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Abstract

Super-resolution microscopy provides direct insight into fundamental biological processes 
occurring at length scales smaller than light’s diffraction limit. The analysis of data at such scales 
has brought statistical and machine learning methods into the mainstream. Here we provide a 
survey of data analysis methods starting from an overview of basic statistical techniques 
underlying the analysis of super-resolution and, more broadly, imaging data. We subsequently 
break down the analysis of super-resolution data into four problems: the localization problem, the 
counting problem, the linking problem, and what we’ve termed the interpretation problem.

Graphical abstract

1. A GLANCE AT SUPER-RESOLUTION

Processes fundamental to life, including DNA transcription, RNA translation, protein 
folding, and assembly of proteins into larger complexes, occur at length scales smaller than 
the diffraction limit of light used to probe them (<200 nm).

For this reason, up until a decade ago, these processes were largely inaccessible to 
conventional microscopy methods. Key technical achievements by way of experiments, from 
structured illumination methods1,2 to manipulations of fluorophore photophysics,3–5 have 
peered into this previously impenetrable scale with several techniques now providing 
detailed in vivo 3D images as shown in Figure 1.6

On the experimental front, many technical challenges remain including the following: high 
density labeling; poor time resolution at the expense of high spatial resolution; challenges 
with fluorophore activation and complex photophysics; overexpression of select proteins 
altering cell homeostasis; and high light intensity, some ~104 times higher than that under 
which cells have evolved for methods such as photoactivated localization microscopy.7 

Despite these challenges, experiments have begun to resolve the spatiotemporal dynamics 
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and organization of cellular components within their native environment, revealing, for 
instance, the intricacy of yeast DNA transfer from mother to daughter cell8 and the 
stochastic assembly of chemoreceptors on E. coli’s surface.9 What is more, recent advances 
in optics have mitigated the spatial-temporal resolution trade-off providing greater in vivo 
resolution in 3D.6,10–18 Advances continue to accrue, with the latest techniques reaching 
spatial resolutions of ~1 nm and temporal resolutions on the order of μs.19

Ten years have passed since the inception of super-resolution microscopy and the variety of 
data collected has presented new modeling challenges.20 Initial data analysis methods, such 
as mean square displacement analyses, were directly motivated from the analysis of bulk 
ensemble data largely inspired by Occam’s razor. Thus, such methods did not explicitly take 
advantage of the richness of single molecule data sets such as their temporal ordering or 
even their intrinsic heterogeneity.

A large fraction of this review is devoted to later “data-driven” efforts, deeply inspired from 
the fields of machine learning and inference, and increasingly available through an array of 
open-source software,21–25 to turn the thousand-word picture provided by super-resolution 
methods into a quantitative narrative.

Here, we first review the basic physics of super-resolution methods (section 2) and tools of 
data-driven modeling (section 3). Subsequent sections tackle specific challenges present 
along the way: the localization problem (section 4), the counting problem (section 5), the 
linking problem (section 6), and what we’ve termed the interpretation problem (section 7).

2. BEATING THE DIFFRACTION LIMIT: AN INTRODUCTION

2.1. Why Fluorescence Microscopy?

Upon excitation of a sample within a specific wavelength range (the absorption spectrum), a 
fluorophore emits light at a longer wavelength (the emission spectrum). The excitation 
wave-length may be filtered away leaving behind only the emission from the fluorescent 
components. In this way, fluorescence brings improved contrast to microscopy.

The first fluorescence microscopes, developed by the Carl Zeiss company and others in the 
early 20th century, relied either on the autofluorescence of various tissues or chemical dyes 
and stains such as fluorescein.26 An important milestone in increasing the ability to 
fluorescently label a given biological structure was achieved by Coons et al. in the 1940s, 
who demonstrated that antibodies, raised to bind a specific antigen with high specificity, 
could be attached to fluorescent dyes, thus realizing a method to fluorescently label any 
antigen of interest.27 The subsequent discovery of the green fluorescent protein,28 together 
with advances in molecular biology techniques, then allowed the expression of proteins 
directly fused to fluorescent markers by the end of the 20th century.29

At the same time, the detection of the signal from single fluorophores (rather than larger 
labeled structures) was achieved by progressive improvements in instrumentation.30,31 This 
powerful combination of new advanced optical techniques with fluorescent protein tags, 
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which could be detected in live cells at the single molecule level, set the stage for a new era 
of measurements in cell biology and biophysics.18

2.2. Point Spread Functions and the Diffraction Limit

Although labeling techniques have greatly improved over the last century, fundamental 
physical reasons have limited the resolution achievable by optical microscopy. Historically, 
this resolution has been defined as the ability to distinguish two close objects.

As early as 1834, Airy derived the profile of the diffraction pattern, or point spread function 
(PSF), of a point source of radiation imaged through a telescope, now known as the Airy 
disk.32 He established that “the image of a star will not be a point but a bright circle 
surrounded by a series of bright rings. The angular diameter of these will depend on nothing 
but the aperture of the telescope, and will be [sic] inversely as the aperture”.32 More 
precisely, for a telescope of aperture a imaging at a wavelength λ, the intensity I at an angle 
θ from the optical axis, relative to the intensity I0 at the center, is given by

(1)

where x = (2π/λ)a sin θ and J1 is the first order Bessel function of the first kind. Rings 
appear at the maxima x = x1, x2, … of I(x). In the limit of small angles (i.e., θ ≈ sin θ), these 
maxima correspond to θi = λxi/(2πa). Thus, the angular diameters of the rings are indeed 
inversely proportional to the aperture a (Figure 2).

A few decades later, Abbe showed that a similar result held for optical microscopy: a point 
source imaged at a wavelength λ through a microscope objective of numerical aperture NA, 
defined as the product of the index of refraction of the medium between the objective and 
the sample, n, and the sine of the half angular aperture of the objective, θ, yields a spot of 
size d ≈ λ/2NA in the transverse direction and 2λ/NA2 in the axial direction33 (Figure 3).

Whether in astronomy or microscopy, it is the finite extent of the image of a point source 
that limits our ability to separate two objects nearby. In 1879, Rayleigh suggested a rule, 
now called the Rayleigh criterion, whereas two diffraction spots could be considered as 
resolved if their centers were further apart than the center of a spot is from its first zero in 
intensity34 (Figure 4). He emphasized that this rule was simply suggested as an 
approximation “in view of the necessary uncertainty as to what exactly is meant by 
resolution”, though this rule still remains in use today.35 In fact, it is generally agreed in 
astronomy that spots up to ~20% closer are resolvable.35

Nowadays, super-resolution imaging continues to leverage ideas and tools from astronomy, 
both on the experimental36 and analysis side.37

Even though the Rayleigh criterion may not be strictly accurate, the resolution of a 
microscope is certainly inversely correlated with the size of the diffraction spot. As this spot 
has a size of d = λ/2NA in the transverse direction and d = 2λ/NA2 in the axial direction, 
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improvements to the resolution are achieved by working at a shorter wavelength or larger 
numerical aperture.

The room for improvement from changes in the wavelength is limited by the spectrum of 
visible light, λ = 400 to 700 nm. Electron microscopy achieves a much higher, near-atomic 
resolution by operating at a pm-scale wavelength, but this comes at the cost of invasive 
sample preparations, radiation damage to the sample, and low contrast.38

The numerical aperture NA = n sin θ has also reached its practical limits: now, oil 
immersion objectives (n ≈ 1.5) with half angular apertures of more than 60° achieve NA ≈ 
1.4. Few (easy to work with) liquids have higher indices of refraction. Taking these 
improvements together, the smallest spot size that can be achieved is thus around 150 nm in 
the transverse direction and 400 nm in the axial direction (Figure 5).

2.3. Beyond the Diffraction Limit

Objects may be distinguished from one another at a subdiffraction scale by using a 
combination of methods including structured illumination, stochastic fluorophore activation, 
and basic data processing.

As an example of the latter, if we approximate the imaging system as a linear system, i.e., 
where the measured image can be obtained by applying a linear operator (e.g., convolution 
by the PSF) to the original sample (e.g., the emitter’s original intensity distribution), it is in 
principle possible to mathematically invert (“deconvolve”) the imaging operator to 
reconstruct a higher resolution image, by solving a system of linear equations. 
Unfortunately, theoretical results indicate that the performance of such an approach is 
strongly limited by noise.40,41 Nonetheless, in the context of microscopy, this idea was first 
implemented by Agard et al.42 and may achieve a 2-fold improvement.43

Furthermore, Rayleigh’s criterion does not limit the ability to determine to very high 
accuracy the position of a single point emitter. For example, the center of a single spot can 
be estimated to a precision length smaller than the size of the spot itself by fitting the 
emission pattern to a known PSF, or an approximation of it, such as a Gaussian. The central 
limit theorem then suggests that the accuracy of such a calculation should be proportional to 
the inverse square root of the number of observed photons.

By determining the approximate position of emitters over a time series of fluorescence 
images, where the low density of fluorescent markers ensured their spatial separation, 
Morrison et al. tracked the diffusion of individual low-density receptors on cell membranes, 
with a resolution of ~25 nm, well below the diffraction limit.44,45

Even as early as in 1995, Betzig suggested that such a localization strategy may be 
applicable in more densely labeled samples as well, provided that “unique optical 
characteristics” could be imparted on individual fluorophores.46 Such “unique 
characteristics” would allow distinguishing the signals arising from each of the 
fluorophores; thus, the fluorophores underlying each diffraction spot could then be localized 
with subdiffraction accuracy.46
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Betzig’s original suggestion was to discriminate certain molecules that would exhibit a 
random spread in their zero phonon absorption line width.46 However, it was instead the 
serendipitous discovery of a photoconvertible fluorescent protein, that is, a fluorescent 
protein whose emission spectrum can be modified by a light-induced chemical 
modification,47 as well as the development of optically switchable constructs based on 
organic dyes,48 that provided the critical advance toward the realization of this proposal in 
biological samples.

Briefly, the light-induced conversion of probes to a fluorescent state at a slow enough rate 
ensures that only a few probes are emitting at any given time even if the sample itself is 
densely labeled, thus generating the sparsity needed for localization in dense 
environments.3–5 Both labeling approaches were shown to be amenable to this technique: 
the approach based on fluorescent proteins was named (fluorescence) photoactivated 
localization microscopy ((F)PALM);4,5 and the approach based on organic dyes, stochastic 
optical reconstruction microscopy (STORM)3).

While this review will primarily focus on techniques that rely on the stochasticity of 
photoconversion to temporally separate the emission of different fluorophores, it is also 
possible to exploit another physical phenomenon to enforce this separation. Specifically, as 
early as in 1994, Hell et al. noted that while the diffraction limit imposes a lower bound on 
the size of excitation spots, it is possible to decrease the size of this spot by “deexcitation” 
(stimulated emission depletion, STED) of the fluorophores located on its edges.49 

Specifically, this deexcitation is carried out by alternatively exciting fluorophores within a 
small region of the sample and immediately illuminating a doughnut-shaped area around this 
region with a depletion laser, bringing the fluorophores back to their ground state. The 
intensity profile of this second region is also diffraction limited; however, given enough 
time, only the fluorophores close to the exact center of the doughnut (where the deexcitation 
intensity is zero) stay active. Measuring the fluorescence of these remaining fluorophores 
thus realizes a point spread function that is effectively smaller than the diffraction limit.

A similar approach, relying on the readout of fluorescence along thin stripes rather than 
small spots, was also developed, under the name of saturated structured-illumination 
microscopy (SSIM).2 This method relies on the observation that high spatial frequencies in 
the fluorophore distribution can be “brought back” to a lower frequency under illumination 
by a similarly high frequency pattern (i.e., by observing the beats between the two 
patterns).50 Using linear optics (structured illumination microscopy, SIM), the illumination 
pattern itself is diffraction-limited, and thus the resolution improvement of SIM is limited to 
a factor of 2 over diffraction-limited microscopy; however, the nonlinearity offered by the 
saturation method described above allows the generation of higher-frequency patterns and 
thus further gains in resolution.2

Ultimately, the fundamental basis for any of these techniques is to note that the diffraction 
limit was derived under certain “standard”, but not absolute, hypotheses: that all fluorophore 
positions must be recovered from a single image and that the signal captured depends 
linearly on the excitation. Attacking the first condition, by spreading the information across 
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multiple frames, is the approach taken by stochastic photoconversion. STED and SSIM, 
additionally, also violate the second condition, by operating in a nonlinear regime.

The large improvement in resolution afforded by structured illumination and stochastic 
activation of fluorophores, together termed super-resolution microscopy, immediately 
opened the door to a large number of discoveries. As early as in 2007, Shroff et al. 
demonstrated the ability of two-color super-resolution to resolve the relative positions of 
pairs of proteins assembled in adhesion complexes, the attachment points between the 
cytoskeleton of migrating cells and their substrates, which otherwise seem entirely 
colocalized in diffraction limited microscopy (Figure 6).51

3. DATA-DRIVEN MODELING: KEY CONCEPTS

In the previous section, we discussed the basic physics underlying super-resolution 
microscopy. Here, we frame the foundational statistical ideas necessary for a quantitative 
treatment of super-resolution microscopy data that we will use in later portions of this 
review without exhaustively reviewing all tools or aiming at mathematical rigor.

While the methods and tools presented here are often established in statistics, examples 
drawn from optical microscopy will be used to motivate the ensuing discussion. We begin 
with a high-level description of two model building approaches: forward and inverse 
methods. Forward model-building approaches, whose first step is to posit physical models 
motivated by observation and first-principles,52 are broadly used in physics and chemistry. 
By contrast to forward modeling, inverse modeling approaches or “inference” use the data to 
learn the model under some assumptions.

The list below summarizes the essence of the data-driven, inverse, methods.

Propose model(s): Models or hypotheses are proposed. This includes proposing models for 
the system of interest such as whether motion of a particle is “directed” or “diffusive” and 
models for the measurement noise–such as photon statistics–treated in greater detail in 
section 3.1.1, which affects static53–55 and dynamic22,25,56–58 quantities throughout optical 
microscopy. Models proposed can be parametric or nonparametric models (as defined in 
section 3.1.2).

Inference/Data-mining: After a model form is selected, model parameters are inferred, or 
estimated, from the data. We review both frequentist and Bayesian inference methods 
(sections 3.2.1 and 3.2.2) and refer the reader to a recent review for information theoretic 
inference schemes.59

Reject or select model(s): After a model has been parametrized, we compare the model’s 
prediction(s) and consistency with existing or new data using hypothesis testing. Often the 
model’s consistency with the data is used to compare candidate models, a topic more 
broadly referred to as the model selection problem, discussed in section 3.3.
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3.1. Deciding How to Propose Models

Models proposed often come along with assumptions about the system and its noise. These 
assumptions may be only locally valid. That is, while simple models of normal, confined, or 
directed diffusion12,60 may be valid over a small region of space or time, these models may 
not hold over the entire data set. In this case, locally valid models may be stitched or 
otherwise combined to describe the heterogeneity inherent to live cells.61–66 Indeed, 
systematic strategies for combining simpler models are an area of active research in statistics 
and machine learning67–69 that we will discuss in greater depth in section 7.3).

As a practical example, combining simple models together is important as is evident from 
single particle trajectories whose dynamics may be affected by molecular crowding,70–74 

binding,63,75–79 or active transport.80–84 While an anomalous diffusion model may appear 
more appropriate for such in vivo dynamics, normal diffusion models are often still 
warranted for such apparently anomalous diffusive processes since, for instance, temporal 
and spatial resolution now experimentally resolvable can measure short diffusive trajectory 
segments before events typically leading to anomalous diffusion become 
manifest.61,63,65,66,85–88

Once models are obtained and parametrized, models provide a mathematical framework in 
which to address quantitative questions and test basic model hypotheses.

3.1.1. Signal versus Noise—Fluorescence microscopy data sets are intrinsically noisy. 
For example, the sample may exhibit background autofluorescence, the camera may 
introduce shot noise, experimental apparatus may drift during data acquisition, and 
molecules of interest may move faster than the acquisition rate.

The importance of accounting for measurement noise inherent to optical microscopy has 
been highlighted in the recent literature.24,88–93 For instance, it is now becoming more 
widely appreciated that neglecting measurement noise in single particle tracking (SPT) can 
be mistakenly interpreted as a signature of anomalous diffusion.22

In particular, inverse approaches, where models are directly drawn from the data, strongly 
rely on criteria to distinguish signal from noise. These approaches are particularly sensitive 
to noise models,61,86,94–96 and for this reason, it is often best to simultaneously infer the 
model for the system of interest together with the noise model in a self-consistent fashion. 
The hidden Markov model that we describe in greater depth in section 3.4.1 is one such 
example.

For now, we begin with a motivating example of noise encountered in attempting to localize 
a point emitter whose true spatial location, r, is assumed to be fixed (Figure 7). An estimate 

 of the true spatial location r may be obtained, for example, as the center of a Gaussian 
PSF fitted to the 2D photon count histogram (a standard approach in super-resolution 
microscopy53–55).

A careful description of the various methods for extracting  from the data (section 4) will 
highlight how finite photon counts, camera pixelation, camera-type specific noise, and 
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background autofluorescence all contribute to the noise,54,56 and cause the estimated 
position to differ from the true molecular position by an error ε, that is,

(2)

The error ε, illustrated in Figure 7, is typically assumed, in static imaging applications, to be 
a random variable of mean zero.53,54

Beyond the type of noise that we have surveyed here that arises in inferring models from 
static structures, we briefly mention noise sources that arise from molecular motion during 
imaging such as “motion blur” or “dynamic [measurement] error”22,56 discussed in greater 
depth in sections 6.5 and 7 and illustrated in Figure 8.

Motion blur presents important theoretical challenges: (i) it complicates the task of 
localizing particles, whose localization may no longer be adequately modeled using 
temporally uncorrelated Gaussian noise22,25,54–56,58 (section 4)); (ii) it complicates linking 
localized point emitters across frames into a single particle trajectory (section 6); and (iii) it 
fundamentally alters the interpretation of kinetic data12,15,22,25,58,86,95,98–100 (section 7). As 
a more concrete example of the latter, the point emitter’s motion within a single image frame 
statistically couples measurement noise to the molecule’s thermal fluctuations,22,25,58 which 
is a coupling often ignored.54,55,60

Faster data acquisition may not necessarily reduce dynamical noise since, as is described in 
the stochastic process time series literature,101,102 improved temporal resolution comes 
hand-in-hand with increased measurement noise (section 6.5). As a result, recent literature 
has begun addressing the problem of disentangling measurement noise from thermal noise in 
high frequency (above 10 kHz) single molecule measurements.103–105

Noise is unavoidable and the mathematical frameworks we present in subsequent sections 
present principled strategies for incorporating knowledge of noise statistics into the process 
of model inference.

3.1.2. Parametric vs Nonparametric Modeling Frameworks—Once a model for 
both the system of interest and its associated noise are selected, the next step is to infer all 
model parameters. The main feature distinguishing parametric from nonparametric models is 
the number of parameters or, more precisely, how this number depends on the amount of 
data available.

Parametric methods have a fixed number of parameters, independent of the amount of 
data.106 In other words, a parametric model’s functional form, M, is prespecified and its 
parameters, θ = {θ1, θ2, ⋯, θK}, are K numbers to be determined from the data, D = {D1, 
D2, ⋯, DN}. Thus, rigid assumptions on the nature of the model are made before data is 
even considered. Despite this apparent shortcoming, parametric models also present 
important advantages: they are easily interpretable and parameters can be estimated 
“efficiently”, where efficiency is measured in terms of an estimator’s parameter variance 
relative to the Cramér-Rao lower bound (CRLB).54,107
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As an example of a parametric model, we assume that we are modeling the data as 
independent identically distributed (iid) draws from a 1D Gaussian density indexed by its 
parameters θ ≡ (μ, σ). The model, captured by the conditional probability of the data given 
the model, is

(3)

Having just selected a parametric family for p(Di|θ) we may now use the data to provide an 

estimate for θ denoted by .

The model above makes a number of implicit assumptions. For example, it assumes a priori 
that there are no statistical dependencies between measurements; noise is time-independent, 
the density of the random variables are unimodal, the mean of the random variables equals 
the mode of the distribution, etc. These a priori specifications highlight the type of rigid 
structure that is often imposed by a parametric model.

By contrast, the phrase “nonparametric model” implies that a model is not initially 
characterized by a finite, fixed number of parameters.106,108 Nonparametric methods are 
advantageous as they provide the flexibility to account for features arising in the data that 
were not a priori known. For example, if the process under consideration is characterized by 
a fixed, albeit multimodal density, where the number of modes is unknown in advance, a 
nonparametric model, such as a kernel density estimator,109 would reveal the more complex 
shape of the density characterizing the data generating process as more data becomes 
available. By contrast, a parametric approach would likely misbehave since the multimodal 
aspect of the data was not explicitly accounted for in advance.

Although nonparametric approaches are more general, they do not avoid modeling 
assumptions106,108 and infinite amounts of data do not necessarily “automatically guide one 
to the correct model”. More concretely, the iid assumption, which can be verified by 
statistical methods110–112 discussed in section 3.3), may still be incorrectly invoked by a 
multimodal (mixture) model. In particular, the “identical” aspect of iid is often suspect, as 
the distribution from which each observation is sampled may change over time due to, for 
example, drift in the alignment of optical components.

3.2. Inference

Parametric and nonparametric models alike contain parameters that we must learn, or infer, 
from the data. Here we review two approaches to parameter inference, frequentist or 
Bayesian, and we refer the reader to Tavakoli et al.59 and Pressé et al.113 for information 
theoretic approaches.

3.2.1. Frequentist Inference—The term “frequentist” in the statistics literature implies 
that there exists a fixed parameter θ responsible for generating the observations. The 
frequentist approach can be summarized as follows: (i) “probabilities” refer to limiting 
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relative frequencies of events and are objective properties and (ii) parameters of the data 
generating process are fixed (typically unknown) constants.106

Maximum likelihood is a common frequentist approach to parameter estimation and it yields 
a maximum likelihood estimate (MLE) for an unknown parameter.106,110,114

Briefly, in maximum likelihood estimation, we begin by writing down a likelihood, the 
probability of the sequence of observations given a model,

conjectured to have given rise to the these observations. For shorthand, we drop the M 
dependence such that p(D1, D2, …, DN|M, θ) = p(D1, D2, …, DN|θ). We then maximize the 
data’s likelihood with respect to the parameter vector θ associated with the posited model 
M.

For example, for iid observations where , the MLE for 
θ is

(4)

where the MLE, , maximizes the log likelihood function l(θ|D). While both the likelihood 
and its logarithm yield identical MLEs, likelihoods are typically small quantities and 
logarithms are used to avoid numerical underflow problems.

To make our example specific, suppose we want to estimate the emission rate of a 
fluorophore, r, from a single count of the number of photons emitted, n, in time interval ΔT. 
Our model assumes that all photons emitted are collected and that the number of photons 
emitted per time interval is Poisson distributed. Under these model assumptions, the 
likelihood of observing n photons given our model is

(5)

By maximizing the likelihood, eq 5, with respect to the rate, r, we obtain an estimate for the 

rate in terms of known quantities, . Any other value of r would decrease the 
likelihood of observing n photons in the interval ΔT.

3.2.1.1. Time Series Analysis and Likelihoods: Likelihood ideas readily accommodate 
time series data as they respect the natural time ordering of observation. This feature of 
likelihood methods is especially useful in treating temporally correlated observations that 
arise in tracking superresolved particles or even counting fluorophores within a region of 
interest.12,14,15,21,66,85–88,115
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For example, consider the simplified case where the data consists of a series of coordinates 
at different points in time D = {r1, r2, …, rN}. Here, the likelihood over the full joint 
distribution of the time ordered data, p(D|θ), is given by

(6)

While we’ve assumed in writing D = {r1, r2, …, rN} that the data provided positions with 
no associated uncertainty, we discuss noise in greater depth thoughout this review.

Accurately computing the likelihood and maximizing it with respect to all model 
parameters, such as all conditional probabilities that appear in eq 6, is difficult because of 
the large number of conditional probabilities that appear when N is large.110 The Markov 
assumption for first-order Markov processes, that the probability of sampling ri at time point 
i only depends on the state of the system in the immediate past (i − 1), is therefore 
commonly invoked in SPT analysis in order to reduce the number of parameters that must be 
inferred. From this point on, whenever we refer to Markov processes or the Markov 
assumption we assume they are first-order. While the validity of the Markov assumption can 
also be checked,110 there are information theoretic reasons for a priori preferring Markov 
models, discussed elsewhere.113,116

Under the Markov assumption, eq 6 reduces to the more tractable form

(7)

with the Markov process’ conditional density, p(ri |ri−1, θ), often called the “transition 
density”.

As a more concrete example for which the transition densities take specific functional forms, 
suppose the model, M, coincides with simple normal diffusion and observations are 
uniformly spaced Δt time units apart. For this example, the transition density of a time series 
measured without noise, p(ri |ri−1, θ) is available in closed-form and is a Gaussian density 
with mean ri−1 and, for standard SPT models, covariance matrix 2DΔt where D is a diagonal 
matrix of diffusion coefficients.

