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Abstract: Lung cancer cells are well documented to rewire their metabolism and energy production
networks to enable proliferation and survival in a nutrient-poor and hypoxic environment. Although
metabolite profiling of blood plasma and tissue is still emerging in omics approaches, several
techniques have shown potential in cancer diagnosis. In this paper, the authors describe the alterations
in the metabolic phenotype of lung cancer patients. In addition, we focus on the metabolic cooperation
between tumor cells and healthy tissue. Furthermore, the authors discuss how metabolomics could
improve the management of lung cancer patients.

Keywords: lung cancer; NMR (nuclear magnetic resonance); metabolism

1. Introduction

Lung cancer is the leading cause of cancer mortality worldwide [1]. Globally there
were an estimated 2.2 million new lung cancer diagnosis and 1.8 million lung cancer deaths
in 2020. The overall survival of patients with lung cancer remains poor as most of the
patients are diagnosed at an advanced stage. Several independent randomized controlled
clinical trials confirmed the efficacy of annual low-dose computed tomography (LDCT)
screening in reducing lung cancer mortality in a high-risk population based on age and
smoking history [2]. LDCT-imaging often identifies suspicious lung lesions but cannot ver-
ify whether these are the results of benign disease or a truly aggressive malignancy, leading
to supplementary imaging techniques and invasive strategies to obtain tissue. Cancer cells
have different metabolic programs than normal cells, such as an increased consumption
of glucose and glutamine, and increased aerobic glycolysis and lipid metabolism [3–6].
Nowadays, researchers focus increasingly on the metabolic alterations of cancer cells, and
metabolomics has become a powerful emerging technology to study the biochemistry of
cancer. Metabolomics is defined as the analysis of small molecule metabolites in tissue,
plasma, and other body fluids. Currently, mass spectrometry and 1H-NMR (proton nuclear
magnetic resonance) are the major tools to analyze a large number of metabolites simulta-
neously. Metabolic alterations in cancer cells result in different metabolite concentration
levels in plasma of patients with lung cancer when compared to controls and patients
with inflammatory diseases [7–10]. Therefore, quantitative NMR metabolic profiling of
plasma has the potential to become a minimally invasive tool to explore the need for more
invasive procedures in patients with a positive suspicious screening result. Lung cancer
survival and treatment are mostly determined by the tumor, nodus, and metastasis (TNM)
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classification [11]. However, the TNM system is based on anatomic findings and does not
reflect the biochemical profile of lung cancer. As a result, the TNM classification does not
provide a satisfactory explanation for the differences of survival and therapy response in
apparently similarly staged patients. With our growing understanding of cancer biology
and advances in molecular technologies, a variety of genetic and molecular features have
been proposed as prognostic biomarkers, although the prognostic role of metabolites has
not yet been further explored in lung cancer. Prognostic models integrating metabolic
data may result in more individualized survival estimates. In addition, predictive models
may result in more efficient personalized and targeted therapeutic approaches. In this
review, the authors discuss the rewired metabolic pathways in cancer and the principles
of quantitative NMR metabolomics. Furthermore, the potential in diagnosis, prognosis,
and prediction of treatment response are highlighted. Finally, the authors summarize the
targeted treatment of lung cancer based on metabolic vulnerabilities.

