that aSyn can enter an amyloid pathway of aggregation, first as soluble, oligomeric 

species that, ultimately, can accumulate in insoluble aggregates (Ding et al 2002). The role 

of the large protein inclusions, such as Lewy bodies (LBs), is unclear, but they may actually 

constitute a protective mechanism in neurons to neutralize and preclude the effects of 

more toxic aSyn intermediates (Diogenes et al 2012, Karpinar et al 2009, Outeiro et al 

2008, Winner et al 2011). 

Although the function of aSyn is still unclear, it interacts with lipid membranes (Davidson 

et al 1998, Outeiro & Lindquist 2003) and seems to be involved in vesicle recycling and 

neurotransmitter release at the synapse (Auluck et al 2010, Liu et al 2004). Moreover, it is 

suggested that multimeric forms of aSyn physiologically bind to phospholipids at the 

synapse to chaperone SNARE-complex assembly required for neurotransmitter release, 

while monomeric forms are increased in disease and prone to aggregate (Burre et al 

2014, Burre et al 2015, Burre et al 2010, Diao et al 2013).  

Work in yeast and mammalian models suggests that aSyn-mediated cytotoxicity might be 

associated with alterations in vesicular trafficking, such as disruption of endoplasmic 

reticulum to Golgi trafficking (Cooper et al 2006, Gitler et al 2008). This could be rescued 

by Rab (Ras analog in brain) GTPases, which play major roles in vesicular transport, 

tethering, docking and fusion (Stenmark 2009). Moreover, different studies have shown 

that dysregulation of Rab family members, such as Rab3a and Rab3b (involved in 

exocytosis) and Rab5 and Rab7 (involved in the endocytic pathway), are associated with 

aSyn-induced toxicity in dopaminergic neurons of mammalian PD models (Chung et al 

2009, Dalfo et al 2004b).  

Together with the Braak staging hypothesis, the finding that LB pathology might have 

spread in the brains of PD patients transplanted with embryonic nigral cells (Braak et al 

2003, Kordower et al 2008, Li et al 2008), suggests that aSyn is able to spread in a prion-

like manner in the brain. This theory has recently been supported by several studies in 
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mouse models (Hansen et al 2011, Luk et al 2012, Paumier et al 2015, Volpicelli-Daley et 

al 2014). In neurons, secretion of aSyn follows a non-classical pathway (Jang et al 2010) 

that is calcium-dependent and is up-regulated under stress conditions (Emmanouilidou et 

al 2010). In addition, aSyn can be internalized through endocytosis or the classical 

clathrin-dependent pathway (Ben Gedalya et al 2009, Sung et al 2001).  

In LBs, aSyn is highly phosphorylated on Ser129, contrasting with only 4% of the total 

protein phosphorylated at this residue in normal brain (Fujiwara et al 2002, Okochi et al 

2000). This suggests that phosphorylation might interfere with the aggregation process, 

although it is still unclear whether phosphorylation is a trigger or a consequence of aSyn 

aggregation. Thus, it is critical to understand whether modulating the activity of kinases 

and phosphatases can interfere with aSyn aggregation and/or toxicity.  

Here, we conducted an unbiased RNA interference (RNAi) screen to identify modulators 

of aSyn oligomerization, using the bimolecular fluorescence complementation (BiFC) 

assay as readout. We identified genes both encoding Rab GTPases and proteins involved 

in signal transduction. In addition to modifying oligomerization, the identified hits also 

altered aSyn toxicity and later stages of the aggregation pathway. Interestingly, we found 

that some of the trafficking-associated identified genes also modulated the secretion of 

different aSyn species. Altogether, our study brings novel insight into the molecular 

pathways involved in aSyn aggregation, toxicity and secretion, forming the basis for the 

testing of novel molecules with therapeutic potential in PD and other Synucleinopathies.  

 

Results 

 

A Live-Cell shRNA Screen Identifies Modulators of aSyn Oligomerization  

In order to understand the contribution of different cellular pathways towards aSyn 

aggregation, we conducted an unbiased lentiviral vector-based RNAi screen in a cellular 

model of aSyn oligomerization, based upon a BiFC assay that we have previously 

described (Outeiro et al 2008).  The screen comprised 1387 genes involved in trafficking 

and signal transduction-related pathways (Annex 5.2.1 and Figure 23). 

We identified four genes encoding Rab proteins (RAB8B, RAB11A, RAB13 and RAB39B) 

and five genes encoding kinases or signal transduction proteins (CAMK1, DYRK2, CC2D1A, 
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CLK4 and SYTL5) that modulated aSyn oligomerization (Figure 23B, 23D and Annex 

5.2.2A). Interestingly, silencing of genes encoding kinases (ALS2CR7 and STK32B), or 

phosphatases (PSPH and PPP2R5E), did not affect aSyn oligomerization but altered the 

subcellular distribution of the oligomers. While silencing of ALS2CR7 or PSPH promoted 

aSyn aggregation, silencing of STK32B or PPP2R5E reduced the nuclear localization of 

aSyn oligomers (Annex 5.2.3).  

In the remainder of the study, we focused on the genes that modified aSyn 

oligomerization. Evidence of gene downregulation by the shRNAs was validated by qPCR 

(Annex 5.2.2B) and was confirmed by at least three different shRNAs targeting the same 

gene. Upon silencing of the Rab GTPase genes listed above, we observed a significant 

increase of aSyn-BiFC fluorescence intensity, similar to the effect of silencing CAMK1 and 

DYRK2. Conversely, the silencing of CC2D1A, CLK4 and SYTL5 led to a significant reduction 

of aSyn oligomerization (Figure 23B and 23D). 

To further characterize the role of the hits on aSyn oligomerization, we measured the 

levels of aSyn in aSyn-BiFC cells where each gene was stably silenced (Figure 23C, 23D and 

Annex 5.2.2.C). We found that aSyn protein levels were significantly increased upon 

silencing of RAB8B or CAMK1. Silencing of RAB11A, RAB39B or DYRK2 did not change the 

levels of aSyn, but we found a decrease upon silencing of RAB13, CC2D1A, CLK4 and 

SYTL5. In order to correlate the levels of oligomerization with changes in the protein 

levels of aSyn, we compared the ratio between protein levels and fluorescence intensity 

(Figure 23D). The increase in aSyn oligomerization upon silencing of RAB8B was 

accompanied by an increase in levels of aSyn, suggesting the effects might be related. On 

the other hand, in the case of CAMK1 silencing, the ratio of aSyn protein levels versus 

aSyn oligomers was <1, suggesting that the increase in oligomerization was not simply 

due to an increase in the levels of aSyn. Moreover, the reduced oligomerization in cells 

silenced for CC2D1A, CLK4 or SYTL5 might be due to reduced levels of aSyn.  In contrast, 

the increase in aSyn oligomerization upon RAB11A, RAB39B or DYRK2 silencing seems 

independent of the levels of aSyn. Interestingly, despite the observed increase in aSyn 

oligomerization upon RAB13 silencing, we found a reduction in aSyn levels relative to the 

control. To assess whether the silencing of the candidate genes was cytotoxic, we 

measured the release of lactate dehydrogenase (LDH) into the media as an indicator of 

cell-membrane integrity. We found that silencing of RAB8B, RAB13 or CLK4 resulted in an 
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increase in cytotoxicity in cells with aSyn oligomers compared to cells with no aSyn 

((Figure 23E and Annex 5.2.2D). 

 

Loss-of-Function of Rab Proteins Promotes both Oligomerization and Aggregation of 

aSyn  

Since aSyn oligomerization precedes the formation of larger inclusions, we next asked 

whether the hits identified in the screen would also modulate later stages of aSyn 

aggregation. To test this hypothesis, we used an established model of aSyn aggregation 

that results in the accumulation of LB-like inclusions in H4 cells (Klucken et al 2012, 

McLean et al 2001, Outeiro et al 2006). We co-transfected a C-terminal modified version 

of aSyn (aSynT) and Synphilin-1 in cells stably transduced with lentiviruses encoding 

shRNAs targeting each of the identified hits, and then assessed inclusion formation using 

immunocytochemistry and fluorescence microscopy (Figure 24A, 24B and Annex 5.2.4A). 

We quantified the percentage of cells according to the pattern of aSyn distribution, i.e. 

cells with no inclusions, cells with less than ten or cells with more than ten inclusions.  
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Figure 23. RNAi-based screen for genes that modify aSyn oligomerization in living cells. A. A 

human shRNA library targeting trafficking and phosphotransferase genes was screened using a 

stable cell line expressing aSyn-BiFC constructs (1). Genes modifying aSyn oligomerization by at 

least 50% (2) were identified using fluorescence microscopy analysis and considered for further 

validation. B. Representative live cell imaging pictures of aSyn-BiFC stable H4 cells silenced for hits 

that increase (RAB8B, RAB11A, RAB13, RAB39B, CAMK1, DYRK2) or decrease (CC2D1A, CLK4, 

SYTL5) aSyn oligomerization (green). A scrambled shRNA was used as control. Scale bars: 20 µm. 

C. Representative immunoblot of aSyn-BiFC cells subjected to silencing of the selected hits D. 

Relative fluorescence quantification of aSyn oligomerization (green) and quantification of aSyn 

protein levels (white). The ratio of protein levels and aSyn oligomerization is presented (yellow). 

E. LDH release in the media from cells with aSyn oligomers versus no aSyn (orange). Bars 

represent mean ± 95% CI (*: 0.05<p>0.01; **: 0.01<p>0.001; ***: p<0.001) and are normalized to 

the control of at least three independent experiments. Single comparisons between the control 

and experimental groups were made through Wilcoxon test. Silencing of hits was performed using 

at least three different shRNAs against the same gene. For simplicity, only one shRNA is shown. 

Results with additional shRNAs are presented in Annex 5.2.2. Kd, knockdown. 

 

In the conditions tested, more than 80% of control cells presented less than ten 

intracellular inclusions, 14% did not present inclusions, and less than 4% of the cells 

displayed ten or less inclusions. In contrast, the silencing of all the hits except CLK4 and 

DYRK2 resulted in an increase in the percentage of cells displaying aSyn inclusions (Figure 

24A, 24B and Annex 5.2.4A). Moreover, with the exception of RAB39, the silencing of all 

hits caused an increase in the percentage of cells with more than 10 inclusions. This effect 

was stronger upon silencing of RAB8B (approximately 60% of cells displaying more than 

ten inclusions), followed by SYTL5 (27%) and RAB13 (15%). Together these data suggest 

that the hits can also modulate later steps of the aggregation process of aSyn. To assess 

whether the silencing of the different hits altered cytotoxicity in the aSyn aggregation 

model we measured cell membrane integrity, as described above.  Only the silencing of 

RAB8B and RAB39B resulted in an increase in cytotoxicity (Figure 24C and Annex 5.2.4B). 

Interestingly, the silencing of CLK4 resulted in the accumulation of inclusions with 

irregular shapes and silencing of SYTL5 resulted in the accumulation of elongated cells 

(Annex 5.2.4C). 
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Figure 24. Effect of silencing of selected hits on aSyn aggregation.  A. Stable H4 cells silenced for 

selected hits or with a scrambled shRNA were co-transfected with aSynT and Synphilin-1. Cells 

were fixed 48 h post-transfection and subjected to immunocytochemistry for aSyn (green) and for 

Synphilin-1 (red) followed by fluorescence microscopy. DAPI was used as a nuclear counterstain. 

White arrowheads point to aSyn inclusions. Scale bars: 10 µm. B. Percentage of cells with no 

inclusions (gray), less than 10 inclusions (light green) or more than 10 inclusions (dark green). C. 

Cytotoxicity (measured by LDH release in the media) from stable cells subjected to hits silencing 

and normalized to control (cells transduced with scrambled shRNA). The ratio represented refers 

to cells with aSyn inclusions versus cells with no aSyn. Bars represent mean ± 95% CI (*: 

0.05<p>0.01; **: 0.01<p>0.001; ***: p<0.001) and are normalized to the control of at least three 

independent experiments. Single comparisons between the control and experimental groups 

were made through Wilcoxon test. Kd, knockdown. 

In order to further evaluate whether trafficking indeed plays a role in aSyn aggregation, 

we silenced another traffic component involved in exocytosis (RAB27A). We found that 

silencing of RAB27A increased aSyn oligomerization and did not affect aSyn levels or 
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cytotoxicity (Annex 5.2.5 and 5.2.6). Furthermore, in the aggregation model, it increased 

the percentage of cells displaying aSyn inclusions, without affecting toxicity (Annexes 

5.2.5H and 5.2.5I). Thus, the effects of RAB27A silencing are consistent with those 

observed with the hits selected in our screen. 

 

aSyn Cell-to-Cell Trafficking is Increased upon Silencing of RAB8B, RAB13 or SYTL5  

We and others have previously shown that aSyn can be secreted and affect multiple steps 

of membrane trafficking (Chai et al 2013, Chutna et al 2014b, Emmanouilidou et al 2010, 

Lee et al 2005). Therefore, we next investigated whether the trafficking of aSyn was 

affected upon silencing of four selected hits (RAB8B, RAB11A, RAB13 or SYTL5) and 

RAB27A, involved in different steps of intracellular trafficking.  

To study cell-to-cell trafficking of aSyn, we used the aSyn-BiFC system with VENUS 

(Danzer et al 2012, Herrera et al 2011). Firstly, RAB8B, RAB11A, RAB13 or SYTL5 were 

silenced in H4 cells and, 24 h later, cells were transfected with either VENUS1-aSyn or 

aSyn-VENUS2 plasmids, separately. 24 h later, an equal number of cells transfected with 

VENUS1-aSyn or aSyn-VENUS2 were mixed.  72 h later, mixed cultures were analyzed by 

flow cytometry and microscopy for the presence of fluorescence signal, which indicates 

bimolecular complementation of the VENUS fluorophore and, thus, cell-to-cell trafficking 

of aSyn (Figure 25A). Scramble-mixed populations of VENUS1-aSyn and aSyn-VENUS2 

were used to quantify cell-to-cell transfer of aSyn and used as a control to compare the 

effect of silencing of trafficking hits on aSyn intercellular transfer (Figure 25B). 

Fluorescence of cells containing a single BiFC plasmid was identical to cells without any 

plasmid. In the mixed population of cells that were silenced for RAB8B, RAB13 and SYTL5, 

we observed a significant number of fluorescent cells, indicating that transfer of aSyn 

between cells occurred. By knocking down RAB8B or RAB13, we observed that the 

number of fluorescent cells increased to 4%, double of the control situation, while SYTL5 

knock down resulted in fluorescence in 7% of cells in population, more than three times 

the fluorescence of scrambled cells, while silencing of RAB11A or RAB27A had no effect 

(Figure 25B, 25C, 25D and Annexes 5.2.5E). 
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Endocytic Recycling of aSyn Oligomers is Mediated by Rab11a and Rab13  

Next, we assessed whether overexpression of the hits selected would have the inverse 

effects to those observed upon silencing. For this, we expressed Rab8b, Rab11a, Rab13 

and Slp5 in aSyn oligomerization model. In the case of Rab8b, Rab11a or Rab13, we 

compared the effects of overexpressing wild type forms, constitutively active mutants 

(Rab8b-Q67L, Rab11a-Q70L and Rab13-Q67L), or dominant-negative mutants (Rab8b-

T22N, Rab11a-S25N and Rab13-T22N). We found that overexpression of wild type forms 

or the constitutively active mutants of the Rab proteins significantly reduced aSyn 

oligomerization, while overexpression of Slp5 had no effect (Figure 26A, 26B and Annexes 

5.2.7, 5.2.8, 5.2.9 and 5.2.10). Overexpression of wild type or mutant forms of Rab13 

reduced almost four times aSyn oligomerization. The dominant negative form of Rab8b, 

Rab8b-T22N, had a more attenuated effect on aSyn oligomerization compared to Rab8b-

WT or Rab8b-Q67L. The dominant negative mutant of Rab11a did not change aSyn 

oligomerization. 

To investigate whether the endocytic recycling pathway was altered in the presence of 

aSyn oligomers, we monitored the distribution of fluorescently-labeled Transferrin (Tf), 

which follows the endocytic recycling pathway and marks the endocytic recycling 

compartment (ERC). As expected, Tf accumulated in ERC in control cells without aSyn. In 

contrast, in cells expressing aSyn-BiFC, Tf lost the preferential accumulation in the ERC, 

appearing at the periphery of the cell (Figure 26A and Annex 5.2.10B). We measured the 

fluorescence intensity of Alexa-647-Tf and observed that the expression of wild type 

forms of Rab11a or Rab13 decreased the amount of the Tf within cells. In contrast, the 

dominant-negative forms of Rab11a and Rab13 showed a stronger Tf intracellular signal 

than control (Figure 26C and Annexes 5.2.8 and 5.2.9). These results indicate that 

overexpression of the selected Rab hits restores endocytic recycling in cells accumulating 

aSyn oligomers. We also found that expression of Slp5 did not alter the intracellular Tf 

signal, while Rab8b increased it (Figure 26C and Annexes 5.2.7A and 5.2.10A).  

To further determine if aSyn oligomers were secreted from cells, we measured the levels 

of aSyn both in the media and in cell lysates. We observed no differences in the 

intracellular levels of aSyn. Moreover, although secretion was slightly increased upon 

overexpression of all hits, only Slp5 overexpression significantly increased aSyn secretion 

(Figure 26E). Given that cells overexpressing each of the selected hits showed reduced 
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cytotoxicity (Figure 26D), we concluded that the release of aSyn was not due to cell 

death. Overall, our results suggest that the overexpression of Rab11a and Rab13, but not 

Rab8b or Slp5, promotes endocytic recycling of aSyn oligomers. Also, the Slp5-mediated 

release of aSyn oligomers does not appear to be due to increased trafficking of aSyn via 

the endocytic recycling pathway.  

 

 

 

 

Figure 25. Silencing of RAB8B, RAB13 or SYTL5 increases aSyn cell-to-cell trafficking. A. 

Experimental design of aSyn cell-to-cell trafficking assay. Stable cells silenced for RAB8B, RAB11A, 

RAB13, SYTL5 or with a scrambled shRNA were transfected separately with plasmids encoding 

either VENUS1-aSyn or aSyn-VENUS2. 24 h later, cells were mixed and co-cultured for 72 h. Upon 

release and uptake of the aSyn-VENUS fusions, reconstitution of the fluorescence signal can be 

detected inside cells, and the signal quantified through flow cytometry or microscopy. B. VENUS 

positive cells were monitored by flow cytometry. A representative result is shown as side scatter 
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(SSC) versus VENUS fluorescence, with the corresponding histogram. The percentage of VENUS 

positive cells is indicated by the mean ± 95% CI of at least three independent experiments. C.  In 

vivo imaging of aSyn-VENUS1 and VENUS2-aSyn mixed cells subjected to silencing of the selected 

hits. Scale bar: 20 µm. D. Immunoblotting analysis of, total aSyn and beta-actin. Bars represent 

mean ± 95% CI (*: 0.05<p>0.01; **: 0.01<p>0.001; ***: p<0.001) and are normalized to the 

control of at least three independent experiments. Single comparisons between the control and 

experimental groups were made through Wilcoxon test. Kd, knockdown. 

 

Overexpression of Rab11a and Rab13 Increases aSyn Secretion and Clearance of aSyn 

Inclusions 

To further explore the role of the hits identified on aSyn inclusion formation, we used the 

aSyn aggregation model and overexpressed Rab8b, Rab11a, Rab13 or Slp5. We found that 

wild type and constitutively active forms of Rab8b, Rab11a and Rab13 significantly 

decreased the percentage of cells with aSyn inclusions, when compared with the 

dominant negative forms or control. A similar effect was verified with the overexpression 

of Slp5 (Figure 27A and 27B).  These results are consistent with those obtained upon 

silencing of the same genes (Fig 24B). Interestingly, in cells lacking aSyn inclusions, Rab8b, 

Rab11a, Rab13 and Slp5 were normally distributed in the cell, as in the control situation 

(Figure 26A, and Annexes 5.2.7, 5.2.8, 5.2.9 and 5.2.10). However, we found that in cells 

with aSyn inclusions, these four proteins changed their subcellular localization and co-

localized with the inclusions (Figure 27A and Annexes 5.2.7, 5.2.8, 5.2.9 and 5.2.10). 

Together, these results suggest that Rab8b, Rab11a, Rab13 or Slp5 can modulate aSyn 

aggregation and can be recruited into inclusions.  

To investigate whether endocytic recycling was altered in the presence of aSyn inclusions, 

we monitored this process using Alexa-647-labeled Tf. Normally, Tf accumulates in the 

ERC. In our experiments, we found that Slp5 and wild type or constitutively active mutant 

forms of Rab8b, Rab11 and Rab13 decreased the intracellular fluorescence signal of Tf. In 

contrast, cells expressing the dominant-negative forms of these Rabs displayed similar 

fluorescence intensity to the controls (Fig 27C). These results indicated that recycling 

through the endocytic recycling pathway was compromised in cells with aSyn inclusions, 

as more Tf accumulated inside the cells, and that overexpression of wild type and 
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constitutively-active forms of Rab8b, Rab11a, and Rab13, and Slp5, could rescue this 

defect. 

