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Serum albumin is a multi-functional protein that is able to bind and transport numerous

endogenous and exogenous compounds. The development of albumin drug carriers is

gaining increasing importance in the targeted delivery of cancer therapy, particularly as

a result of the market approval of the paclitaxel-loaded albumin nanoparticle, Abraxane®.

Considering this, there is renewed interest in isolating and characterizing albumin-binding

proteins or receptors on the plasma membrane that are responsible for albumin uptake.

Initially, the cellular uptake and intracellular localization of albumin was unknown due to

the large confinement of the protein within the vascular and interstitial compartment of

the body. Studies have since assessed the intracellular localization of albumin in order

to understand the mechanisms and pathways responsible for its uptake, distribution and

catabolism in multiple tissues, and this is reviewed herein.
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SERUM ALBUMIN

STRUCTURE

Serum albumin is the most abundant protein in the blood plasma

of all vertebrates with the concentration in human serum being

35–50 mg/mL (Peters, 1996). Human serum albumin (HSA) has

a molecular mass of 66,348 Da and is composed of three homolo-

gous domains, numbered I, II, and III (Figure 1) (He and Carter,

1992; Peters, 1996; Sugio et al., 1999). Each domain is grouped

into subdomains A and B that possess common structural motifs.

The two principal regions responsible for ligand-binding to HSA

are known as Sudlow’s Site I and II, located in subdomain IIA

and IIIA (Figure 1), respectively (Sudlow et al., 1976; Peters,

1996). Albumin is coded by a single gene, which is expressed

in a co-dominant manner with both alleles being transcribed

and translated (Hawkins and Dugaiczyk, 1982; Peters, 1996). The

human albumin gene is located on the long arm of chromosome

4 at position q13.3.

FUNCTION

Albumin is primarily synthesized by the liver with the human liver

producing ∼13.9 g of HSA per day (Peters, 1996). HSA has an

approximate half-life of 19 days and is degraded more effectively if

it is denatured or structurally altered (Peters, 1996). Albumin has

a variety of important functions and is responsible for 80% of the

colloidal osmotic pressure of blood (Peters, 1996). Significantly,

albumin is able to bind various endogenous molecules, includ-

ing long-chain fatty acids, steroids, L-tryptophan, etc. (Kragh-

Hansen, 1981; Peters, 1996; Evans, 2002). Moreover, albumin is

also involved in transporting ions in the circulation, including

copper, zinc, calcium, etc. (Peters, 1996).

Additionally, this vital protein is able to bind exogenous com-

pounds and drugs, such as warfarin, ibuprofen, chlorpromazine

and naproxen, with the affinity of their binding significantly

affecting their activity and half-life (Kragh-Hansen, 1981; Peters,

1996; Evans, 2002). Furthermore, albumin also acts as a toxic

waste carrier, binding bilirubin, the product of heme breakdown,

to deliver it to the liver for hepatic excretion (Peters, 1996).

Interestingly, albumin is also believed to act as an anti-oxidant

on account of its ability to: (1) protect bound substances from

peroxidative damage (e.g., fatty acids and lipoproteins); and (2)

bind free copper, limiting its redox activity and the production

of free radicals (Peters, 1996; Evans, 2002). Lastly, albumin is a

source of thiols that are avid reactive oxygen and nitrogen species

scavengers (Peters, 1996; Evans, 2002).

DISTRIBUTION

Interestingly, albumin is predominately present in the extravas-

cular space (∼242 g) rather than the intravascular space (∼118 g)

(Peters, 1996; Evans, 2002). In fact, the protein is prevalent in

extracellular locations such as skin, gut, muscle, other fluids (i.e.,

cerebrospinal, pleural, etc.) and secretions (e.g., sweat, tears and

milk) (Peters, 1996). However, very low concentrations of albu-

min are present intracellularly (Peters, 1996). Albumin returns

from the extravascular space to the circulation via the lymphatic

system, making ∼28 “trips” in and out of the lymphatic system

during its lifetime (Peters, 1996; Evans, 2002).