In more general Markovian time series models, obtaining the transition density often 
requires solving the Fokker–Planck equation associated with the posited model M for the 
model’s transition density.117,118 Since the Fokker–Planck equation may lack a closed-form 
solution, the transition density may therefore not have an analytical form adding to the 
computational cost of likelihood maximization. While it is true that individual likelihoods 
are simple, their products can become very complicated and significantly increase the 
computational burden. In and of itself that should not be a prohibitively expensive 
computational issue. However, given the size of the computational burden already needed 
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for processes such as linking algorithms, an increase due to the need to solve numerically 
elaborate likelihoods might well be the proverbial “straw that breaks the camel’s back”.

While some popular Markovian motion models arising in super-resolution trajectory 
analysis (section 7.1) admit closed-form transition densities,25,86 others do not. For this 
reason, we mention that approximating a likelihood may introduce biased parameter 
estimates which, in turn, may affect the outcome of model goodness-of-fit tests (section 3.3) 
used to check the consistency of the model with the data.

3.2.1.2. Confidence Intervals: The precision of a parameter’s MLE is quantified by the 
concept of confidence interval (or a confidence set if multiple parameters are estimated). In 
order to introduce this concept, we briefly return to the example shown in Figure 7 where we 
suppose that an emitter, fixed in space, does not photobleach. Under this circumstance, we 
repeatedly image the molecule, and for each of the N independent images measured, a 
different number of photons are collected due to the inherently stochastic emission 
properties of the fluorophore, as well as other noise sources.

As a result of these variations, different images produce different empirical PSF fits. These 
fits yield the following hypothetical estimates of a molecule’s position

For each estimated mean, , we may then compute confidence intervals at the level of 1 − α 
where α ∈ [0,1] (and where α = 0.05 is typically used, which corresponds to computing the 
95% confidence interval).

Confidence intervals are functions of the observed (random) data and the assumed model. 
Within a frequentist inference framework, the true fixed parameter either does or does not 
fall within the confidence interval106 (i.e., with probability 1 or 0 since the frequentist 
parameter is not random), but the width of the confidence interval does give an indication of 
the “quality” of the measurement. It should be noted that, despite being very useful in 
accounting for random errors, confidence intervals critically depend on the assumed model 
and can fail if this model is wrong or if undetected systematic errors exist.

In our example, one could compute the collection of confidence intervals associated with 

each of the estimates . By definition, if the data was indeed generated from the specified 
model, then a fraction 1 − α (e.g., 95%) of these confidence intervals will contain the true 
(unknown but fixed) molecular position, r.

As mentioned earlier, maximum likelihood methods are popular in part because, in the limit 
of infinite sample size, they asymptotically achieve the CRLB.54,119–121 In the non-
asymptotic regime, it is ultimately the shape and breadth of the full likelihood function 
around its maximum which provides an estimate for the quality of the MLE.
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3.2.1.3. Other Frequentist Estimators: Maximum likelihood is not the only type of 
frequentist method. Among other frequentist methods, we can mention least-squares 
regression53 which reduce to maximum likelihood under the assumption of Gaussian 
uncorrelated noise, generalized moment-type methods110 (which match select model 
moments to the data), and general least-squares (which minimize the distance of a 
parametrized function from the data).

While typically less efficient (as measured by the CRLB) than likelihood maximization,110 

both moment and least-squares methods can be attractive, because computing the exact 
likelihood can be complicated or intractable in some models since the full joint distribution 
may not be known or easily computable. Hence, an approach only requiring specification of 
a few moments or minimizing the distance to a parametric function may be preferred.

3.2.1.4. Fundamental Assumptions of Frequentist Inference: We end this section on 
frequentist inference with a note on the assumption that the parameter to be inferred is 
“fixed”. While this may appear as an advantage, heterogeneity inherent to live cells may 
require the assumption of having a single fixed parameter vector describing all data to be 
relaxed.

What is more, in live cell super-resolution applications, in vivo conditions can never be 
exactly reproduced and thus each experiment is never a true iid draw as described in our 
hypothetical example used to illustrate the confidence interval concept.

This being said, a collection of point parameter MLEs can still be useful in quantifying live 
cell heterogeneity. For example, once the MLE of an assumed model and data set are 
obtained, this MLE can be used to verify the model’s consistency with the data. If the model 
is deemed consistent, the MLE can be used to compute a theoretical CRLB or to simulate 
new observations in order to compute “bootstrap estimates” of the MLE parameter’s 
confidence interval.106,122 The simplest indication of heterogeneity would then be suggested 
by nonoverlapping confidence intervals.

3.2.2. Bayesian Inference—Bayesian methods, now widely used across 
biophysics,61,65,96,123–127 are defined by the following key properties:106 (i) a probability 
describes a degree of belief, not a limiting frequency, (ii) distributions for parameters 
generating the data can be defined even if parameters themselves are fixed constants, and 
(iii) inferences about parameters are obtained from “posterior probability” distributions.

While frequentist methods yield parameter “point estimates” or MLEs, Bayesian methods 
return a full distribution over unknown parameters (the posteriors) for the same amount of 
data. Because the posterior is a joint distribution over all parameters, it can also quantify 
relationships between parameters. Therefore, while frequentist methods treat the data as a 
random variable, Bayesian methods treat data in addition to model parameters, as random 
variables.128

In frequentist reasoning, the likelihood played a central role. By contrast, in Bayesian 
inference, it is the posterior, p(θ|D, M). That is, the probability of the model parameters 
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having considered the data (and the model’s structure, M). Again, for shorthand, we drop the 
M dependence of the posterior.

We can construct the posterior using the likelihood as well as the prior over the model, p(θ), 
by invoking Bayes’ theorem as follows

where p(D) is obtained by normalization from

(8)

where p(D, θ) is the joint probability of the model and the data.

For parametric models, the integral in eq 8 represents an integration over the model’s 
parameters. However, for multiple possible candidate models, we first need to sum over all 
models and, subsequently, integrate over their respective parameters.

We may even compare models, say Ml for different values of l selected from a broader set of 
models M by integrating over all parameters assigned to that model

(9)

Then marginal posteriors, p(Ml|D), across different l’s can be compared to select between 
different candidate models irrespective of their precise parameter values.124

For an increasing number, N, of data points, the likelihood function itself dictates the shape 
of the posterior distribution. Thus, a proper choice of likelihood function, even in Bayesian 
inference, is critical (Figure 9).

3.2.2.1. Priors: Parameter estimates obtained by maximizing a posterior generally converge 
to the MLE in the limit of infinite data108 (Figure 9). However, with finite data sets, faced in 
all data-driven modeling efforts, the prior can cause Bayesian and MLE estimates for 
parameter values to differ substantially (with Bayesian parameter point estimates coinciding 
with the maximum of the posterior distribution). This suggests that, for scarce data, a 
judicious choice of prior is important.

An extreme realization of limited data is found in traditional statistical mechanics where a 
(canonical) distribution over arbitrarily many degrees of freedom for particles follows from 
just a single point observation (the average energy) with vanishingly small error.113,129,130 

While more data is typically assumed available in biophysics, data may still be quite limited. 
For example, in single particle tracking, individual tracks may be shortened due to 
photobleaching or by having particles move in and out of focus.61 Priors can be tailored to 
address many issues arising from data sparsity thereby conferring an important advantage to 
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Bayesian methods and, in particular, the analysis of super-resolution data. For this reason, 
we discuss two different prior types: informative and uninformative.128,131

3.2.2.2. Uninformative Priors: The constant, uniform prior, inspired by Laplace’s principle 
of insufficient reason for mutually exclusive hypotheses, such as coin flips, is the simplest 
uninformative prior.

For a prior, p(θ), constant over a reasonable range, the likelihood and posterior have 
precisely the same dependence on model parameters, θ,

(10)

As a result, in this simple case, the likelihood can be treated as a model posterior.

A counterintuitive implication of assuming uninformative priors follows from the 
observation that uniformity of a prior over a model parameter, say θ, implies some structure, 
and thus knowledge, on the distribution of a related variable, say eθ.128 Conversely, if we 
assume that the variable eθ is uniform on the [0, 1] interval, the variable θ is concentrated at 
1.

This problem is addressed by invoking priors invariant under coordinate transformations, 
such as the Jeffreys prior,132–134 which is sometimes used in the biophysical 
literature.135–138

3.2.2.3. Informative Priors: Bayes’ theorem, the recipe by which priors, p(θ), are updated 
into posteriors, p(θ|D), upon the availability of data, directly motivate another prior form.

Specifically, if we insist that priors and posteriors be of the same “mathematical form”, then 
the form of the likelihood sets the form of the prior. Such a prior, which when multiplied by 
its likelihood generates a posterior of the same form as the prior, is called a conjugate prior.

An immediate advantage of using conjugate priors is that, when additional independent data 
(say D2 beyond D1) are incorporated into a posterior, the new posterior p(θ|D2, D1), 
obtained by multiplying the old posterior, p(θ|D1), by the likelihood, is again guaranteed to 
have the same form as old posterior and the prior

(11)

Priors, say p(θ|γ), may depend on additional parameters, γ, called hyperparameters distinct 
from the model parameters θ. These hyperparameters, in turn, can also be distributed 
according to a hyperprior distribution, p(γ|η), thereby establishing a parameter hierarchy.

As a specific example of a parameter hierarchy, an observable (say the FRET intensity) can 
be function of the state of a protein, which depends on transition rates to that state (model 
parameters), which, in turn, depends on prior parameters (hyperparameters) determining 
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how transition rates are assumed to be a priori distributed. We will see examples of such 
hierarchies in the context of later discussions on nonparametric Bayesian methods (section 
3.4).

We illustrate the concept of conjugacy by returning to our earlier single emitter example. 
The prior conjugate to the Poisson distribution with parameter λ, where λ plays the role of 
rΔT (eq 5), is the gamma distribution

(12)

which contains two hyperparameters, α and β. After a single observation of n1 emission 
events in time ΔT, the posterior is

(13)

while, after N independent measurements, with D = {n1, ⋯nN}, we have

(14)

Figure 9 illustrates both how the posterior is dominated by the likelihood provided N is large 
and how an arbitrary hyperparameter choice becomes less important for large enough N.

Single molecule photobleaching provides yet another illustrative example64 and allows us to 
introduce the topic of inference of a probability distribution relevant to our later discussion 
on Bayesian nonparametrics.

Here we consider the probability that a molecule has an inactive fluorophore (one that never 
turns on), a basic problem facing quantitative super-resolution image analysis.139 Let θ be 
the probability that a fluorophore is active (and detected). Correspondingly, 1 − θ is the 
probability that the fluorophore never turns on. The probability that y molecules among a 
total of n molecules in a complex turn on is then binomially distributed

(15)

Over multiple measurements (each over a region of interest with one complex having n total 
molecules) with outcome yi, we obtain the following likelihood:

(16)

Lee et al. Page 17

Chem Rev. Author manuscript; available in PMC 2017 June 28.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



One choice for p(θ) is the beta distribution, the conjugate prior to the binomial

(17)

whose multivariate generalization is the Dirichlet distribution, which can be further 
generalized to the infinite-dimensional case (the Dirichlet process) that we will revisit on 
multiple occasions.

By construction (i.e., by conjugacy), our posterior now takes the form of the beta distribution

(18)

Given these data, the estimated mean, , obtained by maximizing this posterior, called the 
maximum a posteriori estimate, is now

(19)

which is, perhaps unsurprisingly, a weighted sum over the data and prior expectation (the 
first and second terms, respectively, on the right-hand side).

Conjugate priors do have obvious mathematical appeal and yield analytically tractable forms 
for posteriors (eq 18), but they are restrictive. Numerical methods to sample posteriors, 
including Gibbs sampling and related Markov chain Monte Carlo (MCMC) methods,140,141 

continue to be used64 and developed142 for biophysical problems and have somewhat 
reduced the historical analytical advantage of conjugate priors. However, the advantage 
conferred by the tractability of conjugate priors has turned out to be major advantage for 
more complex inference problems such as those involving Dirichlet processes (section 3.4).

3.2.2.4. Credible Intervals: The analog of a frequentist confidence interval is a Bayesian 
credible interval. Likewise in higher dimensions, the Bayesian analog of the confidence set 
is the credible region. A Bayesian 1 − α credible region is any subset of parameter space 
over which the integral of the posterior distribution probability is equal to 1 − α.143 For a 
more concrete 1D example, suppose that we compute the posterior over a 1D Gaussian 
random variable. The probability of the Gaussian’s mean parameter falling between a given 
lower bound a and upper bound b would be the area of the posterior density over [a, b]. Any 
interval having a probability of 1 − α is a valid 1 − α credible interval.

3.3. Reject or Select Model Based on Empirical Evidence

3.3.1. Frequentist Goodness-of-Fit Testing—Before physically interpreting models, 
we should verify whether various model assumptions are consistent with the data. Checking 
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a model’s distribution, and its implied statistical dependencies, against measured data falls 
under the category of “goodness-of-fit tests”.106,114,144

3.3.1.1. Example of Goodness-of-Fit Testing for iid Random Variables: A classic 
example of a goodness-of-fit test is the well-known Kolmogorov–Smirnov (KS) test,144 

which we describe here. We assume that N iid samples of a scalar random variable X are 
drawn from an unknown distribution F. The empirical cumulative distribution function 

(ECDF) is defined as  where IA is the indicator function of event A. 
That is, the ECDF evaluated at v is the fraction of times the random variable was equal to or 
less than v.

In the classic KS framework, the statistical model assumes a known distribution F0. The KS 
test checks the null hypothesis, H0: F = F0 against the alternative hypothesis Ha: F ≠ F0. To 
decide between hypotheses, one computes the “test statistic” for iid samples 

. If TN is greater than a critical value (determined for any 
desired test accuracy144) one rejects the null hypothesis and places less confidence in the 
model. From a frequentist point of view, the test can be understood as follows: if we 
generate samples of size N from the distribution F0, their ECDF will typically not match the 
cumulative distribution function (CDF) of F0 exactly but will be at some “distance” (as 
quantified by the KS test statistic) from it; we then ask, how likely is it that this distance is 
as large as the one computed for our data set? If such a large distance occurs with a 
probability less than α, then the null hypothesis is rejected.

As we will discuss in section 3.3.4, more complex models will tend to fit the data better. The 
KS test does not penalize a model for complexity in any way, it simply checks for 
consistency of a model’s distribution against the empirically observed data. This should be 
contrasted with model selection criteria (section 3.3.4) which attempt to balance model 
complexity and “predictive scores” (such as the likelihood).114

3.3.1.2. Goodness-of-Fit Testing in Time Series Analysis: The basic idea behind the KS 
goodness-of-fit test has been extended to multivariate random variables and to random 
variables exhibiting time dependence (i.e., time series).111,112

While many other goodness-of-fit tests, including the chisquare and Cramér-von Mises 
tests,144 exist, here we briefly illustrate how the ideas behind the KS can be generalized to 
time series data. We consider the case of scalar time series data D = {r1, r2, … rT }.

If a Markovian model, with prespecified parameter vector θ0, is assumed, we can introduce 
the Rosenblatt transform145 also known as the “probability integral transform” (PIT)111,112 

defined by  dx for observation i.

The sequence of Zi’s is now iid, despite the fact that the sequence was derived from a time 
series exhibiting statistical dependence or possibly even nonstationary behavior.86,111 All of 
the same tests used for iid variables, such as the KS test above, can be invoked to test the 
consistency of the model θ0 with the data.
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While we have discussed a scalar Markovian time series, the PIT can be extended to 
multivariate non-Markovian series provided the joint density (i.e., the likelihood) can be 
accurately computed.111,112

Goodness-of-fit testing readily apply to 3D trajectories of particles. For instance, in recent 
work on mRNA motion in the cytoplasm of live yeast cells,86 goodness-of-fit testing was 
used to reject the hypothesis that time series coordinates are statistically independent. This 
rejection ultimately motivated new spatiotemporally correlated models as well as new 
models for measurement noise that identified novel kinetic signatures of molecular motor 
induced transport.86

3.3.2. Bayesian Hypothesis Testing—Previously, we demonstrated how goodness-of-
fit testing could be used to verify the consistency of a model’s statistical assumptions against 
the data. Such an absolute consistency check on a model’s specific parameter values is 
accomplished by formulating hypotheses or “events” such as, H0: θ = θ0 and H1: θ ≠ θ0. 
Events can also be something with more of a “model comparison flavor”, such as H0: θ = θ0 

and H1: θ = θ1.

Here we consider the case where the model M is fixed and we test H0: θ = θ0 and H1: θ ≠ 
θ0. In this type of binary testing, the Hi are events such that individual event probabilities 

sum to one, . The posterior probability of the null, H0, hypothesis is

(20)

(21)

where the integral in the denominator is an integral over all θ ≠ θ0.

While generalizing the ideas here to test multiple hypotheses is straightforward,114 it is the 
selection of priors and choice of models that makes Bayesian hypothesis testing technically 
complicated.106 To be more specific, eq 21 selects between values of the parameters θ of a 
single model but does not, in itself, provide information on whether the model itself is 
correct at all (and thus whether this selection is meaningful).

Before discussing model selection in greater depth (section 3.3.4), we now briefly describe 
an important model, the hidden Markov model (HMM), that motivates modeling approaches 
used across biophysics146 that we will revisit on multiple occasions.

3.3.3. Hidden Markov Models—HMMs146–149 have been used so far in a number of 
problems, chief among them force spectroscopy and single molecule FRET (smFRET) data 
analysis.149–155
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To introduce the HMM, we begin by considering a sequence of observations D = y = {y1, y2, 
…, yN} and assume that these give us indirect information about the “latent” or hidden states 
(variables) si at every time point i, that alone describe the system dynamics. Hidden states 
and observations are then related by the probability of making the observation yi given the 
state of the system si, p(yi|si) assuming observations are uncorrelated in time.

The HMM then starts with a parametric form for p(yi|si) (the emission probability), the 
number of states K, and the data D. From this input, the HMM infers the set of parameters, 
θ, which includes (i) the “emission parameters” that parametrize p(yi|si), (ii) initial state 
probabilities, and (iii) the transition rates, i.e., transition probabilities p(si|sj) for all (i, j) 
pairs, that describe the jump process between states assumed Markovian.

In discrete time, the likelihood used to describe the data for an HMM model is

(22)

where s = {s1, …, sN} and i is the time index.

In general, we are not interested in knowing the full distribution p(y, s|θ); instead we only 
care about the marginal likelihood p(y|θ) which describes the observation probability given 
the model, no matter what state the system occupied at each point in time. In other words, 
since we do not know what state the system is at any time point, we must sum over the si.

The HMM itself can be represented by the following sampling scheme

(23)

That is p(s1) is the distribution from which s1 is sampled. Then for any i > 1, p(si|si−1) is the 
conditional distribution from which si, conditioned on si−1, is sampled, while its observation 
yi is sampled from the conditional p(yi|si, θ).

We then maximize the likelihood for this HMM model, eq 22, over each parameter θ. 
Multiple methods are available to maximize HMM-generated likelihood functions 
numerically.156 Most commonly, these include the Viterbi algorithm149,157 and forwar–
backward algorithms in combination with expectation maximization.147,158

3.3.3.1. Aggregated Markov Models: Aggregated Markov models (AMMs)159–161 are a 
special case of HMMs where many hidden states have identical output. For instance, for 
Gaussian p(yi|si), two or more states have identical Gaussian means.
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This special category of HMMs was introduced to biophysics in the analysis of ion-channel 
patch clamp experiments159,162–164 where the number of microscopic channel states 
exceeded the typically binary output of patch clamp experiments. Since then, AMMs have 
also been successfully applied to smFRET, where a low FRET state may also arise from 
different microscopic states (e.g., blinking of fluorophore photophysics or an internal state 
of the labeled protein)151 and, recently, to address the single molecule counting problem 
using super-resolution imaging data.21

In AMMs, experimentally indistinguishable states are lumped together into an “aggregate of 
states” belonging to an “observability class”, say “bright” and “dark” in the case of 
smFRET.

Limiting ourselves, for simplicity, to just two aggregates, 1 and 2, we may write a rate 
matrix Q as follows

(24)

The submatrices Qij, describe the transitions from aggregate i to aggregate j and the kl 
element of Qij describes transitions from the microscopic state k in aggregate i to 
microscopic state l in aggregate j.

AMMs are subsequently treated in much the same as HMMs. That is a likelihood is 
constructed and maximized with respect to the model parameters. In continuous time and 
ignoring noise, the likelihood of observing the sequence of aggregates D = {a1, a2, …, aN} is

(25)

where the ith element of the column vector, , represents the initial probability of being in 
state i from the a1 aggregate and

(26)

The row vector, 1T, in eq 25, is a mathematical device used to sum over all final microscopic 
states of the aggregate, aN, observed at the last time point as we do not know in which 
microscopic state the system finds itself in within the Nth measurement.

Just as with HMMs, the θ parameters include all transitions between microscopic states 
across all aggregates as well as initial probabilities for each state within each observability 
class and any emission parameters used. As there are fewer observability classes in AMMs 
than there are microscopic states, many parameters from AMMs may be unidentifiable165 

and thus may need to be prespecified.
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AMMs and HMMs can be generalized to include the possibility of missed (unobserved) 
transitions21,166 – for instance when transitions happen on time scales that approach or 
exceed the data acquisition frequency–and can readily apply to discrete or continuous time.

One fundamental shortcoming of either HMMs or AMMs is their explicit reliance on a 
predetermined number of states. This is true of many modeling strategies that predetermine 
the model “complexity”.

The next section on model selection addresses the challenge of finding the model of the right 
complexity.

3.3.4. Model Selection—We assume that models under consideration have passed tests, 
ensuring the interpretive value of the model, and that we are interested in selecting the best 
(or preferred) predictive or descriptive candidate model among these without excessively 
overfitting.114

Here we review the basic ideas behind well-established model selection criteria that can be 
naively described as finding the best model by balancing a “predictive component” (often 
quantified by a likelihood) and a “complexity penalty” (often quantified by a function of the 
number of parameters in a model).

In this article, we do not review cross validation type techniques for accessing the predictive 
ability of models. In cross validation some fraction of the data is kept in reserve in order to 
see how the prediction performs. Cross validation is used mostly in “man supervised 
learning” applications, for example “deep learning” of gigantic labeled color image data 
sets. With such data sets we often have a good idea of what the ground truth is. In super-
resolution image analysis the genuine “ground truth” is much harder to come by, except in 
simulations.

3.3.4.1. Information-Theoretic Model Selection Criteria: While many information 
theoretic methods exist167–169 and have recently been reviewed elsewhere,59 here we focus 
on the Akaike Information Criterion (AIC).170–173 The AIC starts from the idea that, while it 
may not be possible to find the true (hypothetical) model, it may be possible to find one that 
minimizes the difference in the “information content” between the true (hypothetical) model 
and the preferred candidate model. The preferred model should provide a good fit to existing 
data, the training set, and provide predictive power on alternate data sets, the validation set.

While the derivation of the AIC is involved,59,114 the AIC expression itself is simple

(27)

where  denotes the MLE of a given model.

Minimizing the AIC, which is equivalent to maximizing the likelihood subject to a penalty 
on parameter numbers, K, generates the preferred model. The AIC itself is an asymptotic 
result valid in the large data set limit though higher order corrections exist.114 The penalty 
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term, 2K, is derived, not imposed by hand. Also, as we will see, it is a weaker penalty than 
that of the Bayesian information criterion that we now describe.

As a concrete example, suppose goodness-of-fit testing cannot rule out the possibility that 
the model itself is an undetermined sum of exponentials obscured by noise. The AIC would 
then be used to find the number of exponential components required without overfitting the 
data. Additional examples motivated from the biophysical literature are provided by 
Tavakoli et al.59

3.3.4.2. Bayesian Information Criterion: While the mathematical form for the Bayesian 
(or Schwartz) information criterion (BIC)174 used in model selection, that we will see 
shortly, may appear similar to the AIC, eq 27, it is conceptually very different. It follows 
from Bayesian logic with no recourse to information theory.59,114,175–177 As before, the 
derivation itself is involved and discussed in detail in Tavakoli et al.59

Unlike the AIC, the BIC searches for a true model173,178 that exists regardless of the number 
of data points N available used to find this model. That is, the model itself is assumed to be 
of fixed, albeit unknown, complexity, by contrast to the AIC which seeks an approximate 
model and is therefore more willing to grow the model complexity along with the size of the 
data set, N, available.

Briefly put, the BIC starts from a posterior for a model class with a fixed number of 
parameters, K, just as we had seen with our exponential example earlier. Following the logic 
of eq 9, we consider the average posterior that comes from summing over parameter values 
for each of the K parameters generating a marginal posterior.