 

 

 

Figure 26. Overexpression of selected hits reduces aSyn oligomerization and modulates 

endocytic recycling and secretion.  A. H4 stable cells for aSyn-BiFC (green) or H4 cells with no 

aSyn were transfected with constructs expressing Rab8b, Rab11a, Rab13, Slp5 (red)  or empty 

vector. 48 h post-transfection, media with no serum was replaced in cells for 1 h. Cells were 
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incubated with Alexa-647 human transferrin (magenta) for 30 min, prior to fixation. DAPI was 

used as a nuclear counterstain. Cells were subjected to confocal microscopy. For simplicity, 

because all expressed hits have similar subcellular locations, only wild type form of Rab8b is 

shown. Imaging of the remaining constructs is presented in Annexes 5.2.7, 5.2.8, 5.2.9 and 5.2.10. 

Squares are regions zoomed-in showing transferrin localization within endocytic recycling 

compartment in cells with no aSyn oligomers or hit, at cells extremities in cells with aSyn 

oligomers and no hit, and colocalizing the hit in cells with or without aSyn. Scale bars: 10 µm. B. 

Relative aSyn-BiFC fluorescence upon hits overexpression compared to the control (empty vector 

transfection). C. Quantification of Alexa-647 transferrin intensity normalized to the control 

condition. The represented ratio refers to cells with aSyn oligomers versus cells with no aSyn. D. 

LDH extracellular levels were measured to assess cytotoxicity. The ratio represented refers to cells 

with aSyn oligomers versus cells with no aSyn. E. Relative quantification of aSyn intracellular total 

protein (stripe pattern) and extracellular conditioned media (clear pattern) for each condition. A 

representative immunoblot is shown. In graphs, Rab8b is represented in yellow, Rab11a in 

orange, Rab13 in green and Slp5 in blue. Bars represent mean ± 95% CI (*: 0.05<p>0.01; **: 

0.01<p>0.001; ***: p<0.001) and are normalized to the control of at least three independent 

experiments. Single comparisons between the control and experimental groups were made 

through Wilcoxon test. 

 

To determine whether Rab8b, Rab11a, Rab13 or Slp5 played a role in aSyn secretion 

when this protein is aggregated, we measured the levels of aSyn in conditioned media.  

We found that aSyn secretion was not changed by Slp5 (Figure 27E). However, wild type 

forms of the Rabs increased aSyn secretion. To further confirm that the increased levels 

of extracellular aSyn were not due to increased cell death, we measured the release of 

LDH, and found that all the hits tested were protective (Figure 27D). 

Altogether these results show that overexpression of Rab8b, Rab11a, Rab13 or Slp5 

reduces aSyn aggregation, and that the subcellular localization of these proteins is altered 

in the presence of aSyn inclusions, since they all co-localize.  Overexpression of these 

Rabs also promotes aSyn secretion, which can occur through the endocytic recycling 

pathway. Thus, the increased aSyn secretion upon Rab8b, Rab11a and Rab13 

overexpression can explain the decrease of aSyn inclusions within the cells, as this effect 

is not related with an increase in cell death. 
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Discussion 

 

Increasing evidence suggests that pre-fibrillar, oligomeric forms of aSyn are the toxic 

species that lead to pathology (Karpinar et al 2009, Lashuel et al 2002, Winner et al 2011). 

The main objective of this study was to identify regulators of aSyn oligomerization, an 

early step of the aggregation process that precedes the formation of larger protein 

assemblies typically referred to as protein aggregates. To do this, we performed an RNAi 

screen targeting 76 membrane trafficking and 1311 phosphotransferase genes using a cell 

model of aSyn oligomerization. Interestingly, given the uniqueness of our approach, 

based on live-cell imaging of aSyn oligomers, the screen also enabled us to identify genes 

that did not alter aSyn oligomerization but modified the subcellular distribution of the 

oligomeric species. 

With respect to the primary goal of the screen, we identified four genes encoding Rab 

proteins (RAB8B, RAB11A, RAB13 and RAB39B) and five genes encoding 

phosphotransferase proteins (CAMK1, DYRK2, CC2D1A, CLK4 and SYTL5) that modulated 

both oligomerization and aggregation (except DYRK2) of aSyn. 

Regarding the effect of the hits on aSyn oligomerization and protein levels, we identified 

hits that increased both parameters, as in the case of RAB8B and CAMK1. Interestingly, 

silencing of RAB8B, but not CAMK1, is toxic in the presence of aSyn oligomers. The fact 

that RAB8B silencing is also toxic in the presence of aSyn inclusions suggests this is a 

relevant modulator at two different stages of aSyn aggregation process. Camk1 is a 

Calmodulin-dependent kinase that plays a role in axonal growth (Ageta-Ishihara et al 

2009). Until now Camk1 activity had not been associated with aSyn. However, Camk2 

seems to play an essential role in the redistribution of aSyn during neurotransmitter 

release at the synapse (Liu et al 2007). Moreover, Camk2 forms a complex with aSyn and 

seems to regulate its oligomerization status (Martinez et al 2003). If Camk1 and Camk2 

share some functionality, this might explain the stronger downstream effect of CAMK1 

silencing, with a more pronounced effect on oligomerization rather than on the levels of 

aSyn. We also identified hits that decreased both aSyn oligomerization and protein levels; 

for example, the silencing of CC2D1A, CLK4 and SYTL5 decreased oligomerization probably 

because they reduce the levels of aSyn. Silencing of CLK4, but not of CC2D1A and SYTL5, is 

toxic to the cells. Thus, we can speculate that, at least for CC2D1A and SYTL5, the effects 
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observed are not due to cytotoxicity, as membrane integrity is preserved, and these hits 

can be further tested as candidate therapeutic modulators in Synucleinopathies.  

 

 

 

Figure 27. Overexpression of Rab8b, Rab11a, Rab13 and Slp5 reduces aSyn aggregation and 

modulates endosomal recycling and secretion.  A. H4 cells were triple-transfected with aSynT, 
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Synphilin-1 and constructs expressing Rab8b, Rab11a, Rab13, Slp5 (red) or empty vector. 48 h 

post-transfection, media with no serum was replaced in cells for 1 h. Cells were incubated with 

Alexa-647 human transferrin (magenta) for 30 min, prior to fixation and subjected to 

immunocytochemistry for aSyn (green), and followed by confocal microscopy. DAPI was used as a 

nuclear counterstain. Control with empty vector is shown. Amplifications within cells were made 

to show co-localization between aSyn, the hit and transferring within inclusions. For simplicity, 

only Rab8b-WT is shown. Imaging of the remaining constructs is shown in Annexes 5.2.7, 5.2.8, 

5.2.9 and 5.2.10. Scale bars: 10 µm. B. Quantification of the number of aSyn inclusions per cell. 

The cells displaying aSyn inclusions were divided in: cells with no inclusions (represented in black), 

cells with less than 10 inclusions (in light gray) and cells with more than 10 inclusions (in dark 

gray). Only triple transfected cells were considered for the quantifications. C. Quantification of 

alexa-647 transferrin intensity normalized to the control condition. D. Cytotoxicity was measured 

by the LDH-release assay. The represented ratios in C and D refers to cells with aSyn inclusions 

versus cells with no aSyn E. Representative immunoblot of extracellular conditioned media from 

cells overexpressing the selected genes in the aSyn aggregation model, and respective 

quantification. In graphs, Rab8b is represented in yellow, Rab11a in orange, Rab13 in green and 

Slp5 in blue. Bars represent mean ± 95% CI (*: 0.05<p>0.01; **: 0.01<p>0.001; ***: p<0.001) and 

are normalized to the control of at least three independent experiments. Single comparisons 

between the control and experimental groups were made through Wilcoxon test.  

 

Moreover, we also found hits that had a direct effect on oligomerization without 

changing the levels of aSyn; silencing of RAB11A, RAB39B and DYRK2 increased 

oligomerization without affecting the levels of aSyn. Silencing of RAB39B was toxic in the 

aSyn aggregation model but not in the oligomerization model. Thus, from a therapeutic 

perspective, hits that modify oligomerization or aggregation without altering the levels of 

aSyn are of great interest. Finally, we found one hit (RAB13) that increased 

oligomerization while reducing the levels of aSyn. When overexpressed, this gene was 

protective against toxicity, reduced oligomerization and did not alter the levels of aSyn. In 

total, our findings reveal an intricate connection between aSyn aggregation, toxicity and 

levels that will need to be further investigated in future studies.  

Four out of the nine modifiers of aSyn oligomerization and aggregation were Rab small 

GTPases. Rab GTPases are a family of more than 60 members in humans that are master 

regulators of intracellular formation of vesicles, motility and release, thereby playing a 
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key role in neuronal trafficking (reviewed in (Eisbach & Outeiro 2013, Villarroel-Campos et 

al 2014)). Rab GTPases switch between GDP-bound (inactive) and GTP-bound (active) 

states to regulate downstream cellular functions. It is the activation by a guanine-

nucleotide exchange factor (GEF) that converts an inactive Rab into the active GTP-bound 

form (Seabra & Wasmeier 2004). Active Rab GTPases can bind Rab effectors, which 

control the spatiotemporal regulation of Rab steps within cells. Given the importance of 

Rab GTPases and their effectors in the regulation of membrane trafficking, several human 

disorders have been associated with their dysfunction, in particular diseases affecting 

neuronal cells (reviewed in (Seixas et al 2013)). 

Although the hits identified fall into several different functional classes, all but SYTL5 

affect neuronal trafficking (Ageta-Ishihara et al 2009, Di Giovanni et al 2005, Giannandrea 

et al 2010, Greenfield et al 2002, Hattula et al 2002, Jain et al 2014, Martinelli et al 2012, 

Slepak et al 2012). We focused on hits involved in secretion, as this process might 

underlie the spreading and transmission of aSyn pathology in the brain (Braak et al 2003). 

Thus, we further characterized the effect of Rab8b, Rab11a, Rab13 and Slp5 on aSyn 

aggregation. Rab8 is associated with actin and microtubule cell reorganization and 

polarized trafficking to dynamic cell surface structures (Hattula et al 2002). Interestingly, 

Rab8 is able to reconstitute Golgi morphology in cellular models of PD (Rendon et al 

2013) and, in addition, we recently reported that aSyn interacts with Rab8a. Moreover, 

we also found that Rab8 rescues the aSyn-dependent loss of dopaminergic neurons in 

Drosophila (Yin et al 2014). Here, we showed that silencing of Rab8b increased the 

accumulation of oligomeric or aggregated species of aSyn and was toxic to cells, while 

overexpression of Rab8b reverted those effects. Rab11a is ubiquitously expressed with 

preferential localization to ERC. Defective trafficking of Rab11 from the ERC has been 

implicated in AD, HD and PD (Greenfield et al 2002, Li et al 2009, Liu et al 2009a). Rab11a 

is involved in the process of exocytosis of aSyn via RE (Liu et al 2009a). Silencing of 

Rab11a increased accumulation of oligomeric or aggregated aSyn, while overexpression 

of Rab11a was protective and reverted the oligomerization and aggregation of aSyn, as 

we previously reported in independent studies (Breda et al 2014, Chutna et al 2014b).  

Rab13 mediates trafficking between the trans-Golgi network and recycling endosomes 

(Nokes et al 2008) and it is associated with neuronal plasticity, neurite outgrowth, cell 

migration and regulation of tight junctions. Interestingly, we found that Rab13 silencing 



 
  

134  |  III. Results 

 

was toxic to cells with aSyn oligomers but not to cells with aSyn inclusions. On the other 

hand, overexpression of Rab13 reduced aSyn toxicity in both cell models. We also found 

that Rab11a and Rab13 decrease the amount of intracellular Tf both in the models of 

aSyn oligomerization and aggregation. Moreover, secretion of aSyn is also differentially 

affected depending on the cell model, suggesting that the endocytic recycling pathway 

might be used to clear aSyn aggregates, possibly through secretion. Slp5 is a calcium-

dependent protein that belongs to the Synaptotagmin-like protein family. Proteins from 

this family contain tandem C2 domains that bind phospholipids and proteins associated 

with the plasma membrane. Slp5 interacts with GTP-bound Rab27a, Rab3a and Rab6a, 

but not with Rab8 or Rab11a (Kuroda et al 2002b). As an effector of Rab27a, Slp5 

mediates the tethering/docking of Rab27a-positive vesicles to the plasma membrane 

(Fukuda 2013). Moreover, it can modulate the Rab27a-mediated transport of Cystic 

Fibrosis Transmembrane conductance Regulator (CFTR) to the membrane (Saxena & Kaur 

2006). Slp5 can be found in the brain and in other tissues, and was shown to promote 

exocytosis of dense core in PC12 cells (Fukuda 2003). On other hand, SYTL5 was also 

identified in another RNAi screen as player in chemotaxis (Colvin et al 2010), being 

potentially important in the generation of inflammatory responses. To the best of our 

knowledge, Slp5 had not been previously associated with brain disorders. Here, we 

showed that Slp5 silencing decreases aSyn oligomerization and increases the number of 

aSyn inclusions per cell. Moreover, the recycling endocytic pathway is active upon Slp5 

overexpression in cells presenting aSyn inclusions, but the levels of aSyn secretion are not 

altered (Figure 28 and Annex 5.2.6). 

Interestingly, RAB27A was not identified in our primary RNAi screen (Annex 5.2.1). We 

hypothesize that this might be due to redundancy between Rab27 isoforms and also 

because this GTPase has at least eleven different effectors (Fukuda 2013) that may mask 

the effects of RNAi-mediated silencing. Although silencing of RAB27A does not affect aSyn 

oligomerization or secretion, it promotes aggregation (Annex 5.2.5). This further supports 

the hypothesis that trafficking components are key players in aSyn homeostasis. 

Remarkably, we found that overexpression of Rab8, Rab11a, Rab13 and Slp5 significantly 

increases the percentage of cells without inclusions to 50-75%. Although future studies 

will be important to further clarify the precise molecular mechanisms involved, it is 

possible that these proteins reduce aSyn aggregation by affecting its release. A second 
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important observation showed that, in the remaining cells displaying aSyn inclusions, 

Rab8, Rab11a, Rab13 and Slp5 localized in the inclusions together with aSyn. Therefore, 

and as previously suggested, the sequestration of the Rabs in the inclusions may affect 

their function (Chutna et al 2014a).  

Additional studies will be necessary to clarify the relationship between the genes we 

identified and their cellular functions, especially those related to the endocytic recycling 

pathway. For example, in addition to Rab11a, Rab8 also assists the transport of Tf within 

cells and colocalizes with Slp1 and Slp4 (Hattula et al 2006, Kuroda et al 2002a). In fact, in 

cells with no inclusions, transferrin (Tf) labels the endocytic recycling compartment (ERC). 

In cells with inclusions, the ERC location of Tf was maintained but the signal was weaker. 

However, if one of the selected traffic hits is overexpressed in cells with few aSyn 

inclusions, Tf can be seen at i) the ERC (as the traffic hit) and ii) in aSyn inclusions, co-

localizing with the hit. If the number of inclusions is higher, Tf signal loses the ERC 

location (as the overexpressed hit) and is redistributed in inclusions. This sequential 

difference in Tf location reflects the possible redistribution of trafficking players and, 

thus, represents an alteration in the endocytic recycling machinery promoted by aSyn 

aggregation. This effect can synergistically be explained by a first cellular attempt to flow 

the excess of aSyn within the cell specifically when it is aggregated. The increase in aSyn 

secretion in the aSyn aggregation model (upon expression of all selected hits) suggests 

that endocytic recycling is being activated as less Tf signal is detected. However, when 

there are more inclusions in the cells there is a higher chance that the hits will be 

sequestered in the inclusions. aSyn is known to be secreted under physiological 

conditions, possibly via unconventional exocytosis, as it lacks an ER-targeting signal 

peptide. Although the precise mechanisms involved are still unclear, multiple secretory 

pathways have been described (Lee et al 2005). However, it was demonstrated that 

pathological and aggregated species of aSyn can also be secreted (Pacheco et al 2012). 

This suggests that misfolded and aggregated aSyn is a key agent for the propagation of PD 

pathology by a prion-like mechanism (Bernis et al 2015, Tyson et al 2015). In this context, 

aggregation can be viewed as a protective mechanism, as it could arrest the toxic species 

that would otherwise be secreted. This is consistent with several observations by 

different groups, including our own, that protein aggregates (or at least some types of 

aggregates) appear to be less toxic than smaller, oligomeric species. It is possible that, 
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after a certain threshold, the cumulative failure of cellular quality control systems, 

together with the secretion of aSyn, disrupts the initial cellular attempt to contain 

pathological aSyn species. As a result, toxic species of aSyn can spread in a prion-like 

manner. 

Since we found that silencing of RAB8B, RAB13 or SYTL5 augmented aSyn cell-to-cell 

transfer (Figure 25B and 25C), these genes emerge as potential modifiers of the spreading 

of aSyn pathology. Transfecting independent cells with VENUS1-aSyn or aSyn-VENUS2 

plasmids for 24h, and then mixing equal numbers of each cell population, enables the 

study of aSyn cell-to-cell transmission using the split-VENUS BiFC system. We observed a 

two to threefold increase in aSyn cell-to-cell transfer upon silencing of RAB8B, RAB13 or 

SYTL5, while silencing of RAB11A or RAB27A had no effect when compared to scramble-

infected cells. This is further supported by a stronger signal in the immunoblot of at least 

two of three shRNAs used to silence RAB8B, RAB13 or SYTL5. Linking these results with 

the oligomerization state of aSyn, silencing of both RAB8B and RAB13 promoted aSyn 

oligomerization, probably because the balance between the entrance and exit of aSyn is 

increased in those cells. On the other hand, silencing of SYTL5 decreased oligomerization 

and increased cell-to-cell transfer of aSyn. Recently, aSyn was shown to be secreted by 

exosomes (Alvarez-Erviti et al 2011, Danzer et al 2012, Emmanouilidou et al 2010). Given 

that Slp5 is an effector protein of Rab27a involved in exosome-mediated secretion 

(Ostrowski et al 2010) and that, upon silencing, intercellular trafficking of aSyn is 

increased, this confirms that aSyn transmission also occurs by pathways independent of 

exosomes, as previously reported (Chutna et al 2014b, Danzer et al 2012, Ejlerskov et al 

2013). Silencing of RAB11A did not affect the cell-to-cell trafficking of aSyn (Figure 25).  

Hence, the increase in aSyn dimerization induced by silencing of RAB11A might reflect the 

impairment of the endocytic recycling pathway, one of the routes through which aSyn 

oligomers can be released (Danzer et al 2012). 

In this study we showed that traffic-related modulators of aSyn oligomerization can 

reverse toxicity and reduce aggregation by increasing secretion of aSyn. Altogether, the 

genetic screen we performed serves not only as a proof of concept for the identification 

of genetic modifiers of aSyn aggregation, but provides novel insight into the molecular 

underpinnings of PD and other Synucleinopathies. Ultimately, future validation in animal 
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models will establish which of the identified genes holds greater potential as targets for 

therapeutic intervention. 

 

 

  

Figure 28. Rab8b, Rab11a, Rab13 and Slp5 are involved in different steps of cellular trafficking 

and modulate different aggregated species of aSyn. Rab8b is localized in cell membranes and 

vesicles and may be involved in polarized vesicular trafficking (endoplasmic reticulum (ER) to 

plasma membrane) and, specifically, in neurotransmitter release. Rab11a regulates endocytic 

recycling pathway and participates specifically in transferrin recycling. Rab13 plays a role in 

regulating membrane trafficking between trans-Golgi network, recycling endosomes (RE) and 

cell/tight junctions. Slp5 is localized throughout the nucleus and cytosol, and binds to 

phospholipidic structures. Slp5 is a Rab27a effector protein and plays a role in exocytosis. Rab8b, 

Rab11a and Rab13 overexpression rescues aSyn-induced toxicity and inhibits its oligomerization 

and aggregation. Moreover, Rab11a and Rab13 increases aSyn secretion through recycling 

endocytic route only when aSyn inclusions are present within cells. Although Slp5 also rescues 

aSyn-induced toxicity when oligomerization or aggregation are the readout, it increases aSyn 

secretion only in a context of aSyn oligomerization. EE, early endosome; V, vesicle. 
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Materials and Methods 

 

Cell Culture, Transfections, Infections and Immunocytochemistry 

Human H4 neuroglial cells (HTB-148 - ATCC, Manassas, VA, USA) were maintained in Opti-

MEM medium supplemented with 10% of fetal bovine serum (FBS) (Life Technologies), 

and incubated at 37ºC, 5% CO2. Cells were plated 24 h prior to transfection until 80% of 

confluence. Transfections were performed using Fugene 6 (Promega) according to the 

manufacturer’s instructions. 

aSyn-BiFC stable cell lines were obtained by transfecting H4 cells with GN-link-aSyn and 

aSyn-GC constructs (Outeiro et al 2008) and maintained with G418 and Hygromycin B 

antibiotics (both at 100 µg/ml, InvivoGen) in Opti-MEM media with 10% FBS. GFP 

reconstitution assay was made as previously described (Outeiro et al 2008) and the 

brightest cells were viably separated using a fluorescence activated cell sorter. After 

growth of these selected cells, sorting and regrowth was repeated until we obtained a 

homogenously fluorescent aSyn-BiFC cell line. 