2. Rewired Metabolic Pathways in Cancer

Metabolism is responsible for deriving energy and biomolecules from the cellular en-
vironment in healthy and cancer cells. Metabolic changes, driven by genetic mutations and
the tumor microenvironment, are crucial hallmarks of cancer cells [12,13]. In early experi-
ments, Otto Warburg observed that cancer cells secreted most glucose-derived carbon as
lactate, even under normal oxygen concentrations [14]. Initially, the Warburg phenomenon
was attributed to defective oxidative phosphorylation or mitochondrial biosynthesis, and
many investigators assumed that mitochondrial metabolism was a negligible contributor to
macromolecule synthesis and energy (ATP, adenosine triphosphate) production. However,
more recent data establish that most cancer cells have normally functioning mitochondria
capable of oxidative phosphorylation and biosynthesis [15,16]. Multiple studies have indi-
cated increased flux through glycolysis, and the tricarboxylic acid (TCA) cycle generates
essential metabolites for macromolecule synthesis [17,18]. In the net yield of ATP, glycolysis
is less efficient than oxidative phosphorylation. However, cancer cells adapt to this disad-
vantage by increasing the uptake of glucose and the upregulation of glycolytic enzymes
which facilitates a higher glycolytic flux [19]. In addition, it has been demonstrated that
most human cancers also produce ATP through oxidative phosphorylation [20,21]. Apart
from the production of ATP that is needed in anabolism, the glycolytic intermediates play
a pivotal role in macromolecular biosynthesis. Lung cancer cells upregulate the isoform
PKM2 of the enzyme pyruvate kinase (PK), which catalyzes the conversion of phospho-
enolpyruvate to pyruvate. This remarkable isoform has a low activity which implies the
accumulation of glycolytic intermediates that are subsequently directed into biosynthetic
pathways such as the pentose phosphate pathway (PPP), the hexosamine biosynthesis
pathway (HBP), the serine biosynthesis, and the one-carbon metabolism [4,22]. The PPP has
a pivotal role in promoting cell growth and survival by providing NADPH (nicotinamide
adenine dinucleotide phosphate), needed for fatty acid synthesis and detoxification of ROS
(reactive oxygen species), and pentose phosphate for nucleotide synthesis. The hexosamine
biosynthetic pathway is responsible for the production of the activated monosaccharide
UDP-GlcNAc (uridine diphosphate N-acetylglucosamine) This product is used as a sub-
strate in glycosylation reactions of lipids, proteins, or to generate UDP-GlcNAc-derived
monosaccharides also used for glycosylation [23]. Aberrant glycosylation, depending on
the production of UDP-GlcNAc, is considered a hallmark of cancer, and, as a consequence,
it seems reasonable to assume that the HBP is important in tumorigenesis. Complex car-
bohydrates have impact on cellular signaling and the regulation of cell–cell adhesion and
play a role in the cell–matrix interaction. As a consequence, alterations in cellular glyco-
sylation are associated with malignant transformation of cancer cells, tumor progression,
and, ultimately, metastasis formation [23–26]. One-carbon units are derived from glucose
and amino acids such as serine and glycine and generate molecules that serve as building
blocks for biosynthesis and redox reactions [27]. Furthermore, the one-carbon metabolism
has an important role in regulating substrates for epigenetic and post-translational modi-
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fications. To fulfill the high anabolic demands of cancer cells, oxidative phosphorylation
serves alongside glycolysis, and malignant cells balance between alternative pathways
for biosynthesis while maintaining a controlled influx into the TCA cycle. The evidence
of both an enhanced glycolysis and TCA cycle was demonstrated in lung cancer patients
using a labeled glucose tracer by Hensley et al. [17]. The increased uptake of glucose
and its subsequent phosphorylation, resulting from an increase in glucose transporters
(GLUT) and upregulation of hexokinase, forms the basis for positron emission tomography
(PET) imaging. Indeed, an elevated increase in GLUT transporters is seen in many cancers,
including lung cancer [28]. PET-derived parameters, such as the maximum standardized
uptake value (SUVmax), the metabolic tumor volume, and total lesion glycolysis, have been
associated with poor outcomes [29]. However, PET-derived parameters do not take alter-
native fuels, such as amino acids, into account and probably only partly explain cancer’s
biological behavior and aggressiveness. Figure 1 summarizes the metabolic alterations in
glucose metabolism in lung cancer cells as extensively described by Vanhove et al. [4].
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of purines, and glutamine-derived carbons synthesize pyrimidines and non-essential 

Figure 1. Glucose metabolic pathways emanating from glycolysis involved in lung cancer cell
metabolism. HBP (hexosamine biosynthesis), HK (hexokinase), OXPHOS (oxidative phosphoryla-
tion), PKM2 (pyruvate kinase isoform M2), PPP (pentose phosphate pathway), TCA (tricarboxylic
acid) cycle. Original figure drawn with Biorender.

A principal nutrient other than glucose, but required by proliferating cells, is glutamine,
the most abundant amino acid in the human blood. As an alternative carbon source, glu-
tamine supplies the growing cell with carbon intermediates to support energy generation
and the accumulation of building blocks [30]. Furthermore, as illustrated in Figure 2, glu-
tamine catabolism, i.e., glutaminolysis, provides nitrogen for the biosynthesis of purines, and
glutamine-derived carbons synthesize pyrimidines and non-essential amino acids. In addition,
glutamine-derived glutamate is a component of the main antioxidant factor glutathione, and
glutamine stimulates the expression of uncoupling protein 2 (UCP2) in the mitochondrial
membrane and thereby regulates substrate oxidation in the mitochondria [31,32].
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Figure 2. Glutamine metabolic pathways involved in lung cancer cell metabolism. IDH (isocitrate
dehydrogenase), OXPHOS (oxidative phosphorylation), TCA (tricarboxylic acid cycle). Original
figure drawn with Biorender.