If a candidate model contains too many parameters, then many of these parameters 
(integrated over all values that they can be assigned) will result in a small marginal posterior 
for that particular parameter number. By contrast, if too few parameters are present in the 
posterior, the model itself will be insufficiently complex to capture the data, and this will 
also yield small marginal posteriors.

From this logic follows the BIC

(28)

which differs from the AIC, eq 27, in the complexity penalty term (second term on the right-
hand side).

While the logic underlying both AIC and BIC is different, both AIC and BIC are used 
interchangeably in practice, and their performance is problem-specific59 (Figure 10). For 
instance, since the AIC tends to overfit small features it may underperform for slightly 
nonlinear models (which may have fewer parameters) and that may be obscured by noise but 
may be preferred for highly nonlinear models (with a correspondingly larger number of 
parameters) as small features may no longer be due to noise.172
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3.4. Overview of Bayesian Nonparametrics

Bayesian nonparametrics is a relatively recent (1973) approach to statistical modeling179 

that fundamentally integrates the model selection step into the model-building process. In 
other words, it builds models whose complexity reflect that of the data.179–181 This is 
especially important to super-resolution and, more broadly, single molecule data analysis, as 
few model features, such as the number of states in an HMM, are initially known.

As we previously discussed, nonparametric approaches do make parametric assumptions. 
For instance, a particular nonparametric model may assume that measurements are iid. 
However, beyond these parametric constraints, nonparametric approaches allow for a 
possibly infinite number of parameters.

3.4.1. Dirichlet Process—The prior process, the analog of the prior used in parametric 
Bayesian inference, is of major importance in Bayesian nonparametrics. The most widely 
used of these processes is the Dirichlet process (DP) prior,179 along with its various 
representations,67,68,182 such as the “Chinese restaurant” process and the stick-breaking 
construction.181,183

Just as a prior in parametric statistics samples parameter values, the DP samples probability 
distributions. Probability density estimation,184 clustering,185 HMMs,183 and Markovian 
switching linear dynamical systems (SLDS),68 have all been generalized to the 
nonparametric case by exploiting the DP.

We introduce the DP with a parametric example and begin by considering probabilities of 
outcomes, π = {π1, π2, …, πK} with Σk πk = 1 and πk ≥ 0 for all k, distributed according to 
a Dirichlet distribution, π|α ~ Dirichlet (α1, …, αK). In other words

(29)

The Dirichlet distribution is conjugate to the multinomial distribution.

To build a posterior from the prior above, we introduce a multinomial likelihood with 
populations n = {n1, n2, …, nK} distributed over K unique bins

(30)

The resulting posterior obtained from the prior, eq 29, and likelihood, eq 30, is now
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(31)

The multinomial shown above is a starting point for many inference problems. For example, 
eq 31 may represent the posterior probability of weights in mixture models, such as sums of 
Gaussians, and is used in clustering problems.184

To be more specific, the finite mixture model can be represented using the following 
sampling scheme with yi denoting the ith observation

(32)

Here si is the (latent or unobservable) cluster integer label, F(·) is a distribution governing 

the yi random variables assigned to cluster  parametrizes F and the prior over the 
unobservable ’s are governed by the so-called “base distribution” H.184

Equation 32, formalizes the logic that if a model is a sum of Gaussians (i.e., a sum of 

, with each component indexed si with parameters , we draw an observation by 
first selecting a mixture component (according to the weight of each component, 
multinomial(π1, … πK)) and subsequently sampling a value from that particular mixture 
component (i.e., a Gaussian).

In the absence of prior knowledge on the expected mixture components, we set all αk to α/K 
and, under these assumptions, we can write down the probability of belonging to cluster (or 
mixture component) j184

(33)

where nj is the number of observations assigned to cluster “j” and .

The DP is the infinite dimensional (K → ∞) generalization of the Dirichlet prior 
distribution and is used in infinite mixture models.184 In infinite mixture models, the prior 
probability of occupying a pre-existing mixture components is

(34)
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whereas the probability of creating a new component is

(35)

Before moving forward, some comments are in order. When doing classic finite mixture 
modeling, we needed to predefine the number of mixture components, K. Each K 
component has a prior probability given by eq 33; if we change K (and as a result change the 
yi cluster assignments), one is faced with a model selection problem. In the DP mixture 
model, the data determines the number of active clusters/states as well as the parameters 
needed to describe the data in an à la carte fashion within a single Bayesian posterior.

In both finite and infinite mixture models, the quality of the clustering strongly depends on 
the base distribution, H, since this distribution governs the θ which determines the similarity 
(or dissimilarity) between the probability distributions, F(·), associated with different 
clusters.

3.4.1.1. Infinite Mixture Models: Previously, in eq 32, we showed how to sample a priori 
mixture weights for finite mixture models. For infinite mixture components, we may 
combine the first two as well as the last two expressions of eq 32 and obtain

(36)

where α is the “concentration parameter” quantifying the preference for creating new 
clusters184 while H is a judiciously selected68,179,186 “base distribution” that plays the same 
role here as it did for finite mixture models in setting θk. G is the DP’s sample and it is a 
random distribution that can be represented as follows

(37)

where the Kronecker delta, , denotes a mass point for parameter value θk 67,187 and F*G 
denotes

(38)

It can be shown that the mean of the random distribution G is given by and its 
variance is (H(1–H))/(α + 1).108 Thus, as α increases, G approaches H. Hence the 
concentration parameter can be thought of as constraining the similarity between G and H.

Lee et al. Page 27

Chem Rev. Author manuscript; available in PMC 2017 June 28.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



While we have just described infinite mixture models, we have not yet described how to 
draw samples from the DP. DP itself is often represented by the “stick-breaking 
construction” which is easily implemented computationally182

Following this procedure, we find that G ~ DP(α, H).108

The analogy to stick-breaking here is motivated by imagining that we begin with a stick of 
unit length. We break it at a location, v1, sampled from a beta distribution v1 ~ beta(1, α). 
We set π1 = v1. The remainder of the stick has length (1–v1). We then assign to π1 a value 
of θ1 sampled from H and reiterate to get π2, so the πk are all sampled according to the 
stick-breaking construction. In practice, we terminate the stick breaking process when the 
remaining stick length falls below a prespecified cutoff. In the statistics literature, the 
resulting distribution for π is known as the Griffiths–Engen–McClosky (GEM) 
distribution.188

The DP powerfully generalizes previously finite models, such as the hidden Markov 
model,67 ubiquitously used across single molecule biophysics189 that we discuss in greater 
depth in section 7.3.2.

4. THE LOCALIZATION PROBLEM

The localization problem is the first step in the analysis of a super-resolution data set and 
involves finding the position of a fluorescent molecule, x0 = (x0, y0), from an image I. The 
image itself is thought of as a matrix, whose elements describe individual intensities at each 
pixel.

In order to localize a fluorophore, we must have a model describing the expected mean 
number of photons per frame in pixel x given the fluorophore location at position x0, λ(x; 
x0). Typically, λ(x; x0) is given by the point spread function of the imaging system. The 
intensity at each pixel at location x is itself distributed randomly, according to a distribution 
p(I(x)|λ(x; x0)), due to shot noise and readout noise.

We begin by describing readout noise (section 4.1) and follow with a discussion on 
identifying “regions of interest” (ROIs) containing fluorophores (section 4.2). Once 
positively identified, we draw from our discussion on maximum likelihood in order to 
describe inference frameworks used in localization in section 4.3. While theoretically 
attractive, maximum likelihood methods may be computationally expensive and require 
good noise models to outperform simpler approaches. For this reason, we describe 
performance criteria of localization methods ultimately used to judge whether the 
computational cost of a method is warranted in section 4.4. Sections 4.5 and 4.6 describe 
simpler localization strategies, including least-squares fit. Subsequent sections tackle 
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generalizations of the methods discussed thus far: 3D super-resolution in section 4.7, 
simultaneous fitting of multiple emitters in section 4.8, and deconvolution-style approaches 
in section 4.9. Finally, we end with a note on drift correction in super-resolution (section 
4.10) without which the best localization methods are of limited value.

4.1. Readout Noise in Single Molecule Experiments

Intuitively, one can expect photon shot noise to be partly responsible for reducing the 
accuracy of localization methods. Indeed, localization must be achieved with few photons 
per frame as the total photon budget of most fluorophores, meaning the number of photons 
collected before the fluorophore undergoes irreversible photobleaching, is limited to 
hundreds or thousands of photons.4,190 While greater brightnesses can be achieved by using 
quantum dots as fluorescent markers,191 they remain more challenging to deliver into cells 
and present toxicity concerns.192

Perhaps more unexpectedly, accurate localization also requires a model describing how a 
fluorophore’s emitted photons are converted into a camera readout. For instance, at a given 
illumination level, assuming an average number of photons strike the sample per frame per 
unit area, one may naively expect the camera’s readout at a given pixel, I = I(x), to be a 
Gaussian random variable identical for all pixels, or at least well approximated by such a 
description. In fact, as we now discuss, both Gaussian and identical assumptions are violated 
in practice.

Since few photons hit each camera pixel on any given frame, the Poisson limit theorem 
states that given the average number of photons λ for this pixel, the distribution of the actual 
number Np of such photons follows a Poisson distribution (“shot noise”)

(39)

where for notational simplicity, we let λ = λ(x; x0).

The total noise of the measurement arises from the convolution of this shot noise by a 
camera readout noise, that is neither necessarily normally distributed, nor pixel-
independent.193 In other words, the readout I at a camera pixel is distributed according to a 
distribution p(I|Np) that is non-normal and pixel-dependent. As later described, we will use 
both knowledge of p(Np|λ) and p(I|Np) to address the localization problem.194

4.1.1. Camera Specific Readout—Two technologies, with different readout 
distributions, are widely used for single molecule imaging:194 the older EMCCD (electron-
multiplication charge coupled device), where the electrons produced by a photon hitting a 
pixel are collected and amplified by chip-wide electronics, and the more recent sCMOS 
(scientific complementary metal oxide semiconductor), which offer higher sensitivity and 
read rates, at the cost of pixel-to-pixel noise variation (“fixed pattern noise”), by performing 
signal amplification at the pixel and column level.194
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The noise distribution of an EMCCD camera follows from its amplification mechanism195 

where a photon hitting a pixel is converted into electrons. Chip-wide multiple charge-carrier 
multiplication (CCM) stages then amplify this electronic signal serially, one pixel at a time.

Specifically, each electron entering a stage has a low probability p of giving rise to an output 
of two electrons; otherwise, no amplification takes place and a single electron is output with 
high probability 1 – p. Repeating this process across a large number of stages yield an 
exponentially distributed number of electrons arising from this single photon195

(40)

where the multiplication factor m is itself weakly pixel-dependent, due to manufacturing 
imperfections. The distribution of the output from the amplification stage for Np photons 
simultaneously hitting a single pixel is the Np-fold convolution of the one-photon 
distribution196,197

(41)

After amplification, the electronic readout stage itself introduces both Gaussian noise, of 
standard deviation σ, which needs to be convolved to this distribution, and an offset in the 
number of counts (“dark count”), c0, considered constant.196

The other technology, sCMOS cameras, offer higher sensitivity and readout rates by 
attaching an individual amplification stage to each pixel. This different amplification 
technology yields the following normally distributed readout

(42)

but the gain m, offset c0, and variance σ2 all vary (relatively) strongly from pixel to pixel 
(Figure 11).198

From the distribution camera readouts for a given number of photons, p(I|Np), and the 
distribution of photon counts, p(Np|λ), we may compute the probability distribution of the 
camera readout I given λ, by marginalizing over the unobservable number of photons Np

(43)

As we will see in the next section, this distribution is essential for our goal of estimating x0 

(on which λ depends).
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As earlier mentioned, numerical estimation of this sum (which also matches experimental 
observations) demonstrates that p(I|λ) is highly skewed for EMCCD cameras,196 thus 
violating the normally distributed noise assumption (Figure 12). In the case of sCMOS 
cameras, numerical estimation of the sum in eq 43 also yields a non-normal distribution p(I|
λ); moreover, and more importantly, this distribution changes from pixel to pixel due to the 
variability of m, c0, and σ2.198

In principle, one may also infer m and c0 directly from p(I|λ). With these two parameters at 
hand, and furthermore knowing, from Eqs (41) and (42), that the mean of I is a linear 
function of Np, we can obtain an estimate of Np at each pixel given I. This estimate is useful 
in evaluating the localization accuracy of the methods we will later explore in section 4.6.2. 
However, the central quantity, moving forward, is p(I |λ).

4.2. Detecting Single Molecules

We have previously described how the camera readout, I, is related to the illumination level, 
λ, through the distribution p(I|λ). As we will discuss in section 4.6, physical models of 
spatial localization allow us to estimate, for given fluorophore parameters Θ, the value of λ 
at each pixel x, λ(x;Θ). The fluorophore parameters Θ minimally include the position of the 
fluorophore (as we had described earlier), but may also include its brightness,45 

orientation,199 velocity,200 or other properties.

From p(I|λ) and λ(x;Θ) we obtain a distribution of images conditioned on Θ

(44)

where we have assumed that readout noise is uncorrelated across pixels.

We may, in principle, fit the entire image and simultaneously localize a large number of 
fluorophores. This is a difficult task, which we will address in section 4.8. Alternatively, we 
may crop out ROIs centered around “emission-like” patterns, as a prelude to their further 
analysis.45,201 Mathematically, this is equivalent to marginalizing over the positions outside 
of the ROI, i.e., ignoring the dependence of the image within the ROI on the positions 
outside of it. We explain this here with the caveat that, even today, the selection of these 
ROIs is often treated in an ad hoc manner, with limited theoretical justification.202

4.2.1. Laplacian of Gaussian Filter—One may expect that ROIs could be chosen by 
locating pixels whose intensity go beyond some preset threshold. Such an approach cannot 
achieve high identification levels of relevant regions, in particular due to the presence of 
large amplitude and low spatial frequency background noise. Instead, a commonly used 
approach (and one of the few for which a theoretical basis has been offered) is to enhance 
features of a characteristic size σ (chosen to be that of a diffraction-limited spot) by 
convolution of the raw image I(x) = I(x, y) with a Laplacian of Gaussian kernel K(x, y),203
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(45)

i.e., the convolved image I′(x) is

(46)

In this convolved image, features of a characteristic size σ have been “enhanced” to appear 
as sharp peaks. Peaks with a value greater than a given threshold can then be selected as 
originating from a single molecule and deserving further processing. This threshold is 
usually empirically chosen,203 for example by picking as many peaks as possible while 
avoiding peaks that “look like” noise (as tested during the following processing stages).

However, if we have a good model of the background noise, we can also estimate (by 
simulation) the distribution of peak values that would be obtained from convolving an image 
only constituted of background noise, and then choose a threshold value that satisfies a user-
specified false-positive p-value (that is, such that the probability of observing peaks with a 
value greater than the threshold in a convolved pure noise image is p).204

Briefly, the theoretical justification for eq 45 relies on matched filter theory.205 Matched 
filter theory indicates that, if we are in the presence of additive white noise (i.e., if the 
differences between the observations and the true values consititute a random signal with 
constant spectral power density), the best linear filter to retrieve the original distribution is 
the convolution by the spatially reversed PSF itself (I′(x) = I(x) PSF(−x)). In Fourier space, 
such a filter corresponds to multiplication by the conjugate of the Fourier transform of the 
PSF. Furthermore, empirical observations establish that the spectral power density (the 
square of the magnitude of the Fourier transform) of background fluorescence noise, not to 
be confused with camera readout noise, in an image approximately follows a power-law, 

, with s ≈ 2 (where  denotes the Fourier transform).203 Thus, in 
order to apply the matched filter result, we first need to transform our data so that it exhibits 
white noise (whitening); this is done by multiplying the data, in Fourier space, by the filter 

H(k) = |k|s/2 (so that . The combination of both steps (whitening and 
convolution by the spatially reversed PSF) corresponds to the multiplication, in Fourier 
space, by the filter

(47)

(where the overbar indicates complex conjugation). In the case where s = 2 and the PSF is 
modeled as a Gaussian, eq 47 indeed corresponds to the Laplacian of Gaussian filter 
described in eq 47.203
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Since super-resolution data sets often contain many consecutive frames, additional 
improvements beyond whitening filters may be used. For instance, since background 
fluorescence varies slowly over time, it is possible to empirically decrease the influence of 
background fluorescence by working on difference images, that is, the difference in intensity 
between a frame and the next one.4 The switching-on of a molecule then appears as a 
positive peak in the data, whereas its disappearance is a negative peak, both of which may be 
further selected using the whitened matched filter (eq 45).4

4.2.2. Errors in Emitter Identification—The output of this initial analysis is a list of 
ROIs, where a single molecule is assumed to have been fluorescent. Metrics, which we now 
introduce, can be used to quantify the quality of the list. For any method, such metrics are 
typically calculated from synthetic data, where the ground truth is a priori known, which is 
not the case with real data. Therefore, the metrics provide only an estimate of the method 
result quality. If the data treated is substantially different than the synthetic data the metrics 
were calculated on, this estimate may be quite inaccurate.

These metrics below are expressed in terms of two kinds of possible errors: some molecules 
may have been missed by the detection algorithm (false negatives, FN), and some regions of 
interest may have mistakenly been drawn somewhere where there was, in fact, no molecule 
(false positives, FP).206

If we denote TP the number of true positives (correctly drawn regions of interest), two 
fundamental measures of accuracy are possible: the precision (quantifying false positives)

(48)

and the recall (quantifying false negatives)

(49)

In order to directly rank different methods, it is convenient to combine these two measures 
into a single quantity. Such quantities include the Jaccard index202,206

(50)

or the F1-score (or F-measure)207

(51)
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Modern localization methods are typically able to achieve high precision (p ≳ 95%) while 
still having limited, though widely varying, recalls (r ≈ 25% to 75%);202 this latter value 
thus also limits the achievable Jaccard index and F1-score.

4.3. Maximum Likelihood Localization

Having segmented our image into regions and identified whether such regions contain a 
single molecule, we now turn to the problem of localization within an ROI using maximum 
likelihood, described earlier in section 3.2.1.

Specifically, the MLE given by eq 4 finds parameters Θ maximizing the probability of 
observing I over the N × N pixels

(52)

where the probability, p(I|Θ), above is understood as the product over each pixel x of the 
probability of observing the actual pixel value I(x), expressed as a function of the 
fluorophore parameters Θ, i.e.

(53)

where we have adopted the common assumption of pixel independence.

The maximization of eq 52 can be carried using out-of-the-box numerical approaches, such 
as gradient descent;54 practical implementations of such a method in a super-resolution 
context (which achieve the CRLB) are available for both EMCCD and sCMOS 
cameras.55,194,208

The actual value of the CRLB (5 to 50 nm) depends strongly on a number of experimental 
parameters, most importantly the number of photons that can actually be collected.55,194,208

Despite the theoretical optimality of the MLE (in the CRLB, or mean-squared error, sense), 
the necessarily imperfect knowledge we have about the imaging system (background 
fluorescence, the PSF, the camera noise) reduces its performance. In fact, PSF mis-
specification or imperfections degrade the performance of the method and may even lead to 
overly optimistic accuracy estimations.55,121,209 It thus remains useful to study simpler 
approaches, which can take advantage of empirical corrections.

4.4. Additional Super-Resolution Performance Metrics

While the Jaccard index, eq 50, and the mean-square error of a single molecule’s 
localization are good performance metrics, even perfect localization cannot reconstruct a 
biological structure that is poorly labeled.4

To assess the quality of a reconstruction, Fourier ring correlation (FRC), a method originally 
developed for cryoelectron microscopy, is employed.210,211 Briefly, in this method, the 
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collected single molecule events are randomly split into two data sets, which are used to 
create two independent reconstructions I1 and I2 of the structure. The “consistency” between 
these two reconstructions is then used as a quantification of their resolution.210,211 This 
consistency is obtained, as the name implies, by computing the Fourier transforms, 

 and , of the images, and computing the normalized correlation 
between “rings” of constant spatial frequency magnitude |k| = k,

(54)

where  denotes the complex conjugate of .

This formula yields, for each magnitude of spatial frequency, the degree of correlation, 
normalized between −1 and +1, to which the features of that characteristic size are correlated 
between the two independent reconstructions. In fact, it is this separation of length scales 
that motivates the use of correlation in Fourier space.

For relatively large sized structures, using a random half of the events does not greatly 
diminish the quality of the reconstruction; thus, the two reconstructions should be highly 
correlated. Conversely, for structures too small to be well resolved, there is no reason to 
expect the two reconstructions to be highly correlated and, consequently, the FRC should be 
smaller.

We may then select a conventional threshold FRC (typically, FRC(q) = 1/7) and report as 
“the resolution” the corresponding characteristic size beyond which the threshold is 
exceeded.210,211 Interestingly, this measure tends to indicate that nowadays, the main factor 
limiting the resolution of reconstructed static structures is typically the labeling density 
rather than the accuracy of the single molecule localization itself.210,211

4.5. Simplified Localization Approaches

We have seen that while maximum likelihood localization is theoretically the method that 
achieves the lowest mean-squared error, imperfect knowledge of the imaging system 
characteristics may make other localization methods preferable. Additionally, maximum 
likelihood calculations are typically computationally expensive and implementations often 
run on specialized hardware such as graphical processing units (GPUs).55,198 Thus, it 
remains useful to study simpler, possibly less model-dependent, approaches.

4.5.1. Centroid Localization Method—An intuitive, simple, and extremely fast 
approach to the localization problem is to compute the average of the pixel coordinates x = 
(x, y) within a ROI, weighted by their intensities I(x).201

In such a method, it is crucially important to first subtract away any background 
fluorescence Ib from the ROI,212 such that the estimated localization is
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(55)

where the sum is over the region of interest. Background subtraction is important because in 
its absence, the weighted average eq 55 becomes a weighted average between the true 
centroid and the ROIs geometric center.

However, even with this correction, the method remains unsuitable for high-resolution 
localization.212 One simple reason is that, even under the reasonable assumption that the 
physical PSF is symmetric (and thus its centroid should yield the fluorophore position), this 
is not the case for the camera readout, which is measured on a discrete pixel grid. Even 
worse, the centroid of the camera readout does not necessarily coincide with the centroid of 
the physical PSF (again due to pixelation).212 Still, the extreme simplicity of the method has 
led to its use as a minimal baseline against which other approaches can be compared.202

4.5.2. Finding the Point of Radial Symmetry—The centroid method we just described 
attempts to localize an event with subpixel resolution by identifying its “geometric center”. 
Other definitions of “geometric center” have been proposed, most notably the radial 
symmetry approach.213,214 Briefly, this approach attempts to find the point that best 
approximates a “radial center of symmetry” for the image.

In this method, the gradient of the signal is calculated either at each pixel215 or at each point 
where four adjacent pixels (or, in the 3D case,214 eight adjacent voxels) meet.213,215 The line 
defined by this point and gradient pair is taken as approximating a local axis of symmetry 
for the image. If all such lines were to intersect with each other at a single point, such a point 
would be a reasonable definition of the radial symmetry center. Because this is not the case, 
the radial symmetry center is instead defined as the point that minimizes its total distance to 
all such lines,215 possibly with an appropriate weighting factor.213,214

Specifically, it is reasonable to weight lines inversely proportionately to their distance from 
the center of the image. Since this center is yet unknown, the weighting is instead done using 
the inverse distance to the centroid (as computed above).213,214 Most importantly, an 
analytical expression can be derived to compute the radial symmetry center thus 
defined;213,214 as such, this method is extremely rapid.

While simulations indicate that this method yields high, close to CRLB-level localization 
accuracy of single events at a high speed,202,213,215 they also show that its performance 
degrades extremely quickly for high-density data, being unable to correctly localize events 
that were not well separated from the others.202

4.5.3. Correlation—As discussed earlier, the good performance of the Laplacian of 
Gaussian kernel for event detection was justified on the basis of simple noise and PSF 
models (section 4.2). We now extend this approach to tackle the localization problem itself.
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In this approach, a peak’s position is determined by computing the correlation between the 
image and the model PSF (although using the Laplacian of the PSF may work better from a 
theoretical point of view, as discussed above, it is the PSF itself that is typically used), and 
finding the position at which this correlation is maximal. The same background removal 
approaches as for centroid calculations may be used;212 however, they are less important, as 
adding a constant background to the image simply shifts the filtered image by a constant and 
thus does not affect the maximum’s position.