To generate stable cell lines with hits silencing, H4 cells or aSyn-BiFC stable cells were 

seeded on 10 cm plates 24 h prior to infection. Cells were infected as described (Moffat et 

al 2006) with lentiviruses. Infected cells were selected with 5 µg/ml puromycin antibiotic 

(Invivogen) 48 h later and maintained with antibiotic in media. 

 

RNAi, High-content Fluorescence Imaging and Analysis 

Generation and Titer of Lentiviruses 

Lentiviral plasmids encoding shRNAs for traffic and phosphotransferase genes were 

obtained from the library of the RNAi Consortium (TRC). Plasmids were purified with the 

QiaPrep miniprep kit (QIAGEN IZASA Portugal) and transfected into HEK293T cells with a 

three-plasmid system to produce lentiviruses with a very high titer of 107 CFU/ml (Moffat 

et al 2006) following the standard procedures.  

 aSyn-BiFC Cells Infection 

1.0x104 stable aSyn-BiFC cells were plated in 96 well, clear bottomed, black polystyrene 

plates (Corning). 24 h later, the medium was carefully removed without disturbing the 

cells at the bottom. Cells were then infected with virus containing shRNAs for the 

silencing of kinases-, phosphatases- and traffic-related genes. 3-5 different shRNAs per 
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gene were used in an arrayed format. 20 ul of virus with polybrene (1:1000 final 

concentration) was added. The 96-well plates were then centrifuged at 2200 rpm for 90 

min at 37ºC. After centrifugation, medium was removed and 200 ul/well of fresh Opti-

MEM medium was added. 48 h post-infection, cells were washed with PBS and media 

(Opti-MEM with no phenol red, Life technologies) was replaced. Fluorescent images were 

obtained from living cells using Axiovert200M microscope (Carl Zeiss MicroImaging). Over 

than 100 cells were acquired for each field imaging and fluorescent intensities were 

calculated through ImageJ software. Fluorescent screening was repeated at least three 

independent times and hits were selected based on the ratio of fluorescent averages. 

Genes which upon silencing reduced or increased the levels of GFP fluorescence by at 

least 50% were selected for subsequent confirmation and analysis in secondary assays. 

Cells were observed with 20x objective for quantification analysis and with a 63x 

objective for subcellular localization studies. ImageJ was used to convert the average GFP 

fluorescence of each cell to average pixel intensity. Values were then averaged for each 

condition, and statistical differences between a baseline condition and an experimental 

condition were calculated.  

For the selected hits, production of lentiviruses was repeated as described above. 5.0x105 

stable aSyn-BiFC cells or H4 cells were plated in 6-well plates, and infected with 500ul of 

viruses with polybrene (1:1000 final concentration). The 6-well plates were then 

centrifuged at 2200 rpm for 90 min at 37ºC. After centrifugation, medium was removed 

and 200 ul/well of fresh Opti-MEM medium was added. The plates were incubated for 48 

h. Cells were selected with 5ug/ml of puromycin (final concentration). 

 

Real Time PCR 

1.5x106 aSyn-BiFC cells were plated in 10 cm plates and infected with selected hits as 

described (Moffat et al 2006). 48 h post-infection, total RNA was extracted from cell 

lysates with Trizol reagent (Invitrogen) in accordance with the manufacturer’s instruction. 

1µg of RNA was reverse transcribed into cDNA using Superscript First Strand Synthesis Kit 

(Invitrogen). PCR amplification was performed by using 2µl of cDNA with SYBR Green 

master mix (Sigma-Aldrich). Primers used for real time PCR were chosen using Primer 3, 

Net Primer and BLAST software to ensure specificity. RT-PCR primers here used were: for 

RAB8B, forward 5’-ATGAGGCTGGAATCCACTTG, reverse 5’-ATGAGGCTGGAATCCACTTG; 
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for RAB11A, forward 5’-CATGTTCCACCAACCACTGA, reverse 5’- 

GTCATTCGGGACAAGTGGAT; for RAB13, forward 5’-CAAGACAATAACTACTGCCTACTACCG, 

reverse 5’-AAGCCTCATCCACATTCATACTG; for RAB39B, forward 5’-

AGTTCCGGCTCATTGTCATC, reverse 5’- ATCTGGAGCTTGATGCGTTT; for CAMK1, forward 

5’-AAGAGCAAGTGGAAGCAAGC, reverse 5’-AGTGAGGAGTGGTAGGGAAGC; for DYRK2, 

forward 5’-CCAGAAGTAGCAGCAGGACC, reverse 5’-CCCACTGTTGTAAGCCCATT; for 

CC2D1A, forward 5’-ATCTGGATGTCTTTGTTCGGTT, reverse 5’-TTGATGCCCTTGGTCTGG; for 

CLK4, forward 5’-GGTTGGTCTCAGCCTTGTG, reverse 5’-TGTGTTGTGGTATGGGTCCTAA; for 

SYTL5, forward 5’-AGCAAAGCCACCAAGCAC, reverse 5’-CTGAGAGTCCATCCAATCCAC; for 

ACTB (beta-actin, endogenous control), forward 5’-GGACTTCGAGCAAGAGATGG, reverse 

5’-AGCACTGTGTTGGCGTACAG. 

 

Fluorescent-Activated Cell Sorting for Cell-to-Cell Trafficking Assay 

1.5x106 H4 stable cells with hit silencing (RAB8B, RAB11A, RAB13 or SYTL5) per dish were 

plated and transfected in 10 cm dishes. 24 h later, cells were transfected cells with 

VENUS1-aSyn or aSyn-VENUS2 vectors independently (Danzer et al 2012). 24 h later, 

0.5x106 of transfected cells with VENUS1-aSyn and aSyn-VENUS2 constructs were mixed. 

72 h after, trypsin was added to each plate and neutralized with media (Opti-MEM+10% 

FBS). Cell suspension was centrifuged at 1100 rpm for 10 min, the supernatant aspirated 

and the pellet reconstituted in phosphate buffered saline (PBS). The resulting supernatant 

was filtered with cell strainer caps into polypropylene tubes (both from BD Biosciences). 

VENUS Fluorescence was measured on a BD LSRFortessa (BD Biosciences) and detected 

also at Axiovert200M microscope (Carl Zeiss MicroImaging). 

 

Overexpression Constructs 

In order to generate pcDNA ENTR BP myc-mCherry-C2 mouse Rab8b, pcDNA ENTR BP V5-

mCherry-C2 mouse Rab11a and pcDNA ENTR BP V5-mCherry-C2 mouse Rab13, pcDNA 

ENTR BP myc-mCherry-C2 or pcDNA ENTR BP V5-mCherry-C2, mammalian expression 

vectors were used. These mammalian expression vectors were previously generated by 

inserting a polylinker containing several restriction sites into pcDNA6.2GW/Em-GFP, a 

mammalian expression Gateway (Invitrogen) previously digested with DraI/XhoI followed 

by insertion of myc-mCherry-C2 or V5-mCherry-C2, previously synthetized into 
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NheI/BamHI. Rab8b, Rab11a and Rab13 mouse coding sequence and part of 3’ UTR were 

produced by RT-PCR amplification using total RNA isolated from at-T20 cell line as a 

template, digested with EcoRI/SalI and cloned with the same restriction enzymes into the 

mammalian expression vectors. The primers here used were: for Rab8b, forward 5‘-

AGTGAATTCATGGCGAAGACGTACGATTATCTGTTC, reverse 5‘-

GACCGTCGACTCACAGGAGACTGCACCGGAAGAA; for Rab11a, forward 5‘-

TGAGGAATTCATGGGCACCCGCGACGACGAGTA, reverse 5‘-

AATAGTCGACCATGCTGGTTGCTGAATATGGTG; for Rab13, forward 

CCCGGCGCCCCCAGTGGAATTCATGGCCAAAG, reverse 5‘-

GTGCGTCGACAGCCTCTCAGGACCCTAACC. Rab8b (Q67L and T22N), Rab11a (Q70L and 

S25N) and Rab13 (Q67L and T22N) mutants were generated by PCR mutagenesis and 

using the following primers: for Rab8b-Q67L, forward 5‘-

GGCCTGGAAAGATTCCGAACAATTACG, reverse 5‘-CGCCGTGTCCCATATCTGAAGTTTAAT; for 

Rab8b-T22N, forward 5‘-GACTCCGGCGTTGGCAAGAACTGC, reverse 5‘-

GCCGATGAGCAGCAGCTTGAACAGATA; for Rab11a-Q70L, forward 5‘-

GGGCTGGAGCGGTACAGGGCTATAAC, reverse 5‘-TGCTGTGTCCCATATCTGTGCCTTTAT; for 

Rab11a-S25N, forward 5‘-GGTGTTGGAAAGAATAACCTCCTGTCT, reverse 5‘-

AGAATCTCCAATAAGGACAACTTTA; for Rab13-Q67L, forward 5‘-

GGCCTAGAACGATTCAAGACAATAACT, reverse 5‘-AGCCGTGTCCCACACTTGCAGTTTGAT; for 

Rab13-T22N, forward 5‘-TCGGGGGTGGGCAAGAATTGT, reverse 5‘-

GTCCCCGATGAGCAGCAACTTGAAGAG. In order to generate pENTR V5-C2 mouse Sytl5 and 

pENTR GFP-C2 mouse Sytl5, Gateway mammalian expression vectors previously described 

were used (Seixas et al 2012). Sytl5 mouse coding sequence was produced by RT-PCR 

amplification of total RNA isolated from mouse brain as template (using the primers 

forward 5‘-TCGAAGCTTCGGATCCATGTCTAAGAACTCAGAGTTCATC and reverse 5‘-

CTAGTCGACTCAGAGCCTACATTTCGCCATGCT), digested with HindIII/SalI and cloned into 

pENTR GFP-C2 with the same restriction enzymes. 

 

aSyn-BiFC Cells Transfection with Overexpressed Hit Vectors, Transferrin Labeling and 

Imaging 

For overexpression assays, H4 cells or aSyn-BiFC stable cells were seeded 24 h prior to 

transfection (on 35 mm glass bottom Ibi-treated imaging dishes, Ibidi GmbH) for 
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immunocytochemistry and cell imaging or on 6 well plates for immunoblotting or 

cytotoxicity assays). Cells were transfected with wild type, constitutively active and 

dominant negative mutants of pcDNA ENTR BP myc-mCherry-C2-RAB8B  (RAB8B-WT, 

RAB8B-Q67L, RAB8B-T22N), pcDNA ENTR BP myc-mCherry-C2-RAB11A (RAB11A-WT, 

RAB11A-Q70L, RAB11A-S25N), pcDNA ENTR BP V5-mCherry-C2-RAB13 (RAB13-WT, 

RAB13-Q67L, RAB13-T22N), pENTR V5-C2-SYLT5 constructs or empty vector (plasmids 

were a kind gift of Dr. José S. Ramalho, Universidade Nova de Lisboa, Portugal). 48 h post-

transfection, cells were washed with PBS and incubated with media with no serum for 1 

h. 50 µg/ml of Alexa-633-Tf (Life Technologies) were added for 30 min. Cells were then 

washed with PBS and fixed with 4% paraformaldehyde for 10 min and washed again. 

Immunocytochemistry was performed only for SYTL5 construct, using primary antibody 

(mouse anti-V5, Cell Signaling) and secondary antibody (goat anti-mouse IgG-Alexa568, 

Life Technologies). Nuclear staining was made using 1 µg/ml of Hoescht 33342 dye (Sigma 

Aldrich) for 2 min. Cells were washed and imaged in PBS. Cells were imaged using a Zeiss 

LSM 710 microscope with a 63× 1.4 NA oil immersion objective. Fluorescence emission 

was detected for Hoechst, GFP, mCherry and Far-red: excitation at 405 nm (band pass 

420-480), 488 nm (band pass 505-550), 561 nm (band pass 575-615), 633 nm (647 – 754). 

Pinhole was at 160 µm for all channels and 2-10% of transmission was used. 

 

Transferrin Labeling, Immunocytochemistry and Imaging in aSyn Aggregation Cell 

Model 

For loss-of-function assays, stable H4 cells for hit silencing were seeded in 35 mm glass 

bottom imaging dishes (ibidi GmbH) 24 h prior to transfection and were co-transfected 

with aSynT and Synphilin-1-V5 as previously described (Chutna et al 2014b) and subjected 

to immunocytochemistry 48 h later. For overexpression assays, triple transfections were 

performed with aSynT, Synphilin-1-V5 and mCherry-Rabs or GFP-Slp5 plasmids and Tf 

incubation was made as described for aSyn-BiFC cells. Then, cells were permeabilized 

with 0.5% Triton X-100 in PBS for 20 min at RT, blocked for 1 h at RT with 1% normal goat 

serum in 0.1% Triton X-100 in PBS, incubated with primary antibody against aSyn (mouse 

anti-aSyn 1:1000; BD Biosciences) and Synphilin-1-V5 (only for loss of function assays; 

mouse anti-V5, 1:1000, Cell Signaling) at 4ºC overnight followed by secondary antibody 

incubation (1:1000, goat anti-mouse IgG-Alexa488 for aSynT (or igG-Alexa 568 for aSynT 
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when co-transfected with GFP-SYTL5) and goat anti-mouse IgG-Alexa568 (Life 

Technologies) for Synphilin-1-V5 (only for loss-of-function assays), for 2 h at RT. Nuclear 

staining was made using 1 µg/ml of Hoechst 33342 dye (Sigma Aldrich) for 2 min. Cells 

were washed and imaged in PBS. Cells were then subjected to microscopy analysis using 

Zeiss Axiovert 200M for loss of function assays or Zeiss 710 confocal microscope for 

overexpression assays using the same settings used for dimerization model. The 

proportion of cells displaying aSyn-positive intracellular inclusions in the aSyn-positive cell 

population was determined by counting at least 100 cells in each condition. Moreover, for 

overexpression assays, Alexa-546-Tf fluorescence intensity was also determined using 

ImageJ. 

 

Immunoblotting of Intracellular Proteins 

Total protein extracts were obtained 48 h post-transfection using standard procedures. 

Briefly, cells were washed twice in PBS and lysed in NP40 buffer (glycerol 10%, Hepes 

20mM pH7.9, KCl 10mM, EDTA 1 mM, NP40 0.2 %, DTT 1mM) containing protease and 

phosphatase inhibitors cocktail (1 tablet/10ml, Roche Diagnostics). Cell debris was spun 

down at 2,500 rpm for 10 min and supernatant were sonicated at 10mA for 15 s 

(Soniprep 150). Protein concentration was determined using the BCA protein assay 

(Thermo Scientific) and 20 µg of protein lysates were resolved in 12% SDS-PAGE. Resolved 

proteins were transferred to nitrocellulose membranes. After quick washing in TBS-T (Tris 

buffered saline and 0.1% Tween 20), membranes were blocked either in 5% non-fat dry 

milk in TBS-T or in 5% BSA in TBS-T for 1 h and then incubated with primary antibodies in 

5% BSA in TBS overnight at 4°C. The primary antibodies used were mouse anti-aSyn, 

1:1,000, BD Transduction; mouse anti-pS129-aSyn 1:1,000 Wako Chemicals USA; mouse 

anti beta-actin, 1:4,000, Sigma; mouse anti-V5, 1:1,000, Cell Signaling; mouse anti-myc, 

1:1,000, Santa Cruz. The membrane was then washed three times for 10 min each in TBS-

T at room temperature and probed with IgG horseradish peroxidase-conjugated (HRP) 

anti-mouse secondary antibody (1:10,000) for 1 h at room temperature. The membrane 

was washed again four times for 15 min each with TBS-T and the signal was detected with 

an ECL chemiluminescence kit (Millipore Immobilon Western Chemiluminescent HRP 

Substrate).  
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Immunoblotting of Extracellular aSyn 

1.5x105 cells were plated in 6 well plates one day prior to transfection (for overexpression 

assays). 48 h post-transfection or seeding (for loss-of-function assays we used stable cell 

lines with hits silencing), media was extracted. Using a dot-blot apparatus with a 

nitrocellulose membrane, 380 ul of media were loaded into wells of the dot blot 

templates and proteins were trapped on the membrane by vacuum. Blocking, washing 

and detection was made as described above, by immunoblotting the membrane. 

 

Cytotoxicity Assays 

For aSyn cytotoxicity assay, stable H4 cells for aSyn-BiFC system or H4 cells were 

transduced with lentiviruses (for assays with hits loss-of-function) or transfected with 

overexpression vectors as described above (for overexpression assays). 48 h post-

transfection or transduction, culture media was used to determine the levels of released 

LDH as described in the manufacturer’s instructions (Clontech Laboratories). LDH levels in 

the culture media were measured and ratio of toxicity between cells with aSyn dimers 

versus cells with no aSyn was determined. 

 

Statistical Analysis 

Statistical significance was determined using the paired t-test with Wilcoxon matched 

pairs test and 95% confidence interval. Differences were considered statistically 

significant when p≤0.05. Analyses were performed using the Graphpad Prism 5.0 software 

(GraphPad Software, CA, USA). 
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3.4 Antibodies Against Alpha-Synuclein Reduce Oligomerization in 

Living Cells 

 

Abstract 

 

Recent research implicates soluble aggregated forms of aSyn as neurotoxic species with a 

central role in the pathogenesis of Parkinson’s disease and related disorders. The 

pathway by which aSyn aggregates is believed to occur in a step-wise manner, in which 

dimers and smaller oligomers are initially formed. Here, we studied the effects of 

monoclonal aSyn antibodies on the early stages of aggregation using the bimolecular 

fluorescence complementation (BiFC) assay. As shown by widefield and confocal 

microscopy, cells treated for 48 h with monoclonal antibodies displayed various degrees 

of antibody internalization. As indicated by decreased GFP fluorescence signal, C-terminal 

and oligomer-selective aSyn antibodies reduced the extent of aSyn 

dimerization/oligomerization. Furthermore, ELISA measurements on lysates and 

conditioned media from antibody treated cells displayed lower aSyn levels compared to 

untreated cells, suggesting increased protein turnover. Taken together, our results 

propose that extracellular administration of monoclonal antibodies can modify or inhibit 

early steps in the aggregation process of aSyn, thus providing further support for passive 

immunization against diseases with aSyn pathology. 

 

Introduction 

 

Parkinson’s disease, dementia with Lewy bodies and multiple system atrophy are 

neurodegenerative disorders characterized by the loss of neurons in the brain along with 

the presence of large intracellular protein inclusions known as Lewy bodies (Singleton et 

al 2003, Wakabayashi et al 1998). The major protein component of Lewy bodies is alpha-

Synuclein (aSyn), a 140 amino acid long protein with a partially unfolded structure 

(Spillantini et al 1997). Although aSyn has a largely unknown function, recent findings 
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suggest it to be involved in neurotransmitter regulation. For example, aSyn may regulate 

the reuptake of dopamine into striatum of transgenic mice (Chadchankar et al 2011) or be 

more generally involved in synaptic release by promoting SNARE complex assembly 

(Burre et al 2010). 

The aggregation cascade of aSyn is believed to begin with the formation of dimers and 

smaller oligomers before the appearance of larger oligomers or protofibrils (Uversky et al 

2001). Such soluble pre-aggregated species have been demonstrated to have toxic 

properties and may thus play a central role the in pathogenesis (Danzer et al 2007, Lee et 

al 2004a, Nasstrom et al 2011a, Outeiro et al 2008, Tsika et al 2010). In addition, the 

disease associated mutations in the gene encoding for aSyn have been found to increase 

the formation of oligomers/protofibrils, further supporting the pathogenic significance of 

such species (Conway et al 1998, Giasson et al 1999, Greenbaum et al 2005). 

aSyn aggregation has been widely studied in cell culture models. By overexpressing aSyn, 

intracellular inclusions can be induced in a wide range of cell types via various 

aggregation-promoting conditions (Desplats et al 2009, Waxman & Giasson 2010). Early 

stages of protein aggregation can be assessed with protein-fragment complementation 

techniques (Outeiro & Kazantsev 2008, Remy & Michnick 1999). One such method, the 

bimolecular fluorescence complementation (BiFC) assay, has previously been adopted for 

the study of aSyn aggregation (Outeiro et al 2008).  

