
PHYSICAL REVIEW B 102, 201103(R) (2020)

Rapid Communications

Unraveling the non-Hermitian skin effect in dissipative systems

Stefano Longhi *

Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, I-20133 Milano, Italy

and IFISC (UIB-CSIC), Instituto de Fisica Interdisciplinar y Sistemas Complejos, E-07122 Palma, Spain

(Received 28 August 2020; revised 22 October 2020; accepted 23 October 2020; published 5 November 2020)

The non-Hermitian skin effect, i.e., eigenstate condensation at the edges in lattices with open boundaries, is

an exotic manifestation of non-Hermitian systems. In Bloch theory, an effective non-Hermitian Hamiltonian is

generally used to describe dissipation, which, however, is not norm preserving and neglects quantum jumps.

Here it is shown that in a self-consistent description of the dissipative dynamics in a one-band lattice, based on

the stochastic Schrödinger equation or Lindblad master equation with a collective jump operator, the skin effect

and its dynamical features are washed out. Nevertheless, both short- and long-time relaxation dynamics provide

a hidden signature of the skin effect found in the semiclassical limit. In particular, relaxation toward a maximally

mixed state with the largest von Neumann entropy in a lattice with open boundaries is a manifestation of the

semiclassical skin effect.

DOI: 10.1103/PhysRevB.102.201103

Introduction. Dissipative lattices, where energy or par-

ticle number are not conserved, show intriguing topolog-

ical properties and phase transitions that are attracting a

great interest in different areas of physics [1–65]. Band

theory describes open systems by non-Hermitian Hamilto-

nians [14,17,25,26,42,46] and predicts a wealth of exotic

features such as a strong sensitivity of the energy spectrum

on boundary conditions [11,12,15,17], the non-Hermitian skin

effect (NHSE), i.e., the condensation of bulk modes at the

edges [13–18,46,54], and breakdown of bulk-boundary cor-

respondence based on Bloch topological invariants [6,12–

15,30–36,47–50,52]. However, on a fundamental level the

non-Hermitian description generates a nonunitary dynam-

ics and ignores quantum jumps. The natural description of

quantum dynamics in open systems is provided by master

equations in Lindblad form or stochastic Schrödinger equa-

tions, where stochastic terms ensure unitary time evolution.

This has motivated the search for a topological classification

of dissipative systems and for exotic phenomena such as the

skin effect beyond non-Hermitian band theory [24,56,61,62].

Recently, topological classifications of dissipative systems

based on the complex spectrum of the Lindbladian super-

operator or on quantum jump dynamics [56,61] have been

suggested, and the prediction of important phenomena, such

as the boundary-dependent damping dynamics and the Li-

ouvillian skin effect [24,62], have been disclosed. An open

question is whether signatures of the NHSE in non-Bloch

band theory persist when considering stochastic terms or

quantum jumps, i.e., beyond a mean-field theory.

In this Rapid Communication it is shown that the NHSE of

non-Hermitian band theory and its dynamical signatures are

washed out in a minimal model of stochastic dynamics which

restores a unitary time evolution. Nevertheless, both short- and
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long-time relaxation dynamics provide hidden signatures of

the NHSE. In particular, in the one-band limit the relaxation

toward a maximally mixed state with the largest von Neumann

entropy under open boundaries is the manifestation of the

semiclassical NHSE.

Dissipative dynamics and skin effect. In the framework

of single-particle Bloch theory, a one-band dissipative lattice

made of N sites under either periodic (PBC) or open (OBC)

boundary conditions is described in Wannier basis |n〉 by

an effective N × N non-Hermitian matrix Hamiltonian Ĥe f f ,

which can be written as the sum of Hermitian Ĥ and anti-

Hermitian iÂ = −(i/2)P̂2 parts, i.e.,

Ĥe f f = Ĥ − (i/2)P̂2 (1)

with Ĥ† = Ĥ and P̂† = P̂ for a purely dissipative lattice.

