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Most eukaryotes develop close interactions with microorganisms that are essential for their

performance and survival. Thus, eukaryotes and prokaryotes in nature can be considered

as meta-organisms or holobionts. Consequently, microorganisms that colonize different

plant compartments contain the plant’s second genome. In this respect, many studies

in the last decades have shown that plant-microbe interactions are not only crucial for

better understanding plant growth and health, but also for sustainable crop production in

a changing world. This mini-review acting as editorial presents retrospectives and future

perspectives for plant microbiome studies as well as information gaps in this emerging

research field. In addition, the contribution of this research topic to the solution of various

issues is discussed.
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INTRODUCTION AND RETROSPECT ON THE STUDY OF

PLANT-ASSOCIATED MICROORGANISMS

Many studies on plant-associated microorganisms reflect the enor-

mous interest in this topic and the full effect of ongoing research

(Bulgarelli et al., 2013). Due to the importance of the soil habi-

tat of plants, the majority of research focuses on the rhizosphere,

even though microorganisms are also able to readily colonize most

plant compartments. Several recent reviews addressed particu-

lar aspects of plant microbiome research. The current knowledge

of rhizosphere inhabitants, their function, and their promising

biotechnological potential was summarized by Hirsch and Mauch-

line (2012), Bakker et al. (2013), Mendes et al. (2013). Berendsen

et al. (2012) reviewed more specifically the plant microbiome and

plant health relationship, while Berg et al. (2005a) focused on the

occurrence of potential human pathogenic bacteria in the rhizo-

sphere. The important question about the factors contributing

to selective enrichment of microorganisms from the soil into

the rhizosphere was addressed by Bais et al. (2006), Doornbos

et al. (2012). It now appears that in addition to carbohydrates

and even amino acids which act as general chemical determi-

nants in the rhizosphere (Moe, 2013), secondary metabolites

such as plant-specific flavonoids were identified as key drivers in

the development of plant-specific microbial communities in the

rhizosphere (Weston and Mathesius, 2013).

While the well-studied rhizosphere presents the soil-plant

interface, the phyllosphere forms the air-plant interface. This

microhabitat is also of special interest due to its large and exposed

surface area and its connection to the air microbiome, espe-

cially air-borne pathogens (rev. in Lindow and Brandl, 2003;

Vorholt, 2012; Rastogi et al., 2013). However, in addition to the

well-studied rhizo- and phyllospheres, each plant can be divided

into more microenvironments, e.g., the endorhiza (root), the

anthosphere (flower), the spermosphere (seeds), and the carpo-

sphere (fruit). Moreover, we generally differentiate between the

endosphere (inner tissues) and ectosphere (outer surfaces; Ryan

et al., 2008). All these microenvironments provide specific biotic

and abiotic conditions for microbial life, which also have a corre-

spondingly specific function for the host. The potential of these

findings and the use of plant growth-promoting bacteria and

biocontrol agents for the development of sustainable forms of

agricultural management were discussed by Leveau (2007), Köberl

et al. (2012), Berg et al. (2013).

The first section of this editorial focuses on several historical

milestones in plant microbiome research. Despite the enormous

progress already made, many challenges still exist. We address

some information gaps in the second section of this editorial,

and conclude with an overview of the present contributions. The

papers in this special issue focus mainly on the bacterial dimen-

sion of the plant-associated microbiome, and we will show how

they complement and extend the current research and how they

will spur further questions.

THE RHIZOSPHERE WAS DEFINED MORE THAN A CENTURY

AGO

Hiltner (1904) defined the “rhizosphere” as root-surrounding soil

influenced by root exudates (Hartmann et al., 2008). In addition,

he was the first to suggest the importance of microbial root inhab-

itants for plant growth and health. The rhizosphere is of central

importance not only for plant nutrition, health, and quality. Today

we are aware of microorganism-driven carbon sequestration in

this ecological niche, which has an important role in ecosystem

functioning and nutrient cycling in terrestrial ecosystems. In con-

trast to the other microenvironment of plants, the rhizosphere is

characterized by high microbial abundances (Berg et al., 2005b)
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and activities (Herron et al., 2013). Due to the densely colonized

surface and surrounding soil (Figure 1), the rhizosphere was sug-

gested as a protection shield against soil-borne pathogens (Weller

et al., 2002).