In the last decade, immunotherapy has emerged as a promising tool to target and clear 

protein pathology in neurodegenerative diseases. With active immunization of transgenic 

a precursor protein (APP) mice, using fibrils of the a, a distinct reduction of a 

pathology could be seen (Schenk et al 1999). In addition, a immunization has been found 

to alleviate memory impairment in transgenic animal models (Morgan et al 2000). Instead 

of vaccination in Alzheimer’s disease, focus has now been set on passive treatment with 

antibodies against Aβ. Such an approach has proven to be equally efficient in both cell 

and animal models and is likely to be a safer therapeutic option, as T-cell mediated side 

effects can be avoided (Lord et al 2009, Tampellini et al 2007). 

Immunotherapy has now also begun to be evaluated as an approach to treat aSyn 

pathology. In one study, active immunization with aSyn on transgenic mice showed that 

the pathology was less pronounced in vaccinated mice as compared to placebo (Masliah 
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et al 2005). As for passive immunotherapy against aSyn pathology, no studies have been 

published to date. 

Here, we have explored the use of monoclonal aSyn antibodies to target dimerization/ 

and oligomerization on a cell culture model, using BiFC. 

 

Results 

 

Characterization of mAb49/G 

Immunization of mice with 4-hydroxynonenal (HNE)-stabilized aSyn oligomers resulted in 

several monoclonal antibodies, among which mAb49/G was chosen for this study. By 

inhibition ELISA, the binding of mAb49/G to an HNE-stabilized aSyn oligomer coated plate 

was inhibited by addition of serially diluted aSyn species. When adding aSyn oligomers, 

the IC50 levels were in the low nanomolar range (0,7 nM) whereas the addition of at least 

80 nM aSyn monomers were needed to quench the same signal, indicating a strong 

selectivity of mAb49/G for oligomeric aSyn (Figure 29). 

 

 

Figure 29. Characterization of mAb49/G by inhibition ELISA. Binding of mAb49/G to aSyn 

monomers (□) or aSyn oligomers () was analyzed on HNE stabilized aSyn oligomer coated plates. 

On the x-axis, the molar concentration of aSyn is displayed. The IC50 values are calculated as the 

concentration of either aSyn monomers or aSyn oligomers needed to quench half of the signal in 

the ELISA. Note that, due to uncertainties concerning the size of the aSyn oligomers used in this 
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assay, the concentration in pM for both species is based on the molecular weight of one aSyn 

monomer. These data are representative of at least three independent experiments. 

 

 

Cellular internalization of the aSyn antibodies 

Antibody uptake was studied with immunocytochemistry followed by widefield and 

confocal microscopy. After 48 h of transfection with the two aSyn-BiFC constructs, GFP 

fluorescence was detected with widefield microscopy indicating 

dimerization/oligomerization of aSyn (Figure 30D). In parallel experiments, cells 

transfected with the same constructs and immediately treated with the mAb49/G, 

mAb211 and mAb5C2 antibodies for 48 h, displayed occasional small punctae of aSyn in 

the cell soma after immunostaining with secondary antibodies (Figure 30A, 30B and 30C, 

arrows). Interestingly, these punctae partly co-occurred with GFP-positive signals, 

indicating internalization of the extracellularly added aSyn antibodies mAb49/G and 

mAb211 (Figure 30A, 30B, arrows). However, by examining inclusion staining for the 5C2 

antibody, cells exhibited red signals with no co-occurring GFP-fluorescence indicating 

binding to monomeric forms of the aSyn-BiFC for this particular antibody (Figure 30C, 

arrows). 

To ensure that the antibodies were truly taken up, cells were also analyzed by confocal 

microscopy. All antibodies were then found to get internalized by obtaining z-slice 

images, but the intracellular presence of mAb49/G and mAb211 was especially 

pronounced. Moreover, the antibodies labeled several small inclusions throughout the 

cell soma but were not found to stain the nucleus (Figure 31A-C). For comparison, cells 

were subjected to ordinary immunocytochemistry using the mAb49/G, mAb211 and 5C2 

as primary antibodies (Figure 31D-F). Indeed, a similar pattern of immunofluorescence 

staining was detected in those cells confirming antibody localization to small inclusions of 

aSyn in the cell soma (Figure 31A-C). 

To control for passive uptake of the antibodies as a result of DNA transfection, we 

performed experiments in which the antibodies were incubated with or without the 

presence of Fugene 6. However, we could not see any difference in antibody uptake 

between these two experimental conditions, thus indicating that the antibody uptake was 

not dependent on the presence of cell permeabilization reagents (data not shown). 
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Figure 30. Immunocytochemistry with anti-mouse secondary antibodies (red) displays 

internalization of the aSyn monoclonal antibodies. Forty-eight hours after transfection 

with the two aSyn-BiFC constructs, cells displayed GFP fluorescence in the whole cell 

soma (green) (D). Cells transfected with the constructs and treated with the aSyn 

antibodies mAb49/G and mAb211 displayed less diffuse GFP fluorescence but more 

localized GFP-punctae (A, B, arrows). These signals occasionally co-occurred with signals 

from an anti-mouse secondary antibody, indicating internalization of the treatment 

antibodies (A-B). Cells treated with the mAb5C2 antibody only displayed diffuse GFP-

fluorescence in the whole cell soma (C). After staining with an anti-mouse secondary 

antibody red punctae could be detected in these cells indicating no co-occurrence with 

GFP (C). 40x magnification. Scale bar 20 μm. 

 

Reduced oligomerization after treatment with C-terminal specific and oligomer 

selective aSyn antibodies 

H4 neuroglioma cells were transfected with the two aSyn-BiFC constructs. Forty-eight 

hours after transfection, GFP fluorescence could be detected in the cell soma in 
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approximately 50% of the cells, indicating aSyn dimerization/oligomerization (Figure 32D). 

The fluorescence in aSyn-BiFC transfected cells corresponded to a robust increase in 

fluorescence (2.7-fold over expression to vector controls).  

 

 

 

Figure 31. Confocal microscopy showing internalization of the aSyn antibodies. Forty-

eight hours after addition of the mAb49/G, mAb211 and 5C2 aSyn antibodies, red 

punctate staining was detected within the cells (A, B and C). For comparison purposes, 

ordinary immunocytochemistry was carried out using mAb49/G, mAb211 and mAb5C2 as 

primary antibodies (D, E and F). 63x magnification. Scale bar 20 μm. 

 

In parallel experiments, aSyn antibodies were added to the cell media immediately after 

transfection. Addition of the aSyn C-terminal antibodies mAb49/G and mAb211 reduced 

the GFP fluorescence significantly (1.4- and 1.5-fold over expression to vector controls, 

respectively, p<0.05, p<0.01). With the aSyn mid-region antibody mAb5C2, raised against 

the non-Aβ component (NAC) region, there was no reduction (2.5-fold over expression to 

vector controls) of GFP fluorescence (Figure 32C). 

Thus, treatment with C-terminal aSyn antibodies resulted in decreased formation of aSyn 

dimers/oligomers (Figure 32A and 32B), whereas treatment with the mid-region antibody 

mAb5C2 did not seem to affect the extent of aSyn oligomerization. To ensure that the 

effects were specific to the aSyn antibodies, the monoclonal GAPDH antibody mAb9484 
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was added in parallel. No apparent decrease (2.6-fold over expression to vector controls) 

of GFP fluorescence was seen with this antibody, thus indicating that aSyn 

oligomerization was not affected by an irrelevant monoclonal antibody (Figure 32E).  

 

 

Figure 32. aSyn dimerization/oligomerization, as shown by GFP fluorescence reconstitution. 48 

h after transfection with the aSyn-BiFC constructs, the H4 cells exhibited robust GFP fluorescence 

(2.7-fold over expression to vector controls) throughout the cell soma and nucleus (D and G). 

When cells were treated with the aSyn C-terminal specific antibodies mAb49/G and mAb211 the 

GFP fluorescence was significantly (*p<0.05, **p<0.01) reduced (1.4- and 1.5-fold over expression 

to vector controls respectively) indicating less dimerization/oligomerization (A, B and G). The 

mAb5C2 antibody targeting the non-Aβ component (NAC) region of aSyn did not show any 

reduction (2.5-fold over expression to vector controls) of GFP fluorescence, indicating no effect on 

the formation of dimers/oligomers (C and G). With the monoclonal antibody mAb9484 against 
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GAPDH, no apparent effect (2.6-fold over expression to vector controls) on 

dimerization/oligomerization could be seen (E and G). 20X magnification. Scale bar 20μm. 

 

Decreased intra and extracellular levels of aSyn from antibody treated cells  

A sandwich ELISA was used to measure aSyn levels in lysate and conditioned media from 

the same cells that were analyzed for BiFC. In lysates from BiFC expressing cells (with no 

mAb added), aSyn levels were calculated to 5.6 ng/ml (Figure 33A). In comparison, levels 

of aSyn in lysates treated with aSyn antibodies for 48 h were 2.8 ng/ml with mAb49/G 

treatment (*p<0.04), 3.9 ng/ml with mAb211 (*p<0.05) and 3.3 ng/ml with mAb5C2 

(*p<0.05), indicating reduced aSyn levels in cell lysate with antibody treatment (Figure 

33A). 

In conditioned media from untreated cells, aSyn levels were calculated to be 6.9 ng/ml 

(Figure 33B). In media from cells treated with aSyn antibodies for 48 h, aSyn levels were 

3.2 ng/ml after treatment with mAb49/G (*p<0.05), 2.2 ng/ml with mAb211 (*p<0.05) 

and 2.3 ng/ml (*p<0.05) with mAb5C2 (Figure 33B). 

 

Discussion 

 

The use of immunotherapy to prevent or clear abnormal protein aggregates has emerged 

as a promising tool to treat neurodegenerative diseases. Also, disorders with aggregated 

aSyn may be targeted with immunotherapy and active immunization in transgenic mice 

has indeed been shown to reduce the accumulation of aSyn in the brain (Masliah et al 

2005). Although in that study it was proposed that immunization resulted in degradation 

of aSyn via the lysosomal pathway, it is still largely unknown by which mechanisms 

intraneuronal aSyn aggregates can be cleared (Masliah et al 2005).  

There is an ongoing debate whether extracellularly administered antibodies can enter the 

cell and affect intracellular pathology. Indeed, antibodies utilized in cancer research have 

been shown to effectively bind to its target after cell internalization (Hagan et al 1986). In 

addition, more recent work showed that antibodies directed against APP can maintain its 

biological activity and remain associated with its target after internalization (Tampellini et 

al 2007). In the present study we could detect aSyn antibodies within the cells after 48 h 
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(Figure 31A, B and C) of incubation and find that they co-occurred with the aSyn 

dimers/oligomers (Figure 30A and B). 

 

 

 

Figure 33. ELISA measurement of aSyn levels in lysates and media from BiFC expressing cells. In 

BiFC expressing cells (-mAb), the levels were 5.6 ng/ml (A), with mAb49/G treatment 2.8 ng/ml 

(*p<0.04), mAb211 treatment 3.9 ng/ml (*p<0.05) and with mAb5C2 treatment 3.3 ng/ml 

(*p<0.05) showing a reduction in protein content (A). In conditioned media from untreated cells (-

mAb) the aSyn levels were 6.9 ng/ml (B). In media from antibody treated cells, the levels were 3.2 

ng/ml for mAb49/G (*p<0.05), 2.2 ng/ml for mAb211 (*p<0.05) and 2.3 ng/ml (*p<0.05) with 

mAb5C2 (B). 

 

Although our study indicates that aSyn can be targeted intracellularly, aggregated soluble 

species may also be possible to target in the extracellular space. Indeed, several recent 

studies on cells and transgenic mice have indicated cell-to-cell propagation of aSyn 

pathology. In addition, neuropathological analyses of Parkinson’s disease brains that had 

been transplanted with fetal mesencephalic dopaminergic neurons displayed Lewy bodies 

in the grafted cells, suggesting a similar propagation mechanism in the human brain (Li et 

al 2008).  
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Our findings demonstrate that extracellularly added aSyn antibodies reduced aSyn 

dimerization/oligomerization in living cells. Previously, in vitro studies have shown that 

aSyn aggregation can be decreased by expressing single chain fragments, i.e. intrabodies, 

targeting the C-terminus of aSyn (Zhou et al 2004a). 

We found that both the oligomer-selective antibody mAb49/G and the mAb211 antibody, 

raised against the C-terminal part of aSyn (epitope 121-125), were efficient in reducing 

aSyn dimerization/oligomerization (Figure 32A and B). On the contrary, the mid-region 

antibody mAb5C2 did not significantly reduce the degree of dimer/oligomer formation.  

The inhibiting effect on oligomerization by mAb49/G was somewhat expected as we 

believe that this antibody recognizes an epitope exclusively present in the oligomeric 

structure of aSyn. Moreover, the efficient prevention with the C-terminal aSyn antibody 

was also not entirely surprising. We and others have described that oligomers and fibrils 

of aSyn expose C-terminal epitopes (Gai et al 2003, Nasstrom et al 2011a) and aSyn 

antibodies directed against such epitopes seem to be more efficient in clearing aSyn 

pathology in transgenic mice (Eliezer Masliah, personal communication). Along the same 

lines, the lack of effect on lowering dimer/oligomer levels for the 5C2 antibody in the 

current study could be explained by the fact that its hydrophobic NAC-region epitope (61-

95) is hidden in the oligomeric core (Giasson et al 2001). 

To further investigate antibody effects on aSyn oligomerization, we utilized ELISA to 

measure levels of aSyn in cell lysates and conditioned media from wells under the various 

experimental conditions. Similar studies with extracellular addition of antibodies against 

APP have pointed to an antibody-directed clearance of A via the endosomal/lysosomal 

pathway (Tampellini et al 2007). In agreement with these findings, we showed that the 

levels of aSyn were decreased both in cell lysate and conditioned media after antibody 

treatment, indicating an increased protein turnover in treated cells (Figure 33A and 33B). 

The finding that the NAC-specific 5C2 antibody influenced aSyn levels in both cell lysate 

and conditioned media without affecting oligomer formation is intriguing (Figure 32C, 

33A and 33B). Presumably, the 5C2 antibody fails to affect dimerization/oligomerization 

of aSyn but can bind to the monomeric aSyn-BiFC in which the NAC region is exposed. 

Thereby, also this antibody can facilitate protein turnover, thus explaining the decreased 

total aSyn levels seen in the ELISA. However, the oligomer-selective mAb49/G and C-
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terminal mAb211 antibodies would be more suitable antibody candidates, as they are 

targeting pathological aSyn aggregates rather than the physiological protein.  

In summary, we have studied the effects of monoclonal aSyn antibodies on the early 

stages of oligomerization in H4 cells. We could show that extracellularly administered C-

terminal and oligomer-selective aSyn antibodies are efficiently internalized, have an 

inhibiting effect on aSyn oligomer formation and facilitates protein turnover. Thus, these 

results provide further support for passive immunotherapy against Synucleinopathies. 

 

Materials and Methods  

 

aSyn constructs  

The G-N-155-aSyn and aSyn-G-156-C constructs used for the BiFC assay were generated 

as described earlier (Outeiro et al 2008). For all transfection experiments, an empty 

pcDNA3.1 expression vector (Invitrogen, Carlsbad, CA) was used as control.  

 

Cell culture  

H4 neuroglioma cells were cultured at 37°C and 5% CO2 in OPTI-MEM (Invitrogen) and 

supplemented with 10% fetal bovine serum (FBS) (Invitrogen) and 4 mM Glutamine 

(Invitrogen). 

 

Antibodies  

The following aSyn monoclonal antibodies (mAb) were used for cell culture treatment: 

mAb211 (Santa Cruz Biotechnology, Santa Cruz, CA), mAb5C2 (Santa Cruz Biotechnology) 

and the oligomer-selective antibody mAb49/G (BioArctic Neuroscience, Stockholm, 

Sweden). The monoclonal GAPDH antibody 9484 (Abcam, Cambridge, UK) was used as a 

negative treatment control. All antibodies used for cellular treatment were diluted in TBS 

to reach a final concentration of 1 μg/ml in the extracellular media. For the sandwich 

ELISA, the Syn-1 (BD Biosciences, Franklin Lakes, NJ) and FL-140 (Santa Cruz 

Biotechnology) aSyn antibodies were used for capture and detection, respectively. For 

immunocytochemistry experiments, anti-mouse Cy3 or Alexa594 conjugated secondary 

antibodies (Invitrogen) were used.  
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Generation of the oligomer-selective aSyn antibody mAb49/G 

Balb/c mice (The Jackson Laboratory, Bar Harbor, Maine) were immunized with 4-

hydroxy-2-nonenal (HNE) stabilized aSyn oligomers [11] diluted 1:1 with Freund’s 

adjuvant. After repeated boosts, immunized mice with high serum titers were sacrificed 

for isolation of spleen cells. Next, the spleen cells were fused with SP2/0 myeloma cells. 

Hybridomas were screened for anti-aSyn reactivity with ELISA and positive clones 

underwent at least two rounds of limiting dilution assay to ensure monoclonality. The 

IsoStrip kit (Roche Diagnostics, Basel, Switzerland) was used to determine isotype and 

subclass of the antibody. The mAb49/G IgG1 antibody was then purified from the 

conditioned media with affinity chromatography using Protein G-Sepharose (GE 

Healthcare, Uppsala, Sweden). All experiments involving animals were approved by the 

local ethical committee (decision numbers N417/08; 2009-01-15).  

 

Inhibition ELISA  

An inhibition ELISA assay was performed as described previously, using aSyn monomers 

and HNE stabilized aSyn oligomers as antigen competitors (Englund et al 2007). 

 

Transfection and addition of monoclonal antibodies  

Prior to the day of transfection, cells were seeded onto 35 mm poly-D-lysine coated 

culture plates (MatTek Cultureware, Ashland, MA) at a density of 1,5x105 cells/plate. 

Transfection of H4 cells were carried out with a 1:5 ratio (μg DNA : μl Fugene 6), using the 

Fugene 6 Transfection reagent (Roche Diagnostics). In brief, the culture medium was 

replaced with medium containing 1% FBS, transfected and left to incubate at 37°C for 24 

h. For bioimaging, to ensure optimal reconstitution of the two GFP fragments, cells were 

incubated over night at 30°C (Hu et al 2002, Outeiro et al 2008). Moreover, cells were 

treated or untreated at time zero of transfection with either of the mAb211, mAb5C2 or 

mAb49/G aSyn antibodies or with the mAb9484 GAPDH antibody for 48 h at a final 

antibody concentration of 1 μg/ml. 
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Immunocytochemistry 

Cells were washed with PBS and subsequently fixed for 10 min in 4% paraformaldehyde 

(PFA). After permeabilization for 20 min in 0.1% Triton X-100 at room temperature, the 

cells were blocked with 1.5% normal goat serum (NGS) (Invitrogen) for 2 h. After washing 

with PBS, cells were incubated with a Cy3 conjugated secondary antibody (Invitrogen) 

(1:5000 in 1.5% NGS) for 1 h. Finally, cells were stained with DAPI (Invitrogen) (1:20000 in 

1.5% NGS) for 10 min.  

Control cells were stained using the mouse monoclonal aSyn antibodies mAb49/G 

(BioArctic Neuroscience), mAb211 (Santa Cruz Biotechnology) and mAb5C2 (Santa Cruz 

Biotechnology) (1:500 in 1.5% NGS) for 2 h. Next, cells were probed with the Alexa-Fluor 

594 conjugated secondary antibody (Invitrogen) (1:5000 in 1.5% NGS) for 1 h. Finally, cells 

were stained with DAPI (Invitrogen) (1:20000 in 1.5% NGS) for 10 min. All incubations 

were performed at room temperature. 

To control for unspecific binding of the secondary antibodies, cells were treated only with 

a mouse secondary antibody and compared to buffer treated controls. To control for 

passive uptake of the aSyn antibodies as an effect of DNA-transfection, additional 

experiments in which the antibodies were added with and without simultaneous 

administration of Fugene 6 were carried out.  

Cells were analyzed with confocal microscopy using a LSM 510 META instrument (Carl 

Zeiss Microimaging) where single plane and z-slice images of antibody internalization 

were obtained.  

 

Fixing cells and fluorescence microscopy 

At the end of the treatment, cells were washed with PBS and subsequently fixed for 10 

min in 4% paraformaldehyde (PFA). To study GFP fluorescence the cells were analyzed 

using an Axiovert 200M widefield fluorescence microscope (Carl Zeiss Microimaging 

GmbH, Jena, Germany). The cells were observed using an Epi-fluorescence illuminator 

equipped with a FITC filter. Eight random sites in the well for each condition were 

observed using a 20X objective.  
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Quantification of fluorescence intensity  

For quantification of pixel intensities, the ImageJ (NIH, Bethesda, MD) software was used. 

The GFP fluorescence was converted to average pixel intensities for each condition. The 

intensities for each captured frame are presented as fold increase in fluorescence over 

vector transfected controls. To test for statistically significant differences, groups were 

subjected to one-way ANOVA. Probability values <0.05 were considered significant using 

a two-tailed confidence interval.  