Under PBC, in momentum space the Hamiltonian is diagonal

and takes the form

He f f (k) = H (k) − (i/2)P2(k), (2)

where k is the Bloch wave number and P(k) can be taken as

a non-negative function. Here we assume that the Hermitian

dynamics, described by Ĥ , shows time-reversal symmetry

so that H (−k) = H (k) in momentum space and ĤT = Ĥ

in physical space. For any Hermitian Hamiltonian, the bulk

energy spectrum in the thermodynamic limit N → ∞ be-

comes independent of boundary conditions, and the energy

spectra may differ just for the appearance of isolated ener-

gies corresponding to edge states under OBC. However, for

a generic non-Hermitian Hamiltonian the bulk eigenenergies

under PBC and OCB rather generally differ considerably in

the thermodynamic limit owing to the NHSE [13–18]. In

particular, the energy spectrum of Ĥe f f is different for PBC

and OBC whenever P(−k) �= P(k), i.e., the NHSE does not

arise provided that the system possesses the additional sym-

metry P̂T = P̂. In fact, for P(−k) �= P(k) the PBC energy
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FIG. 1. Energy spectrum in complex plane of the non-Hermitian

lattice, defined by Eqs. (1) and (3), for J = R = 1, T = 0 and for a

few increasing values of the phase ϕ: (a) ϕ = 0, (b) ϕ = π/4, and

(c) ϕ = π/2. Solid curves refer to PBC, while circles refer to OBC

in a lattice comprising N = 50 sites. The NHSE appears in (b) and

(c), where PBC and OBC energy spectra are distinct.

spectrum describes a closed loop in the complex energy plane

with a finite number of self-intersections [66], while under

OBC the energy spectrum must collapse to one (or a set of)

closed curves in the interior of the closed loop [17,29,63].

As an example, PBC and OBC bulk energy spectra for the

dissipative lattice with

H (k) = 2J cos k + 2T cos(2k), P(k) = R[1 + cos(k + ϕ)]

(3)

are depicted in Fig. 1. Note that a nonvanishing phase ϕ �= 0,

breaking the symmetry P(−k) = P(k), results in the NHSE.

The description of dissipation based on the use of Ĥe f f in

the Schrödinger equation suffers from the fact that the state

vector |ψ (t )〉 undergoes a nonunitary evolution and neglects

quantum jumps. As such a description can be regarded as a

semiclassical limit of the Markovian dynamics of the open

quantum system and can naturally appear in postselection

of quantum trajectories [67,68], increasing attention is cur-

rently devoted to unveiling NHSE beyond the semiclassical

limit [24,56,61,62]. A unitary dynamics is restored by con-

sidering a stochastic Schrödinger equation, where stochastic

terms are added to the deterministic evolution of |ψ (t )〉 so

as to preserve the norm [69]. This description is equivalent

to the use of a master equation in Lindblad form [69]. As

the choice of the stochastic terms (i.e., jump operators) is

not unique [69,70] and a detailed microscopic knowledge of

the system-bath coupling would be required, here we focus

our attention on a model that exploits a single nonlocal jump

operator [67], corresponding to the stochastic Schrödinger

equation (in the Itô interpretation [69,71])

id|ψ (t )〉 = Ĥe f f |ψ (t )〉dt + ξ (t )P̂|ψ (t )〉dt, (4)

where ξ (t ) is a zero-mean delta-correlated white noise,

i.e., ξ (t ) = 0 and ξ (t )ξ (t ′) = δ(t − t ′). Note that the mean

value |ψ (t )〉, averaged over all realizations of noise,

evolves as |ψ (t )〉 = exp(−it Ĥe f f )|ψ (0)〉, corresponding to

the mean-field (or semiclassical) dynamics with effective non-

Hermitian Hamiltonian Ĥe f f . The associated Lindblad master

equation for the density operator ρ̂ = |ψ (t )〉〈ψ (t )| involves a

single jump operator P̂ = P̂† and reads [69,70]

d ρ̂

dt
= −i[Ĥ , ρ̂] −

1

2

(

P̂2ρ̂ + ρ̂P̂2 − 2P̂ρ̂P̂
)

≡ Lρ̂, (5)

where L is the Liouvillian superoperator. We stress that this

model with a collective jump operator may not be sufficient

to fully capture the underlying dissipative process; however,

it has been suggested as a minimal description (involving a

single jump operator) of the open system dynamics beyond the

semiclassical limit [67]. Also, the stochastic or master equa-

tion approach can describe system dynamics under classical

noise [69,72,73], where the model of Eq. (4) can be realized.