THE ENDOSPHERE IS A HABITAT FOR INTIMATE

INTERACTIONS

Although endophytes were ignored or considered contaminants

for a long time, many endophytic inhabitants of plants are now

often recognized as symbionts with a unique and intimate inter-

action with the plant (Ryan et al., 2008; Reinhold-Hurek and

Hurek, 2011; Mitter et al., 2013). In these and other more recent

studies, evidence of the occurrence of endophytes was assessed

by cultivation-independent analyses, and via fluorescence in situ

hybridization-confocal laser scanning microscopy (FISH-CLSM;

an example for endophytes in the lettuce endorhiza is shown in

Figure 1). After the first definition by De Bary (1866) as “any

organism occurring within plant tissues,” various researchers have

defined endophytes in different ways, which were usually related

to their own research context and perspective (Wilson, 1995;

Hallmann et al., 1997; Bacon and White, 2000).

FIGURE 1 | Bacterial micro-colonies in the rhizosphere and endosphere

visualized by fluorescence in situ hybridization (FISH) and confocal

laser scanning microscopy(CLSM). The rhizosphere microbiome of

lettuce is dominated by Betaproteobacteria (purple) forming dense colonies

on the root surface. The endosphere is shown as section of the main root

of a lettuce plant. While unspecifically labeled bacteria are in red,

Alphaproteobacteria (orange-green) are to be seen as colonies as well as

filamentous forms.

THE FUNCTIONS OF THE PLANT MICROBIOME ARE

ESSENTIAL FOR THE HOST

Plant-associated microorganisms can help plants to suppress dis-

eases, to stimulate growth, to occupy space that would otherwise

be available to pathogens, to promote stress resistance, and influ-

ence crop yield and quality by nutrient mobilization and transport

(Lugtenberg and Kamilova, 2009; Yang et al., 2009). Therefore,

the plant microbiome is one of the key determinants of plant

health and productivity. Additional essential roles of the plant

microbiome for phenotypic and epigenetic plasticity as well as the

evolution of plants were suggested by Partida-Martínez and Heil

(2011).

SPECIFIC ENRICHMENT OF MICROORGANISMS IN

PLANT-ASSOCIATED COMMUNITIES EXISTS

So far, research on the specificity of plant-associated microbiomes

focused on the rhizosphere, while only few other compartments

have been studied in this respect (Vorholt, 2012). Although plant

specific microbiomes in the rhizosphere have already been postu-

lated via cultivation-based approaches (Germida and Siciliano,

2001), molecular fingerprints provided the first clear evidence

for plant-dependent microbial community compositions (Smalla

et al., 2001). Differences in plant root exudates play an impor-

tant role as both chemo-attractants as well as repellents (Badri

and Vivanco, 2009), to which bacteria are especially responsive

(Costa et al., 2006, 2007; DeAngelis et al., 2009). In addition, plant

defense signaling plays a role in this process as well (Doornbos

et al., 2012). Haichar et al. (2008) used a stable isotope probing

(SIP) approach to show that plant host habitat and root exu-

dates shape the soil bacterial community structure. Thus, the

plant is clearly able to select microorganisms for rhizosphere

colonization primarily from the large pool living in the sur-

rounding soil. Lundberg et al. (2012), Bulgarelli et al. (2012)

revealed that only a subset of the bacterial community in the

soil is present around the plant roots of Arabidopsis thaliana

through amplicon sequencing of 16S rRNA gene fragments. Fur-

thermore, the use of catalyzed reporter deposition and in situ

hybridization or FISH was used to confirm the co-localization

and dynamics of dominant taxa determined by 454 pyrosequenc-

ing (Bulgarelli et al., 2012; Lundberg et al., 2012; Ofek et al.,

2012). While the use of FISH and catalyzed reported deposition-

fluorescence in situ hybridization (CARD-FISH) helped to unravel

the spatial distribution of dominant indigenous bacterial com-

munities, the use of marker and reporter genes was employed

in several studies to localize inoculated potential biocontrol

strains and to measure distributions of nutrients, metals, and

organic exudates along the roots on a microscale (Sørensen et al.,

2009).