 

Preparation of conditioned media and cell lysates 

Forty-eight hours after transfection and antibody treatment, the conditioned media was 

recovered and centrifuged at 2,150 x g at 4°C for 10 min. To concentrate the samples, the 

conditioned media was freeze-dried and re-dissolved in CellyticM (Sigma-Aldrich, St. 

Louis, MO) lysis buffer supplemented with protease inhibitor cocktail (Roche Diagnostics). 

The cells were washed with PBS, lysed with CellyticM (Sigma-Aldrich) and supplemented 

with a protease inhibitor cocktail (Roche Diagnostics). The lysate was collected and 

centrifuged at 4°C for 10 min and 20,800 x g. Protein concentrations in conditioned media 

and lysates were determined with the BCA Protein Assay Reagent (Thermo Fisher 

Scientific, Rockford, IL).  

 

Sandwich ELISA 

A 96-well high binding plate polystyrene microtiter plate (Corning) was coated with 200 

ng/well of Syn-1 (BD Biosciences) in PBS and incubated at 4°C overnight. The solution was 

removed from each well and the cells were blocked with 1% BSA / 0.15% Kathon for 1 h 

at room temperature. The samples, including a standard series of recombinant aSyn 

diluted in 1% BSA, 0.05% Tween and 0.15 % Kathon, were added to the wells and 

incubated with shaking at room temperature for 2 h. After washing, the FL-140 polyclonal 

aSyn antibody (Santa Cruz Biotechnology) was diluted to 1 μg/ml and added to the wells, 

followed by shaking at room temperature for 1 h. Next, the wells were washed and an 

anti-rabbit horse radish peroxidase (HRP) coupled detection antibody (Pierce, Rockford, 

IL, USA) was added at a final concentration of 0.4 μg/ml. After a further incubation for 1 

h, the wells were washed and the K-blue aqueous substrate (TMB) was used as substrate 

for HRP. Before measurement, the reaction was stopped using 1 M H2SO4. The plate was 
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measured using a SpectraMAX 190 (Molecular Devices, Palo Alto, CA) spectrophotometer 

at 450 nm. The data for each sample was calculated as the means of three separate wells. 
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A common pathological event among diverse NDs is the misfolding and accumulation of 

different proteins in the brain. These processes are thought to potentiate aberrant PPIs 

that culminate in the disruption of several biological processes and, ultimately, in 

neuronal loss. Although protein aggregates are a common hallmark in several disorders, 

the cellular context leading to their generation remains unclear. A major limitation in the 

diagnosis of NDs is that it is done in a very advanced phase of the pathology, a time that 

coincides with a substantial and irreversible loss of neuronal cells.  

PD is an incurable ND and represents significant costs to individuals, care-givers and 

society. It is defined at post-mortem by the loss of dopamine neurons in the substantia 

nigra together with the presence of LBs and LNs. Dysfunction of the affected neurons 

heralds impaired trafficking, to which DA neurons are particularly dependent and thus 

more vulnerable to its disturbance (Hunn et al 2015). The novel clarifications regarding PD 

have been clarifying the mechanistic explanation beyond its pathology.  

The elucidation of the molecular mechanisms involved in aSyn misfolding and the 

associated proteotoxicity is essential for the design of novel therapeutic strategies and to 

devise alternative approaches to diagnose PD at earlier stages. Here, we used cellular 

models to investigate the molecular mechanisms underlying both oligomeric and 

aggregated aSyn, by characterizing intra- and intercellular dynamics of this protein and by 

identifying molecular partners that allowed novel insights in the function of aSyn. 

Traditionally, aSyn was assumed to be predominantly localized in presynaptic terminals 

and also in the cytoplasm. Its presence in the nucleus and mitochondria was later 

described (Goers et al 2003, Kontopoulos et al 2006, Siddiqui et al 2012). aSyn has been 

proven to  be highly mobile as studies in vitro and in vivo with photobleaching  of GFP-

tagged aSyn at the synapse, showed a quick recovery after photobleaching (Fortin et al 

2004, Unni et al 2010). We have found that the availability of the N-terminal region is 

determinant for the entry of aSyn into the nucleus. We have also determined that 

missense mutations, S129 phosphorylation, or HSP70 can modulate that characteristic of 

aSyn dynamics. While A30P increases the tendency to enter in nucleus, E46K and A53T 

reverse the nuclear flux of aSyn. Moreover, PLK2, the best well characterized kinase that 

phosphorylates aSyn at S129 residue, potentiates the cytoplasmic location of aSyn. This is 

consistent with the fact that aSyn is mainly phosphorylated in the disease context but not 

in normal conditions. HSP70 chaperone boosted the dynamics between nucleus and 
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cytoplasm compartments probably maintaining the cell homeostasis and biological 

viability in the presence of a monomeric form of aSyn. 

Other studies suggest that the C-terminal region of aSyn might be important for the 

targeting of aSyn to the nucleus (Specht et al 2005, Xu et al 2006). Although this can be 

partially puzzling facing our results, we believe this is not contradicting our findings as 

those results refer to aSyn localization while we studied its dynamics. Specht and 

colleagues expressed deletion mutants of aSyn and found out that the C-terminal domain 

of aSyn has a predominant nuclear localization while N-terminal fragment is excluded 

from nucleus (Specht et al 2005). While we cannot compare results because we used the 

full-length aSyn in our studies, we observed that aSyn is basally localized in both 

compartments, although the velocity rate at which this protein is transferred from one 

compartment to another differs and depends on the availability of the N-terminal. Xu et 

all observed aSyn at both compartments but it was upon stress conditions that the C-

terminal fragment of aSyn was translocated to the nucleus, while full-length protein 

remained in cytoplasm (Xu et al 2006). As in the present work we observed that the 

presence of HSP70, which binds to aSyn through its NAC domain (Roodveldt et al 2009), 

shifts aSyn into the nucleus, what we add to the literature is that the C-terminal is 

required for chaperone binding, as already described, but it is the availability of the N-

terminal of aSyn that facilitates the entrance into the nucleus. Finally, Ma et all found out 

that aSyn nuclear import is mediated by importin-alpha and that 1-60 and 103-140 

residues are essential for intranuclear localization (Ma et al 2014).  

Recent findings claim aSyn naturally exists as a tetramer, and that monomeric forms of 

aSyn are deleterious to the cell (Bartels et al 2011, Dettmer et al 2015b). If so, we can 

consider we characterized the shuttling between nucleus and cytoplasm of the 

monomeric forms of aSyn and PAGFP fusion constructs having in the light the availability 

of N- or C-terminal of aSyn.  aSyn is under the molecular weight cut-off of the nuclear 

pore (40kDa) which means it can enter the nucleus (Keminer & Peters 1999). However, 

tetrameric or larger forms of aSyn cannot cross the nuclear pore complex. We speculate 

that the monomeric/oligomeric forms, other than the stable tetramers, are the ones that 

can enter those compartments in pathological sceneries. As increasing evidences suggests 

they are the pathologic species, this corroborates their association with cell toxicity, when 

levels of aSyn are increased in nuclei or mitochondria in PD context (Cole et al 2008). As 
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proof of concept, it was demonstrated that aSyn downregulates c-Jun N-terminal kinase, 

protecting cells against oxidative stress, upregulates Caveolin-1 expression and 

downregulates ERK expression which may play a role in the pathogenesis of PD 

(Hashimoto et al 2002, Surgucheva et al 2005). Moreover, it reduces anti-apoptotic Bcl-xL 

expression and increases the pro-apoptotic Bcl2-associated X protein (Bax) (Seo et al 

2002). Finally, aSyn can bind to a promoter of Peroxisome proliferator-activated receptor 

gamma co-activator 1-alpha (PGC-1a) transcriptional co-activator, which reduces its 

expression upon oxidative stress (Siddiqui et al 2012). Thus, two scenarios of interaction 

between aSyn and mitochondria may occur: aSyn direct interaction with mitochondria, 

with subsequent transportation into the organelle which can cause dysfunction, or it 

could impair transcription of nuclear-encoded genes enrolled in mitochondrial function 

(Surguchov 2015). 

In the nucleus, aSyn interact with histones, inhibits acetylation, enhances chromatin 

binding and inhibits transcription of genes involved in the mitochondrial biogenesis in the 

cells (Kontopoulos et al 2006). The interaction between aSyn and histones may reduce 

the pool of free histones available for DNA binding, leading to destabilization of 

nucleosomes and to subsequent transcription deregulation. By this way, aSyn action in 

the nucleus is associated with neurotoxicity. Concordantly, aSyn N-terminal was 

previously related with an increase in the level of intracellular reactive oxygen species 

(ROS), changes in mitochondrial morphology and membrane permeability (Shen et al 

2014). 

Remains to be clarified the mechanism that leads to aSyn entrance in the nucleus. While 

it seems a fine-tuned regulation, localization of aSyn in the nucleus and mitochondria may 

be an important key to unravel the etiology of Synucleinopathies.  

Recent studies with tissue from PD patients and animal models suggest that oligomeric 

species of aSyn are toxic to the neurons, suggesting that the large cytoplasmic inclusions 

are the result of a protective mechanism to avoid the accumulation of the more toxic 

species (Goncalves et al 2016, Outeiro et al 2008, Winner et al 2011). In this context, 

modifying the oligomerization process of aSyn, either by inhibiting the initial interactions 

that drive the formation of oligomeric species, or by promoting the formation of 

cytoplasmic protein inclusions that consume oligomeric species, appears as promising 

strategies. However, promoting inclusion formation requires caution, as aggregates may 
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also disrupt cellular functions, perhaps by physically clogging specific compartments in 

the cell. Overall, these concepts demand additional investigation. 

We used cell-based models of Synucleinopathy to screen a collection of shRNAs, targeting 

76 genes associated with intracellular transport and 1311 genes involved in signal 

transduction players. The obkective was to identify modifiers of aSyn oligomerization, 

using the BiFC assay as readout. With this approach (Goncalves et al 2010, Outeiro et al 

2008), we identified 9 genetic modifiers of aSyn oligomerization (Goncalves et al 2016). 

Interestingly, the hits we identified were functionally related, and associated with 

neuronal trafficking processes. We then focused our subsequent studies on hits involved 

in secretion, as this process might be related to the process of spreading and transmission 

of pathological forms of aSyn between cells in the brain, in a prion-like manner (Braak et 

al 2003). This hypothesis is consistent with the detection of aSyn pathology in neuronal 

grafts in PD patients after transplantation of midbrain cells (Li et al 2008). aSyn was 

shown to be secreted via non-classical exocytosis and, not exclusively, in association with 

exosomes (Danzer et al 2011, Emmanouilidou et al 2010, Lee et al 2005, Sung et al 2005). 

This is also in agreement with the presence of aSyn in cerebrospinal fluid (El-Agnaf et al 

2003, Lee et al 2006).  

Thus, although we believe that the remaining five genes identified in our RNAi-based 

screen deserve further examination, as they are thought to play relevant roles in neuronal 

cells (Annex 5.2.11.), we selected four hits identified in our screen based on their 

involvement in different steps of cellular trafficking: RAB8B, RAB11A, RAB13 and SYTL5. 

Rab8 is associated with actin and microtubule reorganization and with polarized 

trafficking to dynamic cell surface structures (Hattula et al 2002). In addition, it is able to 

reconstitute Golgi morphology in cellular models of PD (Rendon et al 2013) and, as we 

independently showed (Breda et al 2014), to rescue aSyn induced loss of dopaminergic 

neurons in Drosophila (Yin et al 2014). Rab11a is a ubiquitously expressed protein with 

predominant localization at the endosomal recycling compartment/recycling endosome 

(ERC/RE). Strikingly, defects in trafficking from the ERC has been previously implicated in 

AD, HD and PD (Greenfield et al 2002, Li et al 2009, Liu et al 2009a). Rab11a is involved in 

the process of exocytosis of aSyn via RE (Liu et al 2009a). Rab13 mediates trafficking 

between the trans-Golgi network and REs (Nokes et al 2008). Moreover, it has been 

associated with neuronal plasticity, neurite outgrowth, cell migration and regulation of 
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tight junctions, all of which are important pathways in normal neuronal biology (Di 

Giovanni et al 2005, Marzesco et al 2002, Wu et al 2011b). SYTL5 is an effector protein of 

Rab27a and mediates the transport of vesicle-Rab27a complex along the cytoskeleton 

until the plasma membrane is reached, forming a docking/tethering complex that then 

releases the vesicles (Fukuda 2013).  

In our validation assays, we investigated the effect of the selected hits on aSyn 

accumulation, toxicity and secretion, assays that we have previously described (Lazaro et 

al 2014). We found that silencing Rab8b, Rab11a and Rab13 rescued aSyn-induced toxicity 

and reduced the accumulation of both oligomeric and aggregated forms of aSyn. 

Moreover, Rab11a and Rab13 increased aSyn secretion through the recycling endocytic 

route when aSyn inclusions were present. When soluble, oligomeric aSyn were present, 

those two genes still promoted recycling endocytic pathway but not alter the levels of 

aSyn secretion. 

We also showed that Rab11 interacts with aSyn in vivo and modulates its secretion 

through a pathway that does not occur through exosomes or endocytic recycling (Chutna 

et al 2014b). This emphasizes the contribution of Rab11a, an endocytic recycling marker, 

specifically to aSyn oligomerization and aggregation dynamics, that we now found to 

involve the RE pathway.  

Although Slp5 rescues the toxicity associated both with aSyn oligomerization and 

aggregation levels, we found it to affect the later stages of aggregation. Moreover, we 

found that Slp5 increased the secretion of aSyn in the oligomerization model, in a manner 

that was independent of the endocytic recycling pathway. Given that Slp5 is an effector 

protein of Rab27a, involved in secretion through exosomes, our finding supports the idea 

that the release of aSyn can, at least in part, occur via exosomes, as other studies have 

suggested ((Alvarez-Erviti et al 2011, Chutna et al 2014b, Danzer et al 2012, Ejlerskov et al 

2013, Emmanouilidou et al 2010)).  

The common effect among the four trafficking hits was that Rab8b, Rab11a, Rab13 and 

Slp5 promoted similar effects in the aSyn aggregation cell model. Upon silencing, they 

increased the number of inclusions per cell. Conversely, upon overexpression, they 

reduced the percentage of cells with inclusions in 50%-90% and also reduced aSyn 

toxicity. Importantly, in cells with inclusions, the trafficking proteins co-localized with 

aSyn in inclusions. This could either be due to the recruitment of the various proteins into 
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the inclusions, due to the sticky nature of the inclusions, or due to a cellular response in 

order to try to contain aSyn accumulation (Goncalves et al 2016). This is in agreement 

with the interaction between aSyn and Rab8 in brain tissue from patients who showed 

Lewy body pathology but not in control tissue (Dalfo et al 2004a). In addition, Rab8 (as 

well as Rab3a and Rab5) co-immunoprecipitates with aSyn in the extracts from A30P 

transgenic mice (Dalfo et al 2004b). Importantly, Rab8 is also potentially linked to HD as in 

the presence of mutant Huntingtin (Htt), post-Golgi Rab8 dependent trafficking to 

lysosomes is compromised (del Toro et al 2009). 

Thus, it seems logical to hypothesize that future therapeutic strategies might be designed 

to target and correct neuronal trafficking defects, as this can be related to (i) autophagy-

mediated protein degradation, known to be essential in maintaining the overall cellular 

proteostasis, and (ii) to the spreading of aSyn pathology in the brain. Additional studies 

using other cell and animal models will continue to shed light into the role of intracellular 

trafficking plays in PD and other Synucleinopathies.  

Therapeutics may rely on immunotherapy, drug- and/or gene-mediated strategies. The 

challenge of targeting the molecules, genes or virus to the brain and across the BBB is the 

major limitation. However, elegant systems to circumvent this barrier are under 

development. These include liposomes, viral delivery systems and also the transvascular 

delivery of siRNA (Gonçalves et al 2012). By associating specific brain-recognizable 

decoys, a successful delivery might be achieved. Importantly, the effectiveness and 

timeliness of the present strategies might depend on the stage of the disease and also the 

exact causative mechanisms, suggesting that tailored-therapeutics must be developed. 

Advances in drug development suggest that antibodies can cross the blood-brain barrier 

in limited quantities. Here we proposed that extracellular administration of monoclonal 

antibodies can modify or inhibit early steps in the aggregation process of aSyn, thus 

providing further support for passive immunization against diseases with aSyn pathology 

(Nasstrom et al 2011b). Supporting this line of thought, immunotherapy for Alzheimer's 

disease has shown that targeting aβ with antibodies can reduce pathology in both mouse 

models and human brain. Notably, the antibodies penetration into the BBB is still under 

the desired concentrations for an effective therapeutic results (Yu & Watts 2013) and 

further technology advances may  be needed to transpose to the clinics the new 

therapeutic hypothesis that are arising from basic molecular biology. 
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aSyn seems to behave as a prionic protein, as its aggregated form is found in grafts from 

foetal tissue 11-16 years after transplantation (Kordower et al 2008, Li et al 2008). Still, 

grafts transplantation can be a way to delay prionic spread of the protein in mid-term, as 

for instance, within 18 months, no overt pathology were found after transplantation and 

motor improvements are noticeable (Kordower et al 1995).  In the  long term, as 

disturbances in cellular trafficking seems to be a major pathological consequence of all PD 

forms, therapy may rely in strategies to restore cellular trafficking and the secondary 

roads linked to it, as autophagy.  
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5.1. Assessing the Subcellular Dynamics of Alpha-Synuclein using 

Photoactivation Microscopy 

 

 

 

Annex 5.1.1. Subcellular dynamics of aSyn-WT. A. Distribution of PAGFP, aSyn-WT-PAGFP or 

PAGFP-aSyn-WT in H4 cells before (-2 s), during (0 s) and after (10, 100, 250, 500, 750 and 1,000 s) 

nuclear and cytoplasmic photoactivation. B. Distribution of PAGFP-aSyn-WT co-expressed with 

HSP70 in H4 cells before (-2 s), during (0 s) and after (10, 100, 250, 500, 750 and 1,000 s) nuclear 

or cytoplasmic photoactivation. Scale bars: 10 µm. 
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Annex 5.1.2 Immunobloting analysis of nuclear and cytosolic protein extracts from cells 

expressing fusion constructs of aSyn and PAGFP. A. aSyn-WT reporter proteins. B. A30P, E46K 

and A53T aSyn reporter proteins. C. PAGFP-aSyn-WT with GRK2, GRK5, PLK2 and PLK3. D. PAGFP-

aSyn-S129A. E.  aSyn-WT in the presence or absence of HSP70. N: nuclear fraction; C: cytoplasmic 

fraction; T: total fraction. 
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Annex 5.1.3 Relative nuclear fluorescence of aSyn upon photoactivation. 

 

 

 

 

 

 

 

 

 

 

A. Relative nuclear fluorescence of aSyn variants 100 s, 500 s and 1,000 s after photoactivation.  

Constructs 

Nuclear Photoactivation Cytoplasmic Photoactivation 

100 s 500 s 1,000 s 100 s 500 s 1,000 s 

N1 p-value2 N  p-value N p-value N  p-value N  p-value N  p-value 

aSyn-WT-PAGFP 0.7815 ± 0.0600   0.7448 ± 0.0358   0.7174 ± 0.0355   0.2391 ± 0.0481   0.3316 ± 0.0427   0.4243 ± 0.0681   

aSyn-A30P-PAGFP 0.8141 ± 0.0831 0.2837 0.7420± 0.0473 0.1530 0.6649 ± 0.0226 0.1010 0.4124 ± 0.1165 0.0007*** 0.5028 ± 0.0542 < 0.0001*** 0.5473 ± 0.0419 0.0003*** 

aSyn-E46K-PAGFP 0.8564 ±0.0711 0.9357 0.7934± 0.0729 0.2001 0.7700 ± 0.0460 0.6237 0.4124 ± 0.1165 0.0723 0.5028 ± 0.0542 0.0044** 0.5473 ± 0.0419 0.0445* 

aSyn-A53T-PAGFP 0.8601 ± 0.1340 0.9813 0.8579 ± 0.1043 0.6783 0.8090 ± 0.1252 0.7762 0.2013 ± 0.0730 0.9610 0.2673 ± 0.0541 0.8710 0.3346 ± 0.0571 0.8149 

aSyn-S129A-PAGFP 0.9045 ± 0.013 0.0044** 0.8577 ± 0.0561 0.0124* 0.7988± 0.0959 0.2517 0.2553 ± 0.0568 0.6577 0.3304 ± 0.0826 0.9823 0.4256 ± 0.0845 0.9803 

PAGFP-aSyn-WT 0.7849 ± 0.0931   0.7277 ± 0.0917   0.6776 ± 0.0866   0.211 ± 0.049   0.2661 ± 0.0579   0.3321 ± 0.1032   

PAGFP-aSyn-A30P 0.7643± 0.0580 0.5901 0.7254 ± 0.0696 0.9525 0.6778 ± 0.0678 0.9943 0.1898 ± 0.0734 0.4367 0.2036 ± 0.0690 0.0411 0.2223 ± 0.0615 0.0185 

PAGFP-aSyn-E46K 0.7570± 0.0747 0.4815 0.6262 ± 0.0410 0.0096** 0.5338 ± 0.0842 0.001** 0.2787 ± 0.0840 0.0541 0.2881 ± 0.0816 0.5480 0.2921 ± 0.083 0.5419 

PAGFP-aSyn-A53T 0.7262 ± 0.0682 0.3995 0.5774 ± 0.0184 0.0346* 0.4378 ± 0.0239 0.0013** 0.1709 ± 0.0490 0.1350 0.1861 ± 0.0808 0.0282* 0.1749 ± 0.1039 0.0096** 

PAGFP-aSyn-S129A 0.7554 ± 0.0582 0.5668 0.6387 ± 0.0628 0.0282* 0.5540 ± 0.0715 0.0099** 0.2668 ± 0.1025 0.3967 0.3007 ± 0.0852 0.2817 0.3285± 0.0714 0.4130 

 1 N: Nuclear fluorescence. For simplicity, the 
cytoplasmic fluorescence values were 
suppressed, as they can be represented by 1-
N, being the p-value the same of N. 
2 P-values obtained from two-tailed unpaired 

Student’s t-test with 95% of confidence 

interval (α=0.05). Fisher tests comparing the 

variances between the experimental and 

control groups revealed the variances are not 

significantly different. 
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B. Relative nuclear fluorescence of aSyn-WT in the presence of selected genes at 100 s, 500 s and 1,000 s after photoactivation. 