Upon secretion from hepatocytes, albumin enters the circu-

lation and translocates to the extracellular space through the

pores of sinusoidal or fenestrated endothelium in certain organs,

such as the liver, pancreas, small intestine and bone marrow
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FIGURE 1 | Structure of human serum albumin consisting of three

domains, each grouped into subdomains A and B (Subdomain Ia,

yellow; Ib, green; IIa, red; IIb, magenta; IIIa, blue; and IIIb, cyan). Sugio

et al. (1999) by permission of Oxford University Press.

(Peters, 1996). However, in organs where a continuous endothe-

lium predominates, it is now believed that albumin can traverse

the endothelium via active transcytotic mechanisms, includ-

ing receptor-mediated mechanisms (e.g., albondin; see Section

entitled “Cellular Albumin-Binding Proteins”).

ACCUMULATION OF ALBUMIN IN THE TUMOR
INTERSTITIUM

Solid tumors commonly possess an immature, highly perme-

able vasculature that is acted upon by vascular permeability-

enhancing factors (e.g., nitric oxide) (Carmeliet and Jain, 2000;

Maeda et al., 2000; Greish, 2007; van der Veldt et al., 2008).

However, despite this there is generally insufficient lymphatic

drainage (Carmeliet and Jain, 2000; Maeda et al., 2000; Greish,

2007). This subsequently results in an accumulation of macro-

molecules (>40 kDa) within the tumor interstitium, and this

is known as the enhanced permeation and retention effect

(Figure 2) (Maeda et al., 2000; Greish, 2007). Of interest,

Matsumura and Maeda (1986) demonstrated that an intra-

venously injected Evans blue-albumin complex accumulated in

sarcoma 180 tumors of ddY mice. The retention of albumin

in tumors has since been observed in various experimental

solid tumors (e.g., sarcoma, ovarian carcinoma, Novikof hep-

atoma, etc.) using radiolabeled- or dye-complexed serum albu-

min (Peterson and Appelgren, 1973; Sinn et al., 1990; Andersson

et al., 1991; Schilling et al., 1992; Stehle et al., 1997; Wunder et al.,

1997).

Additionally, a number of studies have proposed that tumors

are a site of albumin catabolism (Hradec, 1958; Andersson et al.,

1991; Schilling et al., 1992; Stehle et al., 1997). For instance, in

FIGURE 2 | Schematic representation of (A) normal and (B) tumor vascu-

lature. Normal tissue is composed of mature, organized blood vessels, while

tumor tissue consists of immature, leaky and tortuous vessels. The altered

organization of tumor vasculature and disorganized lymphatic network results

in vascular leakage and the accumulation of macromolecules (>40 kDa) within

the interstitium and is known as the enhanced permeation and retention

(EPR) effect. Adapted by permission from Macmillan Publishers Ltd: Nature

Medicine (Jain, 2001), copyright (2001).

a mouse sarcoma model (C57/RL6J) injected with 3H-raffinose-

labeled albumin, at least 2–3-fold greater levels of 3H were

observed in the lysosomes of tumors when compared with lyso-

somes of normal tissue (Andersson et al., 1991). Furthermore

studies have demonstrated that albumin has a shorter half-life

and a higher turnover in tumor-bearing mice, despite a com-

pensatory increase in hepatic albumin synthesis, compared to

non-tumor-bearing mice (Hradec, 1958). Hence, it has been

suggested that tumors utilize albumin as a source of energy,

by breaking down albumin into its component amino acids in

lysosomes that are subsequently used by cancer cells for their

accelerated growth (Stehle et al., 1997). Moreover, studies have

suggested that the hypoalbuminiemia evident in cancer patients is

a result of albumin catabolism by the tumor (Stehle et al., 1997).

Nevertheless, some of these earlier studies suffer from sev-

eral experimental limitations. For instance, it is difficult to obtain

pure lysosomal fractions and, thus, it is necessary to reproduce

these studies and test the purity of fractions using well established

membrane and organelle markers (Graham, 2002; Yamagishi

et al., 2013). Additionally, several other in vivo factors may affect

albumin degradation and catabolism (e.g., levels of corticos-

teroids) (Peters, 1996). Therefore, a clear-cut relationship has not

been established and additional in vivo studies are necessary to

support the intracellular distribution and catabolism of albumin

by tumors.