However, the plant (species, cultivar, age, health, and devel-

opmental stage) is not the only factor that influences microbial

communities in the rhizosphere: a multitude of abiotic factors

modulate the structural and functional diversity of the rhizo-

sphere microbiome, including soil properties, nutrient status, and

climatic conditions (rev. in Berg and Smalla, 2009). Moreover,

large-scale agricultural management such as manure application

has a clear impact on the microbiome composition (Jechalke et al.,

2014).
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THE ORIGIN OF PLANT-ASSOCIATED BACTERIA IS DIFFERENT

Plants are in constant contact with diverse microorganisms orig-

inating either through soil, wind, and air, or water via the water

cycle. After initial exposure, some of these microorganisms are

able to colonize the plant and survive (Rastogi et al., 2012). In

some cases, microorganisms can even be transferred vertically

from the parent plants to their progeny. Endophytes present in

plant seeds may subsequently colonize the roots and the rhizo-

sphere (Johnston-Monje and Raizada, 2011; Links et al., 2014).

In addition, generative organs such as anther pockets, producing

pollen (Fürnkranz et al., 2012), and moss sporophytes (Bragina

et al., 2012) share a microbiome containing beneficials with their

host plant.

Pseudomonas AND Bacillus ARE MODEL

PLANT-ASSOCIATED BACTERIA

Although we now know that plant-associated bacteria are phylo-

genetically diverse, Pseudomonas and Bacillus have been studied

as models for beneficial plant-microbe interaction (Emmert and

Handelsman, 1999; Weller et al., 2002; Raaijmakers et al., 2010)

for a long time. Interestingly, the importance of both genera

on plants has been corroborated in many metagenomic stud-

ies. While Pseudomonas is abundant under humid conditions

(Mendes et al., 2012), Bacillus dominates plant microbiomes

under arid conditions such as in Egypt where Pseudomonas

cannot survive (Köberl et al., 2011). The more detailed informa-

tion obtained for Pseudomonas–plant interactions now help in

understanding the bigger picture of Pseudomonas genome–plant

interaction in its entirety as shown in the excellent review by

Loper et al. (2012).

Antibiotic production by plant-associated microorganisms,

with the rhizosphere and endosphere as a “hot spot” for poten-

tial producers, is a further aspect of research, for which both

model organisms again play an important role. Pseudomonas is

known for its versatile antibiotic production, which has also been

shown in situ in the rhizosphere (Bonsall et al., 1997). Yet, a lot

has still to be learned about the diffusion and action of small

molecule antibiotics. Antibiotics are not only acting in solutes,

some bioactive compounds act as volatiles, both in antibiosis

against pathogens as well as in communication with plants (Ryu

et al., 2003). According to recent reports, antibiotics and lipopep-

tides of bacteria are regulators and support biofilm formation,

signaling, motility, and acquisition of micronutrients at sub-

inhibitory concentrations (Raaijmakers et al., 2010; Raaijmakers

and Mazzola, 2012). An interesting regulatory network was also

detected for redox-active antibiotics such as phenazine, which is

also involved in the reduction of Fe3+(Raaijmakers and Mazzola,

2012). This high number of antibiotic producers associated with

plants may have driven the evolutions of resistance genes as well

(Allen et al., 2010).

Several studies, which focused primarily on Pseudomonas

demonstrated bacterial intra- and interspecies communication

in the plant-soil interface plant-microbe interaction via quorum

sensing molecules such as N-acyl homoserine lactones (N-AHLs),

or antibiotics at sub-inhibitory concentration (Steidle et al., 2001;

DeAngelis et al., 2009; Hartmann and Schikora, 2012; Raaijmak-

ers and Mazzola, 2012). Bacterial AHLs were demonstrated to

change the plant transcriptome, modify root growth, and induce

systemic resistance to phytopathogens (von Rad et al., 2008; Hart-

mann and Schikora, 2012; Raaijmakers and Mazzola, 2012); yet

substantial differences were observed in the uptake, transport,

and degradation of various AHLs for different plants (Götz et al.,

2007).