Relaxation dynamics. The spectrum and corresponding N2

eigenmodes of the Liouvillian superoperator L are rather

generally different for lattices with PBC and OBC, so that

relaxation and decoherence dynamics are boundary depen-

dent [24]. In particular, the exponential localization of the

eigenmodes of L at the edges results in so-called Liouvillian

skin effect [62], which is responsible for slowing down of

relaxation processes without gap closing. Here we consider a

different scenario, where the semiclassical NHSE is washed

out by the stochastic dynamics and L does not show skin

modes. The main result of this work is that the semiclassi-

cal NHSE can be nevertheless unraveled by looking at the

relaxation dynamics both at short and long time scales. Let us

first consider the short-time (bulk) relaxation dynamics, where

initial excitation is spatially confined far from the boundaries

and edge effects are negligible. In this case Eq. (4) can be

solved in momentum space, where all operators are diagonal.

After expanding the state vector in Bloch basis as |ψ (t )〉 =
∫ π

−π
dk �(k, t )|k〉, where k is the Bloch wave number and

|k〉 ≡ (1/
√

2π )
∑

n exp(ikn)|n〉 the Bloch basis, one obtains

�(k, t ) = �(k, 0) exp[−iH (k)t − iP(k)W (t )], (6)

where W (t ) is a Wiener process with W (t ) = 0 and W 2(t ) =
t . The corresponding evolution of the density operator in

Bloch basis, ρk,k′ (t ) = 〈k|ρ|k′〉, reads

ρk,k′ (t ) = �(k, t )�∗(k′, t ) = ρk,k′ (0) exp[iG(k, k′)t], (7)

where we have set G(k, k′) = H (k′) − H (k) + (i/2)[P(k′) −
P(k)]2. The signature of the semiclassical NHSE in the short

time scale is clearly observed looking at the relaxation dynam-

ics of density matrix elements ρn,m(t ) = 〈n|ρ̂|m〉 in Wannier

basis. In particular, assuming an initial pure state with exci-

tation at site n = 0, i.e., ρn,m(0) = δn,0δm,0, one has (see [70]

for details)

ρn,m(t ) =
1

4π2

∫∫

dk dk′ exp[ikn − ik′m + iG(k, k′)t]. (8)

For P(−k) = P(k), i.e., when Ĥe f f does not show the NHSE,

the relaxation process is highly symmetric around n = m = 0,

namely, ρ−n,m = ρn,−m = ρ−n,−m = ρn,m owing to the even

symmetry of the spectral term G(k, k′) under momentum

inversion. This means that coherence is created and main-

tained during the relaxation process. On the other hand, for

P(−k) �= P(k), i.e., when Ĥe f f shows the NHSE, using a

multivariate saddle-point method [74] it can be shown [70]

that the slowest decaying terms are those along the main

diagonal n = m, i.e., “populations,” while terms along the

antidiagonal n = −m, i.e., “coherences,” decay faster. Such

a distinct behavior in relaxation dynamics is illustrated in

Fig. 2 for the model defined by Eq. (3). Note that the bal-

listic spreading of populations, i.e., of ρn,n(t ), is symmetric

at around n = 0, while in the semiclassical limit one would
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FIG. 2. Bulk (short-time) relaxation dynamics in the dissipative

lattice defined by Eq. (3) for three values of the phase ϕ (0, π/4,

and π/2). The panels show snapshots of the density matrix |ρn,m(t )|
in Wannier basis at successive times on a pseudocolor map. The

initial state is the pure state ρ(0) = |0〉〈0|, corresponding to a particle

localized at site n = 0. Lattice parameters are J = R = 1 and T = 0.

expect a unidirectional flow when Ĥe f f shows the NHSE [29],

as illustrated in Supplemental Material Fig. S.1 of [70]. This

means that quantum jumps fully change the spreading features

of excitation along the lattice as compared to the mean-field

model. Yet, the signature of the semiclassical NHSE is visible

looking at the coherences, which decay faster leading to a

characteristic elongated spreading pattern when the systems

show the NHSE in the semiclassical limit.