More recently, Commisso et al. observed that cancer cells

harboring endogenous oncogenic Ras mutations have increased

levels of macropinocytosis in vitro and in vivo (Commisso et al.,

2013). Moreover, it was demonstrated that FITC-labeled albumin

was internalized through macropinocytosis and subsequently
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resulted in increased levels of glutamate and α-ketoglutarate

in oncogenic Ras-transformed cells (Commisso et al., 2013).

Interestingly, the decrease in proliferation of oncogenic Ras-

expressing cells after glutamine deprivation was shown to be

rescued by extracellular albumin supplementation (Commisso

et al., 2013). These findings suggest that macropinocytosis of

albumin provides nutrients to sustain cancer cell proliferation

(Commisso et al., 2013).

CELLULAR ALBUMIN-BINDING PROTEINS

Considering the importance of albumin, a number of puta-

tive albumin-binding proteins and receptors have been identified

in various tissues and cell lines (Table 1), including kid-

ney (Zhai et al., 2000; Amsellem et al., 2010), endothelium

(Schnitzer and Bravo, 1993), fibroblasts (Porter et al., 1995),

and tumor-cell surfaces (Fritzsche et al., 2004). Specifically, seven

membrane-associated albumin-binding proteins have been dis-

covered, namely: albondin/glycoprotein 60 (gp60) (Schnitzer

et al., 1988), glycoprotein 18 (gp18) (Ghinea et al., 1988), glyco-

protein 30 (gp30) (Ghinea et al., 1988), the neonatal Fc receptor

(FcRn) (Roopenian and Akilesh, 2007), heterogeneous nuclear

ribonucleoproteins (hnRNPs) (Fritzsche et al., 2004), calreticulin

(Fritzsche et al., 2004), cubilin (Zhai et al., 2000; Amsellem et al.,

2010), and megalin (Zhai et al., 2000; Amsellem et al., 2010).

Moreover, a secreted albumin-binding protein known as secreted

protein, acidic and rich in cysteine (SPARC) has been identified

(Schnitzer and Oh, 1992). Considering their importance in albu-

min uptake by cells, each of these proteins are described in detail

below.

ALBONDIN/gp60

Albondin (gp60) is a 60 kDa glycoprotein that acts as an albu-

min receptor that is widely distributed, but is selectively expressed

on the plasma membrane of continuous endothelium (except

for the brain), where it operates to increase capillary permeabil-

ity (Ghinea et al., 1988, 1989; Schnitzer et al., 1988; Schnitzer,

1992; Schnitzer and Oh, 1994; Tiruppathi et al., 1996). Albondin

not only specifically binds native albumin, but also facilitates

its internalization and subsequent transcytosis (Milici et al.,

1987; Schnitzer, 1992; Schnitzer and Oh, 1994; Tiruppathi et al.,

1996).

It has been proposed that ∼50% of albumin leaves the cap-

illary lumen via albondin, with the remainder traversing this

barrier through intercellular junctions and/or fluid-phase mech-

anisms (Schnitzer, 1993; Schnitzer and Oh, 1994). Moreover,

it has been demonstrated that the internalization of albondin

occurs through a caveolin-dependent endocytotic process that

results in transcytosis and does not appear to enter the degrada-

tive endosome-lysosome system (Schnitzer, 1993; Schnitzer and

Bravo, 1993; Schnitzer et al., 1995; Tiruppathi et al., 1997; Iancu

et al., 2011).

gp18 AND gp30

Both gp18 and gp30 avidly bind conformationally-modified

albumin (i.e., gold-labeled albumin, formaldehyde- or maleic-

anhydride-treated albumin) and do not preferentially interact

with native albumin, similarly to other known scavenger recep-

tors (Ghinea et al., 1989; Schnitzer and Oh, 1992, 1994; Schnitzer

et al., 1992; Schnitzer and Bravo, 1993). Unlike albondin, gp18

and gp30 are found on a variety of cells, such as macrophages

and fibroblasts, and a range of endothelia (Schnitzer et al., 1992).