Constructs 

Nuclear Photoactivation Cytoplasmic Photoactivation 

100 s 500 s 1,000 s 100 s 500 s 1,000 s 

N1 p2 N  p N  p 
 

p N P N  p 

aSyn-WT-PAGFP + empty 0.7815 ± 0.0600   0.7448 ± 0.0358   0.7174 ± 0.0355   0.2391 ± 0.0481   0.3316 ± 0.0427   0.4243 ± 0.0681   

aSyn-WT-PAGFP + GRK2 0.8235 ± 0.0612 0.3651 0.7849 ± 0.0138 0.0818 0.7625 ± 0.0436 0.2804 0.2960 ± 0.0538 0.2442 0.3622 ± 0.0068 0.2875 0.4352 ± 0.0096 0.7980 

aSyn-WT-PAGFP + GRK5 0.6937 ± 0.0902 0.1562 0.6766± 0.0763 0.1564 0.6826 ± 0.0714 0.5656 0.1939 ± 0.0711 0.4128 0.2455 ± 0.0880 0.2023 0.3259 ± 0.0656 0.1458 

aSyn-WT-PAGFP + PLK2 0.6940 ±0.1147 0.1793 0.6512± 0.0581 0.0118* 0.6424 ± 0.0461 0.0574 0.3766 ± 0.0661 0.0124* 0.3868 ± 0.0487 0.1285 0.3995 ± 0.0404 0.5332 

aSyn-WT-PAGFP + PLK3 0.8507 ± 0.0702 0.1335 0.8220 ± 0.0761 0.0928 0.8018 ± 0.0880 0.2525 0.2876 ± 0.0591 0.3003 0.3880 ± 0.0362 0.1165 0.4756 ± 0.0118 0.1874 

aSyn-WT-PAGFP + HSP70 0.8273 ± 0.1305 0.5472 0.7890± 0.1067 0.4624 0.7387 ± 0.0887 0.7705 0.3116 ± 0.0848 0.2203 0.4115± 0.0926 0.2083 0.4917 ± 0.1019 0.3420 

PAGFP-aSyn-WT  + empty 0.7803 ± 0.0582   0.7413 ± 0.0338   0.7037 ± 0.0372   0.2191 ± 0.0306   0.2489 ± 0.0338   0.2935 ± 0.0503   

PAGFP-aSyn-WT  + GRK2 0.7820 ± 0.1604 0.9844 0.7591 ± 0.1073 0.7608 0.7016 ± 0.0857 0.9653 0.2939 ± 0.0881 0.1334 0.2823 ± 0.0711 0.3973 0.2413 ± 0.1253 0.6214 

PAGFP-aSyn-WT  + GRK5 0.8170 ±0.0648 0.5186 0.7533 ± 0.0534 0.7438 0.6900 ± 0.0463 0.7104 0.2196 ± 0.0484 0.9867 0.3121 ± 0.0369 0.1027 0.4264 ± 0.0962 0.0773 

PAGFP-aSyn-WT  + PLK2 0.6826 ± 0.0793 0.1841 0.5455 ± 0.0299 0.0141* 0.5204 ± 0.0348 0.0364* 0.2765 ±0.0676 0.1486 0.3373± 0.0569 0.0207* 0.4001 ± 0.0457 0.0058** 

PAGFP-aSyn-WT  + PLK3 0.7376 ± 0.0456 0.3446 0.6516 ± 0.0361 0.0198* 0.5745 ± 0.0262 0.0038** 0.1956 ± 0.0911 0.1702 0.2394± 0.0860 0.1573 0.2832 ± 0.0665 0.1646 

1 N: Nuclear fluorescence. For simplicity, the 
cytoplasmic fluorescence values were suppressed, as 
they can be represented by 1-N, being the p-value the 
same of N. 
2 P-values obtained from two-tailed unpaired 

Student’s t-test with 95% of confidence interval 

(α=0.05). Fisher tests comparing the variances 

between the experimental and control groups 

revealed the variances are not significantly different. 
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Annex 5.1.4. Effect of S129 phosphorylation status on the subcellular dynamics of aSyn-WT-

PAGFP. A. Fluorescence intensities after photoactivation in the nucleus (light grey lines) and in the 

cytoplasm (dark grey lines) of aSyn-WT-PAGFP fusion proteins co-expressed with GRK2, GRK5, 
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PLK2 and PLK3 (solid lines) over time. Fluorescence intensities of photoactivated control aSyn-WT-

PAGFP constructs after co-transfection with an empty vector are shown in dashed lines. Values 

are mean ± standard deviation of 15 cells analyzed per condition; B. Immunobloting analysis of 

total aSyn levels in cells expressing aSyn-WT- PAGFP or aSyn-S129A-PAGFP; C.  Immunobloting 

analysis of aSyn-WT-PAGFP construct co-expressed with GRK2, GRK5, PLK2 and PLK3. N: nuclear 

fraction; C: cytoplasmic fraction; T: total fraction; D. Fluorescence intensities after photoactivation 

in the nucleus (light grey) and in the cytoplasm (dark grey) of aSyn-S129A-PAGFP fusion proteins 

(solid lines) over time. Fluorescence intensities of photoactivated control aSyn-WT-PAGFP fusion 

proteins are shown in dashed lines. Values are mean ± standard deviation of up to 15 cells 

analyzed for each condition; E. Immunobloting analysis of cells expressing aSyn-S129A-PAGFP. N: 

nuclear fraction; C: cytoplasmic fraction; T: total fraction; F. Immunobloting analysis of total aSyn 

levels in cells expressing aSyn-WT-PAGFP or aSyn-S129A-PAGFP; G. Cytosolic inclusions in cells 

expressing aSyn-S129A-PAGFP. Images were taken 500 s after photoactivation in the nucleus in 

order to increase the contrast of the cytosolic inclusions. Scale bar: 10 µm. 
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Annex 5.1.5. aSyn intracellular dynamics upon photoactivation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

                                                           
1
 aSyn subcellular localization: cytoplasm and nucleus 

2 PA: photoactivation 
3 N: maintained in the nucleus 
4 C+N: spread from the cytoplasm to the nucleus 
5 C: maintained in the cytoplasm 
6 N+C: spread from the nucleus to the cytoplasm 

Construct aSyn Dynamics1 

 Nuclear PA2 Cytoplasmic PA 

 WT-aSyn dynamics 

aSyn-WT-PAGFP N3 C+N4 

PAGFP-aSyn-WT N C5 

 PD-associated aSyn mutants dynamics 

aSyn-A30P-PAGFP N C+N quickly 

PAGFP- aSyn-A30P N C 

aSyn-E46K-PAGFP N C+N quickly 

PAGFP-aSyn-E46K N+C6 C 

aSyn-A53T-PAGFP N C+N 

PAGFP-aSyn-A53T N+C C 

 Phosphorylated aSyn dynamics 

aSyn-WT-PAGFP + empty N C+N 

PAGFP-aSyn-WT + empty N C 

WT-aSyn-PAGFP + GRK2 N C+N 

PAGFP-aSyn-WT + GRK2 N C 

aSyn- WT-PAGFP + GRK5 N C+N 

PAGFP-aSyn-WT + GRK5 N C+N 

aSyn-WT-PAGFP + PLK2 N C+N 

PAGFP-aSyn-WT + PLK2 N+C C 

aSyn-WT-PAGFP + PLK3 N C+N 

PAGFP-aSyn-WT + PLK3 N+C C 

aSyn-S129A-PAGFP N C+N 

PAGFP-aSyn-S129A N+C C 

 aSyn dynamics in the presence of HSP70 chaperone 

WT-aSyn-PAGFP + HSP70 N C+N 

PAGFP-aSyn-WT + HSP70 N+C C+N quickly 
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Annex 5.1.6. PLK2 promotes aSyn inclusion formation in human cells. A.  Schematic 

representation of the BiFC assay. Two aSyn molecules are fused to two non-fluorescent halves of 

a fluorescent reporter, in this case, GFP. If the proteins interact, they bring together the halves of 

the reporter protein and reconstitute the functional fluorophore. Protein complementation 

occurs only when aSyn is fused to fragments of GFP, and not observed when a GFP fragments 

alone are expressed. B. Microscopy analysis of H4 cells stably transfected with GN-link-

aSyn+aSyn-GC and transiently co-transfected either with PLK2 or an empty vector (EV), in the 

presence (BI2536) or absence (DMSO) of a kinase inhibitor. aSyn fluorescence intensity is 

quantified in arbitrary units. The percentage of cells with aSyn inclusions is shown. C. H4 cells 

stably transfected with GN-link-aSyn+aSyn-GC were immunoblotted 48 h post transient co-

transfection either with PLK2 or empty control (EV), in the presence (BI2536) or absence (DMSO) 

of a kinase inhibitor, using antibodies against aSyn phosphorylated on Ser-129 and total aSyn. Ser-

129 phosphorylation levels were normalized for the total amount of aSyn (mean ± standard 

deviation) and relative to the EV + DMSO condition. All data presented are representative of three 

independent experiments. Statistical analysis was performed using two-tailed Student’s t test for 

unpaired data (*=p<0.05), (**=p<0.005).  
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5.2. shRNA-Based Screen Identifies Endocytic Recycling Pathway 

Components that Act as Genetic Modifiers of Alpha-Synuclein Aggregation, 

Secretion and Toxicity 

 

Annex 5.2.1. List of screened genes in the RNAi assay using aSyn-BiFC stable cells as readout. A. 

Human trafficking collection B. Human kinases / phosphatases collection. 

 

A. Human trafficking collection 

Gene 

name 
NM_Id Gene name NM_Id Gene name NM_Id 

BET1L NM_016526 RAB10 NM_016131 RAB37 NM_175738 

BNIP1 NM_001205 RAB11A NM_004663 RAB38 NM_022337 

EPIM NM_001980 RAB11B NM_004218 RAB39 NM_017516 

GOSR1 NM_004871 RAB13 NM_002870 RAB39B NM_171998 

GOSR2 NM_004287 RAB14 NM_016322 RAB40B NM_006822 

RAB1B NM_030981 RAB15 NM_198686 RAB40C NM_021168 

RAB2B NM_032846 RAB17 NM_022449 SEC22L2 NM_012430 

RAB2 NM_002865 RAB18 NM_021252 SEC22L3 NM_004206 

RAB3A NM_002866 RAB20 NM_017817 SNAP29 NM_004782 

RAB3B NM_002867 RAB21 NM_014999 STX11 NM_003764 

RAB3C NM_138453 RAB22A NM_020673 STX12 NM_177424 

RAB3D NM_004283 RAB23 NM_016277 STX17 NM_017919 

RAB4A NM_004578 RAB24 NM_130781 STX1A NM_004603 

RAB4B NM_016154 RAB25 NM_020387 STX3A NM_004177 

RAB5A NM_004162 RAB26 NM_014353 STX4A NM_004604 

RAB5B NM_002868 RAB27A NM_004580 STX5A NM_003164 

 Mk,RAB5C NM_004583 RAB27B NM_004163 STX6 NM_005819 

RAB6A NM_002869 RAB28 NM_004249 STX7 NM_003569 

RAB6B NM_016577 RAB30 NM_014488 STX8 NM_004853 

RAB6C NM_032144 RAB31 NM_006868 SYBL1 NM_005638 

RAB7 NM_004637 RAB32 NM_006834 VAMP3 NM_004781 

RAB7L1 NM_003929 RAB33A NM_004794 VTI1A NM_145206 

RAB8A NM_005370 RAB33B NM_031296 VTI1B NM_006370 

RAB8B NM_016530 RAB34 NM_031934 YKT6 NM_006555 

RAB9A NM_004251 RAB35 NM_006861     
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RAB9B NM_016370 RAB36 NM_004914     

B. Human kinases / phosphatases collection 

Gene 

name 
NM_Id Gene name NM_Id Gene name NM_Id 

AAK1 NM_014911 ALS2CR2 NM_018571 C3orf29 NM_022485 

AATK XM_375495 ALS2CR7 NM_139158 C3orf48 NM_144714 

ABL1 NM_005157 AMHR2 NM_020547 C7orf16 NM_006658 

ABL1 NM_007313 ANKK1 NM_178510 C9orf96 XM_376921 

ABL2 NM_005158 ANP32A NM_006305 CABC1 NM_020247 

ACACB NM_001093 APC NM_000038 CALM1 NM_006888 

ACP1 NM_007099 APPL NM_012096 CALM2 NM_001743 

ACP6 NM_016361 ARAF NM_001654 CALM3 NM_005184 

ACPL2 NM_152282 ARF1 NM_001658 CAMK1 NM_003656 

ACPP NM_001099 ARHGAP29 NM_004815 CAMK1D NM_020397 

ACPT NM_080789 ARHGEF2 NM_004723 CAMK1G NM_020439 

ACVR1 NM_001105 ARMET NM_006010 CAMK2A NM_171825 

ACVR1B NM_004302 ARPP-21 NM_198399 CAMK2B NM_001220 

ACVR1B NM_020328 ATM NM_000051 CAMK2D NM_001221 

ACVR1C NM_145259 ATP6V0E2L XM_088142 CAMK2G NM_001222 

ACVR2A NM_001616 ATPBD3 NM_145232 CAMK2N1 NM_018584 

ACVR2B NM_001106 ATR NM_001184 CAMK4 NM_001744 

ADAM2 NM_001464 AURKA NM_003600 CAMKK1 NM_172207 

ADCK1 NM_020421 AURKAIP1 NM_017900 CAMKK2 NM_153499 

ADCK2 NM_052853 AURKB NM_004217 CAMKV NM_024046 

ADCK5 NM_174922 AURKC NM_003160 CARKL NM_013276 

ADK NM_001123 AXL NM_001699 CASK NM_003688 

ADPGK NM_031284 AXL NM_021913 CBL NM_005188 

ADRBK1 NM_001619 BCKDK NM_005881 CC2D1A NM_017721 

ADRBK2 NM_005160 BCL2 NM_000633 CCL2 NM_002982 

AGTR2 NM_000686 BCL2L11 NM_138621 CCNB3 NM_033670 

AK1 NM_000476 BCR NM_004327 CCND1 NM_053056 

AK2 NM_001625 BLK NM_001715 CCR2 NM_000648 

AK3 NM_016282 BMP2K NM_017593 Ccr2 NM_009915 

AK3L1 NM_013410 BMP2KL XM_293293 CCRK NM_178432 

AK5 NM_012093 BMPR1A NM_004329 CCRN4L NM_012118 

AK7 NM_152327 BMPR1B NM_001203 CD40 NM_001250 

AKAP3 NM_006422 BMPR2 NM_001204 CDC14A NM_003672 
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AKAP4 NM_003886 BMX NM_001721 CDC14C NM_152627 

AKAP5 NM_004857 BPNT1 NM_006085 CDC2 NM_001786 

AKAP6 NM_004274 BRAF NM_004333 CDC25A NM_001789 

AKAP7 NM_004842 BRCA1 NM_007294 CDC25B NM_004358 

AKAP8 NM_005858 BRCA2 NM_000059 CDC25C NM_001790 

AKAP8L NM_014371 BRD2 NM_005104 CDC2L1 NM_001787 

AKAP9 NM_005751 BRD3 NM_007371 CDC2L2 NM_024011 

AKAP10 NM_007202 BRD4 NM_058243 CDC2L5 NM_003718 

AKAP11 NM_016248 BRDT NM_001726 CDC2L6 NM_015076 

AKAP12 NM_005100 BRSK1 NM_032430 CDC42BPA NM_014826 

AKAP13 NM_006738 BRSK2 NM_003957 CDC42BPA NM_003607 

AKAP14 NM_178813 BTK NM_000061 CDC42BPB NM_006035 

AKT1 NM_005163 BUB1 NM_004336 CDC42BPG XM_290516 

AKT2 NM_001626 BUB1B NM_001211 CDC42SE2 NM_020240 

AKT3 NM_005465 C11orf17 NM_020642 CDC7 NM_003503 

ALK NM_004304 C14orf41 XM_495996 CDH1 NM_004360 

ALPK1 NM_025144 C15orf42 NM_152259 CDK10 NM_003674 

ALPK2 NM_052947 C17orf51 XM_378661 CDK10 NM_052987 

ALPK3 NM_020778 C17orf75 NM_022344 CDK2 NM_001798 

CDK2 NM_052827 CSK NM_004383 DOK1 NM_001381 

CDK4 NM_000075 CSMD1 NM_033225 DTYMK NM_012145 

CDK5 NM_004935 CSNK1A1 NM_001892 DULLARD NM_015343 

CDK5R1 NM_003885 CSNK1A1L NM_145203 DUSP1 NM_004417 

CDK6 NM_001259 CSNK1D NM_001893 DUSP3 NM_004090 

CDK7 NM_001799 CSNK1D NM_139062 DUSP4 NM_001394 

CDK8 NM_001260 CSNK1E NM_001894 DUSP5 NM_004419 

CDK9 NM_001261 CSNK1E NM_152221 DUSP6 NM_001946 

CDKL1 NM_004196 CSNK1G2 NM_001319 DUSP8 NM_004420 

CDKL2 NM_003948 CSNK1G3 NM_004384 DUSP9 NM_001395 

CDKL3 NM_016508 CSNK2A1 NM_001895 DUSP10 NM_007207 

CDKL4 XM_293029 CSNK2A1 NM_177559 DUSP11 NM_003584 

CDKL5 NM_003159 CSNK2A2 NM_001896 DUSP12 NM_007240 

CDKN1A NM_000389 CTDP1 NM_004715 DUSP13 NM_016364 

CDKN1B NM_004064 CTDSP2 NM_005730 DUSP14 NM_007026 

CDKN1C NM_000076 CYLD NM_015247 DUSP15 NM_080611 

CDKN2A NM_058197 DAB2IP NM_032552 DUSP18 NM_152511 

CDKN2C NM_001262 DAPK1 NM_004938 DUSP19 NM_080876 
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CERK NM_182661 DAPK2 NM_014326 DUSP21 NM_022076 