HORIZONTAL GENE TRANSFER CONTRIBUTES TO

PLASTICITY AND EVOLUTION OF PLANT-ASSOCIATED

BACTERIA

Owing to the availability of various nutrients and surfaces, the

plant-soil interface is also considered a hot spot for horizontal

gene transfer processes via plasmids (Heuer and Smalla, 2012). The

recent progress in microscopy tools has been extremely helpful in

gaining further insight into the spatial distribution and dynam-

ics of the plant-soil interface. Plant species-dependent differences

were observed for the conjugation of a gfp-tagged IncP-1ε plas-

mid that did not express the gfp in its original host due to the

presence of a lac-repressor (Mølbak et al., 2007). Through in situ

visualization, these authors could demonstrate that both exuda-

tion patterns and root growth rates determined plasmid transfer

in the pea and barley rhizospheres.

FUTURE PERSPECTIVES AND INFORMATION GAPS

Although the plant microbiome is recognized as an immense trea-

sure trove of microbial diversity, numerous important crop species

and their natural relatives have not yet been studied for their asso-

ciated bacterial communities. With an approximate number of

500,000 plant species a lot of work lays ahead of plant microbiome

research to explore new aspects about phylogenetic diversity of

plant-associated microorganisms in the future. This might be par-

ticularly interesting with plants from extreme natural ecosystems

or with unique life styles (carnivores, parasites, etc.).

Despite this enormous progress in the description of the plant

microbiome, more fundamental and practical studies to address

the processes leading to community assembly and function in

and on plants are needed. Metagenomic analysis and comparison

of plant-associated communities will lead to novel phylogenetic

and functional insight. The first metagenomes, -proteomes, and

-transcriptomes are currently published (Delmotte et al., 2009;

Knief et al., 2012). An interesting example for a novel function

is the detection of potential coexistence of microbial and plant

photosynthesis on Tamarix leaves (Atamna-Ismaeel et al., 2012).

Functional analysis will demonstrate whether the plants are able

to benefit from the presence of certain microorganisms. In this

context it should also be kept in mind that activation patterns and

induction pathways can differ between ecotypes and strains.

Amplicon sequencing of 16S rRNA gene fragments provided

valuable insight into the dominant colonizers, but too much

emphasis on this locus may underdiagnose the potential biolog-

ical variation. For example, biological functions provided from

the mobilome (Eltlbany et al., 2012) do not correspond with 16S

rRNA gene data. In addition, ribosomal gene amplicon quantities

can depend on extraction methods, primer efficiency (Pinto and

Raskin, 2012), and their copy-number variation (Kembel et al.,

2012).
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Although with the following articles in this special issue focus

was given to the bacterial aspect of plant microbiomes we predict

a future integration with fungal–bacterial interactions, specifically

in the context of mycorrhiza (Bonfante and Anca, 2009; Song et al.,

2010).

Plant microbiome discoveries could fuel advances in sustain-

able agriculture (Berg, 2009; Lugtenberg and Kamilova, 2009),

such as the development of microbial inoculants as biofertil-

izers, biocontrol, or stress protection products (Berg, 2009;

Berg et al., 2013).

In the future, the plant microbiome will have a greater impor-

tance for plant breeding and plant biotechnology. Until now,

primarily plant pathogens were considered in these approaches.

However, we suggest that the beneficial aspect of the entire

microbiome should also be integrated as a biomarker.

A better understanding of the whole plant microbiome might

be important to prevent outbreak of plant diseases or critical asso-

ciation of human pathogens with plants. We have learned that

the human microbiome is much more involved in diseases than

recently thought, and that pathogen outbreaks are associated with

shifts in the entire community, including supporting pathogens

(Blaser et al., 2013). While these processes are studied for human

pathogens, much less is known about plant pathogens (Fürnkranz

et al., 2012; Ottesen et al., 2013).