Moreover, gp18 has been observed to be expressed in human

MDA-MB-453 breast cancer cells (Wang et al., 1994). These

scavenger receptors bind and direct modified albumins for degra-

dation, perhaps as part of protein catabolism or as a protective

pathway to remove altered, old, damaged or potentially dele-

terious albumins (Schnitzer, 1993; Schnitzer and Bravo, 1993).

Albumin may be modified through oxidation, non-enzymatic

glycation, maleylation, etc. as a result of normal aging or as

a protective or pathological response (Schnitzer, 1993; Peters,

1996). Denatured or modified albumin is degraded faster and

more efficiently than native albumin, suggesting that these

alterations select albumin molecules for degradation (Peters,

1996).

SPARC

SPARC is also known as osteonectin and BM-40 and is secreted by

several cell types (Brekken and Sage, 2001). Interestingly, SPARC

Table 1 | Localization of albumin-binding proteins and receptors.

Protein/Receptor Tissue Substrate

Albondin/gp60 Continuous endothelium Native albumin

gp18 Endothelium, macrophages, fibroblasts and MDA-MB-453 breast cancer cell surfaces Modified-albumin

gp30 Endothelium, macrophages, fibroblasts and MDA-MB-453 breast cancer cell surfaces Modified-albumin

SPARC Endothelial cells, vascular smooth muscle cells, skeletal muscle, fibroblasts, testicular, ovarian,

pancreatic and a range of tumor cells

Native albumin

hnRNPs Human tumor cell lines: CEM T-cell leukemia cells, MCF-7 breast cancer cells and MV3 melanoma cells Native albumin

Calreticulin Human tumor cell lines: CEM T-cell leukemia cells, MCF-7 breast cancer cells and MV3 melanoma cells Native albumin

FcRn Endothelium, antigen-presenting cells, gut, kidneys, lungs and the blood-brain-barrier (central nervous

system endothelium and choroid plexus)

Native albumin

Cubilin Kidney proximal tubule cells, absorptive intestinal cells, placenta, and visceral yolk-sac cells Native albumin and prob-

ably modified-albumin

Megalin Kidney proximal tubule cells, absorptive intestinal cells, placenta, visceral yolk-sac cells, choroid

plexus, thyrocytes, ciliary epithelium, lungs, parathyroid, endometrium, oviduct, inner ear, and

epididymal epithelial cells

Native albumin and prob-

ably modified-albumin
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has been found to be highly expressed in malignant cells and stro-

mal cells associated with neoplasia (Porter et al., 1995; Podhajcer

et al., 2008). SPARC possesses albumin-binding properties and

specifically interacts with native albumin in a similar way to

albondin, but differing from 18 to gp30 that bind conformation-

ally altered albumin (Schnitzer and Oh, 1992). Specifically, anti-

SPARC antibodies also recognize albondin, but not 18 or gp30,

suggesting that SPARC and albondin share a native albumin-

binding domain (Schnitzer and Oh, 1992). However, there is no

evidence that SPARC mediates albumin uptake into tumors. It

has been postulated that the ability of SPARC to bind albumin in

the tumor interstitium enhances the accumulation of albumin-

bound drugs within the tumor space (Desai et al., 2008, 2009).

Moreover, a preliminary clinical trial demonstrated that SPARC

expression correlated with the response to paclitaxel-loaded albu-

min nanoparticle (nab-paclitaxel or Abraxane®) treatment, with

SPARC-positive patients having a better clinical outcome (Desai

et al., 2009). However, conflicting data in a KPfC mouse model

has challenged this hypothesis, as SPARC deficiency did not alter

the intra-tumoral concentrations of Abraxane® (Neesse et al.,

2014). Consequently, further studies are necessary to validate

this hypothesis, including larger clinical trials involving a greater

number of patients. Currently, a phase III study (NCT00785291),

by the National Cancer Institute, is evaluating whether SPARC

expression in serum predicts patient response to Abraxane®, and

this may further our understanding of the role of SPARC in

albumin accumulation by tumors.