In cells without mitochondrial dysfunction, the oxidation of glutamine is the ma-
jor source of anaplerosis, a phenomenon to replenish intermediates in the Krebs cycle
that is redirected into biosynthetic reactions. Hypoxic cancer cells and cells with dys-
functional mitochondria due to TCA cycle enzyme mutations can also provide carbon
for fatty acid biosynthesis through the reductive carboxylation of glutamine-derived α-
ketoglutarate resulting in the formation of citrate, thereby supporting the biosynthesis
of fatty acids [30]. The reductive carboxylation is dependent on cytosolic isocitrate de-
hydrogenase IDH1 and mitochondrial IDH2, catalyzing the reverse reaction of isocitrate
production from α-ketoglutarate. This process not only supports the biosynthesis of macro-
molecules but also plays a role in redox homeostasis. Jiang et al. even speculated that a
disturbance stimulates the reductive carboxylation in the mitochondrial redox ratio [33].
Impairment of the electron transport chain results in a less efficient oxidative phospho-
rylation as the NAD+/NADH (nicotinamide adenine dinucleotide) ratio decreases [33].
Transfer of reducing equivalents from NADH to NADPH by transhydrogenase may drive
the NADPH-dependent reductive carboxylation by IDH1 and IDH2. Indeed, the reduc-
tive carboxylation by IDH1 results in the production of cytosolic NADP+ and isocitrate,
while oxidation of mitochondrial isocitrate by IDH2 results in the production of NADPH
that in turn supports the oxidative phosphorylation. Indeed, glucose-derived carbon is
rather secreted into lactate during hypoxia than fueled into the Krebs cycle. However,
the carbon molecules that fuel mitochondrial metabolism in vivo are not fully understood.
Faubert et al., using labeled lactate, revealed that lactate fuels the Krebs cycle in human
lung tumors [18]. In NSCLC (non-small cell lung cancer), the evidence of lactate utilization
was most apparent in cancers with aggressive behavior and high 18fluorodeoxyglucose
(18FDG) uptake with a predominance of the contribution of lactate to the TCA cycle [18].
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This evidence suggests that measurements to assess lactate utilization might help pre-
dict oncological aggressiveness. In addition, higher expression of the lactate transporters,
monocarboxylate transporters MCT1 and MCT4, and the enzyme lactate dehydrogenase
(LDH) were documented. Unfortunately, inhibition of LDH or MCT by small molecules
has not been successful. Oversaturation of the TCA cycle results in the production of ROS,
which are detrimental to the cells [3]. Initially, ROS are advantageous to cancer cells as
they initiate DNA (deoxyribonucleic acid) mutations that promote malignant transforma-
tion and promote progression and metastasis [34]. To prevent the toxic accumulation of
ROS, cancer cells in a hypoxic nutrient-deprived environment increase their antioxidant
capacity to maintain the ROS concentration in non-lethal but stimulatory levels [16]. Both
glutamine-derived glutamate and glycine (one-carbon metabolism) contribute to redox
homeostasis as building blocks of the antioxidant glutathione. Apart from the Warburg
effect, there is compelling evidence that cancer cells have alterations in different aspects
of lipid metabolism. Most of the acetyl-CoA (acetyl-coenzyme A) used for the de novo
synthesis of fatty acids is generated from glucose via converting pyruvate to citrate in the
mitochondria. As previously mentioned, glutamine-derived α-ketoglutarate can act as a
glucose alternative to produce citrate. Malignant cells are characterized by an increase in
lipid production with upregulation of components of fatty acid synthesis [35]. Fatty acids
are important in forming lipid bilayers and altering the membrane composition towards an
increased percentage of saturated fatty acid that confers resistance to oxidative damage [36].
Furthermore, cholesterol with acetyl-CoA as an essential building block plays an important
role in regulating the fluidity and permeability of cell membranes. In addition, cholesterol is
essential in lipid raft domains that coordinate the activation of several signal-transduction
pathways [37]. Cancer cells may utilize alternative pathways other than transport to
acquire nutrients in harsh conditions such as starvation. Indeed, macropinocytosis, i.e.,
internalization of extracellular components such as, e.g., proteins, has been documented in
cancer cells expressing RAS genes during nutrient deficiency [38,39]. Last, but not least,
continuous communication between malignant and stromal cells creates a complex and
dynamic microenvironment [12]. The tumor microenvironment harbors malignant cells
and other cell types such as endothelial cells, cancer-associated fibroblasts, and immune
cells. These cells can affect cancer cell behavior by providing substrates or competition and
thus contributing to the metabolic needs of tumor cells. The complex interaction between
the metabolic rewiring of cancer cells and other hallmarks of cancer has been extensively
reviewed by Elia et al. [40].

3. Quantitative NMR Metabolomics

Although the Warburg effect provides the rationale for PET-CT, an imaging method
used to detect cancer cells, a single metabolic alteration is not sufficient to define the
rewired metabolism in lung cancer. As mentioned before, cancers also take advantage of
alternative substrates such as amino acids, e.g., glutamine and fatty acids, and in addition,
cells in the tumor microenvironment (TME) can further affect the cancer cell behavior [40].
Furthermore, the metabolic composition of the plasma becomes even more complex if
the scarcity of nutrients results in compensatory mechanisms such as degradation of
muscle proteins and adipose tissue to resupply pools of cellular metabolites. The diagnosis,
biological behavior, and prognosis of cancer are probably not associated with only one
metabolic pathway, and therefore high-throughput metabolic profiling approaches are
mandatory. Further elucidation of the metabolic reprogramming may result from large
studies that consider genetic changes and the tumor micro environment.

Metabolomics is defined as a study of chemical processes involving small molecule
substrates, i.e., metabolites, intermediates, and products of cellular metabolism. The ap-
plication of metabolomic platforms in the search for cancer biomarkers has increased
exponentially over the past decade [7,41–47]. A frequently used technique to analyze
low-molecular-weight molecules in biofluids, such as plasma, is proton nuclear magnetic
resonance (1H-NMR)-based [48,49]. Each hydrogen nucleus in a different chemical envi-
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ronment has a different, specific resonance frequency and therefore results in a signal at
a different position in the NMR spectrum. This signal position is expressed as a chemi-
cal shift (in ppm, parts per million) relative to a standard compound such as deuterated
trimethylsilyl-2,2,3,3-tetradeuteropropionic acid (TSP). Spectra of blood plasma also dis-
play broad lines of proteins and lipids that may overlay with the sharp peaks of small
metabolite molecules [50], thereby masking some metabolites’ presence. To overcome this,
some groups proposed protocols to remove these macromolecules from the biofluid [51–53].
A drawback is that such protocols are time-consuming and generally prone to low repro-
ducibility. Attenuation of the broad signals of macromolecules, without causing deleterious
effects on the signals originating from free, low-molecular-mass metabolites, by specific
NMR pulse sequences, such as the Carr–Purcell–Meiboom–Gill (CPMG) pulse sequence,
results in excellent reproducibility [54].