Furthermore, we envision the plant microbiome as an impor-

tant source shaping other microbiomes. By the comparison of

microbiome structures, a meaningful overlap of phylogenetic

diversity can be recognized among microbiomes which are in

some way linked to each other. This may also include the human

habitat and plants. After we have received our first microbial inoc-

ulants by delivery and breast milk from our mother, our food

becomes an important source not only of nutrients, but also of

microorganisms (Blaser et al., 2013). Thus, digestive factors of

plants and their microorganisms may modulate our own “sec-

ond genome.” Observations of domestic microbiomes suggest

that they are significantly influenced by their human inhabitants

and by the surrounding vegetation (Oberauner et al., 2013). These

connections, which we conceive as links in a complex network

among microbiomes, are still little understood and need further

attention.

WHAT IS THE CONTRIBUTION OF THIS RESEARCH TOPIC?

This special issue will close some of the information gaps in

plant microbiome ecology. It includes studies about the micro-

bial diversity of yet unknown plants. In medicinal plants, the

production of bioactive plant metabolites leads to a highly

pronounced specificity in the microbiome structure (rev. in

Köberl et al., 2014). Interestingly a correlation between the

bioactive substances (drimane sesquiterpenes) and the endo-

phytic community of roots was shown for the medical tree

Warburgia ugandensis (Drage et al., 2014). Although it is

known that plant secondary metabolites play an important role

as drivers for microbial community structure, these studies

show for the first time the importance with medicinal plants.

Vice versa – Schmidt et al. (2014) could show that Chamomile

plants treated with selected Bacillus strains produced more

bioactive substances than untreated controls, thus microbes

might be able to induce production of secondary metabolites of

interest.

To better understand the significance of the plant-associated

microbiome in prevention of pathogen outbreaks several stud-

ies focused on the lettuce microbiome and connected aspects of

plant– and human health (Erlacher et al., 2014; Schreiter et al.,

2014). Erlacher et al. (2014) showed that pathogens as well as

beneficals induce a shift in the structure of the microbial com-

munity. To our knowledge, this is the first study analyzing this

background effect, which can be important for plant protection

strategies. However, also soil type was identified as important

driver of the lettuce-associated community as well as the corre-

sponding biocontrol effect (Schreiter et al., 2014). In addition,

also for lettuce plants the impact of plant secondary metabo-

lites exudated by roots in different soil types was pointed out

(Neumann et al., 2014).

Another contribution presents evidence that Escherichia coli

and Salmonella enterica infections occur due to consumption

of vegetables, sprouts, and occasionally fruits (van Overbeek

et al., 2014). The authors described a new transmission route of

pathogens via plants or products derived from plants, and defined

this process as “phytonosis”.

The role of multitrophic interactions for plant diseases and

the occurrence of the western corn rootworm were analyzed by

Dematheis et al. (2014). In addition to biotic factors, the impact of

abiotic factors on the plant microbiome was investigated. Elevated

atmospheric O3 changed the community structure of biocon-

trol active actinobacteria in the rhizosphere of European beech

(Haesler et al., 2014).

Two studies suggest members of the plant-associated

Burkholderia cluster as model to study plant-microbe interactions.

Oxalate acts as carbon source and as determinant in colonization

processes in lupins and maize (Kost et al., 2014), while nitrogen-

fixing Burkholderia populations are highly abundant in Sphagnum

bogs (Bragina et al., 2014).

Two mini-reviews focus on the interplay of microbiomes as well

as the importance of the plant microbiome for others. The con-

nection between plant and our built environment microbiome

is discussed by Berg et al. (2014), and another one highlighted

similarities between the gut and root microbiome and suggested

to transplant “healthy microbiomes” to avoid or therapy plant

diseases (Gopal et al., 2013). A step forward to understand the

plant-microbe networking was presented in the review by Hart-

mann et al. (2014). They come to the conclusion that functional

interaction studies of holobiotic plant systems, including the

plant host and its associated microbes, may result in a more

profound understanding of the complicated social network of

basic innate immune responses with specific effector molecules,

if quorum sensing compounds of endophytic bacteria are

integrated.

Overall, this issue presents new results about (i) the role

of plant secondary metabolites for the microbiome and vice

versa, (ii) health issues related to the consumption of raw-

eaten plants, (iii) the interplay of microbiomes as well as

within them and (iv) the impact of biotic and abiotic fac-

tors on the structure and function of plant-associated microbial

communities.
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