hnRNPs AND CALRETICULIN

Five different albumin-binding proteins have been identified from

plasma membranes of human cancer cells lines (i.e., CCRF-CEM

T-cell leukemia, MV3 melanoma and MCF7 breast carcinoma)

(Fritzsche et al., 2004). Four of these proteins were identified as

members of the hnRNP family, including hnRNP A2/B1, hnRNP

C1, hnRNP A1 and hnRNP A3, and the fifth protein was found

to be calreticulin (Fritzsche et al., 2004). Calreticulin was first

described as an endoplasmic reticulum chaperone and calcium

signaling protein, but has since been shown to be involved in

several cellular functions, including cell adhesion, modulation

of platelet-collagen interactions (wound healing) and apoptosis

(Mendlovic and Conconi, 2010). The functions of the hnRNP

family are not well characterized. However, most members of

the hnRNP family have been described as nuclear RNA-binding

proteins involved in pre-mRNA processing, such as RNA splic-

ing, export and stability (Chaudhury et al., 2010). Interestingly,

hnRNPs have been proposed to play a role in carcinogenesis

where their over-expression acts as biomarkers for the early detec-

tion of tumors (Han et al., 2013). The significance of these

findings is currently unclear and it remains to be determined

whether these proteins are involved in albumin-mediated uptake.

FcRn

FcRn is expressed in multiple cell-types and tissues, includ-

ing antigen-presenting cells, vascular endothelium, gut, lungs,

kidneys and the blood-brain barrier (BBB) (i.e., endothelium and

choroid plexus) (Roopenian and Akilesh, 2007). This receptor

protects albumin and IgG, from degradation by binding both

proteins with high affinity only at a low pH (pH < 6.5) in

acidic endosomes, preventing their degradation via the lysosomal

pathway and returning them to the extracellular space (pH 7.4)

(Chaudhury et al., 2003; Ober et al., 2004; Anderson et al., 2006;

Andersen et al., 2012). This consequently extends the half-life of

serum albumin (Chaudhury et al., 2003; Anderson et al., 2006;

Sarav et al., 2009). The role of this receptor in albumin uptake by

tumors remains unclear.

CUBILIN AND MEGALIN

Cubilin is a multi-ligand receptor that is most recognized for its

involvement in the intestinal uptake of the intrinsic factor vitamin

B12 complex (Seetharam et al., 1997). Moreover, cubilin has been

shown to be involved in the endocytosis and transcellular trans-

port of numerous ligands, including albumin (Birn et al., 2000).

Cubilin is localized to absorptive intestinal cells, placenta, visceral

yolk-sac cells and proximal tubules of kidneys (Christensen and

Birn, 2002). Megalin is a large trans-membrane protein that has

also been shown to bind albumin (Cui et al., 1996). This protein is

more widely expressed than cubilin, being present in the choroid

plexus, kidney proximal tubule cells, thyrocytes, etc. (Table 1)

(Christensen and Birn, 2002).

Interestingly, megalin binds to cubilin with high affinity and

it has been suggested that megalin contributes to the internal-

ization of cubilin-ligand complexes as a co-receptor (Moestrup

et al., 1998; Christensen and Birn, 2002). Moreover, cubilin also

binds amnionless, a protein that is necessary for the expres-

sion of cubilin on the cell membrane (Amsellem et al., 2010).

Cubilin, in conjunction with megalin, has an essential role

in the uptake of albumin (i.e., reabsorption) by the proximal

tubules of the kidneys (Zhai et al., 2000; Amsellem et al., 2010).

Cubilin- and/or megalin-deficiency in mice and dogs was shown

to cause a decrease in the uptake of albumin in the proximal

tubule resulting in albuminuria (Birn et al., 2000; Amsellem

et al., 2010). Additionally, patients with Imerslund-Gräsbeck syn-

drome, caused by a mutation in the cubilin gene, in general suffer

from proteinurea, demonstrating the importance of cubilin in

protein renal reabsorption (Grasbeck, 2006).