The correlation of two images is only defined for integer coordinates, so additional work is 
needed to obtain a subpixel localization. A simple way to do so is to fit the values of the 
correlation in the vicinity of the maximum with a continuous, peaked model function (e.g., a 
parabola)212 and use the maximum of the latter. A more sophisticated approach is to 
compute this correlation after Fourier-resampling both the image and the model PSF to a 
higher resolution. Such a resampling is achieved by taking the Fourier transform of the 
image, zero-padding it to a higher spatial frequency, and taking the Fourier transform back. 
Correlation in real space corresponds to point-wise product in Fourier space; thus, the 
desired procedure amounts to computing the point-wise product of the Fourier transforms of 
the image and the PSF, zero-pad it, Fourier transform the padded product back into real 
space, and then select those coordinates at which the correlation attains its maximum.216,217 

To sidestep the computational cost of the Fourier transforms that upsampling requires, such 
methods are typically first run with a limited upsampling to yield a low resolution 
localization and then run again with higher upsampling but only in a small neighborhood 
around the position selected by the first iteration.216,217

An important advantage of correlation-based localization is that it can be directly used for 
any experimentally measured PSF. For example, in particle tracking (an early application of 
subpixel localization212), one can use the image of a molecule in one frame as the model 
PSF for the next frame.212 In superresolution experiments, this approach has been suggested 
to analyze thick-sample data, which typically exhibits highly distorted PSFs217 in the 
absence of specialized optical corrections.36 In this case, the distorted, sample-specific PSF 
is measured at the beginning of the experiment by imaging a point-source at different 
depths; detected events are then localized by correlation with this PSF.217

4.6. Least-Squares Fitting and Model PSFs

The previous section covered methods that require limited assumptions regarding the PSF; 
for instance, that it be radially symmetric or invariant across the data set. Here instead we 
focus on an approach, least-squares fitting, that demands no such assumptions but that does 
require a form of the PSF.

While, in theory, maximum likelihood achieves the optimal mean square error when an 
accurate PSF model is available (section 4.3), the least-squares method is widely used44,45 

because of the good performance of readily available, fast, and robust algorithms.202,204 

Although we will first focus on the common case of fitting a Gaussian PSF model, we will 
then discuss possible corrections to this model.
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4.6.1. Gaussian PSF Least-Squares Fitting—Since the theory of least-squares fitting, 
as with maximum likelihood (section 4.3), can be described independently of the model 
PSF’s exact functional form, we will, for simplicity, assume a Gaussian PSF. This choice is 
one of the earliest in use, offers mathematical simplicity, and maintains good performance.

Specifically, we model the image I0 arising from a fluorophore as a two-dimensional 
Gaussian as follows

(56)

The unknown amplitude A, center x0 and standard deviation σ, as well as the unknown, 
locally constant mean background Ib, are parameters collectively regrouped as Θ, the 
fluorophore characteristics, that we now want to infer. Furthermore, despite the subtraction 
of the background Ib, the measured image still differs from the model by a noise term of 
mean zero. Next, it is also possible to assume that some parameters are a priori known such 
as σ or Ib, for example, they may be independently estimated from the image intensity far 
away from the fluorophore.218 It is also possible to improve this model by averaging the PSF 
over each pixel.3

One may then infer the remaining set of parameters minimizing the sum of squared 
differences between the observed intensity and model provided by eq 56, weighted by the 
signal variance at each pixel. Numerically, this is a classic least-squares minimization, for 
which fast and robust implementations, such as the Levenberg-Marquart algorithm,193 are 
available.

The maximum likelihood framework (section 4.3) and least-squares fitting are identical, 
even for non-normal PSFs, if the noise at each pixel is assumed to be independent and drawn 
from the same normal distribution with unspecified variance

(57)

where l denotes the log-likelihood.

4.6.2. Least-Squares Fitting Localization Accuracy—Thompson et al. provided a 
theoretical analysis of least-squares fitting accuracy in the presence of normally distributed 
background noise as well as photon counting noise (section 4.1), as a function of the PSF’s 
standard deviation (the “spot size”) s, the pixel size a, the number of photons in the event Np 

and the standard deviation of the background noise b (Figure 13).53

For simplicity, we limit ourselves to rederiving Thompson’s results in the case of a 1D 
model and assume that for a fluorophore at position x: (i) the expected number of photons at 

the ith pixel (i.e., the PSF model) is Ni(x); (ii) the variance is  (i.e., the sum, in 
quadrature, of the photon counting noise, Ni(x), and the background noise, b2); and (iii) the 
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detected photon number at that same pixel is yi. By definition, the fitted position, , is 
obtained by minimizing the weighted sum of square residuals, i.e.

(58)

By expanding Ni(x) in the above to first order in  around the true underlying position 

 and solving for , we directly derive the 
mean square error of the fitted center’s position

(59)

While this sum can be evaluated numerically, we can also simplify it under reasonable 
approximations. We ignore, for now, the effects of pixelation (a → 0). In this case, under a 
Gaussian PSF model, the expected number of photons at pixel i is 

, and the sum in eq 59 can be replaced by an integral.

In general, this integral is not analytically tractable but it can be asymptotically evaluated in 

two limits: (i) dominant photon-counting noise  and (ii) dominant 

background noise . These two cases respectively yield

(60)

and

(61)

Since each expression dominates the other in the limit where it has been derived, the authors 
suggested the following interpolation formula53

(62)

The pixelation noise’s main effect (arising from a nonzero a) is to increase the photon 
counting noise term ⟨(Δx)2⟩1. Specifically, the PSF’s spatial variance, s2, appearing in this 
term should be increased by the spatial variance of a square pixel of size a, which is a2/12.53 

The final expression for the uncertainty of Gaussian fitting is thus
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(63)

Although eq 63 is widely used to report localization accuracies,4,5,219 the summation in eq 
59 can also be evaluated numerically.53 This numerical estimate indicates that eq 63 actually 
overestimates the localization accuracy (in the relevant regime of parameters) by 
approximately 10%.53 This is a discrepancy that has also been reported from experimental 
comparisons.3

An interesting consequence of eq 59 is that the mean square error is minimal for a nonzero 
pixel size a (∂(Δx)2/∂ a = 0). In other words, it is counter-productive to make the pixel size as 
small as possible. Instead, its optimal size is close to the spot size s. Intuitively, this is due to 
the compromise between the higher spatial information gained from each pixel when the 
pixels are smaller and the averaging out of background noise when the pixels are larger.

In practice, Gaussian PSF fitting has been shown to achieve nanometer-resolution. For 
example, Yildiz et al. have used this approach to show that the motion of fluorescently 
labeled myosin V enzymes along their tracks occurs in steps of variable size that can be 
grouped in consecutive pairs whose sizes add up to 74 nm (fluorescence imaging with one-
nanometer accuracy, FIONA).219

4.6.3. Applicability of Least-Squares to Non-Normal Noise—While the assumption 
of identically and normally distributed noise is reasonable in many applications of least-
squares fitting, which is the source of its versatility and the reason many efficient algorithms 
have been developed, it is clearly violated in super-resolution, as described in section 4.1.

Although many super-resolution analysis discount non-normal noise, here we discuss a 
variance-stabilizing transformation204 that mitigates the effect of ignoring non-normal noise.

For simplicity, we consider only the effect of Poisson (shot) noise, whose variance is equal 
to its mean. Since the variance of the noise changes across the fitted ROI, the assumption of 
identical noise distribution is violated.

In order to correct for this nonuniformity, we exploit the following (numerical) observation, 
known as the Anscombe transform: if X is Poisson-distributed with both mean and variance 

equal to m ≥ 4, then  is approximately normally distributed with mean 

 and, more importantly, unit variance.220 Thus, applying this 
transformation to an image corrupted by Poisson noise yields an image with (approximately) 
uniform Gaussian noise and the classical least-squares algorithm may then be applied. Of 
course, the fit should not be done using the original PSF model but, likewise, the Anscombe-
transformed model.204

Note that this correction assumes that the image data is correctly expressed in units of 
photon counts, which requires a calibration of the readout-to-photons conversion factor as 
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discussed in section 4.1. Additionally, more sophisticated transforms (e.g., the generalized 
Anscombe transform221) may be used to handle more realistic non-Poisson noise models.

While, to our knowledge, the effect of a variance-stabilizing transformation for the accuracy 
of least-squares fitting has not been evaluated independently of other improvements, the 
SimpleSTORM package, which relies on it as a preprocessing step before least-squares 
fitting,204 was shown to exhibit a relatively strong performance.202,204

4.6.4. Corrections to the Point Spread Function—Although we have mentioned, and 
it is widely quoted,53,201 that the diffraction pattern of a point source is an Airy disc (section 
2.2), and chose to approximate this pattern with a Gaussian peak both for maximum 
likelihood and for least-squares fitting, we now revisit this claim.

When imaging using a high-NA objective, as commonly done in super-resolution 
applications, the PSF of a freely rotating fluorophore, directly derived from first-principles, 
is in fact closer to a Gaussian function than to an Airy function222 thus justifying, a 
posteriori, the use of Gaussians for least-squares fitting.

A rotationally constrained fluorophore, which may occur, or conversely be avoided, e.g., due 
to the labeling strategy used,199,223 presents additional complications. Such a constraint 
breaks radial symmetry, in which case the PSF may present two “lobes”.199,222 If a 
rotationally free model, such as a Gaussian, is used to fit data sets lacking radial symmetry, 
simulations indicate that maximum likelihood estimation can lead to substantial errors 
(dozens of nanometers), in particular in the case of defocused molecules (e.g., for 3D 
measurements).222,224 Conversely, orientational information may be derived from properly 
fitting the observed PSF to a model PSF for anisotropic emission.199

In the opposite extreme, highly mobile fluorophores, which move by a significant fraction of 
a pixel size during the time it takes to acquire a single frame,200 may distort the effective 
molecular PSF, which is now a weighted average of the PSF at each position visited by the 
molecule. Once more, ignoring this distortion leads to poor localization accuracy, whereas 
using a PSF model that takes motion into account not only restores the original localization 
accuracy but also provides information on the instantaneous molecular velocity200 and 
additional information on motion models discussed in section 6.5.

We end with a note on the nonuniformity of a sample’s refraction index which introduces 
additional PSF aberrations, especially for thick samples.36 This effect is has so far been 
treated experimentally by using adaptive optics (e.g., deformable mirrors) to properly shape 
the PSF.36

4.7. 3D Localization

4.7.1. Cylindrical Lens 3D—While our discussion, so far, has been limited to localizing 
single molecules in a 2D plane, most biological samples are three-dimensional and, as a 
consequence, there is considerable interest in obtaining volumetric fluorescence data.

In classical microscopy, this can be achieved by selectively exciting, and thus collecting, 
fluorescence from a single plane (multiphoton microscopy225 or selective plane illumination 

Lee et al. Page 41

Chem Rev. Author manuscript; available in PMC 2017 June 28.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



microscopy (SPIM)226). However, such techniques remain essentially limited by diffraction. 
Instead, true 3D super-resolution can be achieved by encoding information about the depth 
of a molecule in its PSF.

Fundamentally, the techniques we have discussed up until now fit a PSF that encodes lateral 
but not vertical information. In other words, in 2D, the value of the PSF measured by the 
camera at position (x, y) when the emitter is at position (x0, y0) depends only on the distance 
between the two positions, i.e., PSF = PSF(x–x0, y–y0). In 3D, the dependence on the true 
position z0 cannot be expressed in terms of translation and the PSF would need to be of the 
form PSF(x−x0, y−y0, z0).

As early as in 1994, Kao et al. introduced a cylindrical lens in the optical path of their 
particle tracking setup and observed a depth-dependent PSF.227 This depth-dependent PSF 
progressively switches from being a vertically oriented ellipse for molecules above the focal 
plane to a horizontally oriented one on the other side. Thus, the lengths of the PSF’s two 
axes, wx and wy, could be estimated and converted to a depth value using a calibration table. 
Specifically, the relative difference between the two widths, defined as R = 
(wy−wx) /(wx+wy), was matched with a calibration curves Rcal(z) in order to read out the 
depth z while the (x, y) position was obtained by least-squares fitting to a parabolic PSF 
(section 4.6).

The cylindrical lens approach was adapted for super-resolution by Huang et al.228 who took 
advantage of the advent of more general nonlinear fitting procedures, allowing the 
determination of wx and wy by least-squares fit along with the in-plane position. That is, the 
model PSF was chosen as a Gaussian with the following parameters that need to be fitted: 
the position of the center and the amplitude of the PSF, similarly to the two-dimensional 
case along with the PSF width and height wx and wy treated as independent parameters. The 
authors found, purely empirically, that the fitted wx and wy could be accurately mapped back 

to the molecule depth z via the use of a calibration curve  obtained by 
measuring the PSF of point sources positioned at different depths, as follows: the depth z is 

chosen to minimize the Euclidean distance between the  point and the 

 curve.

Instead of estimating depth based on ellipticity calibration curves, we may immediately 
adapt all methods described for 2D localization to the 3D case by simply including the depth 
z in the set of parameters Θ.217,229 All theoretical results regarding such methods, such as 
the CRLB accuracy limit (section 4.3), are then applicable. For example, we demonstrated 
earlier that in the presence of a highly distorted, but experimentally well characterized PSFs, 
the position of the maximum in the ROI’s correlation with the PSF generated good 
localization performance (section 4.5.3). This method is, in fact, especially applicable to 3D 
imaging of thick samples, as the PSF of events localized deep into the cell can be distorted 
by severe optical aberrations.217

4.7.2. Other Approaches for Encoding Depth Information in the PSF—While the 
cylindrical lens approach is relatively simple from an experimental viewpoint, it only 
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requires introducing a cylindrical lens in the optical path, it encodes depth information at the 
cost of lateral resolution, as it distorts the PSF. Additionally, as discussed earlier in section 
4.6.4, other phenomena can lead to elliptical distortion of the PSF, leading to spurious 
apparent changes in depth. Hence, additional ways to encode depth information have been 
proposed.229

For example, the biplane-PALM approach relies on simultaneously imaging two planes, a 
few hundred nanometers from each other on the same camera.229 This can be achieved by 
imaging on one-half of the camera chip the “standard” focused image and, on the other half, 
a slightly defocused image, obtained by splitting the collected light and reprojecting it onto 
the camera after a longer light path. A ROI corresponding to a single event now coincides 
with a pair of spots, one on each plane, that may once more be fitted by least-squares either 
to an experimental PSF, also measured over the two planes, or a theoretically derived one.229 

As a fluorophore is displaced along the z axis, it does not get defocused to the same degree 
in the two planes; this difference in defocusing thus encodes the depth information. In its 
first implementation, a depth resolution of 75 nm was achieved.229

Additional z-resolution can be provided by more sophisticated procedures. For example, a 
spatial light modulator can be used to shape the 3D PSF into a double-helix, such that 
individual events are now observed as pairs of close peaks, whose relative position encode 
depth information.10 This technique, to which all the previous fitting discussions apply, 
exhibits a low theoretical maximal resolution (CRLB) of approximately 15 nm.230 

Interferometric PALM (iPALM) provides an even more sophisticated procedure to encode 
depth information231 in which the measured image is split over three cameras, each of which 
measure an interference pattern between two images that are phase-shifted with respect to 
one another. The relative intensities of a same peak across all three cameras allow the 
experimenter to compute this phase shift and thus infer the event depth, with an 
experimentally demonstrated resolution of approximately 10 nm.231

4.8. Simultaneous Localization of Multiple Molecules

The fundamental breakthrough from which super-resolution microscopy emerged, namely 
achieving temporal separation of events too close to be resolved spatially, is also an 
important limitation. As described so far, a super-resolution acquisition scheme must ensure 
that only a few molecules are activated per frame, thus imposing lengthy acquisition times 
for densely labeled samples.

However, just as we have described various ways in which the coordinates of a single 
molecule can be retrieved if a model PSF is known, we could, in theory, write down an 
emission model for two, or more, close molecules with overlapping PSFs (given their 
coordinates x0 and x1), and then fit a ROI to such a model. This approach was pioneered by 
astronomers who were interested in separating images of stars in “crowded fields” (e.g., 
stars in distant galaxies, which appear very close to each other) and have since long ago 
developed such algorithms.232 One of these algorithms, DAOPHOT (Dominion 
Astrophysical Observatory photometry),232 was directly adapted for super-resolution 
microscopy, under the name of DAOSTORM.37
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There are a few difficulties that are associated with the simultaneous fitting of multiple 
molecules at a time. The first is computational; the greater the molecules simultaneously fit, 
the greater the number of parameters, rendering the least-squares or maximum likelihood 
optimization more challenging numerically.

Fortunately, it is clear that even when PSFs are slightly overlapping, it remains acceptable to 
cut the image into smaller regions, that are approximately statistically independent from 
each other, and fit them one at a time. This approximation was used by another super-
resolution package developed at the same time, MFA (multiple-emitter fitting analysis).233 

More accurately, one can also draw such regions to be bounded by areas of the image where 
the intensity is relatively low and are thus unlikely to contain a molecule (the approach of 
DAOPHOT/DAOSTORM). Again, in such cases, the problem of fitting PSFs in a region 
becomes independent from the fitting in another region,37 in a manner similar to how we 
drew ROIs for single-emitter fitting but this time with multiple fluorophores per ROI.

More importantly, simultaneous fitting of many fluorophores also presents a model selection 
problem: allowing for more fluorophores always result in a better (or at least, not worse) fit 
of a collection of spots (either the fitting algorithm can exploit the additional degrees of 
freedom to eliminate some residuals of the fit or, at worst, it can always set the brightness of 
the additional fluorophores to a very small value, thus not worsening the fit). Thus, 
additional criteria are necessary to prevent overfitting.

While general model selection methods were presented in section 3.3.4, here we present two 
more model selection strategies specifically adapted to the problem of multiemitter fitting 
used by DAOSTORM37 and by MFA.233

DAOSTORM first uses a peak detection algorithm (such as the one discussed in section 
4.2.1) in order to find candidate regions that may correspond to a molecule. This set of 
candidates is then fit, by MLE, to a multiemitter model. The residuals of the fit (i.e., the 
difference between the original image and the one that a set of fluorophores at positions 
given by the fit would yield) are then iteratively reinserted into the original peak detection 
algorithm.37 Thus, it is the sensitivity of the peak detection algorithm that provides a 
stopping criterion against the addition of extraneous fluorophores to the fit.

Model selection by MFA233 relies instead on computing the log-likelihood ratio, LLR;

(64)

The numerator, , is the likelihood of the estimates given the image, assuming 
that each pixel’s signal is independently obtained from a Poisson-distributed source with 

mean equal to the sum of the PSFs at this pixel (eq 53). The denominator,  is the 
maximum value that the above-mentioned likelihood could ever attain, which it does in the 
case where the expected mean intensity at each pixel matches the actually observed 
intensity. In other words, it is the product over the pixels of the probability of observing the 
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actual camera output if the mean expected intensity at that pixel was set to be equal to that 
output.

Having evaluated the “goodness” of each model (as measured by its LLR), we now need to 
estimate, for each model, how well the model matches the data, as compared to how well it 
would match random data sets generated from the model itself. Such a comparison penalizes 
overfitting, as the marginal improvement to the LLR, for each additional parameter, 
decreases sharply once the “correct” number of parameters is reached, whereas such a 
transition does not occur for random data sets.

More specifically, we need to estimate the probability p that the LLR of a data set generated 
from the model be lower than the LLR of the real data. In other words, we need the value of 
the cumulative distribution for the LLR, evaluated at the LLR of the real data. According to 
Wilks’ theorem, this distribution can be approximated by a χ2 distribution with a number of 
degrees of freedom equal to the difference between the number of pixels and the number of 
fitting parameters.234 We thus obtain p simply by evaluating the cumulative distribution 
function of the above-mentioned χ2 distribution.233 Having done so for each of the models 
in contention, the model with the highest such probability is then selected.

4.9. Deconvolution-Based Super-Resolution

We have so far focused on reconstructing coordinates of each single event with 
subdiffraction accuracy. However, subdiffraction imaging may be achieved by other means. 
For example, deconvolution microscopy achieves a 2-fold improvement over diffraction-
limited microscopy by approximating the inverse (in a linear operator sense) of the “imaging 
operator”, i.e., the operator that convolves a distribution of point emitters by the imaging 
system’s PSF.42

Here, we discuss adaptations of deconvolution-style approaches to data sets collected using 
single molecule localization-style techniques where additional information is encoded in 
temporal fluctuations of the fluorescence (i.e., stochastic switching of the fluorophores).

4.9.1. Compressed Sensing—Contrary to localization methods discussed thus far, here 
we do not initially attempt to reconstruct a list of molecular positions. Instead, we want to 
reconstruct a higher resolution image than the one from which we started.

More specifically, we seek a “fluorophore density map” on a discrete grid s, where each 
“pixel” on the grid may be smaller than the raw image, I, physical pixels. Instead of 
considering s and I as matrices, we will consider them as vectors of entries (for example, by 
concatenating the physical columns of pixels in the image), respectively of size N and n. In 
this formalism, convolution by the PSF, which is a linear operator, can be understood as 
multiplication by a matrix A, of size (N, n),

(65)
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Each row of the matrix A corresponds to a possible fluorophore position and each entry in 
the row corresponds to a physical pixel indicating how much a fluorophore at the row-
encoded position would increase the intensity at that physical pixel.

Localization methods discussed so far correspond approximately to a setup where we know 
(or have a good model of) A (i.e., how much a fluorophore at any position affects the 
intensity measured at any position–in other words, the PSF) and seek to obtain s (i.e., the 
fluorophore density map). We will focus on the same formulation first. However, we will 
later see that we can also attempt to recover A and s simultaneously.

The usual caveats of deconvolution microscopy, namely the sensitivity of s to noise and to 
inaccurate knowledge of A still apply. Moreover, as there are many more (discretized) 
fluorophore positions than image pixels (N ≫ n), the problem is underdetermined. However, 
in the context of a super-resolution data set, we have the additional information that we 
expect only a few fluorescent proteins to be “on” on each frame; that is, we have a sparsity 
prior on s (we expect most of its entries to be zero).

This class of problems (searching for approximate and sparse solutions to an 
underdetermined linear system) is known as compressed sensing and is well described in the 
mathematical literature.235 For example, Zhu et al. showed that in the presence of photon 
counting noise, a solution can be obtained by searching for the vector s with minimum l1 

norm (i.e., sum of absolute values of components) among all those for which the l2 norm of 
the residual vector, I − A·s (i.e., sum of squared errors), is no larger than a noise-level 
dependent threshold.236 Such a vector can then be found using standard algorithms.237

Such a deconvolution yields, for each frame of the image stack, a sparse list of discretized 
molecular positions. All such lists can then be merged together to obtain a final list of 
molecular positions. Although the original implementation of this idea236 yielded a 
relatively poor localization accuracy of ~60 nm, it was able to recover highly overlapping 
events, i.e. it allowed a very fast imaging rate (6 to 15-fold faster than for single-event 
fitting, 2 to 3-fold faster than for a multiemitter fitting such as DAOSTORM).

4.9.2. Exploiting Fluorophore Temporal Fluctuations—Instead of using an 
experimental protocol designed to achieve temporally sparse photoactivation of 
fluorophores, it is also possible to rely on the natural blinking and bleaching of fluorophores, 
that occurs (to varying degrees depending on the fluorophore) even under continuous 
illumination.

For example, a simple way to exploit the fluorophore blinking is to compute the difference 
between consecutive frames of a regular fluorescence movie. In these difference images, the 
spontaneous switching-on of a fluorophore appears as a positive peak, whereas turning-off 
events, or photobleaching, appear as a negative one. Standard localization algorithms (e.g., 
PSF fitting) can then be directly applied to such images, yielding a super-resolution 
approach that does not require the use of photoconvertible markers (bleaching/blinking-
assisted localization microscopy, BaLM).238 More interestingly, it is possible to exploit the 
fact that these temporal fluctuations in fluorescence intensity are uncorrelated between 
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molecules (as each fluorophore undergoes stochastic switching independently from the 
others).

Dertinger et al. noticed that due to this stochasticity, pixels where the emission of two 
blinking fluorophores (quantum dots, in their case) overlap exhibit lower temporal 
coherence than pixels which capture the emission of a single quantum dot.239 This 
observation yields a simple and elegant method, named super-resolution optical fluctuation 
imaging (SOFI), to obtain a superresolved image I.239 At each pixel, one simply plots the 
value of the temporal correlation of this pixel’s signal for a well-chosen time lag τ

(66)

where ⟨·⟩t denotes an average over time.

Lidke et al. exploited temporal fluctuations in order to generalize the model proposed in eq 
65.191 Remember that we originally wrote I = A·s, where I is the image (a size n vector), s 

the discretized fluorophore density (a size N vector), and A the imaging operator (an N by n 
matrix). In this generalization, the time dependency, over T frames, of I and s, was also 
taken into account; these two variables are now matrices respectively of size (n, T) and (N, 
T), where each row encodes respectively the time-varying image intensity at a pixel and the 
time-varying active fluorophore density at a position. The shape of A is unchanged, and we 
still have

(67)

However, in this analysis, we will also consider the imaging operator A as an unknown.