As demonstrated in Figure 3, NMR spectra are very crowded due to the small chemical
shift range over which the metabolite signals of the biofluids appear.

One drawback in identifying metabolites in current practice is the absence of stan-
dardized collection and measurement protocols for different biofluids. Varying chemical
shift values reported for different matrices or non-human species complicate correct signal
assignment [55–57]. In addition, the chemical shift values (peak positions) depend on
conditions such as pH, concentration, temperature, and ionic strength, resulting in less
accurate identification and quantification if not exactly replicated. A way to accurately
determine the chemical shifts of the plasma metabolite signals under the experimental con-
ditions used is by spiking plasma samples from a large plasma pool with different, known
metabolites [49]. Hereto, a small quantity of a known metabolite is added to a sample
aliquot of the plasma pool and this is repeated for all metabolites of interest. If the spiked
metabolite is present in the sample, its signal(s) will show an increase in intensity [58].
This way, metabolite spiking enables the identification of all metabolite signals, including
those most influenced by the disease. Using a standardized protocol, the NMR platform
is a very accurate, quantitative method with high analytical reproducibility. Moreover,
NMR requires little sample preparation (only buffer addition), and in contrast with other
analytical platforms, such as mass spectrometry, no extra sample preparation steps, such
as extraction of hydrophobic/hydrophilic components or chemical derivatizations, are
needed. In addition, NMR can be used to identify unknown and unexpected metabolites
and is well adapted for measuring large cohorts as a high-throughput method. The high
reproducibility and simplicity of sample preparation make NMR applicable in large cohorts
of multi-sites and longitudinal studies. Moreover, 1H-NMR is suited for high-throughput
screening as it takes only a few minutes to acquire a spectrum. However, NMR also has dis-
advantages, with the most important drawbacks being its intrinsically lower sensitivity and
signal overlap. Several approaches to improve the sensitivity, such as higher magnetic field
strengths and cryo-cooled probes and microprobes, are available. Improvement in signal
overlap can be obtained by using higher magnetic field strength NMR spectrometers. Once
acquired, NMR spectra are processed which involves phasing, baseline correction, integra-
tion, and normalization. In a next step, the spectrum is divided into multiple integration
regions of which the integration values can be used as variables in multivariate statistical
models. As described by Derveaux et al., metabolite spiking of biofluid samples results
in well-defined integration regions representing a single metabolite, or a combination of
several metabolites [49]. The primary goal in metabolomics is to extract discriminating
information from complex large datasets.
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Figure 3. (A) Shown is a 600 MHz plasma 1H-NMR spectrum of a healthy control, adapted from
Ref. [49]. A complete overview of all signals assignments based on spiking experiments can be found
in Derveaux et al. [49]. As shown in the figure, the chemical shift values are quoted in ppm and
depend on the individual chemical environment of the metabolite’s hydrogen atom. The integrated
area under the peak is proportional to the number of hydrogens and thus the metabolite’s concentration.
TSP is added as a competitive binder of human serum albumin and ensures dissociation of albumin-
bound metabolites. Together with TSP, a fixed concentration of maleate (with a sharp signal around
6 ppm) is added as a reliable internal standard to quantify the human plasma metabolites. Parts (B,C)
zoom in on the 1.2–1.5 ppm and 0.8–1.1 ppm regions of the spectrum, respectively. Clear signals of
lactate, alanine, valine, leucine, and isoleucine are highlighted as an example. As shown in (B), alanine
has a sharp non-overlapping doublet signal (1.5 ppm) that represents its methyl group and efficiently
serves as an internal chemical shift reference. Ala: alanine; Ile: isoleucine; Leu: leucine; Val: valine.
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The outcome of a multivariate analysis provides an overview of the metabolites
(variables) that are affected by the disease and thus have the potential to differentiate the
study subjects. Pattern recognition and related multivariate statistical techniques, such as
shown in Figure 4 for PCA and OPLS-DA, are applied to detect relevant patterns and to
identify metabolic signatures having diagnostic or prognostic value [59,60].

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 8 of 17 
 

 

 
Figure 4. Multivariate statistical analyses on a large lung cancer and control cohort. Principal 
component analysis (PCA, A) of the training cohort illustrates the clustering of the two groups (80 
controls, orange circles; 80 lung cancer patients, green triangles) in a study performed by Derveaux 
at al. [49]. In orthogonal partial least squares discriminant analysis (OPLS-DA, B), a regression 
model is constructed between the multivariate data and a response variable that contains class 
information (control, lung cancer). The OPLS-DA score plot in B has a specificity of 93% and 
sensitivity of 85%, meaning that 85% of all lung cancer patients are correctly classified by the trained 
OPLS-DA model (trained classifier). The high area under the curve of 0.95 of the receiver operating 
characteristic (ROC) curve of the trained classifier (C) demonstrates that the model has an excellent 
capability to distinguish between the two groups. An independent subject cohort (D) is used to 
validate the classification model. Here, validation of the OPLS-DA classifier shows a sensitivity and 
specificity of 74%. Figure adapted from reference [49], open access policy. 