ALBUMIN AS A DRUG CARRIER IN ONCOLOGY

Considering the enhanced permeation and retention effect and

the accumulation of albumin in the tumor interstitium, the devel-

opment of albumin as a drug carrier is increasingly important to

consider in terms of the targeted delivery of cancer therapy (Kratz,

2008, 2010). It has also been proposed that albumin carriers take

advantage of the presence of albondin on the endothelium and

SPARC in the tumor interstitium to increase the accumulation

of drugs in the tumor space (Desai et al., 2009; Kratz, 2010).

Various drug delivery systems with albumin have been devel-

oped including albumin nanoparticles, drug albumin conjugates,

albumin-binding drug derivatives and prodrugs (for reviews see

Kratz, 2008, 2010).

The development and market approval of the paclitaxel-

loaded albumin nanoparticle, nab-paclitaxel or Abraxane®, was a

major breakthrough in the field of albumin carrier development.

Abraxane® was initially approved for clinical use in the United

States in 2005 (Kudlowitz and Muggia, 2014). This albumin
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nanoparticle is indicated for the treatment of metastatic breast

cancer, after failure of combination chemotherapy (Kudlowitz

and Muggia, 2014). More recently, Abraxane® has also been

described for the first-line treatment of patients with metastatic

adenocarcinoma of the pancreas, in combination with gemc-

itabine, and patients with locally advanced or metastatic non-

small cell lung carcinoma, in combination with carboplatin

(Kudlowitz and Muggia, 2014). Abraxane® has a greater thera-

peutic index than paclitaxel alone, being administered at higher

doses with less toxicity and more efficacy than traditional pacli-

taxel therapy (Gradishar et al., 2005; Socinski et al., 2012;

Iwamoto, 2013). Abraxane® is currently still being further eval-

uated in clinical trials for other tumors, such as cancer of the

bladder (NCT00583349) and multiple myeloma (NCT02075021).

Moreover, albumin-binding as a general strategy for improv-

ing the pharmacokinetics of drugs is also being assessed.

Traditionally, the binding of a drug to albumin is believed to

reduce the level of free drug available to exert its therapeutic

activity (Lancon et al., 2004; Vuignier et al., 2010). However, stud-

ies have also demonstrated mechanisms by which albumin acts

to effectively improve therapeutic use or reduce rapid clearance

(Dennis et al., 2002; Merlot and Richardson, 2014). For instance,

the experimental anti-cancer thiosemicarbazone, namely di-

2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT)

(Merlot et al., 2013a), has been shown to be internalized by

cancer cells via a putative carrier/receptor (Merlot et al., 2013b;

Merlot and Richardson, 2014). Interestingly, the uptake, toxic-

ity and apoptotic activity of Dp44mT is greatly enhanced in the

presence of HSA (Merlot and Richardson, 2014). Considering

Dp44mT targets lysosomes to induce apoptosis (Lovejoy et al.,

2011), and that HSA potentially undergoes lysosomal catabolism

in tumors (Andersson et al., 1991; Stehle et al., 1997), it can be

hypothesized that HSA facilitates Dp44mT delivery to the lyso-

somes, enhancing its anti-cancer activity (Merlot and Richardson,

2014). Although studies are yet to identify the exact mechanism of

the HSA-stimulated uptake process, albumin-binding may pro-

vide an advantage when generating tumor targeting agents and

this requires further intense investigation.

CONCLUSION

Albumin is a versatile and captivating protein. In view of the large

confinement of albumin within the vascular and interstitial space,

the intracellular distribution of albumin has remained poorly

characterized for many years. It may be possible that albumin,

under specific conditions or during cellular stress, is taken up by

normal cells and tumor cells at low and high levels, respectively,

due to their metabolic rate. The exact role of some incompletely

characterized albumin-binding proteins (i.e., hnRNPs and calreti-

culin) in mediating albumin uptake remains to be determined.

However, the search and characterization of albumin-binding

proteins, particularly in cancer cells, is of considerable interest in

light of the development of albumin as an effective drug carrier to

target tumors.
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