CERKL NM_201548 DAPK3 NM_001348 DUSP22 NM_020185 

CHEK1 NM_001274 DAPP1 NM_014395 DUSP26 NM_024025 

CHEK2 NM_007194 DBF4 NM_006716 DUSP27 XM_043739 

CHKA NM_001277 DCAMKL1 NM_004734 DVL1 NM_004421 

CHKB NM_005198 DCAMKL2 NM_152619 DVL2 NM_004422 

CHUK NM_001278 DCAMKL3 XM_047355 DYRK1A NM_001396 

CIB2 NM_006383 DCC NM_005215 DYRK1B NM_004714 

CIB3 NM_054113 DCK NM_000788 DYRK2 NM_003583 

CIB4 XM_059399 DDR1 NM_001954 DYRK3 NM_003582 

CILP NM_003613 DDR2 NM_006182 DYRK4 NM_003845 

CINP NM_032630 DGKA NM_001345 DYSF NM_003494 

CIT NM_007174 DGKB NM_004080 E2F1 NM_005225 

CKB NM_001823 DGKD NM_003648 EEF2K NM_013302 

CKM NM_001824 DGKE NM_003647 EGFR NM_005228 

CKMT1B NM_020990 DGKG NM_001346 EGLN1 NM_022051 

CKMT2 NM_001825 DGKH NM_152910 EGLN3 NM_022073 

CKS1B NM_001826 DGKI NM_004717 EIF2AK1 NM_014413 

CKS2 NM_001827 DGKK XM_066534 EIF2AK2 NM_002759 

CLK1 NM_004071 DGKQ NM_001347 EIF2AK3 NM_004836 

CLK2 NM_003993 DGKZ NM_003646 ELAC2 NM_018127 

CLK3 NM_003992 DGUOK NM_001929 ELAVL4 NM_021952 

CLK4 NM_020666 DHH NM_021044 ENDOG NM_004435 

CMPK NM_016308 DKC1 NM_001363 ENPP1 NM_006208 

CNKSR1 NM_006314 DKFZp686K16132 XM_371497 ENPP6 NM_153343 

CNKSR3 NM_173515 DKFZp761P0423 XM_291277 ENPP7 NM_178543 

CNP NM_033133 DLEC1 NM_005106 EP300 NM_001429 

COL3A1 NM_000090 DLG1 NM_004087 EPB41L4A NM_022140 

COL4A3BP NM_005713 DLG2 NM_001364 EPHA1 NM_005232 

CPNE1 NM_152928 DLG4 NM_001365 EPHA2 NM_004431 

CPNE2 NM_152727 DMBT1 NM_004406 EPHA3 NM_005233 

CPNE3 NM_003909 DMPK NM_004409 EPHA4 NM_004438 

CPT2 NM_000098 DNA2L XM_166103 EPHA5 NM_004439 

CRKL NM_005207 DNAJC6 NM_014787 EPHA6 NM_173655 

CRKRS NM_016507 DOCK2 NM_004946 EPHA6 XM_114973 

CSF1R NM_005211 DOCK4 NM_014705 EPHA7 NM_004440 

EPHA8 NM_020526 FRAP1 NM_004958 HECW1 NM_015052 
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EPHA10 NM_173641 FRK NM_002031 HGF NM_000601 

EPHB1 NM_004441 FRMD1 NM_024919 HGS NM_004712 

EPHB2 NM_004442 FRMPD2 NM_152428 HINT3 NM_138571 

EPHB3 NM_004443 FUK NM_145059 HIPK2 NM_022740 

EPHB4 NM_004444 FUS NM_004960 HIPK3 NM_005734 

EPHB6 NM_004445 FXN NM_000144 HIPK4 NM_144685 

EPM2A NM_005670 FYN NM_002037 HK1 NM_033498 

ERBB2 NM_004448 Gabra1 NM_010250 HK2 NM_000189 

ERBB3 NM_001982 Gabra2 NM_008066 HK3 NM_002115 

ERBB4 NM_005235 Gabra3 NM_008067 HNRPA2B1 NM_002137 

EREG NM_001432 Gabra5 NM_176942 HRAS NM_176795 

ERN1 NM_001433 GAK NM_005255 HRAS NM_005343 

ESR1 NM_000125 GALK1 NM_000154 HRASLS NM_020386 

ETNK1 NM_018638 GALK2 NM_002044 HSP90AA1 NM_005348 

ETNK2 NM_018208 GAPVD1 XM_044196 HSPA5 NM_005347 

EVI1 NM_005241 GBL NM_022372 HSPB8 NM_014365 

EXO1 NM_130398 GCK NM_033507 HUNK NM_014586 

EXOSC10 NM_002685 GCKR NM_001486 IBTK XM_371835 

EXT1 NM_000127 GEFT NM_133483 ICK NM_014920 

EXT2 NM_000401 GGTL3 NM_178025 IGBP1 NM_001551 

EZH1 NM_001991 GK NM_000167 IGF1 NM_000618 

EZH2 NM_004456 GK2 NM_033214 IGF1R NM_000875 

FAM62A NM_015292 GKAP1 NM_025211 IHH XM_050846 

FAS NM_000043 GLI2 NM_030379 IHPK2 NM_016291 

FASN NM_004104 GMFB NM_004124 IHPK3 NM_054111 

FASTK NM_006712 GMFG NM_004877 IKBKAP NM_003640 

FCRL2 NM_030764 GMIP NM_016573 IKBKE NM_014002 

FER NM_005246 GNB2L1 NM_006098 ILK NM_004517 

FER1L3 NM_013451 GNE NM_005476 ILKAP NM_030768 

FES NM_002005 GPR109A NM_177551 ILVBL NM_176826 

FGFR1 NM_000604 Gpr109a NM_030701 INPP4A NM_001566 

FGFR2 NM_000141 Gpr12 NM_008151 INPP4B NM_003866 

FGFR3 NM_000142 GPSM2 NM_013296 INPP5D NM_005541 

FGFR4 NM_002011 GRK1 NM_002929 INPP5E NM_019892 

FGR NM_005248 GRK4 NM_005307 INPP5F NM_014937 

FIGN NM_018086 GRK5 NM_005308 INPPL1 NM_001567 

FLJ21438 XM_029084 GRK6 NM_002082 INSR NM_000208 
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FLJ23356 NM_032237 GRK7 NM_139209 INSRR NM_014215 

FLJ25006 NM_144610 GSC NM_173849 IPMK NM_152230 

FLJ30092 XM_497354 GSG2 NM_031965 IRAK1 NM_001569 

FLJ30698 XM_375602 GSK3A NM_019884 IRAK2 NM_001570 

FLJ32658 NM_144688 GSK3B NM_002093 IRAK3 NM_007199 

FLJ40125 NM_178494 GTF2H1 NM_005316 IRAK4 NM_016123 

FLJ40852 NM_173677 GUCY2C NM_004963 IRS1 NM_005544 

FLT1 NM_002019 GUCY2F NM_001522 ITCH NM_031483 

FLT3 NM_004119 GUK1 NM_000858 ITGAV NM_002210 

FLT3LG NM_001459 GZMA NM_006144 ITGB3 NM_000212 

FLT4 NM_002020 GZMB NM_004131 ITK NM_005546 

FN3K NM_022158 GZMH NM_033423 ITPK1 NM_014216 

FN3KRP NM_024619 GZMK NM_002104 ITPKA NM_002220 

FNDC3B NM_022763 GZMM NM_005317 ITPKB NM_002221 

FOXO1A NM_002015 HABP2 NM_004132 ITPKC NM_025194 

FOXO3A NM_001455 HCK NM_002110 ITSN1 NM_003024 

ITSN2 NM_019595 LOC440091 XM_495916 MAP4K5 NM_006575 

JAK1 NM_002227 LOC440345 XM_496125 MAPK1 NM_138957 

JAK2 NM_004972 LOC440354 XM_496137 MAPK3 NM_002746 

JAK3 NM_000215 LOC440388 XM_496170 MAPK4 NM_002747 

JUN NM_002228 LOC440820 XM_496519 MAPK6 NM_002748 

KALRN NM_007064 LOC441655 XM_497366 MAPK7 NM_139034 

KDR NM_002253 LOC441759 XM_497498 MAPK7 NM_139032 

KHK NM_000221 LOC441812 XM_497579 MAPK8 NM_139049 

KIAA0226 XM_032901 LOC441868 XM_497647 MAPK8IP1 NM_005456 

KIAA0999 NM_025164 LOC442075 XM_497910 MAPK8IP2 NM_012324 

KIAA1303 NM_020761 LOC442558 XM_499301 MAPK8IP3 NM_015133 

KIAA1446 NM_020836 LOC644379 XM_372273 MAPK9 NM_139069 

KIAA1639 XM_290923 LOC644644 XM_372274 MAPK9 NM_002752 

KIAA1706 NM_030636 LOC647208 XM_496155 MAPK10 NM_002753 

KIAA1804 NM_032435 LOC91461 XM_038576 MAPK10 NM_138982 

KIAA2002 XM_370878 LRPPRC NM_133259 MAPK11 NM_002751 

KIDINS220 XM_291015 LRRK1 NM_024652 MAPK12 NM_002969 

KIT NM_000222 LRRK2 XM_058513 MAPK13 NM_002754 

KLHL23 NM_144711 LTK NM_002344 MAPK14 NM_001315 

KRAS NM_033360 LYK5 NM_153335 MAPK14 NM_139012 

KRAS NM_004985 LYN NM_002350 MAPK15 NM_139021 
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KSR1 XM_290793 MADD NM_003682 MAPKAP1 NM_024117 

KSR2 NM_173598 MAGI3 NM_020965 MAPKAPK2 NM_032960 

LATS1 NM_004690 MAK NM_005906 MAPKAPK3 NM_004635 

LATS2 NM_014572 MAMDC1 NM_182830 MAPKAPK5 NM_003668 

LCK NM_005356 MAMDC2 NM_153267 MAPKBP1 XM_031706 

LIG4 NM_002312 MAP2K1 NM_002755 MARK1 NM_018650 

LIMK1 NM_002314 MAP2K1IP1 NM_021970 MARK2 NM_004954 

LIMK2 NM_016733 MAP2K2 NM_030662 MARK3 NM_002376 

LMTK3 XM_055866 MAP2K3 NM_002756 MASA NM_021204 

LOC283155 XM_208545 MAP2K4 NM_003010 MAST1 NM_014975 

LOC283871 XM_208887 MAP2K5 NM_145162 MAST2 NM_015112 

LOC375133 NM_199345 MAP2K6 NM_002758 MAST3 XM_038150 

LOC375449 NM_198828 MAP2K7 NM_005043 MAST4 XM_291141 

LOC387870 XM_291991 MAP3K1 XM_042066 MASTL NM_032844 

LOC387927 XM_370726 MAP3K2 NM_006609 MATK NM_002378 

LOC388259 XM_370975 MAP3K3 NM_002401 MAX NM_002382 

LOC389069 XM_371588 MAP3K4 NM_005922 MBIP NM_016586 

LOC389772 XM_372128 MAP3K5 NM_005923 MCTP1 NM_024717 

LOC389873 XM_372233 MAP3K6 NM_004672 MCTP2 NM_018349 

LOC390641 XM_497469 MAP3K7 NM_145332 MELK NM_014791 

LOC390705 XM_372626 MAP3K7IP1 NM_006116 MEN1 NM_000244 

LOC390877 XM_372705 MAP3K8 NM_005204 MERTK NM_006343 

LOC390975 XM_372749 MAP3K9 XM_027237 MET NM_000245 

LOC391025 XM_372775 MAP3K10 NM_002446 MFN2 NM_014874 

LOC391428 XM_372953 MAP3K11 NM_002419 MGC16169 NM_033115 

LOC391533 XM_497921 MAP3K12 NM_006301 MGC42105 NM_153361 

LOC392226 XM_498286 MAP3K13 NM_004721 MINK1 NM_015716 

LOC392265 XM_498294 MAP3K14 NM_003954 MINPP1 NM_004897 

LOC400301 XM_375150 MAP3K15 XM_372199 MKNK1 NM_003684 

LOC400708 XM_375632 MAP4K1 NM_007181 MKNK2 NM_017572 

LOC400927 XM_376010 MAP4K2 NM_004579 MLCK NM_182493 

LOC402679 XM_377958 MAP4K3 NM_003618 MLH1 NM_000249 

LOC402679 XM_380022 MAP4K4 NM_145687 MLH3 NM_014381 

MLKL NM_152649 NLK NM_016231 PDK1 NM_002610 

MLLT7 NM_005938 NME1 NM_000269 PDK2 NM_002611 

MOBK1B NM_018221 NME2 NM_002512 PDK4 NM_002612 

MOBKL1A NM_173468 NME3 NM_002513 PDPK1 NM_002613 
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MOBKL2A NM_130807 NME4 NM_005009 PDXK NM_003681 

MOBKL2B NM_024761 NME5 NM_003551 PFKFB1 NM_002625 

MORC1 NM_014429 NME7 NM_013330 PFKFB2 NM_006212 

MORC3 NM_015358 NPR2 NM_000907 PFKFB4 NM_004567 

MOS NM_005372 NR1H4 NM_005123 PFKL NM_002626 

MPP1 NM_002436 NR1I2 NM_003889 PFKM NM_000289 

MPP2 NM_005374 NR1I3 NM_005122 PFKP NM_002627 

MPP3 NM_001932 NRAS NM_002524 PFTK1 NM_012395 

MRE11A NM_005591 NRBP1 NM_013392 PGK1 NM_000291 

MSH2 NM_000251 NRBP2 NM_178564 PGK2 NM_138733 

MSH5 NM_025259 NRGN NM_006176 PHACTR1 XM_166420 

MST1R NM_002447 NRK NM_198465 PHACTR2 XM_376540 

MTM1 NM_000252 NTRK1 NM_002529 PHACTR3 NM_080672 

MTMR1 NM_003828 NTRK2 NM_006180 PHACTR4 NM_023923 

MTMR2 NM_016156 NTRK3 NM_002530 PHKA1 NM_002637 

MTMR3 NM_021090 NUAK1 NM_014840 PHKA2 NM_000292 

MTMR4 NM_004687 NUAK2 NM_030952 PHKB NM_000293 

MTMR6 NM_004685 NUCKS1 NM_022731 PHKG1 NM_006213 

MTMR8 NM_017677 NUDT8 NM_181843 PHKG2 NM_000294 

MTMR9 NM_015458 OBSCN NM_052843 PHLPP NM_194449 

MTMR10 NM_017762 OTOF NM_194323 PHLPPL XM_041191 

MTMR12 NM_019061 OXSR1 NM_005109 PHOSPHO1 NM_178500 

MUSK NM_005592 P15RS NM_018170 PI4K2B NM_018323 

MVK NM_000431 PACSIN1 NM_020804 PI4KII NM_018425 

MYB NM_005375 PACSIN2 NM_007229 PICK1 NM_012407 

MYC NM_002467 PACSIN3 NM_016223 PIK3AP1 NM_152309 

MYLK NM_053028 PAK1 NM_002576 PIK3C2A NM_002645 

MYLK2 NM_033118 PAK2 NM_002577 PIK3C2B NM_002646 

MYO3A NM_017433 PAK3 NM_002578 PIK3C2G NM_004570 

MYO3B NM_138995 PAK4 NM_005884 PIK3C3 NM_002647 

MYO9B NM_004145 PAK6 NM_020168 PIK3CA NM_006218 

MYST2 NM_007067 PAK7 NM_020341 PIK3CB NM_006219 

NADK NM_023018 PANK1 NM_138316 PIK3CD NM_005026 

NAGK NM_017567 PANK2 NM_024960 PIK3CG NM_002649 

NBN NM_002485 PANK3 NM_024594 PIK3R1 NM_181504 

NEDD4L NM_015277 PANK4 NM_018216 PIK3R1 XM_043865 

NEK1 NM_012224 PAP2D XM_375754 PIK3R2 NM_005027 
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NEK2 NM_002497 PAPSS1 NM_005443 PIK3R3 NM_003629 

NEK3 NM_152720 PASK NM_015148 PIK3R4 NM_014602 

NEK4 NM_003157 PBK NM_018492 PIK3R5 NM_014308 

NEK5 XM_292160 PCK1 NM_002591 PIM1 NM_002648 

NEK6 NM_014397 PCK2 NM_004563 PIM2 NM_006875 

NEK7 NM_133494 PCTK1 NM_033018 PIM3 NM_001001852 

NEK8 NM_178170 PCTK2 NM_002595 PIN1 NM_006221 

NEK9 NM_033116 PCTK3 NM_002596 PINK1 NM_032409 

NEK10 NM_152534 PDGFB NM_002608 PIP5K1A NM_003557 

NEK11 NM_024800 PDGFRA NM_006206 PIP5K1B NM_003558 

NF1 NM_000267 PDGFRB NM_002609 PIP5K1C NM_012398 

NF2 NM_000268 PDGFRL NM_006207 PIP5K2A NM_005028 

NKX3-1 NM_006167 PDIK1L NM_152835 PIP5K2B NM_003559 

PIP5K2C NM_024779 PPM2C NM_018444 PPP3R2 NM_147180 

PKIA NM_006823 PPME1 NM_016147 PPP4C NM_002720 

PKIB NM_032471 PPP1CA NM_002708 PPP4R1 NM_005134 

PKIG NM_181805 PPP1CB NM_002709 PPP4R1L XM_086650 

PKM2 NM_182471 PPP1CC NM_002710 PPP4R2 NM_174907 

PKMYT1 NM_004203 PPP1R10 NM_002714 PPP5C NM_006247 

PKN1 NM_002741 PPP1R11 NM_021959 PPP6C NM_002721 

PKN2 NM_006256 PPP1R12A NM_002480 PPTC7 NM_139283 

PLA2G4B NM_005090 PPP1R12B NM_002481 PRKAA1 NM_006251 

PLAUR NM_002659 PPP1R12C NM_017607 PRKAA2 NM_006252 

PLCB1 NM_182734 PPP1R13B NM_015316 PRKAB2 NM_005399 

PLCB2 NM_004573 PPP1R14A NM_033256 PRKACA NM_002730 

PLCB3 NM_000932 PPP1R14B XM_370630 PRKACB NM_002731 

PLCB4 NM_000933 PPP1R14C NM_030949 PRKAG1 NM_002733 

PLCD1 NM_006225 PPP1R14D NM_017726 PRKAG2 NM_016203 

PLCD4 NM_032726 PPP1R15A NM_014330 PRKAG3 NM_017431 

PLCG1 NM_002660 PPP1R15B NM_032833 PRKAR1A NM_002734 

PLCG2 NM_002661 PPP1R16A NM_032902 PRKAR1B NM_002735 

PLCL1 NM_006226 PPP1R16B NM_015568 PRKAR2A NM_004157 

PLCL2 NM_015184 PPP1R1A NM_006741 PRKAR2B NM_002736 

PLCZ1 NM_033123 PPP1R1B NM_032192 PRKCA NM_002737 

PLD1 NM_002662 PPP1R1C XM_087137 PRKCB1 NM_002738 

PLK1 NM_005030 PPP1R2 NM_006241 PRKCBP1 NM_183048 

PLK2 NM_006622 PPP1R2P9 NM_025210 PRKCD NM_006254 
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PLK3 NM_004073 PPP1R3A NM_002711 PRKCDBP NM_145040 

PLK4 NM_014264 PPP1R3B NM_024607 PRKCE NM_005400 

PMS1 NM_000534 PPP1R3C NM_005398 PRKCG NM_002739 

PMVK NM_006556 PPP1R3D NM_006242 PRKCH NM_006255 

PNCK NM_198452 PPP1R3E XM_033391 PRKCI NM_002740 

POT1 NM_015450 PPP1R3F XM_372210 PRKCQ NM_006257 

PPAP2A NM_003711 PPP1R3G XM_371796 PRKCSH NM_001001329 

PPAP2C NM_003712 PPP1R7 NM_002712 PRKCZ NM_002744 

PPAPDC1A XM_113641 PPP1R8 NM_002713 PRKD1 NM_002742 

PPAPDC2 NM_203453 PPP1R9A XM_371933 PRKD2 NM_016457 

PPARA NM_005036 PPP1R9B NM_032595 PRKD3 NM_005813 

PPARD NM_006238 PPP2CA NM_002715 PRKDC NM_006904 

Pparg NM_011146 PPP2CB NM_004156 PRKG1 NM_006258 

PPARG NM_138712 PPP2R1A NM_014225 PRKG2 NM_006259 

PPEF1 NM_006240 PPP2R1B NM_002716 PRKRA NM_003690 

PPEF2 NM_006239 PPP2R2A NM_002717 PRKX NM_005044 

PPFIA1 NM_003626 PPP2R2B NM_004576 PRKY NM_002760 

PPFIA2 NM_003625 PPP2R2C NM_020416 PRPF4B NM_003913 

PPFIA3 NM_003660 PPP2R2C NM_181876 PRPS1 NM_002764 

PPFIA4 XM_046751 PPP2R3A NM_002718 PRPS2 NM_002765 

PPFIBP1 NM_003622 PPP2R3B NM_013239 PRSS7 NM_002772 

PPM1A NM_021003 PPP2R5A NM_006243 PSKH1 NM_006742 

PPM1B NM_002706 PPP2R5B NM_006244 PSKH2 NM_033126 

PPM1D NM_003620 PPP2R5C NM_002719 PSMD14 NM_005805 

PPM1E NM_014906 PPP2R5D NM_006245 PSPH NM_004577 

PPM1F NM_014634 PPP2R5E NM_006246 PSTPIP1 NM_003978 

PPM1H XM_350880 PPP3CA NM_000944 PSTPIP2 NM_024430 

PPM1K NM_152542 PPP3CB NM_021132 PTBP1 NM_002819 

PPM1L NM_139245 PPP3CC NM_005605 PTCH NM_000264 

PPM1M NM_144641 PPP3R1 NM_000945 PTCH2 NM_003738 

PTEN NM_000314 R3HDM2 NM_014925 RPS6KC1 NM_012424 

PTHR1 NM_000316 RAD50 NM_005732 RPS6KL1 NM_031464 

PTK2 NM_005607 RAF1 NM_002880 RSC1A1 NM_006511 

PTK2B NM_004103 RAGE NM_014226 RXRA NM_002957 

PTK6 NM_005975 RASA1 NM_022650 RXRB NM_021976 

PTK7 NM_002821 RASA2 NM_006506 RXRG NM_006917 

PTK9 NM_002822 RASA3 NM_007368 RYK NM_002958 
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PTK9L NM_007284 RASAL2 NM_004841 SAG NM_000541 