Principal component analysis (PCA) is the most widely used method to reduce the 
dimensional space of the data and provides an overview of the variability in the dataset. 
PCA summarizes most variation in the dataset into a smaller number of principal 
components (PC) without a priori knowledge of the sample class, i.e., PCA is an 
unsupervised approach. Each PC is a weighted linear combination of the original 
variables, and each consecutive PC describes the maximum additional variation in the 
data that was not represented by the previous PC. PCA results are reported in score plots 
and loadings. The score plots provide an overview of all the samples, i.e., each point in 
the plot corresponds to a sample and enables the visualization of groups, trends, and 
outliers. Loading plots illustrate which variables have the most important contribution to 
the positioning of the samples on the scores plot. In this context, they are responsible for 
the observed clustering of samples as visualized in the score plot. As the directions in both 
plots correspond, the loadings can explain the clustering of the spectra on the scores plot. 
In addition, PCA plots permit to identify outliers and can be used to identify clustering 
patters and dominant variation which may not be associated with the real biological effect 
but could be associated with a secondary effect such as, e.g., diet, age, gender, and other 
diseases than aimed for such as diabetes or chronic obstructive pulmonary disease in plots 
of cancer patients.  

PCA is commonly followed by supervised techniques where class information of 
samples is used to maximize the separations between different groups of samples and 

Figure 4. Multivariate statistical analyses on a large lung cancer and control cohort. Principal
component analysis (PCA, (A)) of the training cohort illustrates the clustering of the two groups
(80 controls, orange circles; 80 lung cancer patients, green triangles) in a study performed by
Derveaux et al. [49]. In orthogonal partial least squares discriminant analysis (OPLS-DA, (B)),
a regression model is constructed between the multivariate data and a response variable that contains
class information (control, lung cancer). The OPLS-DA score plot in B has a specificity of 93% and
sensitivity of 85%, meaning that 85% of all lung cancer patients are correctly classified by the trained
OPLS-DA model (trained classifier). The high area under the curve of 0.95 of the receiver operating
characteristic (ROC) curve of the trained classifier (C) demonstrates that the model has an excellent
capability to distinguish between the two groups. An independent subject cohort (D) is used to
validate the classification model. Here, validation of the OPLS-DA classifier shows a sensitivity and
specificity of 74%. Figure adapted from reference [49], open access policy.

Principal component analysis (PCA) is the most widely used method to reduce the di-
mensional space of the data and provides an overview of the variability in the dataset. PCA
summarizes most variation in the dataset into a smaller number of principal components
(PC) without a priori knowledge of the sample class, i.e., PCA is an unsupervised approach.
Each PC is a weighted linear combination of the original variables, and each consecutive
PC describes the maximum additional variation in the data that was not represented by the
previous PC. PCA results are reported in score plots and loadings. The score plots provide
an overview of all the samples, i.e., each point in the plot corresponds to a sample and
enables the visualization of groups, trends, and outliers. Loading plots illustrate which
variables have the most important contribution to the positioning of the samples on the
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scores plot. In this context, they are responsible for the observed clustering of samples
as visualized in the score plot. As the directions in both plots correspond, the loadings
can explain the clustering of the spectra on the scores plot. In addition, PCA plots permit
to identify outliers and can be used to identify clustering patters and dominant variation
which may not be associated with the real biological effect but could be associated with a
secondary effect such as, e.g., diet, age, gender, and other diseases than aimed for such as
diabetes or chronic obstructive pulmonary disease in plots of cancer patients.

PCA is commonly followed by supervised techniques where class information of
samples is used to maximize the separations between different groups of samples and
detect the metabolic alteration contributing to this classification. Partial least square (PLS)
analysis is a supervised method that links a data matrix of predictors (Y), usually spectral
intensity values, to a matrix of responses (X) containing quantitative values. In PLS-
discriminant analysis, the response matrix is categorical, i.e., the matrix contains sample
class information such as cancer versus healthy. A preprocessing filter is combined with
PLS to remove structured noise, i.e., irrelevant parts of the spectra that are not correlated
with the response. Orthogonal partial least squares discriminant analysis (OPLS-DA) filters
this structured noise resulting from physiological variation (diet, age, gender, etc.) and
analytical variation. The horizontal-axis predictive component of the OPLS score scatter
plot captures information between the lung cancer and control group. The vertical-axis
orthogonal component describes the variation orthogonal to the predictive component and
thus captures the variation within the control and within the lung cancer groups. OPLS-DA
enhances the interpretation of the model and identifies important values responsible for the
observed classification. Loading weights, variable importance on projection, and regression
coefficients plots are used to determine the most discriminating variables. Predictability
estimates of PLS and OPLS models can be easily overfitted in studies where the number
of variables is significant and, consequently, so is the chance of high false correlations. To
estimate the ability of the model to predict the Y values of new individuals, the dataset is
split into a training and a test set (independent validation set) where the training set is used
to build the model and the test set is used to estimate the predictability. However, splitting
the dataset results in a model built with only a fraction of the dataset. This implicates
that enough participants are needed in these trials. Indeed, the significance of the results
depends on sample size. When the number of samples is low or no test set is available,
k-fold cross-validation is the primary strategy. During this procedure, a k-subset of samples
is iteratively left out and predicted back into the model until all samples have been used
once. Different quality parameters such as R2, i.e., the goodness of fit or description of the
data by the model, and Q2, i.e., the predictive ability of the model, summarize the results
of the procedure. In general, the R2 value increases with the number of components while
Q2 reaches a plateau that finally decreases with more components at a certain number. At
this point, it is very plausible that the model is trying to fit dataset characteristics that are
not representative of the study population. Validation by a permutation test is frequently
performed in models with poor Q2 values and results in a p-value that estimates the
significance of the model. In addition, a receiver operating characteristic (ROC) curve of
the training model is an important evaluation method to check the performance of the
classification model. A high area under the curve demonstrates that the model has an
excellent capability to distinguish between the different classes.