The problem may thus appear severely under-determined, as we are trying to reconstruct N × 
T + n × N parameters (A and s) while having only n × T measurements (I). However, we can 
exploit the fact that in our target reconstruction, each row of s should represent the time-
varying intensity of a single fluorophore at a fixed position; conversely, a reconstruction will 
be poor if some rows of s encode the time-varying mixture of the intensities of multiple 
fluorophores. From the central limit theorem, the values of s adopted by a mixture are 
necessarily “more normally distributed” than intensity values of a single fluorophore. In 
other words, a weighted sum of multiple iid random variables is more normally distributed 
than each individual variable. Thus, we can restate our objective as follows: we seek the 
solution of eq 67 for which the rows of s are “as non-normally distributed as possible”. In 
order to quantify the “non-normality” of the distribution of values a row of s takes, we 
compute the entropy of the distribution, H = −Σs p(s)log p(s). Because the normal 
distribution has the maximal entropy among all distributions for a given mean and variance, 
we thus seek the solution (A, s) of eq 67 for which the total entropy of s (the sum of the 
entropies of each row of s) is minimal.191 This minimization problem is known as 
independent component analysis, and can be solved using the standard FastICA 
algorithm.240
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The outputs of this analysis are both matrices A and s with A giving the PSF associated with 
each of the fluorophores while s indicates, for each fluorophore, the frames on which it is 
active. This analysis does not directly yield superresolved coordinates; it simply separates 
the PSFs of each fluorophores (into columns of A) starting from a data set where they were 
spatially and temporally overlapping. Each of these PSFs can then be fit to obtain a 
superresolved coordinate for each fluorophore using any of the methods we have discussed 
so far.191

4.9.3. Bayesian Deconvolution Approach for Fluorescence Time Series—

Bayesian methods may also be used to obtain both spatial (A, following our earlier notation) 
and spatiotemporal (s) information. For example, Cox et al. simultaneously fitted the full set 
of fluorophore positions, the state histories (bright, transiently dark, or irreversibly photo-
bleached) for each fluorophore, as well as the transitions rates between these states 
(Bayesian analysis of blinking and bleaching, 3B).241

This Bayesian formulation can be seen as another approach to tackling eq 67: instead of 
reducing the problem to independent component analysis, the time-evolution of the 
fluorophores (i.e., each row of s) is modeled as a Markov chain between the three above-
mentioned states. The true underlying fluorophore spatial distribution is then selected as the 
one maximizing the likelihood that the entire image stack arises from that distribution. This 
likelihood is computed by integrating over all possible temporal evolutions (which is done 
using the forward algorithm).193,241 Instead of yielding a maximum likelihood estimate, one 
can also sample (by Markov chain Monte Carlo) spatial fluorophore distributions from the 
posterior derived from this likelihood,193,241 thus yielding a super-resolved image where the 
intensity at each position encodes the confidence level about the presence or absence of a 
fluorophore there. This method is extremely demanding computationally, to the point that 
cloud-based implementations have been developed.242

4.9.4. Richardson-Lucy Deconvolution for Fluorescence Time Series—Mukamel 
et al. also proposed a simpler deconvolution method (deconSTORM) taking temporal 
correlations into account.243 Again, the final output of such a method is not a list of 
coordinates, but simply an image with a higher resolution. Specifically, Mukamel et al. 
based their work on Richardson-Lucy deconvolution.

Briefly, Richardson-Lucy deconvolution is an iterative approach, whereby the estimated 

deconvolved image  at iteration k is derived from the estimate at the previous iteration 

, as well as the measured image I, the PSF (assumed known, under a Poisson noise 
model), and a prior distribution on the true image p(·), which is, in the classical form of the 
algorithm, kept constant throughout iterations

(68)

Mukamel et al. proposed to deconvolve a time series of images by running the iterations of 
Richardson-Lucy deconvolution in parallel; that is, at each iteration, a new deconvolution of 
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each frame is computed. More importantly, instead of keeping the same image prior 
throughout the iterations, they used a different prior for each frame and updated this prior at 
each iteration

(69)

Specifically, when running an iteration, the prior for the frame at time t was chosen so that 
the a priori probability of observing a bright pixel at a given position in that frame is 
increased whenever the same pixel was also bright in an earlier frame (already reconstructed 
during this iteration); the closer (temporally) this frame was, the stronger the contribution to 
the prior. In other words, each frame is deconvolved with a series of priors that, at each 
iteration, favors a reconstruction similar to reconstructions of the preceding frames.243

4.9.5. Recovering Molecular Localizations from Deconvolution-Style 

Approaches—We have presented deconvolution-style approaches to obtain a 
superresolved image without first localizing single molecules. But both methods, 
deconvolution and localization, may be used in tandem. That is, an initial deconvolution step 
identifying candidate single molecule positions (from local maxima of the deconvolved 
image), may be used as initial guesses in a subsequent localization step. Such an approach 
was implemented in the FALCON algorithm244 that may be understood as a variant of 
multiemitter fitting (section 4.8), where the model selection step (finding the correct number 
of fluorophores to fit) is accomplished by an initial deconvolution.

4.10. Drift Corrections

In the absence of active correction, different microscope components drift by dozens of 
nanometers relative to each other during the acquisition of a single molecule localization 
data set.3,4 This drift affects positions of measured events.

Thus, in order to combine all the localization events obtained in that data set into a single 
high-resolution image, it is necessary to either (i) actively correct for this drift by measuring 
it in real time and displacing the sample in a compensatory manner or (ii) to estimate the 
drift in order to subtract it from the fitted positions.

In practice, the second option (drift estimation and subtraction) is typically chosen, as it is a 
purely mathematical operation, that does not require any modification to the instrument 
itself. In order to do so, we may track bright fiducial markers (e.g., gold nanoparticles or 
fluorescent beads) on the coverslip. This can be achieved by using the same localization 
algorithms as used for “real” events.3,4 As the fiducial marker concentration can be chosen 
to be very sparse, tracking markers from one frame to the next is straightforward. 
Additionally, the high level of brightness of these fiducially ensures that they are at least as 
well, and typically better, localized than the events themselves, i.e., they are not a limiting 
factor for localization accuracy.

Since fiducials are typically bound to the coverslip, such that their motion relative to the 
camera matches the sample drift relative to the camera, they are less suitable for thick-
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sample 3D single molecule localization microscopy. From the instrumentation point of view, 
the use of fiducial markers in a thick sample data set requires repeatedly switching between 
the imaging planes and the fiducial (i.e., coverslip) plane.217 To avoid the need for such a 
movement, which complicates the experimental setup and may lead to additional drift itself, 
one may abandon the use of fiducials and instead rely on correlating event time-slices. In 
this approach, groups of events are formed by stacking consecutive frames until reaching a 
set number of events. The cross-correlation between event positions in one group and those 
in the next then exhibits a peak at a position that encodes the average displacement of the 
events between the two groups–in other words, the sample drift–as long as the reasonable 
assumption that both groups are randomly sampled from the entire structure holds.245,246

Neither of these methods can correct drift that occurs on the same time scale as the frame 
rate as drift estimation requires averaging over a large number of events. In order to increase 
the rate at which drift information is collected, McGorty et al. proposed instead to use a 
correlation drift estimator on the bright field image itself (that is, the drift is estimated by 
finding the shift that maximizes the correlation between a bright field frame and the previous 
bright field frame).247 Of course, it is not possible to simultaneously collect a bright field 
image in the visible wavelength and single molecule fluorescence in the same wavelength, as 
the former would swamp the latter; McGorty et al. thus collected the bright field image in 
the infrared spectrum. Such an approach allowed them to achieve real-time drift correction, 
with a 10 nm in-plane and 20 nm axial stability, at rates of a few hertz and over minutes of 
acquisition.247

5. THE COUNTING PROBLEM

Whether two fluorescent events occurring in close spatial and temporal proximity actually 
come from the same fluorescent protein is an important question that was raised since early 
PALM experiments.4,5

One reason motivating this question is technical: “stacking” multiple frames together, by 
summing their intensities before fitting them, ensures that all photons associated with a 
single labeled protein are used, thereby improving the reconstructed image’s final quality.4

The question was less relevant in STORM, which relies on blinking organic dyes, as 
multiple dye-labeled antibodies typically bind to the same target.3 Each labeled site is thus 
associated with dozens or hundreds of fluorescence events. Thus, proper assignment of each 
event to its original label is essentially impossible.248

By contrast, in PALM, given a number of fluorescent events arising from a single diffraction 
limited spot, it was reasonable to ask whether one may enumerate the proteins, or, 
alternatively, quantify the protein density, that gave rise to the fluorescent signal. 
Furthermore, if the number of fluorescent events originated from a group of proteins that 
formed a complex, with each subunit individually labeled, it may then be possible to 
quantify protein complex stoichiometry.

Inferring protein complex stoichiometry in vivo is an important problem. Many protein 
complexes involved in essential cellular tasks contain multiple copies of various proteins. 
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For example, E. coli’s flagellar motor is composed of dozens of proteins all appearing in 
dozens of copies.249

What is more, protein complex stoichiometry may well be dynamical since a pool of freely 
diffusing protein subunits available to a protein complex changes over time.250,251 The FliM 
bacterial flagellar switch protein251 is a typical example.

Furthermore, determining a complex’s stoichiometry can also help understand a complex’s 
operation. For example, asymmetric cell division (sporulation) of B. subtilis creates a 
smaller daughter cell (the forespore) that initially contains only 30% of its copy of the 
chromosome; the remaining 70% must be translocated from the larger daughter cell by 
SpoIIIE, a hexameric, membrane-anchored DNA translocase.252,253 It was originally 
thought, based on similarities with bacterial conjugation systems, that SpoIIIE forms a 
single aqueous channel between the mother cell and forespore.252 Later studies suggested, 
on the contrary, that the septum is closed and two SpoIIIE hexamers jointly form a channel 
across both membranes through which the DNA passes, based on inability of GFP expressed 
specifically in the mother cell to diffuse to the forespore.253 Since both models predict 
different SpoIIIE copy numbers at the translocation septum, they could be resolved by 
accurately counting of SpoIIIE monomers.

Finally, at the cellular level, proteins and protein complexes can form higher order structures 
and super-resolution can provide deeper insight into the biological effect of such structures 
from the spatiotemporal ordering of its constituent proteins. For instance, E. coli’s 
chemotactic clusters–which allow the sensing of gradients of small molecules–involve tens 
of thousands of receptor proteins.254 These clusters are positioned in an apparently periodic 
fashion on the membrane.9 It had been suggested, from time-lapse fluorescence microscopy, 
that receptor proteins are in fact inserted at random in the cell membrane but later migrate to 
pre-existing anchor sites.9 Other models proposed that this periodicity arises spontaneously 
from the stochastic nucleation and merging of clusters.9 Greenfield et al. suggested that 
studying the protein number distribution per cluster could offer insights in the mechanism by 
which they are formed.9 We will revisit the type of insight afforded by super-resolution to 
this question later.

5.1. Counting from Fluorescence Intensity

Proteins localized in small clusters can be counted without the need to spatially resolve 
them. To do so, we may estimate the number of photons collected and divide through by the 
mean number of photons emitted by each fluorophore. This mean number (the fluorophore’s 
photon budget) depends not only on the excitation used but also, more crucially, on specific 
cellular conditions, in addition to other properties such as possible fluorophore interactions.

As an example of this early approach, if clusters contain few fluorophores, a histogram of 
the cluster brightnesses may exhibit discrete peaks at multiples of a base value.255 In such a 
case, this base value likely corresponds to the intensity of a single labeled protein and peaks 
observed at two, three, or more times this intensity correspond to clusters of two, three, or 
more proteins.255
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In a different approach, a calibration curve relating fluorescence intensity to fluorophore 
number is constructed by engineering arrays of, say, 12, 24, and 36 fluorophore binding sites 
and measuring the fluorescence intensity for each number of bound markers.256 Crucially, 
such a method can be used to establish the existence of a nonlinear relationship between 
fluorophore count and fluorescence intensity, that can be caused, for example, by 
interactions among fluorophores.256

The precision of methods relying on total observed intensity is relatively low and relying on 
a standard mean fluorophore brightness is not without risks. For example, in 2006, Joglekar 
et al. GFP-labeled a number of yeast kinetochore proteins (where the kinetochore is the 
structure that links centromeric DNA to spindle microtubules).257 They relied on the 
fluorescence of a single protein within the complex, Cse4, as a GFP fluorescence standard as 
that protein was thought to exist in a single copy per complex.257 However, later studies 
demonstrated that this assumption was incorrect: Cse4 may be present in 4 to 8 copies per 
centromere and the reported counts of all other proteins were thus underestimated by the 
same ratio.258,259 Such a difference disqualified earlier arguments indicating that Cse4 may 
be present in too small a quantity to maintain the necessary attachment points.258,259

Further biochemical studies (protection assays) suggested that one of these proteins 
(centromere protein A, CENP-A) was, in fact, present at the levels suggested in the Joglekar 
study.260 This time, it was argued that the larger numbers observed by the Coffman and 
Lawrimore studies258,259 arose from the inclusion in their counts of “unincorporated” 
labeled CENP-As, i.e., those not part of the structure itself but simply lingering in the 
structure’s vicinity, possibly due to lower incorporation efficiency of labeled CENP-A. Since 
biochemical studies are not devoid of artifacts either, this controversy remains open to this 
day,261 and should serve as a reminder that the biological question is not to know how many 
fluorescent proteins are present somewhere but how many of the underlying proteins are 
actually participating in the process of interest.

5.2. Counting by Photobleaching Using Diffraction Limited Data

An alternative approach is to rely on the stochastic photo-bleaching of single 
fluorophores.250 More precisely, we rely on the observation that the times at which multiple 
active fluorescent proteins appearing within the same diffraction spot eventually photobleach 
are stochastic and thus likely different from one another. Thus, a time series of the total 
fluorescence signal will exhibit a stepwise decrease250 with possible double-sized steps if 
two fluorophores simultaneously photobleach within the time scale of data acquisition.

So long as a majority of steps are resolvable, most steps should coincide with the 
photobleaching of a single fluorophore (or reversible transitions to and from dark states for 
blinking fluorophores). This is especially true toward the end of the photobleaching trace 
where the odds of two simultaneous photobleaching events are comparatively low. Thus, 
given an estimate for the single fluorophore intensity drop, the number of labeled proteins 
present at the start of the trace can be estimated as the ratio between the initial intensity and 
the fluorescence drop arising from a single photobleaching event.
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Leake et al. applied this method to study MotB, a component of the stator of E. coli’s 
flagellar motor, concluding that 22 ± 6 copies were present per complex.250 However, this 
method also suffers from low precision as the noise level at the start of the trace is high and 
the initial intensity is therefore poorly defined.

Instead of trying to resolve fluorescence decrease steps, which may be challenging, one may 
compare the evolution over time of the total intensity of a collection of fluorophore spots 
(which is decreased by any photobleaching event) to the evolution of the number of spots, 
within that same collection, which have not completely photobleached yet (which decreases 
only when all the fluorophores within a given spot have photobleached). The slower the 
decrease of the number of spots relative to the decrease of the intensity, the larger the 
number of fluorophores per spot.262 Yet another approach is to count molecules by means of 
photon arrival statistics.263,264 This technique exploits the photon antibunching effect, which 
essentially states that a single emitting quantum system (a fluorophore in this case) emits 
photons one at a time. Therefore, if the temporal resolution of the detector is sufficiently 
fine, photons detected at the same time can only originate from different emitters. In its most 
recent implementation,264 photon counting statistics were gathered and then a nonlinear 
regression with a Levenberg–Marquardt algorithm was used to back out the number of 
emitters, i.e., molecules of interest. However, this method is limited to counting up to 20 or 
so molecules, largely because of error introduced by blinking and photobleaching effects.

A more promising albeit more difficult approach is to attempt to identify and count all 
individual photobleaching steps, and use their number as an estimate of the protein count.196 

For example, Ulbrich et al. studied the composition of a membrane-bound receptor in X. 
laevis oocytes, that was known to form tetramers.196 The number of steps in each 
photobleaching step was visually estimated. Interestingly, the distribution of the number of 
steps resolved (1–4) is well fitted by a binomial distribution, consistent with a model that 
only about 80% of the labels are ever fluorescent.

In the sections that follow we will explore theoretical approaches that have been proposed to 
locate photobleaching steps that can be resolved.

5.2.1. Hidden Markov Modeling of Photobleaching Time Series—Even before 
Ulbrich’s original experiments, Messina et al. proposed to determine the number, N, of 
fluorophores using HMMs, discussed earlier in section 3.3.3, where each state coincides 
with a combination of states for each individual fluorophore.265

The large number of states in this model is suitably shrunk by exploiting the fact that states 
with the same number of bright fluorophores are indistinguishable, leading to a formulation 
where each state corresponds to a number n of active fluorophores. For instance, the 
transition from a state with n active fluorophores to n − 1 has a rate equal to n times the 
transition rate to the dark state (as any of the n fluorophores could go dark) and, similarly, 
the transition from the state with n active fluorophores to n+1 has a rate equal to (N−n) times 
the recovery rate from the dark state (as any of those (N−n) fluorophores could recover).265
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Standard maximum likelihood techniques193 were then applied to compute the likelihood 
corresponding to each total number of fluorophores N. As there is no penalization for 
overfitting, this likelihood can only increase for increasing N; however, it is expected to 
plateau once the true number of underlying fluorophores is reached.

This method’s original implementation was applied to time-correlated single photon 
counting experiments; that is, a setup where stochastic arrival times of each individual 
photon is measured,265 rather than the more common setup where an average intensity is 
measured by integration over a longer period. In such a case, the source of noise arises from 
the existence of “background” photons not associated with a fluorophore of interest,176 as 
well as from the stochasticity of the arrival times of the “true” photons. However, the 
approach of Messina et al. can also be directly adapted to the case where an average 
intensity is measured.146 The authors suggest that up to 30 fluorescent dyes may be counted 
using such a technique.265

5.2.2. Step-Finding Algorithms in Counting by Photo-bleaching—Without 
characterizing the kinetics of photo-bleaching, it is also possible to rely on classical step-
finding algorithms to count the number of photobleaching events in a time trace.96,266,267 

The problem of locating sharp discontinuous changes in noisy data, the purview of step-
finding algorithms, is a general problem across science that has been investigated across 
single molecule biophysics.59 As always, a precise understanding of the noise characteristics 
in the data-generating process is required to accurately locate steps (Figure 14).

5.2.2.1. Edge-Preserving Smoothing: Many step-finding algorithms start from an initial 
filtering or downsampling of the data.270 Although linear filters, where each data point is 
replaced by a weighted average of the neighboring data points within a specified window, 
are easily implemented, they also tend to blur or smooth out true transitions in the data. In 
particular, multiple temporally close transitions may become “merged” into a single 
transition.271

To avoid this effect, Chung and Kennedy271 proposed (for the purpose of resolving state 
transitions in patch-clamp experiments) a nonlinear filter, whereby the weight given to a 
neighboring point during the filtering depends on how well it predicts the current 
observation, an approach known in the image-processing field as edge-preserving 
smoothing.

More precisely, for each data point y(t) in a trace, we consider 2K “predictors” of “order” 
−K, −(K − 1), …, −1, +1, …, K − 1, K, namely the averages of the i (1 ≤ i ≤ K) previous or i 
future data points

(69a)

The squared error below provides a metric quantifying the predictor’s quality
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(70)

The Chung-Kennedy filter is then computed by weighting the predictor of order i by the 
inverse pth power of the average badness of the predictors of the same order i but considered 
over the M preceding (for negative orders) or following (for positive orders) data points

(70a)

(where the denominator is simply a normalization factor).

This filter possesses three parameters (K, M, and p), which are tuned empirically. The 
authors demonstrate that an appropriate choice of the parameters leads to a reduction of the 
noise without distorting sharp transitions.271 More quantitatively, the effect of various filters 
on the quality of various step-finding algorithms has been the subject of a comparative study 
by Carter et al.270 finding that a properly (manually) tuned Chung-Kennedy filter exhibited 
better performance than mean or median filtering.

5.2.2.2. Segmenting the Trace: Regardless of whether (and how) the data is smoothed to 
facilitate step-finding, the essential part of step-finding is to segment a trace into 
“approximately constant” regions separated by a step. Two approaches are possible: 
“bottom-up”, where small regions are merged together on the basis of value closeness, and 
“top-down”, where the whole trace is progressively split into separate regions.

An example of the bottom-up approach was proposed by McGuire et al.266 Briefly, starting 
from the beginning of a trace, data points are progressively added to a running window until 
the value of the fluorescence moves outside of a small range centered at the current window 
mean. When this occurs, the current window is terminated and a new window started. After 
running this process on the whole trace, it is repeated on the resulting “leveled” trace until 
the levels have converged. This whole process is then iterated (starting from the “leveled” 
trace) using progressively wider window ranges.266

Conversely, an example of a “top-down” approach is provided by a mathematical 
idealization of the white noise assumption: the goal is to find the piecewise constant signal 

, containing N discontinuities (steps), that minimizes the mean square error, 

. Because it is computationally intractable to test all possible combinations of 
step numbers and their coinciding locations, the number of locations scaling as the number 
of time points raised to a power equal to the number of change points, Kalafut and 
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Visscher272 proposed to iteratively add change points one after another, each of them at the 
position that decreases the mean square error the most. At each iteration, one only needs to 
check, for each time point, the decrease in mean square error if the next change point was 
inserted there. Even a naive implementation of this approach only exhibits a complexity 
proportional to the product of the number of time points by the number of change points. We 
note however that recent theoretical developments have provided efficient exact algorithms 
to solve this problem through a careful pruning of the solution tree.273,274

As a fit’s mean square error can only decrease as more steps are added, “top-down” 
approaches additionally require an explicit penalty against overfitting. Kalafut and Visscher 
propose the use of the Bayesian information criterion (BIC), discussed briefly in section 
3.3.4.272 However, as acknowledged by the authors, this does typically tend to overfit the 
data.272

For particular applications, it is always possible to create better step-finding algorithms 
directly informed by the physics that dictates the noise properties of the problem.

For example, a Bayesian algorithm specifically applied to counting by photobleaching is 
presented by Tsekouras et al.96 In this method, priors and likelihoods are specifically 
informed by the physics dictating that noise properties should vary stochastically, on the 
basis of the number of active fluorophores, and that the number of overlapping blinking and 
photobleaching events have different a priori expectations based on the length of the time 
trace and the stochastic nature of the photobleaching process.

With this information at hand, Tsekouras et al. arrive at a “top-down” method, more 
precisely, a marginal posterior for the entire trace, that can be used as a criterion to locate 
photobleaching steps. The method succeeds in avoiding the overfitting problem arising from 
assumptions of constant noise across a data set and, according to the authors, scores 
correctly dozens or even hundreds of steps, provided enough data points are present between 
successive steps to avoid small number statistics problems (Figure 15).

5.3. Counting by Blinking Correction

As suggested earlier, super-resolution microscopy, and PALM in particular, are seemingly 
well suited for counting, as the molecular photoactivation times are, by design, as temporally 
separated as possible. Thus, the number of fluorescence events or bursts detected within a 
diffraction-limited spot should, in theory, match the number of active fluorophores within 
that spot. This is only in principle true if fluorophores do not blink.

However, even in the presence of blinking, counting remains possible so long as consecutive 
bursts originating from the blinking of a single fluorophore can be grouped together. Indeed, 
threshold methods–described in greater detail below–were used, for example, to study the 
size distribution of E. coli’s chemotactic cluster.9

5.3.1. Threshold Methods for Counting from PALM Data—In the very first 
implementation of PALM, Betzig et al.4 acknowledged the need for such a grouping and 
applied a purely empirical threshold (“blinking correction time”) to merge events appearing 
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within the neighboring pixels and separated by no more than three dark frames, in essence 
applying a very simple form of the nearest-neighbor solution to the linking problem which 
we discuss in section 6.

Annibale et al.275 further studied the blinking kinetics of the widely used mEos2 
photoactivatable fluorescent protein (PA-FP), imaged on a coverslip in vitro. By lowering 
the fluorophore density, the authors could ensure that each fluorescent event corresponded 
indeed to a single fluorophore (further confirmed by the absence of multistep photo-
bleaching).275 The authors found that roughly half of the molecules reactivated after 
entering a dark state, i.e., blinked. Recovery times from the dark state were found to be 
multiexponentially distributed (similar to observations on other PA-FPs276) and regularly 
lasted as long as tens of seconds. This observation thus raised the concern that earlier studies 
may have misinterpreted large number of blinking events as evidence for protein 
oligomerization.275

The authors thus proposed two methods to correct for this blinking. Either the blinking 
correction time could be empirically increased or, perhaps more interestingly, the authors 
found that recovery from the dark state could be accelerated, and thus the blinking 
correction time kept low, through continuous illumination by the photoactivation laser. Thus, 
they recommended the use of a continuous photo-activation scheme, rather than a pulsed 
activation scheme where the photoactivation laser is alternatively turned on for a brief period 
of time, then kept off while the fluorescence of the activated subset is collected.275

In order to maximize the accuracy of the estimated number of events, Lee et al. offered an 
alternative selection strategy for selecting the blinking correction time.277 First, the authors 
suggested a scheme by which the photoactivation laser power is tuned in order to ensure a 
near-constant number of photoactivation events per unit time. Such a strategy ensures 
maximal separation between active active fluorophores in times and thus minimizes the 
probability that two fluorophores be simultaneously active.