PTN NM_002825 RASSF5 NM_031437 SBF1 NM_002972 

PTP4A1 NM_003463 RB1 NM_000321 SBF2 NM_030962 

PTP4A2 NM_003479 RBKS NM_022128 SBK1 XM_370948 

PTP4A3 NM_007079 RBL1 NM_002895 SCAP1 NM_003726 

PTPDC1 NM_152422 RBL2 NM_005611 SCYL1 NM_020680 

PTPLA NM_014241 RCSD1 NM_052862 SCYL2 NM_017988 

PTPLAD2 XM_376819 REL NM_002908 SCYL3 NM_020423 

PTPMT1 XM_374879 RET NM_000323 SDHD NM_003002 

PTPN1 NM_002827 RET NM_020629 SETD2 NM_012271 

PTPN2 NM_002828 RFK NM_018339 SF1 NM_004630 

PTPN3 NM_002829 RFP NM_006510 SFN NM_006142 

PTPN4 NM_002830 RGS3 NM_144489 SGK NM_005627 

PTPN5 NM_032781 RHEB NM_005614 SGK2 NM_170693 

PTPN6 NM_002831 RIC8B NM_018157 SGK3 NM_013257 

PTPN7 NM_002832 RIMS1 NM_014989 SGK3 NM_170709 

PTPN9 NM_002833 RIMS4 NM_182970 SH2D1A NM_002351 

PTPN12 NM_002835 RIOK1 NM_031480 SH2D1B NM_053282 

PTPN13 NM_006264 RIOK2 NM_018343 SH3KBP1 NM_031892 

PTPN14 NM_005401 RIPK1 NM_003804 SHC1 NM_003029 

PTPN18 NM_014369 RIPK2 NM_003821 SHH NM_000193 

PTPN21 NM_007039 RIPK3 NM_006871 SIRPA NM_080792 

PTPN22 NM_012411 RIPK4 NM_020639 SIRPB2 XM_209363 

PTPN23 NM_015466 RIPK5 NM_015375 SIRPD NM_178460 

PTPRA NM_002836 RNASEL NM_021133 SIRT2 NM_012237 

PTPRB NM_002837 RNF180 NM_178532 SKI NM_003036 

PTPRC NM_002838 RNGTT NM_003800 SKIP XM_051221 

PTPRCAP NM_005608 ROCK1 NM_005406 SKIP NM_016532 

PTPRD NM_002839 ROCK2 NM_004850 Slc1a3 NM_148938 

PTPRE NM_006504 ROR1 NM_005012 SLC22A18 NM_002555 

PTPRF NM_002840 ROR2 NM_004560 Slc26a9 NM_177243 

PTPRG NM_002841 ROS1 NM_002944 SLK NM_014720 

PTPRH NM_002842 RP11-145H9.1 XM_373109 SMAD2 NM_005901 

PTPRJ NM_002843 RP6-213H19.1 NM_016542 SMAD4 NM_005359 

PTPRK NM_002844 RPA1 NM_002945 SMARCB1 NM_003073 

PTPRM NM_002845 RPA2 NM_002946 SMG1 NM_014006 

PTPRN NM_002846 RPGRIP1 NM_020366 SMG6 NM_017575 
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PTPRN2 NM_002847 RPH3A NM_014954 SNAI3 XM_370995 

PTPRO NM_002848 RPS6 NM_001010 SNF1LK NM_173354 

PTPRR NM_002849 RPS6KA1 NM_002953 SNF1LK2 NM_015191 

PTPRS NM_002850 RPS6KA2 NM_021135 SNRK NM_017719 

PTPRT NM_007050 RPS6KA3 NM_004586 SOCS5 NM_014011 

PTPRU NM_005704 RPS6KA4 NM_003942 SOD1 NM_000454 

PTPRV XM_086287 RPS6KA5 NM_004755 SOX2 NM_003106 

PTPRZ1 NM_002851 RPS6KA6 NM_014496 SPEG NM_005876 

PXK NM_017771 RPS6KB1 NM_003161 SRMS NM_080823 

R3HDM1 NM_015361 RPS6KB2 NM_003952 SRPK2 NM_003138 

SSH1 NM_018984 TESK1 NM_006285 TYROBP NM_003332 

SSH2 NM_033389 TESK2 NM_007170 UCK1 NM_031432 

SSH3 NM_017857 TEX14 NM_031272 UCK2 NM_012474 

STAC3 NM_145064 TGFA NM_003236 UCKL1 NM_017859 

STK3 NM_006281 TGFBR1 NM_004612 UGP2 NM_006759 

STK4 NM_006282 TGFBR2 NM_003242 UHMK1 NM_144624 

STK10 NM_005990 THBS1 NM_003246 ULK1 NM_003565 

STK11 NM_000455 THOC4 NM_005782 ULK2 NM_014683 

STK11IP NM_052902 TIAM1 NM_003253 ULK3 NM_015518 

STK16 NM_003691 TIE1 NM_005424 ULK4 NM_017886 

STK17A NM_004760 TINF2 NM_012461 UNC13B NM_006377 

STK17B NM_004226 TJP2 NM_004817 UNK XM_062966 

STK19 NM_004197 TK1 NM_003258 UNK XM_171165 

STK23 NM_014370 TK2 NM_004614 UNK XM_291584 

STK24 NM_003576 TLK1 NM_012290 UNK XM_291786 

STK25 NM_006374 TLK2 NM_006852 UNK XM_370946 

STK31 NM_032944 TNFRSF11B NM_002546 UNK XM_371492 

STK32A NM_145001 TNIK XM_039796 UNK XM_372542 

STK32B NM_018401 TNK1 NM_003985 UNK XM_372625 

STK32C NM_173575 TNK2 NM_005781 UNK XM_372987 

STK33 NM_030906 TNKS NM_003747 UNK XM_373224 

STK35 NM_080836 TNNI3K NM_015978 UNK XM_373298 

STK36 NM_015690 TNS1 NM_022648 UNK XM_373815 

STK38 NM_007271 TNS3 NM_022748 UNK XM_376585 

STK38L NM_015000 TP53RK NM_033550 UNK XM_376950 

STK39 NM_013233 TPD52L3 NM_033516 UNK XM_377635 

STK40 NM_032017 TPK1 NM_022445 UNK XM_378103 
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STYK1 NM_018423 TPTE2 NM_130785 UNK XM_378155 

STYX NM_145251 TPTEps1 XM_495953 UNK XM_378664 

STYXL1 NM_016086 TRAF3IP3 NM_025228 UNK XM_495804 

SUV39H2 NM_024670 TRIB1 NM_025195 UNK XM_496486 

SUZ12 NM_015355 TRIB2 NM_021643 UNK XM_496630 

SYK NM_003177 TRIB3 NM_021158 UNK XM_496720 

SYT2 NM_177402 TRIO NM_007118 UNK XM_496793 

SYT4 NM_020783 TRPM6 NM_017662 UNK XM_496862 

SYT5 NM_003180 TRPM7 NM_017672 UNK XM_497237 

SYT11 NM_152280 TRPV5 NM_019841 UNK XM_497414 

SYT14 NM_153262 TRPV6 NM_018646 UNK XM_497433 

SYT16 NM_031914 TSC1 NM_000368 UNK XM_497521 

SYT17 NM_016524 TSC2 NM_000548 UNK XM_497706 

SYTL5 NM_138780 TSKS NM_021733 UNK XM_497790 

TAF1 NM_004606 TSSK1 NM_032028 UNK XM_497791 

TAF1L NM_153809 TSSK2 NM_053006 UNK XM_497812 

TAOK1 NM_020791 TSSK3 NM_052841 UNK XM_497846 

TAOK2 NM_016151 TSSK4 NM_174944 UNK XM_497909 

TAOK2 NM_004783 TSSK6 NM_032037 UNK XM_498204 

TAOK3 NM_016281 TTBK1 XM_166453 UNK XM_498243 

TBK1 NM_013254 TTBK2 NM_173500 UNK XM_498259 

TEC NM_003215 TTK NM_003318 UNK XM_498262 

TEK NM_000459 TTN NM_003319 UNK XM_499394 

TENC1 NM_170754 TTRAP NM_016614 UNK XM_499479 

TEP1 NM_007110 TXK NM_003328 VAV1 NM_005428 

TERF1 NM_017489 TYK2 NM_003331 VHL NM_000551 

TERF2IP NM_018975 TYRO3 NM_006293 VRK1 NM_003384 

VRK2 NM_006296 WNK4 NM_032387 XRCC6 NM_001469 

VRK3 NM_016440 WNT1 NM_005430 XYLB NM_005108 

WEE1 NM_003390 WT1 NM_024426 YES1 NM_005433 

WIF1 NM_007191 WTAP NM_004906 YSK4 NM_025052 

WNK1 NM_018979 WWP2 NM_007014 ZAK NM_016653 

WNK2 NM_006648 XRCC4 NM_022406 ZAP70 NM_001079 

WNK3 NM_020922 XRCC5 NM_021141 ZC3HC1 NM_016478 
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Annex 5.2.2. Silencing of specific trafficking and kinase genes modifies aSyn oligomerization. A. 

Quantification of relative fluorescence intensity of aSyn-BiFC stable H4 cells submitted to silencing 
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of RAB8B, RAB11A, RAB13, RAB39B, CAMK1 DYRK2, CC2D1A, CLK4 and SYTL5. Three different 

shRNAs were used per gene. B. mRNA levels of cells submitted to silencing of the hits normalized 

to control cells. C. Immunoblotting analysis of S129 phosphorylated aSyn, total aSyn and beta-

actin. Quantification of aSyn protein levels from aSyn-BiFC cells submitted to silencing of the 

selected hits D. Cytotoxicity (measured by LDH release in media from cells with aSyn oligomers 

versus no aSyn) normalized to control cells. All the quantifications presented are normalized to 

the control cells infected with a scrambled shRNA. Bars represent mean ± 95% CI (*: 0.05<p>0.01; 

**: 0.01<p>0.001; ***: p<0.001) and are normalized to the control of at least three independent 

experiments. Single comparisons between the control and experimental groups were made 

through Wilcoxon test. kd, knockdown. 
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Annex 5.2.3. Silencing of specific phosphotransferase genes does not affect aSyn 

oligomerization but alters the distribution of oligomers. Upon silencing of ALS2CR7 or PSPH, 

aSyn aggregates are seen within cells. Silencing of STK32B and PPP2R5E leads to a reduced 

fluorescence in the nucleus. In addition, a ring of fluorescent signal surrounding the nucleus is 

observed. Scale bars: 20 μm. 
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Annex 5.2.4. Silencing of selected hits alters aSyn aggregation and cellular homeostasis.  A. 

Quantification of the number of aSyn inclusions per cell. 3 different shRNAs per gene were used. 

The number of inclusions was divided in the following categories: no inclusions (gray), less than 10 

inclusions (light green) and more than 10 inclusions (dark green). B. Cytotoxicity (measured by 

LDH release in media) from cells with aSyn inclusions versus no aSyn and normalized to control 

cells. All quantifications are normalized to the control (scrambled infected cells). Bars represent 

mean ± 95% CI (*: 0.05<p>0.01; **: 0.01<p>0.001; ***: p<0.001) and are normalized to the 

control of at least three independent experiments. Single comparisons between the control and 

experimental groups were made through Wilcoxon test. C. Immunohistochemistry of cells 

expressing aSyn and silenced for CLK4 and SYTL5. Silencing of SYTL5 in aSyn-expressing cells 

promote cell elongation. Upon CLK4 depletion, aSyn inclusions adopt an amorphous shape. Scale 

bars: 20 μm. Kd, knockdown. 
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Annex 5.2.5. Silencing of RAB27A alters aggregation of aSyn. A. Quantification of relative 

fluorescence intensity of aSyn-BiFC stable H4 cells submitted to silencing of RA27A. Three 

different shRNAs were tested. B. mRNA levels of cells submitted to silencing of the RAB27A 

normalized to control cells (cells transduced with scrambled shRNA). C. Immunoblotting analysis 

of S129 phosphorylated aSyn, total aSyn and beta-actin. Quantification of aSyn protein levels from 

aSyn-BiFC cells submitted to silencing of RAB27A D. Cytotoxicity (measured by LDH release in 

media from cells with aSyn oligomers versus no aSyn) normalized to control cells. E. VENUS 

positive cells were monitored by flow cytometry. A representative result is shown as side scatter 

(SSC) versus VENUS fluorescence, with the corresponding histogram. F.  In vivo imaging of aSyn-

VENUS1 and VENUS2-aSyn mixed cells subjected to silencing of RAB27A. Scale bar: 20 µm. G. 
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Immunoblotting analysis of total aSyn and beta-actin. H. Percentage of cells with no inclusions 

(gray), less than 10 inclusions (light green) or more than 10 inclusions (dark green). I. Cytotoxicity 

(measured by LDH release in the media) from stable cells subjected to RAB27A silencing and 

normalized to control. Bars represent mean ± 95% CI (*: 0.05<p>0.01; **: 0.01<p>0.001; ***: 

p<0.001) and are normalized to the control of at least three independent experiments. Single 

comparisons between the control and experimental groups were made Wilcoxon test. Kd, 

knockdown. 
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Annex 5.2.6. Summary of the effect of traffic players on oligomerization and aggregation of aSyn.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
1 KD, knockdown 
2 OE, overexpression 

 

aSyn-BiFC system 

Fluorescence 

 intensity 

aSyn  

protein 

levels 

Cell-

to-cell 

traffic 

Secretion Cytotoxicity 
Transferrin  

intensity 

KD117 OE28 KD OE KD OE KD OE KD OE 

RAB8B ↑ ↓ ↑ ↔ ↑ ↔ ↑ ↓ − ↑ 

RAB11A ↑ ↓ ↔ ↔ ↔ ↔ ↔ ↓ − ↓ 

RAB13 ↑ ↓ ↓ ↔ ↑ ↔ ↑ ↓ − ↓ 

RAB39B ↑ − ↔ − − − ↔ − −   

 CAMK1 ↑ − ↑ − − − ↔ − −   

DYRK2 ↑ − ↔ − − − ↔ − −   

CC2D1A ↓ − ↓ − − − ↔ − −   

CLK4 ↓ − ↓ − − − ↑ − −   

SYTL5 ↓ ↔ ↓ ↔ ↑ ↑ ↔ ↓ − ↔ 

 

aSyn aggregation 

number of inclusions per cell  
Secretion Cytotoxicity 

Transferrin 

intensity no inclusions <10 >10 

KD OE KD OE KD OE KD OE KD OE KD OE 

RAB8B ↓ ↑ ↓ ↓ ↑ ↔ − ↔ ↑ ↓ − ↓ 

RAB11A ↓ ↑ ↑ ↓ ↔ ↔ − ↑ ↔ ↓ − ↓ 

RAB13 ↓ ↑ ↔ ↓ ↑ ↔ − ↑ ↔ ↓ − ↓ 

RAB39B ↓ − ↑ − ↔ − − − ↑ − − − 

 CAMK1 ↓ − ↑ − ↔ − − − ↔ − − − 

DYRK2 ↑ − ↓ − ↔ − − − ↔ − − − 

CC2D1A ↓ − ↔ − ↑ − − − ↔ − − − 

CLK4 ↔ − ↓ − ↑ − − − ↔ − − − 

SYTL5 ↓ ↑ ↓ ↓ ↑ ↔ − ↔ ↔ ↓ − ↓ 
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Annex 5.2.7. Overexpression of Rab8b at different steps of aSyn aggregation. H4 cells with no 

aSyn or stable for aSyn-BiFC (green) were transfected with Rab8b-WT, –Q67L and –T22N 

constructs. To promote the formation of aSyn inclusions, cells were triple-transfected with aSynT, 

Synphilin-1 and the same constructs referred above. 48 h post-transfection, media with no serum 

was replaced in cells for 1 h. Cells were incubated with Alexa-647 human transferrin (magenta) for 
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30 min, prior to fixation. DAPI was used as a nuclear counterstain. Only for aSyn aggregation 

model, cells were subjected to immunocytochemistry for aSyn (green) followed by confocal 

microscopy. Scale bars: 20 μm. Control cells are represented in Annex 5.2.10B.  
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Annex 5.2.8. Overexpression of Rab11a at different steps of aSyn aggregation. H4 cells with no 

aSyn or stable for aSyn-BiFC (green) were transfected with constructs expressing Rab11a-WT, 

Q70L and -S25N. To promote the formation of aSyn inclusions, cells were triple-transfected with 

aSynT, Synphilin-1 and the same constructs referred above. 48 h post-transfection, media with no 

serum was replaced in cells for 1 h. Cells were incubated with Alexa-647 human transferrin 
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(magenta) for 30 min, prior to fixation. DAPI was used as a nuclear counterstain. Only for aSyn 

aggregation model, cells were subjected to immunocytochemistry for aSyn (green) followed by 

confocal microscopy. Scale bars: 20 μm. Control cells are represented in Annex 5.2.10B. 
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Annex 5.2.9. Overexpression of Rab13 at different steps of aSyn aggregation. H4 cells with no 

aSyn or stable for aSyn-BiFC (green) were transfected with constructs expressing Rab13-WT,  –67L 

and –T22N. To promote the formation of aSyn inclusions, cells were triple-transfected with aSynT, 

Synphilin-1 and the same constructs referred above. 48 h post-transfection, media with no serum 

was replaced in cells for 1 h. Cells were incubated with Alexa-647 human transferrin (magenta) for 
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30 min, prior to fixation. DAPI was used as a nuclear counterstain. Only for aSyn aggregation 

model, cells were subjected to immunocytochemistry for aSyn (green) followed by confocal 

microscopy. Scale bars: 20 μm. Control cells are represented in Annex 5.2.10B. 
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Annex 5.2.10. Overexpression of SLP5 at different steps of aSyn aggregation. H4 cells with no 

aSyn or stable for aSyn-BiFC (green) were transfected with (A) SLP5 or (B) empty vector. To 

promote the formation of aSyn inclusions, cells were triple-transfected with aSynT, Synphilin-1 

and the same constructs referred above. 48 h post-transfection, media with no serum was 

replaced in cells for 1 h. Cells were incubated with Alexa-647 human transferrin (magenta) for 30 

min, prior to fixation. DAPI was used as a nuclear counterstain. Only for aSyn aggregation model, 

cells were subjected to immunocytochemistry for aSyn (green) followed by confocal microscopy. 

Scale bars: 20 μm.  
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Annex 5.2.11. Neuronal roles and effects of knockdown of the genes identified on aSyn 

oligomerization and aggregation models 
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R
A
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3

9
B

 

 Trafficking from the endoplasmic reticulum to the Golgi 
 Mutations associated with intellectual disabilities, epilepsy and cognitive 

impairment (Mata et al 2015) 
 Deletion identified in three cases with early-onset Parkinsonism and 

intellectual disability; deregulates aSyn homeostasis with aSyn reactive-LB 
and neurites 

 T168K missense mutation was found in a fourth patient with similar 
symptoms (Wilson et al 2014) 

 Co-localization with Huntingtin, translocating it to ER (Yao et al 2015) 

↑ ↔ ↔ ↑ ↑ 

C
A

M
K

1
  Calmodulin-dependent kinase that plays a role in axonal growth (Ageta-

Ishihara et al 2009) 
 Camk2 forms a complex with aSyn and regulates oligomerization (Martinez 

et al 2003) 

↑ ↑ ↔ ↑ ↔ 

D
Y

R
K

2
 

 Dual-specificity tyrosine and serine/threonine phosphorylation-regulated 
kinase, involved in cytoskeletal organization and decreases both 
axon/dendrite growth and branching (Slepak et al 2012) 

↑ ↔ ↔ ↓ ↔ 

C
C

2
D

1
A

 

 Coiled-coil and C2 domain containing 1A (Cc2d1a) is a transcriptional 
repressor inhibited by calcium, involved in neuronal differentiation and 
regulation of endosomal sorting complexes required for transport 
(Martinelli et al 2012) 

 Cc2d1a regulates NF-B activity (Manzini et al 2014) 
 C-terminal deletion in CC2D1A is linked to mental retardation (Basel-

Vanagaite et al 2006) 

↓ ↓ ↔ ↑ ↔ 

C
LK

4
  Cdc2-like kinase 4 is a protein involved in phosphorylation of serine/arginine 

rich proteins within spliceosome 
 CLKs were also recently involved in the pathophysiology of Alzheimer's 

disease (Jain et al 2014) 

↓ ↓ ↑ ↑ ↔ 
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