The other hidden signature of the semiclassical NHSE is

found looking at the long-time relaxation dynamics, where

edge effects cannot be neglected. In this case the relaxation

process is established by the nondecaying eigenvectors of the

Liouvillian superoperator. Interestingly, more than one sta-

tionary state can exist under certain symmetries of L [75–77],

which in our model depend on the symmetries of Ĥ and P̂.

The N2 eigenvalues λl of L always appear in complex con-

jugate pairs and satisfy the condition Re(λl ) � 0. If L shows

a single nondecaying eigenvector ρ̂ (s) with zero eigenvalue,

the system relaxes toward the stationary state ρ̂ (s). For the

master equation (5) it can be readily shown that the state

ρ (s)
n,m = (1/N )δn,m is an eigenvector of L with zero eigen-

value. Such a stationary state corresponds to a maximally

mixed state, with von Neumann entropy S(ρ̂ ) = −tr(ρ̂ log ρ̂ )

reaching its largest value S(ρ̂ (s)) = ln N . In the absence of

additional symmetries of P̂, namely, for P̂T �= P̂, ρ̂ (s) is the

only nondecaying eigenvector of L: this means that, if the

mean-field dynamics displays the NHSE, then the relaxation

dynamics drives the system toward a maximally mixed state.

However, when the system shows the additional symmetry

P̂T = P̂, corresponding to the absence of the NHSE in the

mean-field limit, besides ρ̂ (s) there is at least another sta-

tionary state, given by ρ̂ (sa )
n,m = (N + 1)−1(δn,m + δn,N−n+1);

technical details are given in [70]. We also mention that more

than two stationary states can arise when P̂T = P̂ and the

matrices P̂ and Ĥ are tridiagonal, i.e., when there are only

nearest-neighbor hopping [like in model (3) with T = 0] [70].

This implies that, when the system possesses the symmetry

P(−k) = P(k) and the NHSE is prevented in the semiclassical

FIG. 3. Same as Fig. 2, but in a lattice comprising N = 11 sites

with open boundaries. Initial state is ρ̂(0) = |6〉〈6|. Inset: evolution

of the von Neumann entropy S for the three phases ϕ = 0, π/4, and

π/2. The long-time asymptotic state is a maximally mixed state,

corresponding to the largest value of entropy S = lnN , except for

ϕ = 0.

limit, the dissipative process does not drive the system toward

a maximally mixed state for rather arbitrary initial conditions,

and the von Neumann entropy S remains below the value lnN ,

as illustrated in Figs. 3 and 4. The long-time evolution of

density matrix in a lattice with open boundaries, shown in

Fig. 3 for the Hamiltonian (3) with T = 0, clearly indicates

that the system relaxes to a maximally mixed state except for

ϕ = 0. Such a behavior is closely related to the spectrum of

the Liouvillian superoperator L, which is shown in Fig. 4.

While for ϕ �= 0 the Liouvillian L has a single nondecaying

stationary state, corresponding to the largest von Neumann

entropy S = logN , for ϕ = 0 there are N distinct stationary

(nondecaying) states [64]. In the latter case the stationary state
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FIG. 4. Numerically computed eigenvalues λ of the Liouvillian

superoperator L corresponding to the simulations of Fig. 3. The

arrows show the zero eigenvalue of L, which is simple in (b) and

(c) and N-fold degenerate in (a).
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FIG. 5. (a) Setup of a spectral photonic lattice. An optical pulse

circulating in a fiber loop containing an optical amplifier (OA) and

a phase modulator (PM), driven by a period rf signal with stochastic

amplitudes at successive transits, realizes the stochastic process (4)

in frequency domain. (b) Equivalence between a dissipative quantum

lattice and a spectral photonic lattice.

in the long-time limit depends on the initial state ρn,m(0) of

the system, and does not correspond rather generally to the

maximally mixed state. Numerical diagonalization of L shows

that, while for ϕ �= 0 Ĥe f f shows the NHSE, the eigenstates

of L are not skin modes, i.e., we do not have here the Liou-

villian skin effect [62]. We stress that in the one-band limit

the presence of the NHSE in the semiclassical description

and the relaxation toward a maximally mixed state in the

master equation description have the same physical ground,

i.e., breaking of the symmetry P(−k) = P(k).