Another challenge in omics technologies is the analysis of serial samples measured at
different time points or matched samples before or after interventions. Using samples of
the same patient cohort to monitor the individual response to an intervention or treatment
implicates that these samples are paired and dependent. OPLS-DA results in a trained
model and interpretation between two sample sets [61].

Nonetheless, this method does not consider the matched or paired-sample information.
Therefore, using OPLS-DA on dependent data might result in less robust models and
potentially false negative and false positive discriminatory metabolites [62]. OPLS-effect
projections (OPLS-EP) is a novel multivariate statistical analysis strategy that allows paired
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or dependent analyses of individual effects and can be seen as a multivariate version of the
paired t-test. In OPLS-EP, an effect matrix is created by subtracting the pre-treatment data
(e.g., pre-intervention; pre-operative) from the posttreatment data (e.g., post-intervention;
post-operative) and modeled towards an identical y-response vector for all subjects. As
this matrix contains the effect of the intervention on each patient, the variation between
(predictive component) and within (orthogonal components) subjects is separated, and
intrinsic differences in treatment effect between individuals can be identified. Although the
application of 1H-NMR to lung cancer research is an emerging field, several research groups
have established a metabolic profile for lung cancer [7,8,41,45,49]. However, defining
prognostic metabolic profiles remains challenging.

3.1. Diagnosis

As demonstrated by several research groups, 1H-NMR-based metabolic profiling of
plasma can effectively differentiate lung cancer patients from controls [7,8,41]. Additionally,
profiling of plasma can effectively differentiate PET-positive benign from malignant lung
lesions [9]. Therefore, the metabolic signature might become a promising technique for
the non-invasive diagnosis of solitary pulmonary nodules. However, the translation of
metabolomics from bench to bedside remains a challenge. Indeed, there are many modifiers
of the metabolic phenotype, such as, e.g., gender, age, diseases, and many more. Therefore,
aside from a metabolic phenotype of cancer, there is also a need to define the normal
plasma metabolic profile as a point of comparison. More specifically, the normal range of
inter-and intra-individual metabolites variance needs to be defined. Metabolic profiling
has been applied to lung cancer patients and controls to identify a robust classification
model with high sensitivity and specificity by our research group. A first model by Louis
et al. of 1H-NMR-based metabolomics resulted in an OPLS-DA model that allowed correct
classification of 78% of the patients with lung cancer and 92% of controls [7].

Moreover, validation in an independent cohort demonstrated a sensitivity of 71%, a
specificity of 81%, and an AUC (area under the curve) of 0.84 [7]. Interestingly, this model
discriminated between patients with early-stage lung cancer (stage I) and a randomly
selected group of controls. Indeed, the 1H-NMR-derived metabolic profile indicated that
metabolic alterations are present even in the initial phase of cancer development. The
metabolites that contributed the most to the groups’ differentiation were glucose, glycerol,
lactate, N-acetylated glycoproteins, β-hydroxybutyrate, leucine, lysine, tyrosine, threonine,
glutamine, valine, aspartate, alanine, sphingomyelin, citrate, phosphatidylcholine, and
other non-cholinated phospholipids. In contrast with the observation of Warburg, the
plasma metabolic profile of lung cancer patients was characterized by elevated glucose and
decreased lactate levels. This finding is in line with the results of Chen and colleagues [63].
Indeed, the findings in plasma were that homeostasis serves to deliver metabolic precursors
just in time and rather mirrors the Warburg effect that originated from findings in cancer
cells [64]. Homeostasis is defined as the ability of an organism to maintain a specific
steady internal condition, such as concentrations of metabolic precursors, intermediates,
and metabolic products. This homeostatic tendency of the human body and variation
of metabolite plasma concentrations by other confounders, such as age, gender, genetic
background, health status, diet, activity levels, and diurnal variations, are even more
challenging in the development of a specific lung cancer metabolic profile with diagnostic
and prognostic biomarkers [46]. More studies on the contributions to the confounders, as
mentioned earlier, are urgently needed and will require significant technical, financial, and
human resources.