In short, the scheme was devised by first considering the total number of molecules, N(t), 
yet to be photoactivated at time t with instantaneous activation rate k(t) which was found to 
be proportional to the photoactivation laser power, P(t). The number of molecules that 
photoactivate between times t and t + dt is dN = k(t) N(t) dt; thus, the number of molecules 
that photoactivate per frame could be kept constant by solving

(71)

and selecting a k(t) (or equivalently P(t)) that enforces a constant dN/dt.277 The authors 
subsequently generated a simulated time series corresponding to the blinking behavior of 
various fluorophore numbers. The number of events in each time series was then counted by 
using various possible values for the blinking correction time; the blinking correction time 
that achieved, for each given underlying number of fluorophores, the minimum mean bias 
was then tabulated. As could be expected, the more fluorophores in a single spot, the smaller 
the correction time that achieved unbiased counting. Since the correct number of 
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fluorophores is initially unknown, the authors proposed to start from an arbitrary count, pick 
the corresponding correction time, count using that correction time and iterate. Overall, this 
approach was shown to exhibit an error of a few percent when counting up to a hundred 
molecules.277

While this method introduces a blinking correction time (i.e., a threshold), it does not 
attempt to produce a “grouping” of events correctly identifying whether two events truly 
arose from the same molecule. In general, such a grouping may be impossible to attain, as 
the blinks arising from multiple molecules may be interlaced, or even overlap each other 
(Figure 16). In such a case, “undercounting” (the incorrect merging of events corresponding 
to two different fluorophores) is unavoidable. Instead, the blinking correction time was 
chosen (by using the simulations described above) so that these undercounts are exactly 
compensated by “overcounts” which are cases where a single fluorophore took a time longer 
than the blinking correction time to recover from its dark state.277

5.3.1.1. Stochastic Counting Methods from PALM Data: While the above method277 

relied on calibrated photophysical (blinking and photobleaching) rates for the fluorophores, 
it is also possible to learn blinking and photobleaching rates self-consistently from the data 
itself and, simultaneously, avoid thresholds altogether.21 The reason to avoid using 
calibrated photophysical rates is clear: each protein complex exists within its own unique 
microenvironment within the cell and rates may differ from one environment to the next.

In order to infer both photophysical rates and the number of fluorophores within an ROI 
self-consistently, Rollins et al.21 introduced an aggregate Markov model (AMM) (section 
3.3.3), and used likelihood maximization to infer photophysical rates and protein counts.21

Figure 17 shows the state of an individual fluorophore. The states fall under two categories 
called aggregates: bright and dark. Only the active state that emits photons belongs to the 
bright aggregate. All other states (inactive, dark and photo-bleached) belong to the dark 
aggregate. The AMM is appropriate here as, for a N-fluorophore system (N unknown), there 
are many states that make up the dark aggregate, bright aggregate and, more generally, the 2-
fold, 3-fold, …, N-fold bright aggregate if 2, 3, …, N fluorophores are simultaneously 
active.

Just as we had seen in section 3.3.3, the rates can be cast in the form of a rate matrix Q that 
governs the switching between the AMM states. Assuming for simplicity only two 
aggregated states (such that at most a single fluorophore can be active at any given time), Q 

takes the form

(72)

where, just as we had introduced earlier in eq 24, the Qij are submatrices with d and b 
denoting dark and bright state, respectively. From this transition matrix, a likelihood can be 
constructed based on the aggregate state occupied at each time point and from this 
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likelihood, photophysical rates and fluorophore numbers can be inferred (Figure 18). The 
authors generalized their treatment in that same paper to treat missed events, that is, dwells 
in aggregate states (i.e., dark or bright states) shorter than the data acquisition time (Figure 
19).

5.4. Limitations of Counting

Biological constraints complicate the counting problem. For instance, even if all proteins are 
labeled and are expressed in their native amount (which has been made possible by the 
advent of widespread genome editing systems), not all fluorophores mature,196,278 nor will 
all photoconvertible fluorescent proteins successfully photoconvert.139 Fundamentally, no 
algorithm can count proteins that never appear.

Various approaches have been proposed to quantify the percentage of proteins that properly 
activate. For example, by expressing a labeled human glycine receptor GlyR, whose known 
stoichiometry of three α and two β subunits could be used as a reference, in X. laevis 
oocytes and counting them either by stepwise photobleaching or by blinking correction, 
Durisic et al. found that across a wide range of photoconvertible fluorescent proteins, only 
40 to 80% of the proteins successfully photoconverted.139 Likewise, Wang et al. expressed a 
dozen different fluorescent proteins in E. coli and compared the number of events collected 
in a PALM experiment, corrected through division by the mean number of blinks per 
molecule, to an estimate of the actual number of fluorescent proteins expressed, obtained by 
quantitative Western blotting.190 They found an even lower detection efficiency for 
fluorescent proteins: only between 1% and 20% of them successfully photoconverted. Such 
limitations need to be taken into account while comparing the accuracy of counting 
methods: minor gains in the theoretical accuracy of counting will only matter if the global 
accuracy of the count is not limited by experimental considerations.

6. THE LINKING PROBLEM

Tracking and, in particular SPT, can be broken down into three analysis steps typically 
performed independently: localization, linking, and interpretation. While the study of static 
structures only require particle localization, dynamics requires both linking and 
interpretation.

Inferring dynamics from super-resolution is difficult as there is a trade-off between spatial 
and temporal super-resolution.279 Spatial super-resolution requires long exposure times in 
order to collect enough photons to accurately localize particles. These long exposure times 
make it difficult to interpolate the positions of particles moving rapidly through space as 
photons are being emitted at different positions yielding a ”smeared” PSF. Shorter exposure 
times are not necessarily the answer as too few photons may be collected.

Accurate particle linking, often also called data association, which connects a particle’s 
position across different time frames is therefore an important theoretical challenge. On its 
own, linking does not characterize the motion of particles, i.e., determine whether the 
motion is diffusive or directed, although motion models can often facilitate linking. Nor does 
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linking interpolate the dynamics between frames. The latter two issues are relegated to 
section 7 on the interpretation problem.

Of the three major SPT components—localization, linking, and interpretation—linking is 
the least developed. However, it is a critical component: poor linking introduces errors that 
can derail the subsequent interpretation of the dynamics and is often the limiting factor in 
determining the quality of tracking algorithms.212,280

6.1. Overview of Linking Methods

Linking methods may be considered local or global.281,282 Local approaches work one 
particle at a time, by linking a single particle in one frame to a single particle in the next. On 
the other hand, global approaches take many or all particles in each frame into consideration, 
linking them to a corresponding number of particles in the next. Global approaches perform 
better when the density of particles to be tracked is high,281 though this often comes at a 
heavy computationally cost (Figure 20a)).

Another way to categorize linking methods is to consider the relative weight they ascribe to 
spatial versus temporal information281,282 (Figure 20b). For instance, to save on 
computational cost, many methods only consider two successive frames at any given time in 
order to link, in the most general case, all particle positions in one frame to all particle 
positions in the next, thereby maximizing the weight of spatial and minimizing the weight of 
temporal information. Other methods take into consideration multiple frames, thus assigning 
more weight to temporal information. Such multi-frame integration is correspondingly more 
difficult and may be one of the primary areas where there is room for improvement in 
increasing tracking method reliabilities, as studies in human vision have shown integration 
to be critical for improved performance.282

As we will discuss, methods that are spatially focused and local, such as simple nearest 
neighbor (NN) linking methods (section 6.4.1), are overall inferior to global, more 
temporally focused methods, such as multiple hypothesis tracking (MHT; section 6.4.5.3), 
which directly address several problems mentioned in the next section, such as missed 
events or abrupt motion changes, at the expense of computational cost. Furthermore, as we 
will see, methods that exploit knowledge (theoretical or measured) about particle motion in a 
specific environment, such as whether particles could move via diffusion alone or via 
combination of diffusion and directed transport, can exhibit superior performance as long as 
the model is well specified.

6.2. Cell versus Particle Linking

We briefly highlight the differences between particle and cell tracking. By contrast to 
particles, most cell tracking methods take advantage of the high contrast of the cells with 
respect to background.284 Such methods include template matching284 which is only good 
for very similar cell shapes, as it tries to match a model cell image to the acquired image cell 
and deformable models.285,286 Both approaches achieve linking by identifying similar-
looking or similar-shaped cells across different frames. For example, in the deformable 
model approach, an initial image or shape is assigned to a cell depending on how that cell 
looks in the first frame and an approximate image or shape is sought in subsequent 
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frames.286 By contrast to cell tracking, more challenging global rather than local linking 
strategies are more useful for particle tracking, in part because particles look identical and 
are diffraction limited.

6.3. Problems Facing Linking Methods—Difficulties in linking arise not only from the 
data’s diffraction limited nature but also from measurement noise, as often quantified by the 
signal-to-noise ratio (SNR).287 Sources of noise and additional complications involved in 
linking include the following: photon shot noise, thermal fluctuations, optical alignment 
drift, occlusion, chromatic aberration, spatial overlap, systematic position errors due to, for 
example, fluorophore orientation and pixel nonuniformity, inter-and intra-trajectory 
inhomogeneities, merging, splitting, appearance, and disappearance of particles282,287–289 

(Figure 21).

Sources of error in the linking of diffraction-limited particles include not only experimental 
considerations, but also the choice of models for noise and motion–and the stitching of these 
models–and the choice of algorithms (local versus global, localization while linking, high 
cost etc.).287 For instance, algorithms which localize prior to linking propagate error into the 
linking step by assuming, say, a Gaussian PSF for fast-moving particles.200 Such error may 
be minimized by jointly performing the localization and linking steps in a self-consistent 
fashion.291

In subsequent sections we discuss methods of linking. We refer the readers to Mont et al.292 

for newly defined metrics quantifying the linking quality.

6.4. Linking Methods

Addressing the challenges discussed in the last section requires principled and often 
problem-specific linking strategies. We now describe basic linking methods and offer an 
introduction to their mathematical underpinnings.

6.4.1. Nearest Neighbor Linking—Nearest neighbor (NN) linking is an example of a 
local spatially focused method. NN methods are simple to implement but inappropriate at 
high particle density, when particles move at different speeds, split, merge, appear or 
disappear.293

All NN algorithms try to match a localized particle in one frame to the nearest localized 
particle in the next frame. Note that “nearest” in this context can refer not only to spatial 
distance but also to intensity, volume, orientation or combinations thereof. If a combination 
is used, a suitable coefficient tuning the relative importance of disparate information types 
must be specified.

More precisely, given a set of N positions, {r1, …, rN}, predicted by the algorithm (either by 
doing a brute force vicinity search294 or one informed by a model of particle motion295) and 
a set of N′ experimentally localized measurements of positions, {m1, …, mN′}, both 
referring to the same time frame t, the goal is to find a one-to-one correspondence between 
them. This correspondence is represented by the N × N′ association matrix A whose 
elements aij take the value 1 if ri and mj match and zero otherwise.296
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When particles appear or disappear, N may not equal N′ and some estimates or 
measurements remain unmatched. In this case, “dummy” estimates or measurements are 
included.296 A NN algorithm then optimizes A by minimizing the total displacement Φ

(73)

where d denotes a measure of distance, usually (but not always) simply the Euclidean 
distance between predicted and measured positions.

In order to reduce computational cost, local assumptions are made. For instance, matches 
between true particles are only considered if d < dmax where dmax is some maximum 
distance beyond which a particle could not have moved. If a match between a dummy and a 
true particle is considered, d is set equal to dmax.

NN algorithms have been used to investigate, among other systems, ligand-gated ion 
channels such as P2X1297 and 5HT3A,298 Tat (twin-arginine translocation) pathway 
components in Streptomyces bacteria,294 or the motion (free, hindered, hop, or corralled 
diffusion) of membrane proteins within cellular or biomimetic membrane 
compartments.299–302 Local degree of confinement within those compartments is 
determined by membrane protein motion experiments. In such experiments, NN methods 
work well, because for some cases, motion models (diffusion on membranes) are well 
characterized and because the objects of interest are sparse. Sparsity may happen naturally 
though it is often engineered, for example, by photobleaching the bulk of active 
fluorophores.

6.4.1.1. Residual Tracking: A special case of NN, residual tracking303 is a method 
introduced for cases where we expect many particles to be fused or, at the very least, in close 
proximity even if the overall particle density is low. We begin by constructing all possible 
links that particles in one frame can have to particles in the next. Each one of these 
associations is called a hypothesis. To rank order these hypotheses, we consider all 

fluorescence intensities at time t at position (x, y) in a 2D image, . In theory, such 
fluorescences are obtained from (i) the sum of a constant background fluorescence, bt; (ii) 
the fluorescence of the ith particle, Pt, i extending across some pixels that include location 
(x, y); and (iii) a stochastic acquisition noise term Nt

(74)

The key idea of this method is to make the residual Rt, defined below, approach zero

(75)
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Residual tracking is computationally efficient but seriously limited because it considers only 
successive frames.

NN methods have clear limitations. They are prone to error if more than one particle is likely 
to find itself within d, i.e., for dense samples, and even more so because the calculation of d 
depends on the model chosen.

6.4.2. Overview of Filters—We have just described a local, spatial method. We now 
broaden our discussion to filters incorporating past temporal information in linking that goes 
beyond the previous frame.296 This is by contrast to other methods, such as multiple 
hypothesis tracking (MHT) discussed in section 6.4.5.3, which incorporate numerous 
frames, past and future, in addition to spatial information all at once.

Filters are sequential Bayesian methods using motion models to create an estimate of the 
future position of a particle, subsequently updated using current actual measurements. 
Because of their reliance on motion models, inhomogeneities requiring complex motion 
models, present difficulties for such approaches. A detailed discussion of the Kalman filter, 
probably the most commonly used filter, will be relegated to section 7.2.4.

Filtering approaches can be either global, more commonly called joint in the filtering 
literature,296 i.e., applied to all the particles in an image frame at once, or local, a.k.a. 
independent, i.e., applied to one particle at a time. All filtering methods can in theory be 
used as joint or independent filters, but in practice only the Kalman filter and the particle 
filter are ever used as independent filters. All filtering methods, especially if used by 
themselves, assume only small changes in number of detected particles per frame.

Filtering algorithms, often used as part of a broader tracking data analysis scheme, see for 
example section 6.4.5.1, have also been used by themselves, for example in linking frames 
for gene carrying particles (viruses, drugs, etc.)304 and viral296 particles.

6.4.2.1. Joint Filters: Spatiotemporal Filtering: Unlike independent filters, joint filters296 

link all particles in one frame to all particles in the next. This avoids those conflicts that 
plague independent filters but is correspondingly more computationally expensive. The 
simplest joint filter is the spatiotemporal filter, which can be thought of as a generalization 
of the Kalman filter, discussed in section 7.2.4.

To be more specific, for spatiotemporal filters296 we assume, in analogy to HMMs (section 
3.3.3), that, at time t, a particle has a hidden state rt represented by a noisy measurement mt. 
The goal is to estimate rt from the data. The spatiotemporal filter achieves this for all 
particles in a frame, i.e., it is a global linking method, by recursively finding the posterior, 
p(rt|m1→t), where the index 1 → t denotes all frames from frame 1 to frame t. To find the 
posterior, we first specify the following quantities: p(rt|rt−1), dictated by the motion model to 
describe the evolution of the hidden state; p(mt|rt), representing the relation between 
observation and state; and an initial prior p(r0). Using these quantities, a two-step recursive 
Bayesian approach yields the posterior

Lee et al. Page 63

Chem Rev. Author manuscript; available in PMC 2017 June 28.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



(76)

(77)

where in the last expression, we invoked Bayes’ theorem and assumed measurements are 
independent. While in general the integral of eq 76 cannot be evaluated analytically, under 
some Gaussian approximation the formalism reduces to the well-known Kalman filter296 

(section 7.2.4). This is because the Kalman filter performs exactly the task of creating a 
prediction p(rt|m1→t−1) for the particle position, then compares with the measurements, and 
finally yields a result by combining the prediction and the difference between prediction and 
measurements, called the innovation. In the Kalman filter, prediction and innovation must be 
combined linearly via some gain matrix; the Gaussian approximation is required to 
mathematically justify the gain matrix form.

Alternatively, for non-Gaussian p(rt|rt−1) and p(mt|rt), the integral of eq 76 can be estimated 
by sampling the integrand, typically via MCMC. This method is called the particle filter. 
What is more, inconsistencies in the performance of filters across an image have been 
addressed using a modified sampling scheme called the boosted particle filter.

Finally in the special case where there are only a few particles that look and behave very 
similarly per frame, it is possible to use a mixture of particle filters to approximate the 
posterior p(rt|m1→t). For example, two particle filters, each corresponding to a different 
motion model, can be constructed and then the posterior estimated as a weighted sum of the 
samplings from each filter.296

6.4.2.2. Independent Particle Filters: Independent particle filters use one particle filter for 
each particle. That is, only a single particle is linked between two successive frames. 
Computational requirements for independent particle filters are therefore low. However, 
independent particle filters fail if particles pass so close to each other that the corresponding 
filters both choose the same particle, i.e., conflict. When filters conflict, one solution is to 
find sets of trajectories that minimize the number of appearing and disappearing particles.296 

Drawing from graph theory, each particle position can be thought of as a vertex and each 
link between two positions as an edge. When particles conflict, some vertices have more 
than two edges, while others may have one or none in which case they are called orphan 
vertices. Godinez et al.296 propose a method to minimize orphan vertices by creating 
candidate links between them following a logic very similar to NN linking discussed in 
section 6.4.1. The need to find some procedure to resolve conflicts is the main disadvantage 
of independent particle filters.

It is theoretically possible to use filters other than the particle filter to follow each particle, 
so that we can, for example, have independent Kalman filters. However, no implementations 
of such filters have–to our knowledg–ever been constructed, since the risk (filter conflict) 
outweighs the reward (easing of the computational burden). Independent particle filters is 
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the only exception because particle filter sequential Monte Carlo sampling already imposes a 
heavy computational burden so easing it becomes a priority.

6.4.3. Energy Minimization—In linking by energy minimization, we begin with a set of 
frames and stack them in the order in which they were acquired thereby forming a 3D 
volume. The linking problem, that is, finding trajectories within this 3D volume, is reduced 
to a global minimization of an objective function defined on this volume that can be thought 
of as an energy.293 Energy minimization methods are global and consider both temporal and 
spatial information in the linking process. By contrast to filters and MHT, discussed in 
section 6.4.5.3, energy minimization methods are non-Bayesian. More specifically, while 
filter methods only incorporate time up to the frame currently being processed and MHT 
considers, in principle, all possible trajectories across all space and time, energy 
minimization methods are more computationally efficient.282

High accuracy combined with low computational cost have made energy minimization 
methods popular for linking, especially for cases with smooth, long tracks. For instance, 
they have been used to track low-density lipoproteins transported inside endosomes and 
adenovirus-2 particles moving along microtubules,305 viruses transporting across 
membranes,306 diffusion of proteins in chromatin structures,307 changing distributions of 
Vipp1 proteins, essential for photo-synthesis, in cyanobacteria308 and lac repressors in DNA 
in a study of DNA repair mechanisms related to antibiotic resistance in bacteria.309

The effectiveness of energy minimization methods depends on one’s choice of objective 
function (i.e., energy). For instance, objective functions may be phenomenologically 
motivated based, in whole or in part, on physical properties such as the fluorescence signal 
to be linked305,310,311 (Figure 22). For example, we may define a distance metric such as eq 
73, albeit for all particles as opposed to one particle, that may be further regularized by the 
quadratic difference in fluorescence intensity moments of order 0 and 2.305 In a similar 
example, trajectories were constructed by following high gray intensity curves.310 In yet 
another similar example combining NN and energy minimization, Bonneau et al. tracked 
glycine receptors in neurons but linked brightness rather than distance globally for the 
particles.311 Track fragments across the 3D volume were linked in such a way as to 
minimize 3D volume geodesics albeit constrained by physical motion models, such as the 
local diffusion coefficient.311

Objective functions can also be motivated by mathematical principles. For example, 
Shafique and Shah312 draw heavily from graph theory, constructing a graph where localized 
particles in all frames are vertices and links are edges. They invoke tools from graph theory 
in order to maximize trajectory length while ensuring that the optimal trajectory set 
minimizes orphan vertices, i.e., maximizing graph cover.313 These graph theoretic inspired 
methods can tolerate cost functions that are not optimized for the problem or that are ad hoc 
to a greater or lesser degree. They are therefore more general than physics-based energy 
minimization methods and avoid having to go to great lengths to pick suitable motion model 
based cost functions.
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A method, detailed elsewhere,314 that brings together phenomenological objective functions 
and graph theoretic methods has been used in studies of the tumor necrosis factor 1 crucial 
in inflammation,315 integrin and talin protein dynamics in cellular focal adhesions,316 and 
enzymes that are suspected of promoting tumor generation.314

6.4.3.1. Linking via Message Passing between Frames: This new method is an attempt to 
fix the problems energy minimization methods encounter when particle density is high and 
works best for such high particle densities (Figure 23).

The method starts by formulating the linking problem as a weighted complete bipartite 
graph.291 Subsequent mathematical mapping detailed elsewhere291 reduces the linking 
problem to what is known as the message-passing formulation of belief propagation. This 
normally is a computationally very expensive method, but it can be approximated by a 
MCMC algorithm which reduces computational cost by multiple orders of magnitude, 
making the method tractable.

A general criticism that can be made of all energy minimization methods is that they rely on 
trajectories that are long and regular, which is not always realized in biophysics where 
observed trajectories are jagged and short due to fast changes in motion or photobleaching.

6.4.4. Multiple-Target Tracking—While filters (section 6.4.2) are Bayesian and operate 
one frame at a time, multiple-target tracking (MTT)317 is a non-Bayesian linking method 
that also works one frame at a time. It has the advantage of being much less computationally 
expensive than filters. MTT links particles to the next frame starting from localized particles 
at the current frame in addition to knowledge of motion model and photophysical parameters 
drawn from previous frames for each trajectory (Figure 24).

More specifically, in order to link existing trajectories to localized points (particles) in the 
new frame, an area where the particle would be expected in the new frame must be 
determined. This area is calculated based on a Brownian motion diffusion model, although 
the method can be adapted for other motion models, with the position of the particle in the 
last frame as initial condition and bounded by some predetermined distance. If a single 
particle is found within that area it is added to the trajectory. If there is overlap, i.e., there are 
more than one candidate particles in the area, MTT compares the likelihood for each 
possible linking as a function of the positions, intensities and blinking probabilities of the 
particles involved. If there are any unconnected particles in the area, particles are relocalized 
and the procedure repeated.

MTT is computationally inexpensive but is much less powerful than algorithms that take 
many frames, past and future into consideration, like MHT (section 6.4.5.3); it is also much 
less effective if the particles being tracked behave very similarly because if their trajectories 
cross it is prone to misidentifications. Initially demonstrated on tracks created by the motion 
of epidermal growth factors in the plasma membrane of cells,317 it has since been used to 
study actin dendritic spines318 and enhanceosome assembly in embryonic stem cells.85
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6.4.5. Bayesian Nonfilter Methods—Here we briefly highlight a group of Bayesian 
linking methods devised for frames where particle density is high (which causes filters 
(section 6.4.2) to fail) and particle motion is not smooth (which causes energy minimization 
(section 6.4.3) methods to fail).293 These methods, informed by priors derived from models 
of motion or knowledge of particular system, are particularly useful in biophysics, where 
jagged motion and high particle densities are often encountered293 but can fail if motion 
models are inadequate, or probability distribution assumptions do not hold314 (Figure 25).

6.4.5.1. Interacting Multiple Model: Kalman filters, discussed in section 7.2.4, assume a 
single motion model. By contrast, the interacting multiple model (IMuM)320 uses multiple 
Kalman filters each with a different, competing, motion model to estimate particle positions 
in the next frame. The Kalman filter that wins the competition sets the motion model for that 
particle in that frame alone; in the next frame the Kalman filters compete anew. In this way 
IMuM avoids any assumption of smooth motion, reflects the fact that particles in biological 
settings can switch between types of motion relatively quickly and also avoids the very high 
computational cost of the MHT (section 6.4.5.3).

More specifically, similar to filters, IMuM computes the posterior p(rt|m1→t) by assuming 
that the system can be reduced to a set of j switching linear models with additive Gaussian 
noise profiles of the general form

(78)

where j is the index of the model that is active at time t,  is the state transition matrix, 
is an “observation matrix” relating the hidden position to the measurement, and (η, ε) are 
the “process” and “measurement” noise vectors respectively, described in greater depth in 
section 7.2.4. Both noise vectors are assumed to be uncorrelated white zero mean Gaussian 
processes.

As there are too many possible sequences of motion models to consider for the problem to 
be computationally tractable across all frames, IMuM considers only two successive frames 
i, i+1 at a time. That is, IMuM calculates position predictions for the (i+1)th frame from 
each motion model via a Kalman filter employing that motion model. Once the predicted 
positions for each motion model have been constructed, the motion model whose predictions 
for each particle best matches a measurement is determined by maximizing the likelihood of 
the innovation for the Kalman filters for each particle in each frame.