The above results are rather general ones and persist in

one-band models with long-range hopping [e.g., T �= 0 in

Eq. (3)]. In the Supplemental Material [70] we discuss an-

other example, the stochastic extension of the Hatano-Nelson

model [1], which displays a long-range matrix P̂.

Photonic simulation of stochastic dynamics. Classical sys-

tems with unitary dynamics driven by noise can provide a

feasible platform to emulate the stochastic Schrödinger equa-

tion (4) with a collective jump operator. In such classical

systems, decoherence arises by averaging over an ensemble

of stochastic but unitary dynamics. A possible implementation

in optics is provided by spectral photonic lattices [78–83]. A

long light pulse circulating in a fiber loop with negligible dis-

persion and periodically kicked by a phase modulator realizes

a spectral lattice where the spectral curves H (k) and P(k) in

Eq. (4) are determined by the waveform that drives the mod-

ulator. A schematic of the photonic setup and the equivalence

between a quantum dissipative lattice and a spectral photonic

lattice are illustrated in Fig. 5. A long optical pulse with

envelope �(k, 0) of temporal duration Tp is injected by an

optical coupler into a long fiber loop, where k denotes the fast

time. The transit time Tf of light in the loop is much longer

than Tp and defines a slow time t (round-trip number) in such

a way that the physical time τ is given by τ = tTf + k, with

t = 0, 1, 2, 3, . . . and 0 < k < Tf [84]. A phase modulator

impresses a periodic phase change �θt (k) = H (k) + ξt P(k)

to the optical pulse after each transit t in the loop, where the

fast time k is given in units of the modulation period Tm and ξt

are independent Gaussian variables with zero mean and unit

variance, i.e., ξt = 0 and ξtξt ′ = δt,t ′ . An optical amplifier is

placed inside the loop to compensate for the coupler losses. In

this way, the envelope �(k, t ) of the optical pulse at the t th

transit in the loop reads

�(k, t ) = �(k, 0) exp[−iH (k)t − iP(k)W (t )], (9)

where W (t ) =
∑t

l=0 ξl is a stroboscopic map of a Wiener

process at discrete times t , i.e., W (t ) = 0 and W 2(t ) = t .

A comparison of Eqs. (6) and (9) shows that the pulse

evolution at successive transits in the loop describes a stro-

boscopic map of a quantum trajectory in Bloch space of

a dissipative quantum system with effective non-Hermitian

Hamiltonian He f f (k) = H (k) − (i/2)P2(k). The spectral con-

tent (frequency comb) ψn(t ) =
∫

dk �(k, t ) exp(ikn) of the

optical pulse at successive transits, which provides the site

occupation amplitudes 〈n|ψ (t )〉 of the synthetic lattice, can

be monitored at the output port of the coupler. The ana-

log of the density matrix ρn,m is the noise-averaged spectral

matrix ψnψ∗
m, i.e., so-called mutual coherence or complex

visibility [85,86], which can be measured by suitable tech-

niques [86]. The short-time relaxation dynamics of density

matrix, with the characteristic elongated pattern for ϕ �=
0 shown in Fig. 2, could be thus accessed in the optical

platform.

Conclusion. In this work we reconsidered a paradigmatic

effect of non-Bloch band theory, the non-Hermitian skin ef-

fect, in the framework of open quantum systems. Our results

reveal hidden signatures of the skin effect beyond the non-

Hermitian theory, suggesting that quantities used in quantum

statistical mechanics, such as von Neumann entropy, might

provide a pivotal role in characterizing dissipative topological

matter beyond semiclassical models. Noise-driven classical

systems, such as stochastic-driven spectral photonic lattices,

could provide a suitable platform for the observation of jump

dynamics and hidden signatures of the skin effect.
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