The increased plasma levels of glucose and decreased levels of both lactate and
alanine in malignant cells suggest increased gluconeogenesis as both alanine and lactate
are essential gluconeogenic precursors. Initially, lactate was considered a waste product
derived from anaerobic glycolysis. Recent work of Hui et al. and Faubert et al. revealed
that lactate is a primary fuel in the Krebs cycle. Hui et al. demonstrated that circulating
lactate contributed more than glucose in mice models of lung cancer [65]. Using labeled
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nutrients in human samples, Faubert et al. confirmed the role of lactate as a TCA carbon
source in NSCLC. More recent data reveal that lactate is used as a fuel by diverse cells in the
microenvironment under complete aerobic conditions [66]. This use of lactate by tumor cells
advantageously reserves glucose for biochemical functions such as the generation of ribose
and NADPH by the pentose phosphate pathway that other substrates cannot achieve.

Not only malignant cells convert lactate into glucose. Hepatocytes are involved
in converting lactate to glucose and releasing glucose into the bloodstream, where it
can be delivered to cells in need of fuel substrates. In addition, lactate can also act as
an inter-organ shuttle that feeds the aerobic metabolism and gluconeogenesis pathway.
In conclusion, further investigations are needed to determine the source of lactate in
circulation. High levels of glucogenic amino acids in the plasma of lung cancer patients,
such as tyrosine, threonine, glutamine, valine, and aspartate, reflect the human body’s
catabolic state. Indeed, rhabdomyolysis can contribute to maintaining a higher amino acid
pool in plasma as depletion of muscle protein mass is a commonly observed problem in
patients with cancer [67]. However, caution is needed as no consistency was obtained on the
amino acid profiles in lung cancer between different research groups [8,10,68–70]. Various
factors such as stage of the disease, nutritional status, pathological types, and genotypes
may contribute to these conflicting results. The catabolic state of cancer might be confirmed
by increased production of the ketoacid β-hydroxybutyrate and glycerol resulting from
degradation of peripheral adipose tissue in cancer patients. Glycerol is considered a
significant link between fatty acid and carbohydrate metabolism, and the molecule can
participate in both the gluconeogenesis and synthesis of lipids that are subsequently
incorporated into the cancer cell membranes. The decreased phospholipid plasma levels,
which agree with an enhanced membrane synthesis in malignant cells, underscores the
role of lipolysis of peripheral fat [35,36]. Glycolysis in lung cancer patients results in higher
production of fructose-6-phosphate, a metabolite that can branch glycolysis to enter the
hexosamine biosynthesis pathway (HBP) and results in the synthesis of glycoproteins that
play a role in regulating growth, differentiation, and metastasis [23].

As previously mentioned, the accurate identification and quantification of plasma
metabolites can be challenging in crowded regions of the NMR spectrum. The additional
value of higher magnetic field strength (900 MHz versus 400 MHz) was further explored
by Louis et al. Through the improved resolution, some overlapping regions in a 400 MHz
spectrum can be divided into multiple regions representing a single metabolite [44]. Sig-
nificantly, these single metabolite signals contribute to more accurate identification of the
discriminating metabolites and the elucidation of the underlying disturbed metabolic path-
ways. As previously described, the plasma concentration of glutamine, glucose, glycerol,
(iso)leucine, N-acetylated glycoproteins, threonine, and valine increases in lung cancer pa-
tients’ plasma samples, whereas concentrations of alanine, citrate, lactate, non-chlorinated
lipids, sphingomyelin, and phosphatidylcholine are decreased. Additionally, the 900 MHz
experiments identified and quantified the ketoacid β-hydroxybutyrate, aspartate, and
lysine that was impossible using a 400 MHz NMR-spectrometer. Despite the improved
spectral resolution, the researchers found a similar discriminative power from the model
constructed by data from both NMR spectrometers [44].

As previously mentioned, TSP is frequently used as a chemical shift and integration
standard. However, TSP binds to human serum albumin which causes fluctuations in the
chemical shift and intensity of the TSP signal. Derveaux et al. described the methyl signal
of alanine as an optimal standard to calibrate the chemical shift ppm scale, and a known
concentration of maleate as an ideal internal standard to quantify the metabolites [49]. The
lung cancer versus control classification model obtained by Derveaux et al. resulted in
better model diagnostics (specificity of 93%, a sensitivity of 85%, and an area under the
curve of 0.95) as compared to the model of Louis et al. (specificity of 92%, a sensitivity of
78%, and an AUC of 0.88) [7,49]. Similarly, the robustness of the classifier was demonstrated
in an independent validation cohort.
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In order to evaluate the potential of metabolite biomarkers for diagnosing lung cancer
and increasing the effectiveness of clinical interventions, Vanhove et al. investigated the
metabolic differences in the blood plasma of patients with suspicious lung abnormalities on
CT (computed tomopgraphy) and PET-CT [9]. A LASSO approach was introduced to avoid
overfitting the PLS-DA model to select the essential differentiating variables. In conclusion,
their results strongly suggested the role of glutamate as a selective inflammatory marker
in lung diseases. However, before possible clinical implementation, a more extensive
prospective study with external validation is obligatory, and the potential of glutamate as a
single biomarker needs to be confirmed by another analytical technique such as HPLC-MS
(high performance liquid chromatography-mass spectrometry). A similar research question
concerning ground glass opacities (a hazy increase in lung density without obscuration
of the underlying vessels or bronchial walls as seen in inflammatory and infectious lung
disorders) was investigated in a small study by Li et al. [10]. Similarly, the investigators
demonstrated early metabolic alterations differentiating between malignant and benign
ground-glass opacities. However, in contrast with Vanhove et al., the metabolic panel of
this research group, using mass spectrometry, did not detect glutamate, indicating that
further research remains mandatory.