IMuM yields good results but only when the linearity and Gaussianity assumptions that 
underlie the Kalman filter are justified. It also has a disadvantage compared to methods such 
as the MHT since it does not consider future temporal information.

6.4.5.2. Linking with iHMMs: Here we mention a non-parametric Bayesian method that 
appeared almost a decade ago.321 Prohibitively expensive computationally at the time it was 
first presented, it now shows promise. This method relies on iHMMs (section 7.3.2), and 
thus can grow in complexity as the amount of available data increases. To be more precise, 
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previous methods, such as IMuM (section 6.4.5.1), prespecify the number of motion models 
or state space. To accommodate the complexity of large data sets, large state spaces would 
be needed, thereby increasing the computational burden. iHMMs only grow the state space 
as needed and thus we argue that they are well suited for cases where large numbers of 
particles may be moving with a variety of motion models in heterogeneous environments, as 
is the case, for example, of different transcription factors diffusing in the nucleus.322

6.4.5.3. Multiple Hypothesis Tracking: Multiple-hypothesis tracking (MHT), first 
proposed by Reid,323 is perhaps the most advanced among available methods. It is intended 
to tackle the major problems of particle motion heterogeneity:280 high particle density, 
particle merging, splitting, and temporary disappearances.

In principle, MHT, starts from all particle positions localized across time frames (past and 
future), thereby constructing all possible trajectories that could arise when linking all 
frames.

In practice, this is not computationally feasible, and thus a greedy algorithm is often used to 
stitch locally optimal links across frames. Greedy algorithms are more efficient, but pay a 
price in that some potential trajectories are never considered. Here we describe one such 
implementation by Jaqaman et al.280

In the first step of this implementation, particles in one frame can link to at most one particle 
in the previous or next frame. Taking all such possible links for each particle in a frame, 
short candidate segments linking just two localized particle positions are created. Segments 
are also constructed for particles in one frame linking to nothing in the previous or next 
frame, these links corresponding to a particle appearance and disappearance, respectively. 
Some of these candidate two-particle trajectory segments are mutually exclusive, i.e., 
conflict.

In the second step each possible two-particle trajectory segment is assigned a cost, and in 
any group of conflicting segments, only the lowest cost segment is retained.

In the third step, these two-particle trajectory segments across all frames are themselves 
linked in five ways: end of one segment to the start of the other, for continuation; end-to-
middle, for particle merging; middle-to-start, for particle splitting; end-to-nothing, for 
trajectory ending; and nothing-to-start for new trajectory initiation. This trajectory segment 
linking creates large numbers of potential trajectories, many of which conflict. Trajectories 
that do not conflict are regrouped as a candidate tracking hypothesis. Step four assigns a cost 
function, which may be Bayesian or otherwise motivated, to each hypothesis and the lowest 
cost hypothesis is selected, similar to energy minimization methods (section 6.4.3).

This implementation of MHT has been used to follow the motion of the macrophage trans-
membrane CD36 receptors;280 the formation of clathrin-coated pits;280,324 microtubule 
dynamics;325 and AAA+ ATPase motor cytoplasmic dynein dynamics.326

Chenouard et al.287 extended the previous treatment by turning MHT into a Bayesian 
framework. Briefly, for reasons of computational efficiency, they built tracking hypotheses 
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between frames k and k + d by considering all possible positions that a particle could take in 
each of these frames. To further limit computational cost, they stored hypotheses as tree 
graphs, and in the first step of MHT, they do not explicitly consider particle splitting, 
merging, appearance, and disappearance when constructing trajectories.

This reduction of the computational burden is necessary in view of two new features this 
implementation of MHT introduces, both of which are computationally costly.

The first new feature enters in the second step of MHT. When linking a measurement A in 
frame k to a measurement B in frame k + 1, the algorithm assumes a particle has moved 
from A to B via a combination of diffusion and directed transport and assigns each of these a 
Kalman filter (section 7.2.4). Then the algorithm employs an iHMM (section 7.3.2) to set 
the specific motion parameter models used in the two Kalman filters and among conflicting 
trajectory segments retains the one with the most likely parameter values.

The second feature enters in the third and fourth steps of the MHT. Instead of creating 
trajectories by linking only trajectory segments whose starts or ends are in adjacent frames, 
the algorithm links trajectory segments even if they are separated by several frames. This 
compensates for the algorithm ignoring particle appearances and disappearances in step one. 
Trajectory segments involving such “hops” across frames, realized in the tree graph 
formalism via virtual detections, are assigned a cost on the basis of a model based on the 
photophysics of particle disappearance for the particular system.

Once trajectories have been created up to the predetermined tree depth, i.e., frame k + d, the 
most likely tracking hypothesis in a single frame, i.e., k+1, is obtained by maximizing the 
full joint probability up to the k + d frame (Figure 26).

Although computationally heavy and rarely used thus far, this implementation of MHT 
shows great promise due to the thoroughness of the tree-graph approach and the highly 
customizable extra features that allow for significant expansion the method. For example, it 
is possible to inform the iHMM with additional motion models or extend the tree graph 
approach to account for particle splitting and merging, which are not considered thus far.

6.5. Temporal Super-Resolution

Temporal super-resolution, which is to localize particle positions at time intervals t across 
frames collected at longer times, can also be thought of as the ultimate solution to the 
“connect-the-dots” problem. The “connect-the-dots” problem is the mirror image of the 
interpretation problem. In the interpretation problem we ask “given a particle trajectory, 
what can I learn about how the particle moves (i.e., the motion model) between 
observations?”. In the “connect-the-dots” problem, we ask “given some imperfect idea of the 
particle motion, how can we best connect localizations of the same particle in adjacent 
frames?”. The “connect-the-dots” problem can be seen as part of linking in that a motion 
model can guide us in making the correct links, i.e., correctly identifying which observations 
across frames belong to the same particle. It can also be seen as part of an iterative approach 
to both linking and the interpretation problem: if we assume a naive motion model and link 
observations to get initial trajectories, we can then interpret those trajectories to change the 
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motion model and get higher quality links and better trajectories, then interpret those and so 
on. In this context, temporal super-resolution is important because it would allow us to 
sample the particle motion at such small intervals that any uncertainty as to the motion 
model would disappear. In such a situation, linking would be trivial, interpretation much 
easier, and “connecting-the-dots” unnecessary.

The connect-the-dots problem has yet to attract the intense attention that spatial super-
resolution enjoys. While biology’s traditional focus has been on structure, counting and 
localization, a clearer picture of dynamics may help address fundamental questions such as 
the mechanism of transport between nucleus and cytoplasm327 or protein folding 
pathways.328

As we described earlier, spatial super-resolution, requiring hundreds of photons to localize 
particles with tens of nanometers resolution, comes at the cost of temporal super-resolution, 
i.e., time resolution less than μs or faster, that we refer to as the spatial-temporal trade-off 
arising from a fluuorophore’s limited photon budget.279

Whereas the spatial PSF is typically a Gaussian, a fluorophore passing through an ROI 
appears in that ROI as a box-shaped pulse in time that may last for more or sometimes less 
than a single frame329 (Figure 27). Thus, any method relying on a Gaussian noise pulse in 
time introduces error.

The photons arising from this pulse are spread out over a spatial region, i.e., are blurred, 
either because the particle is moving fast compared to the frame rate or because of errors 
caused during localization by the use of PSF functions that are not appropriate for fast 
moving particles.200 Another reason for this blurring, which contains the temporal 
superresolved image we seek, is that the camera frame rate may be slower than typical 
frequencies of motion where few photons are released per pixel in turn complicating, in a 
manner known as aliasing, the “connect-the-dots” problem (Figure 28).

Existing theoretical methods increasing temporal super-resolution are often motivated by 
machine vision or other applications.329 However, methods developed for many machine 
vision applications often implicitly assume an abundance of photons to be detected, contrary 
to shot noise expected in super-resolution, and may rely, either in whole330 or in part,329 on 
increasing the number of cameras or optimizing a camera sampling scheme.329,330

However, there are methods from machine vision more appropriate for SPT. Briefly, a 
(Bayesian) inference approach used by Borman and Stevenson331 relies on the notion that 
frames collected at high data acquisition have low spatial resolution but high temporal 
resolution while frames obtained by integrating the fast frames yield low temporal resolution 
but high spatial resolution. This algorithm exploits information at both frame rates to achieve 
both high spatial and temporal localization at once. In order to do this, it introduces a highly 
under-determined association matrix that relates position of objects (i.e., particle 
localizations in super-resolution) in high resolution frames to many possible object histories 
(i.e., particle trajectories in super-resolution) allowed by the low resolution frames. Motion 
models and observation models, an analog of an emission probability in HMMs, are 
subsequently used to reduce the indeterminacy.
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It has been shown that indeterminacy can be further reduced by exploiting two effects:332 

the fact that some parts of the image remain static and that low-resolution pixels affect only 
those high-resolution pixels with which there is spatial and temporal overlap.

At present, temporal resolution lags far behind spatial resolution. While spatial resolution is 
pushing into the nanometer scale, temporal resolution rarely goes beyond the millisecond 
scale. As a result, we cannot follow particle motion directly and instead must infer its 
parameters (velocity, diffusion coefficient, etc.) from the trajectories we construct: this is the 
purview of the interpretation problem.

7. THE INTERPRETATION PROBLEM

Stacks of in vivo optical images are the starting point for the analysis of dynamics inside 
cells.61,65,66,85,86,88,95,126,333

Previously, we discussed that particle tracking involves particle localization and linking. 
Unless stated otherwise, in this section we start from the assumption that we have performed 
both localization and linking with minimal error and that the observed trajectory originates 
from a single molecule (a realistic assumption when the fluorescent label density is 
relatively low).

The possibility that linking or localization errors may be large, as may be expected in 
crowded environments or if fluorescence efficiencies depend on the local cellular 
environment, or that linking or localization may be performed jointly while inferring motion 
models from single particle tracks goes beyond the scope of this section.

Rather, here we are focused on time series analysis or what we’ve termed the “interpretation 
problem”. That is, the inference of motion models and their parameters, such as velocities, 
forces, diffusivities, binding interaction strengths, from previously localized and linked 
single particle trajectories.

We begin this section by reviewing established or “legacy” SPT time series analysis 
approaches, section 7.1, and discuss some of their fundamental limitations. For instance, we 
spend some time discussing mean square displacement (MSD) methods, arguably the most 
commonly used technique in SPT data analysis,60,65,89,299,334 which dates back to the turn 
of the 20th century335 and provides average information on particle trajectories.

We follow this discussion on methods that do not average down the information, as MSD 
does, and explicitly account for noise, section 7.2, where a tracked particle’s “true” position, 
{r1, r2, … rT}, may differ from the “measured position”, {m1, m2, … mT}. In particular we 
will spend some time discussing the classic Kalman filter.

We will finally extend our discussion to nonparametric approaches, briefly introduced in 
section 3.4, further developed herein, section 7.3.

The motivation for moving toward nonparametric model formulations in time series analysis 
is clear: the heterogeneity of a cell’s environment often warrants more complex models. For 
example, we may want to treat abrupt changes in motion models that may arise from 
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spontaneous molecular changes or interactions with heterogeneous environments61,63,66,95 

or, alternatively, use information on these environments to inform motion models.

For instance, high spatial (10 nm) and temporal (10 μs) resolution 3D SPT measurements 
were recently combined with conventional two-photon scanning microscopy to obtain useful 
“contextual” information on the changing environment in which tagged nanoparticles 
diffused.14,15 This new imaging approach showed that the motion of a 3D trajectory of a 
fluorescently tagged nanoparticle, mimicking a virus, was heavily influenced by larger 3D 
surface structures that were not otherwise captured by standard SPT motion models (Figure 
29).

7.1. Legacy Time Series Analysis Methods

Mean square displacement (MSD)22,60,65,89,299,334∓336 ideas are often used to determine 
whether a particle is “immobile” or which type of diffusion, such as “normal” or “standard”, 
“confined”, “directed”, or “anomalous”, is most probable.60 If the particle diffuses normally, 
that is, the motion is Brownian and characterized by a single diffusion coefficient, then the 
MSD of the molecule’s position (rt) at absolute time t, ⟨r(τ)2⟩, defined as

(79)

is proportional to τ, as the number of observations, N, tend to infinity, where τ represents a 
relative “time lag” between data points, N represents the number of observations in the 

trajectory, and  denotes the Euclidean (or L2) distance squared. For other types of 
diffusive behaviors, beyond normal diffusion, eq 79 is no longer simply proportional to τ for 
large N. Rather, Table 1 lists MSD curves, represented graphically in Figure 30, expected for 
different diffusive behaviors (using notation from Park et al.60). The other diffusive 
behaviors can be derived from specific motion models57,299,337 such as stochastic 
differential equation (SDE) models discussed in section 7.2.1.

Despite their widespread use, we now discuss several documented issues associated with 
using MSD curves to analyze finite length trajectories.22,66,86,90,93,334

7.1.1. Issues Facing Legacy Methods—Many of the problems faced by MSD that we 
now discuss are also faced by other traditional SPT analysis methods such as power 
spectral56,90,338 and velocity autocorrelation58,338 methods.

7.1.1.1. Issue 1: The Stationarity Assumption: The assumption of stationarity110—the 
dependence of trajectory statistics on relative time differences and not absolute time—is one 
systematic shortcoming facing all three methods mentioned above.

This assumption breaks down in many SPT applications for a variety of reasons; for 
example, if a system is initialized far from equilibrium and eventually reaches steady state 
during the course of data acquisition.
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Stationarity can also be violated if parameters governing the motion of the tagged particle 
change abruptly. This is especially problematic in vivo since microenvironments sampled by 
the tagged particle may change in both time and space and, even within a single trajectory, 
the dynamics of a tagged particle can abruptly change61,65,66,339,340 or drift slowly over 
time.86 As a concrete example, the diffusion of some receptor proteins may be suddenly 
perturbed by the appearance of a clathrin-coated pit that traps the protein.341

As another example, the stationarity assumption may also be violated when the background 
fluorescence varies across microenvironments sampled by the tagged particle, hence altering 
the effective measurement noise66,86,93 or when multiple trajectories−each with differing 
fluorescence intensities−are averaged into a single MSD thereby introducing “heterogeneous 
measurement noise”.

7.1.1.2. Issue 2: Spatial and Temporal Coarse Graining: Even if stationarity holds, the 
MSD of eq 79 coarse-grains spatial locations and averages down time. Yet time averaging 
can be avoided by using likelihood methods that both respect the data’s natural time 
ordering (see eq 6) and can be used to infer quantities such as the directionality of velocities 
and forces acting on tagged particles.22,86∓88 This type of coarse graining is also a problem 
facing power spectral methods56,90,338 and velocity autocorrelation techniques.58,338

7.1.1.3. Issue 3: Temporal Correlations Introduced by Averaging: As previously 
described, MSD curves are obtained by time averaging. Since the same data are used to 
produce correlations at two different times, say ⟨r(τ)2⟩ and ⟨r(τ′)2⟩, the process of time 
averaging produces highly correlated quantities.22,334 This high statistical correlation is 
particularly unattractive if the amount of data is low since correlations within data reduce the 
effective sample size. To mitigate these problems, ad hoc measures, such as restricting τ 
values to less than some predetermined fraction of N,12,85 are invoked in an effort to reduce 
correlations though such methods typically ignore the fact that true temporal correlations 
(such as in the case of correlated measurement noise) may exist.22,93 Indeed, MSDs for 
normal diffusion with correlated measurement noise may be confounded with MSDs arising 
from anomalous diffusion.22

7.2. Beyond Traditional SPT Analyses

In the previous section we discussed key challenges facing traditional SPT trajectory 
analysis tools and never explicitly dealt with noise as it is averaged away when computing 
mean quantities.

Here, we provide a brief overview of recent promising SPT trajectory analyses that 
overcome many of the issues highlighted in section 7.1.1 and motivate data-driven models 
that explicitly account for effects such as temporal and spatial heterogeneity characteristic of 
live cell measurements.

Many methods we discuss, including stochastic differential equation (SDE) models and 
hidden Markov model (HMM) inspired methods, were first introduced to disciplines such as 
statistics, control theory, and mathematical finance and have begun to make their way into 
super-resolution data analysis. Sections 7.2.1−7.2.4, presented with a high-level didactic 
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flavor with SPT applications discussed as appropriate, build the background needed to 
understand the more complex “regime switching” time series models later surveyed, section 
7.3.

7.2.1. Stochastic differential equation models—The MSD expressions shown in 
Table 1, with the exception of anomalous diffusion, can be derived from the following 
parametric stochastic differential equation (SDE) describing particle position, rt, at time t

(80)

where D denotes the diffusion coefficient, Bt denotes standard Brownian motion (i.e., the 
white noise), and (v − κ rt) denotes the instantaneous particle velocity where κ allows for 
linear variation in the velocity field and can be thought of as proportional to the spring 
constant of a harmonic potential. This SDE assumes overdamped dynamics, i.e., a stochastic 
dynamical model neglecting inertial effects.

The particle dynamics are summarized by the parameter vector θ ≡ (v, κ, D) where κ and D 

are square matrices of the same dimension as the position vector. Values for the parameter 
values reproducing the limits of Table 1 are shown in Table 2.

The SDE of eq 80 is the starting point for many likelihood formulations that respect natural 
time ordering. For simplicity of demonstration only, we ignore measurement noise effects 
and use the Markovian SDE to write the likelihood p(D|θ) of measurements D = {r1, r2, …, 
rN} as follows

(81)

where p(ri+1|ri, θ) is the transition density.

Importantly, this transition density is obtained by solving the Fokker−Planck117 equation 
associated with the SDE of eq 80 which, for the linear SDE provided, may be computed 
exactly.25,86,118

Eq 81, and its construction from SDEs, motivates our later discussions on diffusion as well 
as the Kalman filters, Sec. (7.2.4), where we discuss how to extend eq 81 to include not only 
measurement noise, as we did with HMMs (section 3.3.3), but also “process” noise, such as 
error in localization.

7.2.2. Hidden Markov-Type Models in SPT—In section 7.1.1 we described the 
challenge of traditional ensemble methods, such as MSD, in dealing with tagged particles 
that may undergo abrupt changes in dynamics. While the parametric SDE described in eq 80 
only contained a single diffusion coefficient, and thus describes the dynamics of a particle in 
a single “diffusive state”, a recent promising Bayesian method named “vbSPT” (variational 
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Bayes single particle tracking) generalizes the treatment above to an arbitrary number of 
diffusive states. More concretely, from SPT trajectories, vbSPT (i) determines the number of 
diffusive state and assigns each data point to a state (called “segmentation”); (ii) 
parametrizes the diffusion coefficient for each state;61 and (iii) quantifies the transition 
probabilities between states. vbSPT does so by first performing an initial HMM analysis on 
a preset list of candidate diffusive states and subsequently comparing their “maximum 
evidence”, defined by Persson et al.,61 as a model selection criterion.

While measurement noise effects ignored in vbSPT may lead to spurious state 
assignments,62 vbSPT is still helpful in analyzing data where trajectories are expected to 
come from “purely diffusive” shorter trajectory segments (Figure 31).

As we discuss shortly, recent advances in nonparametric Bayesian methods67,68,108,179∓181 

can help avoid prespecifying the number of candidate states, by simultaneously inferring the 
number of states and parametrizing the model, and help broaden the types of models 
considered beyond diffusion. Before these topics are addressed, we highlight recent 
techniques for dealing with measurement noise in experimental SPT data.

7.2.3. Simple Example of Measurement Noise in SPT—We motivate our discussion 
on the Kalman filter in the next section by discussing a simpler model incorporating both 
“static” measurement noise (the localization noise due photon statistics) and “dynamic” 
measurement noise (position estimation errors due to finite camera exposure 
time).22,56,58,342

To illustrate the effect of both noise sources, we begin with a simplified form of the SDE 
model, eq 80, presented earlier22

(82)

(83)

where  denotes the position measurement taken at frame i under the assumption of 

discrete time measurements, tE is the camera’s exposure time, and  is the “static” 
measurement error with each draw of this noise being an iid mean zero Gaussian with 
variance σloc

2. The integral is needed since molecules continuously move and emit photons 
as the camera’s shutter remains open. Also, while the above assume constant uniform 
illumination, the expressions are straightforwardly adapted22 to treat different types of 
illumination used in microscopy including stroboscopic97 and time lapse (where the 
illumination laser is not continuous, in order to reduce photobleaching at the expense of 
temporal resolution).95

Our goal is to use a likelihood in order to infer all model parameters. In the absence of 
blinking317 or photoactivation,343 one way to move forward is to define
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(84)

While from eq 82, ∆i has zero mean, the covariances shown below are nonzero22

(85)

where Δt = ti+1 − ti and the motion blur coefficient, ρ, is 1/6 for the case of continuous 
illumination though it can be adjusted for other “shutter functions”.22

The result of eq 85 implies that we can now use a Gaussian likelihood, p(D|θ), for D 
independent differenced measure- ments ∆i, with a value of ρ inserted into the covariance as 
an input rather than the measurements themselves in order to infer θ =(D, σloc

2).89,102

7.2.4. Kalman Filtering in Time Series Modeling and Tracking—In the previous 
subsection, we discussed approaches for analyzing simple parametric diffusion models 
accounting for the statistical effects of measurement noise (including both static localization 
and dynamic motion blur errors) through exact likelihood based frameworks.22,89

As discussed in section 3, models with exact likelihoods simplify parameter estimation, 
goodness-of-fit hypothesis testing and confidence interval estimation. However, phenomena 
encountered in live cell SPT studies, such as molecular confinement57,60,299,344 or spatially 
varying forces,86∓88 motivate new models that go beyond eq 82.

The Kalman filter (KF)110,345 directly addresses more complex problems even providing an 
alternative strategy to evaluating exact likelihoods for several parametric models relevant to 
SPT.25,86,346

7.2.4.1. Parametric Models Amenable to Kalman Filtering: The standard KF can process 
the following parametric discrete time model110

(86)

(87)

In the above, the “state vector” at time t, rt, is of size r. It can be any quantity characterizing 
the system dynamics, such as position, velocity or angular orientation, though we will focus 
on position for concreteness.
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The “measurement vector”, of size m, is represented by mt while xt, a vector of size k, is a 
vector assumed to be known precisely (i.e., without measurement error). F, A, and H are 
matrices of dimensions r× r, m× k, and m× r, respectively.

The vector ηt of size r is often referred to as “process noise” in control theory and signal 
processing.345 It is a zero mean random variable usually attributed to unresolved “thermal 
fluctuations” or any other source that directly affects the dynamics of rt.

By contrast, the vector εt of size m is the “measurement noise” that does not affect the 
dynamics of rt. Rather, εt prevents us from directly observing the precise instantaneous 
value of rt.

While it is possible to treat more general cases of correlated ηt and εt,345 here we assume 
that process and measurement noise vectors satisfy

(88)

(89)

The KF algorithm can then be used for any parametric model, M, that can be expressed 
using the {F, H, Q, R, A} form where, to avoid introducing technical complications 
associated with unidentifiable parameter, H is often assumed known in many SPT and single 
molecule applications.86,103,104,347

7.2.4.2. Simple Example of the {F, H, Q, R, A} Form: We provide an example 
demonstrating how we may translate a generic state-space model into the {F, H, Q, R, A} 
form required by the KF algorithm. We show this for an order p autoregressive (linear state 
space) model, denoted by AR(p) which can be used in SPT when trajectories exhibit 
complex temporal “memory”.346

Once p is selected, a task which, in itself, may be cast as a model selection problem, the 
AR(p) is defined by the following relations

(90)

(91)
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The parameter vector here is simply (μ, σ2, ϕ1, ϕ2, … ϕp) though the model can be 
augmented to account for correlated noise as well (“autoregressive moving average model”) 
which we ignore here.

For p = 2, say, the AR(2) model can be expressed using the {F, H, Q, R, A} matrices 
required of the KF algorithm110

While we have only dealt with discrete time models, the procedure may also be adapted to 
treat continuous time SDEs of the form provided in eq 80.86,110

7.2.4.3. The KF Algorithm in a Nutshell: Here we briefly review the basics of the KF 
algorithm in order to discuss its broader relevance to tracking in super-resolution.

Briefly, the KF yields a “state estimate”, i.e., the true position of the particle at time t, rt, 
given all measurements up to time t, (m1, …, mt−1, mt), as well as all previous state 
estimates. As we now discuss, based on the description of the KF provided by Bishop et 
al.,348 the KF returns the state estimate of minimal variance (Figure 32). We should note that 
in this pedagogical description we take, without loss of generality, xt in eq 87 to be zero at 
all times.

In order to accomplish its task, the KF begins from the state estimate  superscripted with a 
minus sign to indicate that this state estimate is informed by all measurements before time t; 
this is called the “KF prediction”.