3.2. Prognosis and Treatment Responses

Fundamental factors influencing treatment decisions are the expected prognosis, the
presence of oncogenic drivers such as, e.g., EGFR, ALK, ROS, and, more recently, the
presence of immune checkpoint molecules such as programmed death-ligand-1 [71]. The
most established prognostic factor is the tumors–nodes–metastasis (TNM) system [72].
However, the TNM classification does not provide information on the biological behavior
of the disease. In addition to the TNM classification, other factors, such as performance
status, histology, age, and gender, have been used to predict the aggressiveness of lung
cancer [73]. With the advances in molecular and genetic techniques, various features
and genetic signatures have been proposed as prognostic factors [74–76]. However, none
of them have yet been incorporated into clinical practice. Nowadays, researchers focus
increasingly on the metabolic alteration of cancer cells, and metabolomics has become
a powerful emerging technology to study cancer biology [3,41–43]. Nevertheless, the
prognostic role of metabolite biomarkers has not been further explored.

The metabolic composition of biofluids or tissue may bring vital insight to strat-
ify patients according to their responses to treatment and ultimately improve therapeu-
tic outcomes. Immune checkpoint inhibitors alone or combined with platinum-based
chemotherapy have drastically changed the first-line treatment in locoregional advanced
and metastatic lung cancer [77,78]. However, the clinical response to treatment for an
individual patient is often unpredictable, and only a small portion of patients benefit from
the platinum-based chemotherapeutic component. Therefore, identifying patients who
will respond to platinum-based chemotherapy has essential significance and may enable
physicians to avoid the risk of toxicity. Over the past decades, much effort has been made
to find diagnostic metabolic profiles in distinct cancer types [42,43,54,79]. However, studies
regarding the efficacy of systemic treatment through a metabolomic approach are rare. Cis-
platin resistance is a major problem in the treatment of lung cancer. Recently, Wangpaichitr
et al. discovered that cisplatin-resistant lung cancer cells are no longer addicted to the
glycolytic pathway but rely on a higher uptake of glutamine [80]. Activation, expansion,
and immune function of immune cells require similar metabolic pathways as cancer cells,
with a specific dependence on glycolysis [81,82]. Therefore, competition between immune
cells and cancer cells can lead to an inability to clear tumor antigens. However, glycolysis
inhibition does not negatively impact the immune function since glucose uptake is higher
in glucose-addicted cancer cells [83]. Recently Peng et al. performed a metabolomics
approach to discover biomarkers associated with the response to platinum chemotherapy
in patients with lung cancer [84]. The results demonstrated that metabolites involved in
the TCA cycle, glutamate metabolism, and amino-acid metabolism reflected the response
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of platinum-containing chemotherapy with a sensitivity and specificity of 100%. However,
considering the small number of patients, these findings need confirmation in large patient
cohorts. In addition, as immunotherapy has become a new standard of care for lung cancer
treatment, a metabolic profile predictive of response is eagerly awaited.

3.3. Targeted Treatment of Lung Cancer Based on Metabolic Vulnerabilities

The increased dependence of lung cancer cells on glucose uptake and upregulated
glycolysis provides an interesting biochemical basis for developing systemic anticancer
treatments that preferentially target cancer cells by pharmacological inhibition of glycol-
ysis. Glucose transporters and glycolytic enzymes are overexpressed in lung cancer, and
inhibition of these targets provides an attractive avenue for developing new anticancer
treatments [85]. Several inhibitors of glycolytic enzymes and transporters are in preclinical
development, yet none of them have approved status [4]. However, the extent of metabolic
reprogramming of malignant cells goes far beyond the glycolytic behavior, encompassing
nearly all metabolic routes, including glutaminolysis, lipogenesis, gluconeogenesis, the
pentose phosphate pathway, and even oxidative phosphorylation [4,30,36]. Furthermore,
several factors, such as mutations, oxygenation, and nutrient availability, contribute to the
metabolic phenotype in cancer. Therefore, the individual cancer NMR metabolic profile
documentation must be investigated to identify individual therapeutic targets. Indeed,
most metabolism-altering agents have been tested without knowing the metabolic profile.
In addition, tumoral metabolism seems heterogenic, and therefore a combination strategy
might be mandatory.

4. Conclusions

There is a tremendous need for diagnostic, prognostic, and predictive biomarkers
for cancer. Metabolomics has the potential to impact these areas of oncology, and several
research groups have described a plasma metabolite signature to identify lung cancer pa-
tients. However, the so-far-inconclusive findings underscore that translating metabolomics
from bench to bedside remains a major challenge. One of these challenges of metabolomics
is the number and chemical complexity of metabolites in plasma. Indeed, the metabolite
composition manifests both a pathological and compensatory metabolism that is also im-
pacted by age, gender, and other factors. Aside from a metabolic phenotype of cancer, there
is also a need to define the normal metabolic profile as a point of comparison. Despite the
availability of the human metabolome database, inconsistent results of metabolomic studies
underscore the importance of a robust sampling and measuring protocol. As standardized
(pre)analytical and NMR protocols become more widely available, metabolomics may play
an essential role in diagnosis and prognosis, and reveal metabolites that may be potential
targets for treatment.
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