We can also define a deviation of this estimate from its true (unknown) value

(92)

with coinciding covariance

(93)

Thus, given initial conditions for  and , we can use eqs 86 and 87 to compute both 

and .

In its simplest realization, the goal of the KF is to find the estimate the unknown rt, , from 

a combination of  and a correction, called an “innovation”, as follows
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(94)

where the innovation, , is preceded by a matrix, K. This matrix, known as the 
“gain”, is derived from information encoded in the model parameters and will be determined 
shortly. A simple justification for eq 94 is described elsewhere in ref 349.

The matrix K is selected in order to guarantee the smallest possible covariance

(95)

where now  where  is defined in eq 94. By taking the expectation of , we 
then minimize the resulting Pt to obtain Kt expressed in terms of the {F, H, Q, R, A} and 

.

From this Kt, we now obtain a  and minimal value for Pt. If t is the last time step, we are 
done and we have now obtained the full estimate for the sequence of states, . Otherwise, 

we use rt^ to estimate  and Pt to estimate  and continue onto the next time step.

7.2.4.4. Some Extensions of the KF: If the random vectors (i.e., ηt, εt, and ri) of the 
dynamical model may be treated as multivariate Gaussian random variables, then we may 
compute an exact likelihood of the observable measurement time series conditioned on the 
model and parameter vector. This likelihood is denoted by p(m1, m2, …, mT |M, θ);110 

although ri does not explicitly appear in the likelihood, both the measurement noise and the 
dynamics of the latent state variable ri are encoded by M and θ. That is, the latent state 
dynamics induce temporal correlation structure in measurement time series. Despite the 
temporal correlation in the data, given a noisily measured times series {m1, m2, …, mT}, 
one can obtain the exact MLE (i.e., no approximations of the likelihood required) of a state 
space model of the form given in eqs 86 and 87) simply by maximizing the log likelihood 
expression

(96)

Each candidate value of θ (for a fixed measurement sequence and M) can be used to 
evaluate a “cost function”. This cost function can be efficiently evaluated for multiple θ 
values with the aid of the KF algorithm110 and aims at approximating the statistical 
properties of the entire measurement time series. The value of θ maximizing the expression 
above, which can be obtained by a variety of nonlinear optimization routines such as 
Newton’s method or a Nelder−Mead search, is the exact MLE in multivariate Gaussian 
models which can be written in the form of eqs 86 and 87.110
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This “off-line” learning application of the KF is commonly used in econometrics110 but is 
less frequently used in mechanical engineering and tracking. In the latter domains, one often 

assumes  (or a proxy) is known or given and simply uses the KF in “on-line learning” 
applications to recursively make estimates of ri as measurements are collected over time.345

7.3. Bayesian Nonparametric SPT Analysis

Powerful nonparametric Bayesian methods, briefly introduced in section 3.4, have been used 
in time series analysis67∓69 and show promise in live cell SPT trajectory analysis when 
model features, such as the number of diffusion coefficients sampled by a moving particle 
during the course of its trajectory, are a priori unknown.

These tools are especially helpful in capturing behaviors with spatially varying forces, 
autoregressive temporal correlation and measurement noise.68 In this subsection, we provide 
back- ground to understand the so-called hierarchical Dirichlet process switching linear 
dynamical system (HDP-SLDS)68 since this technique shows promise in the analysis of 
optical microscopy trajectories.

HDP-SLDS is useful as the number of “modes” (or Markovian states), the time points at 
which the system hops from one state to the next (the change points), and the parameters 
needed to parametrize the model are learned in a data-driven fashion.67,68 As we have 
previously mentioned, this holistic model inference strategy, devoid of the postprocessing 
model selection step, is preferred and especially useful to the study of dynamics in living 
systems.

The relatively recent HDP-SLDS and other nonparametric Bayesian methods extending 
finite state HMMs have already found their way into single molecule and SPT data analysis 
applications.62,64,66

In this subsection, we briefly review the difference between switching linear dynamical 
systems (SLDS) and HMMs (section 7.3.1) and introduce the concept of the hierarchical 
Dirichlet processes (HDPs),67 section 7.3.2. HDP-SLDS approaches are discussed in section 
7.3.3 with details relegated to ref 186.

7.3.1. Moving beyond Standard HMMs—Before we discuss nonparametric realizations 
of the SLDS or HMM, we briefly review these key models.

In short, in standard HMMs (detailed in section 3.3.3), dynamics are encoded by the latent 
variables or states (si) which are unobservable (Figure 33). However, once the latent states 
are estimated or given, the temporal order of the measurements is irrelevant to estimating the 
state’s “emission probability distribution”. That is, those parameters that set the probability 
distribution of the measurement mi given the state si at each time point, p(mi|si). To each 
state si is associated a unique parameter vector θi inferred from the data.

Switching linear dynamical system (SLDS) extend the standard HMM.68 In this review, we 
focus on Markovian SLDSs related to the interacting multiple model used in linking 
problems320 discussed earlier.
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In the SLDS, the positions, ri, are thought of as latent states and they themselves are 
controlled by an additional layer of latent variables (the “control” states), si. Both layers are 
required to explain the measurement (Figure 33). The SLDS associates to each si a 
parameter vector θ = (v, κ, D, R).

If κi and R are zero for all states, differencing time adjacent measurements (as we did in 
section 7.2.3) from a common state would yield an iid sequence for which a classic HMM 
framework could be invoked to construct a likelihood and infer parameters. This approach 
was used by Persson et al.61

However, if either κi or R contain nonzero entries, as would be expected in live cell SPT 
where R is always nonzero and the parameter κi characterizes molecular interaction and/or 
confinement forces,25,57,344 complex temporal correlations cannot be eliminated by 
differencing measurements. Despite this complication, ideas underlying the KF can 
nonetheless be successfully leveraged to compute marginal likelihoods, such as p(D|θ), and 
used in SPT trajectory analysis.62,66

For both SLDSs and HMMs discussed here we have worked under the assumption that the 
number of states is specified. Yet, as we’ve also argued it is rarely clear for studies of 
dynamics inside cells how many states we should start with. For this reason, we now turn to 
nonparametric Bayesian techniques for generalizing finite state HMMs and SLDs to include 
an “infinite number of states” and let the data, confined by the model prior, introduce new 
states if warranted.

7.3.2. Infinite State Space Time Series Models via Hierarchical Dirichlet 

Processes—As we’ve discussed, a technical limitation facing classic HMMs is their 
reliance on a predefined number of states. To overcome this challenge, we introduce the 
infinite hidden Markov model (iHMM).350

Prior to doing this, we reproduce for convenience the HMM model below

(97)

Since the HMM is a frequentist model, it has no prior on the transition probabilities. 
Suppose we did want to introduce a prior on these transition probabilities at every time 
point. One possible prior would be a multinomial to determine to which state the transition 
probability brings us. To then select a prior on the weight of each transition probability, a 
convenient choice would the conjugate to the multinomial, namely the Dirichlet distribution 
(section 3.4).

So far, none of our discussion is nonparametric as we have specified how many states, and 
thus how many transition probabilities we have. To generalize our discussion we need the 
infinite-dimensional generalization of the Dirichlet distribution, namely the Dirichlet process 
(DP).
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Here, the DP prior is used to construct an HMM transition matrix, p(st|st−1),67,68,351 starting 
from st−1 and transitioning to any of an infinite number of states.

As discussed in section 3.4, the DP depends on two prespecified hyperparameters. The base 
distribution, H, and the concentration parameter, α, which, roughly speaking, fixes how 
closely a draw from the DP approximates H.

If H is a continuous distribution, as is often the case for nonparametric mixture models, the 
HMM or SLDS encounter a serious technical challenge as any algorithm that samples state 
transitions from a DP prior does not “share states”,67 i.e., it will never resample the same 
transition probability.

On the other hand if H is discrete and finite, then we are back our parametric case. Instead 
what we need is an H which is discrete and infinite.

To do this, we introduce the hierarchical DP (HDP),67 defined as follows

where γ is a hyperparameter that plays the role of a concentration parameter on the prior of 
the base distribution of the DP and G is a distribution over transition probabilities. Since H is 
now guaranteed to be a discrete distribution, it solves the “state sharing” problem discussed 
above while at the same time reaping the benefits of a continuous base measure H indexing 
the states.67

While MCMC sampling may be used to infer iHMM parameters,158 recent methods66,352 

have improved computa- tional efficiency by, for example, limiting the number of states 
sampled at each time point.352 Although this makes implementation easier, iHMMs have 
just barely begun to be explored in biophysics, more specifically smFRET and 
photobleaching.189

Similarly to HMMs, SLDSs can also be generalized to the nonparametric case. The infinite 
state space SLDS models, HDP-SLDS68,186 have recently been used to improve “state 
switching” detection by explicitly accounting for measurement noise and confinement forces 
in simulated SPT trajectories62 and uncover nonlinear dynamics in chromatids of live yeast 
cells.66

We refer the interested reader to refs 68 and 186 for the technical details of the HDP-SLDS 
and other infinite state dynamical models. While the mathematics are demanding, the 
problems solved by nonparametric methods help motivate the effort to become better 
acquainted with them. To this end, below we provide a simple simulated example of the 
power of nonparametric methods.

7.3.3. Motivating Example for Using Nonparametric Bayesian Methods—We 
consider a particle evolving in a time dependent harmonic potential, motivated by recent 
work where harmonic wells appear and disappear at different spatial locations mimicking 
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the diffusion of biomolecules recently observed in neurons,87,353 where standard analysis 
tools assuming stationary potentials or a fixed number of states fail.

We first simulate a process having three kinetic states visited by a particle. Our goal will be 
to determine the number of states, all parameters associated with them and the times at 
which state changes occur from the simulated data.

All states are governed by a Ornstein−Uhlenbeck model, where particles diffuse within a 
harmonic potential, of the type shown in eq 80. The states are distinguished by unique 
parameter sets θ where each state i has a vi which changes the location of the potential 
well’s minimum and particle diffusion coefficient, Di.

Our three state model is

(98)

In other words, state ζ has the same θ vector as state α, but with Dζ replacing Dα. In the 
transition from state ζ to state γ, v also changes. Throughout this simple example we use 
dimensionless quantities.

The top left panel of Figure 34 illustrates one such simulated 2D trajectory. The vertical red 
line indicates the location where the transition in v, and thus the hop from one potential 
surface to another (with the drift term in the SDE is given by −∇U), occurs.

The true state labels are shown below the trajectories in the top left panel and the two 
harmonic wells governing state γ and ζ are shown in the right panels of Figure 34.

The bottom left panel shows the MSD curve computed using the observed 2D trajectory that 
would likely be classified “anomalous” using the guidelines of classic SPT analysis (Figure 
30) rather than a stochastic switching between three different confined diffusion models. 
While the agreement between the estimated and true states is excellent, much of the success 
hinges on careful prior selections.62,66 The same is true of all Bayesian methods where 
priors properly informed by the physics of the problem provide a systematic way to improve 
inference.96

While the example above may appear contrived, it may apply for instance to the diffusion of 
cargo transiently trapped in clathrin-coated pits.341 In this scenario, after a cargo molecule is 
trapped, it experiences “confined diffusion” until the pit vanishes or endocytosis occurs. If a 
pit vanishes, a new pit (a new potential minimum) may recruit the cargo. Since the HDP-
SLDS model is not limited to a finite number of states, the approach can handle pits of 
different sizes, free-diffusion (unbound) states, as well as more realistic scenarios.

This flexibility fundamentally speaks to the power of the HDP-SLDS modeling approach68 

as alternatives to anomalous diffusion in describing complex kinetics observed in vivo.
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8. CONCLUDING REMARKS

Ten years after the publication of the seminal papers on super-resolution,3∓5 single molecule 
super-resolution microscopy has become a standard lab technique now widely available 
across major imaging facilities. It has been used to study a number of biological targets just 
below the resolution of diffraction-limited microscopy, such as microtubules,319 

mitochondria,354 and the nucleopore complex.355,356 Theoretical developments in 
interpreting super-resolution experiments, and single molecule experiments more broadly, 
have ushered data-driven methods into the physics and chemistry mainstream.59 While 
studies in live cells are motivating more general theoretical approaches borrowing heavily 
from statistical advances179 now feasible due to computing power, quantitative analysis 
efforts have also helped identify clear challenges standing in the way of greater modeling 
accuracy. Novel experimental methods have begun addressing some of these challenges such 
as phototoxicity6 and image distortions in thick heterogeneous samples357 though other key 
challenges such as labeling density358 and environment-dependent photophysical 
properties359 remain.

As this is a review of analysis methods, we highlight three broad directions that have been 
the focus of recent theoretical efforts. The first is on joint methods that simultaneously, and 
thus self-consistently, solve many problems at once such as problems in interpretation and 
counting21 or localization and linking.320 Such efforts reduce the number of user-dependent 
postprocessing steps albeit at a heavier computational cost. The second introduces problem-
specific models,360 priors (whether theoretically96 or experimentally319 motivated), and 
algorithms287,291 suited to the particularities of the physical (or photophysical) challenge to 
reduce the computational burden and improve the prediction accuracy. The third is focused 
on generalizing models to accommodate the data’s complexity.67,68

The picture of life emerging from breakthrough experimental techniques and analysis 
methods is one far richer in structural features, dynamics, and stochasticity than we could 
have conceived of even a decade ago. We envision a future in imaging where a combination 
of experiments and principled analysis provide a compelling narrative into the chaotic 
journey of life from the level of single molecules upward.
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Figure 1. 

Recent optical microscopy methods like lattice light sheet resolve structures within cells.6 In 
addition to imaging an entire structure, single particle tracking is also possible with this 
technology providing simultaneous information on both the “environment” and “dynamics” 
of tagged biomolecules. Reproduced with permission from ref 6. Copyright 2014, American 
Association for the Advancement of Science.
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Figure 2. 

Point emitter generates an Airy spot (a) with an intensity profile (b) given by eq 1. The 
wavenumber k, used in (b), is 2π/λ. The intensity profile and diffraction spots were plotted 
using a simple Python script.
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Figure 3. 

Microscope seen as a telescope. (a) A microscope’s resolution is determined by the 
numerical aperture NA of its objective, which is defined as the product of the index of 
refraction of the medium between the objective and the sample, n, and the sine of the half 
angular aperture, θ. (b) A telescope’s angular resolution is determined by its (physical) 
aperture, D. The intensity profile and diffraction spots were plotted using a simple Python 
script.
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Figure 4. 

Fully resolved (a), barely resolved (b), and nonresolved (c) Airy diffraction spots. The 
intensity profile and diffraction spots were plotted using a simple Python script.
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Figure 5. 

Projections of an example 3D PSF on (a) the x−y plane and (b) the y−z plane.39 Reproduced 
with permission from ref 39. Copyright 2011, Nature Publishing Group.
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Figure 6. 

Two-color PALM can be used to address fundamental questions on molecular organization. 
(a) Adhesion proteins paxilin (green) and zyxin (red) are shown by two-color PALM to 
adopt different spatial distributions even though they appear colocalized in (b) diffraction 
limited microscopy. (c) A differential interference contrast image of the image shown in 
(b).51 Reproduced with permission from Hari Shroff, Catherine G. Galbraith, James A. 
Galbraith, Helen White, Jennifer Gillette, Scott Olenych, Michael W. Davidson, and Eric 
Betzig. “Dual-color superresolution imaging of genetically expressed probes within 
individual adhesion complexes.” Proceedings of the National Academy of Sciences 104, no. 
51 (Dec 18, 2007): 20308−20313. Copyright (2007), National Academy of Sciences, U. S. 
A.
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Figure 7. 

Measurement error affects particle localization. (a) 2D histograms contain photon numbers 
detected (by a CCD camera, say) along the x and y coordinates with the true molecular 
position (r) indicated by the point at which the solid vertical red line intersects with the x,y-
plane. (b) In order to localize a static point emitter, the histogram may be fit to a PSF (e.g., a 
Gaussian or an Airy function) illustrated by a color surface contour. The estimate of the 
emitter’s position, µ, shown by a solid vertical blue line, is approximated from the PSF. The 
difference between µ and r is the localization error ε. Factors such as photon count, 
exposure time, pixel size and background autofluorescence all contribute to ε.
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Figure 8. 

Motion and optics affect measurement noise. The simulated images illustrate how thermal 
motion, inherent to nanoscale measurements, affect the intensity profile of three molecules 
with different (given) diffusion coefficients D (describing the diffusion of cytoplasmic, 
membrane- attached and fixed/immobile molecules) shown in the columns of panel (a). (a) 
The estimated point spread function (PSF) measured for different molecules under alternate 
illumination strategies (shown in the rows). The color bar displays the number of photons 
collected. (b) The illumination strategies are stroboscopic (top), continuous illumination 
with short camera exposure time (middle), continuous illumination with long camera 
exposure time (bottom). The two-state signals shown denote the state of the shutter (open/
closed) and laser (on/off). The localization precision (accuracy and uncertainty) is affected 
by how accurately the PSF can be inferred from digital images produced by tagged 
molecules. The plots from panel (a) demonstrate how some molecular and sampling 
parameters affect measurement noise statistics when the PSF is used to infer the molecular 
position. “Smearing” of the PSF, induced by motion blur when a simulated molecule spans 
an area covered by different pixels in a single frame, introduces a new source of position 
uncertainty (in addition to the localization noise described in Figure 7). Reproduced with 
permission from ref 97. Copyright 2013, Nature Publishing Group.
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Figure 9. 

Posterior often becomes sharper as more data is used. Here data are sampled from a Poisson 
distribution with λ = 5 (designated by the dotted line) with D = {2, 8, 5, 3, 5, 2, 5, 10, 6, 4}. 
The prior (eq 12 with α = 2, β = 1/7) is plotted along with the resulting posterior informed 
by N = 1, N = 5, and N = 10 data points.
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Figure 10. 

AIC and BIC are often both applied to step-finding. (a) We generated 1000 data points with 
a background noise level of standard deviation σb = 20. On top of the background, we 
arbitrarily added 6 dwells (5 points where the mean of the process suddenly changes) with 
noise around the signal having a standard deviation of σs = 5 (see inset). At this high noise 
level, and for this particular application, the BIC outperforms the AIC and the minimum of 
the BIC is at the theoretical value of 5 (dotted line). This is because the AIC overinterprets 
noise. All noise is Gaussian and uncorrelated. (b) Here we show another synthetic time trace 
with hidden steps, generated in the same manner as the data set in (a). The AIC (green) finds 
a model that overfits the true model (black), while the BIC (red) does not. However, as we 
increase the number of steps (while keeping the total number of data points fixed), the AIC 
does eventually outperform the BIC. This is to be expected. The AIC assumes the model 
could be unbounded in complexity and therefore does not penalize additional steps (model 
parameters) as much. The BIC, by contrast, assumes that there exists a true model of finite 
complexity. The data set for this simulation was generated via a Python implementation of 
the Gillespie algorithm, while both the BIC and AIC were implemented via elementary 
Python scripts.
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Figure 11. 

Pixel dependent noise, if known, can be used to refine localization analysis. The left panel 
displays a simulated “variance map”, where the colorbar indicates the encoding of the noise 
level, similar to one that could be measured on an sCMOS camera. The color indicates that a 
single (red) pixel has higher variance, σ, than its neighbors. A MLE for the emitters’ 
location, shown in the middle panel, that ignores the pixel dependent variance, does not 
correctly identify the emitter locations that we placed on two parallel lines in this 
simulation; instead, an artifactual excess of events is detected at the “hot” pixel. On the right 
panel, we see that the MLE tailored for sCMOS cameras (“MLE-sCMOS”), which does take 
the variance map into account, avoids this artifact.198 Reproduced with permission from ref 
198. Copyright 2013, Nature Publishing Group.
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Figure 12. 

Probability density of EMCCD camera readout counts can be highly non-Gaussian. Here we 
numerically evaluated eq 43 via a simple Python script for different mean photon numbers, 
λ (0.32, 1.75, 7.0) and multiplication levels m (9.8, 28). The dark count c0 and readout noise 
standard deviation, σ, were set to 1000 and 10, respectively.
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Figure 13. 

Image of a point source by a microscope can be approximated as a Gaussian of standard 
deviation s. Collecting this image on a camera further pixelates it with pixel size a. The 
noisy intensity profile was generated using a simple Python script.
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Figure 14. 

Step-finding algorithms are widely applied across biophysics. (a) In this synthetic time trace 
containing 15 steps, the fluorescent signal-to- noise ratio decreases with time by an 
approximate factor of 3. Methods assuming constant noise statistics tend to overfit the start 
of the trace where the noise level is high (yellow line). A step-finding algorithm that does 
take into account variable noise performs significantly better (red line which overlaps with 
the theoretical noiseless trace used to generate this synthetic data).96 (b) An example of a 
real data trace (red line) showing an RNA hairpin zipping and unzipping (data was obtained 
through force spectroscopy).268 The offset green line are the steps found using a step-finding 
algorithm assuming constant noise.269 The time trace in (a) was created via a simple 
Gillespie algorithm with variable noise ratio. The code implementation of the method in ref 
96 can be found online at https://github.com/lavrys/Photobleach. The code for the algorithm 
that does not take into account variable noise can be found at https://github.com/knyquist/
KV_SIC. Adapted with permission from “Single Molecule Conformational Memory 
Extraction: P5ab RNA Hairpin.” (J. Phys. Chem. B 2014, 118, 6597−6603).268 Copyright 
2014, American Chemical Society.
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Figure 15. 

Successful Bayesian step-finding algorithms used in photobleaching use priors informed by 
the fluorophore photophysics. Here we present a noisy synthetic photobleaching time trace 
(blue) and the underlying true noiseless signal (black) for a set of 10 fluorophores that 
eventually all photobleach. Too many steps are found from an algorithm that assumes a 
constant noise profile (red) grossly overfitting the start of the trace where the noise level is at 
its highest. Results (yellow) of the Bayesian algorithm proposed by Tsekouras et al.,96 

which is tailored to photobleaching and assumes that noise grows along with the number of 
active fluorophores, are much more accurate. Inset: a blow-up of the first 1000 data points in 
this time trace where noise is highest and constant-noise algorithms overfit. The data set was 
created with a simple Gillespie algorithm using a variable signal-to-noise ratio. The code 
implementation of the method in ref 96 can be found online at https://github.com/lavrys/
Photobleach. The code for the algorithm that does not take into account variable noise can 
be found at https://github.com/knyquist/KV_SIC.
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Figure 16. 

It is impossible to regroup blinking events belonging to a single fluorophore using thresholds 
when signals from different fluorophores overlap or superpose. For illustrative purposes 
only, we depict the signal from one hypothetical PA-FP in orange and another in blue. 
Although methods based on grouping events using a blinking correction time cannot identify 
which event belongs to which fluorophore in such cases, this does not preclude them from 
yielding an accurate count.
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Figure 17. 

Fluorophores may exist in many states but all single fluorophore states fall under two 
aggregated states: bright and dark. Here there are three states—inactive (I), photobleached 
(B), and dark (D)—making up the dark aggregate and only one state, active (A), making up 
the bright aggregate. For this example, with a single dark state there are four rates that fully 
characterize the photophysics, {ka, kd, kr, kb}. Reproduced with permission from Geoffrey 
C. Rollins, Jae Yen Shin, Carlos Bustamante, and Steve Pressé. “Stochastic approach to the 
molecular counting problem in superresolution microscopy.” Proceedings of the National 
Academy of Sciences 112, no. 2 (Dec 22, 2014): E110-E118.
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Figure 18. 

Results of the method described by Rollins et al.21 employed on synthetic data sets. (a) 
Synthetic time traces were generated using Gillespie algorithm with photophysical rates kb = 
1.0, kd = 10.0, kr = 0.1, ka = 0.5 (see Figure 17) for each of 5 fluorophores. In maximizing 
the likelihood, photophysical rates as well as the fluorophore numbers may be 
simultaneously inferred. The results of this inference (shown as histograms) closely match 
the theoretical expected answer (dotted line) despite the fact that overlapping events were 
very probable for this choice of photophysical parameters. (b) Same as in (a), except that the 
effect of missed events has been taken into consideration, resulting in a substantial 
improvement in accuracy. Assumptions made in creating these data sets are discussed in the 
original publication, ref 21. Adapted with permission from Geoffrey C. Rollins, Jae Yen 
Shin, Carlos Bustamante, and Steve Pressé. “Stochastic approach to the molecular counting 
problem in superresolution microscopy.” Proceedings of the National Academy of Sciences 
112, no. 2 (Dec 22, 2014): E110–E118.
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Figure 19. 

Events of duration shorter than the data acquisition interval can be missed when collecting 
data, introducing error into the analysis. If a fluorophore blinks faster than the data 
acquisition rate, the resulting brief dip or rise in fluorescence intensity (denoted with arrows 
above) will be missed when collecting data. Such missed transitions can be accounted for in 
inferring photophysical parameters and fluorophore counts.21
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Figure 20. 

Algorithms that take into consideration multiple frames are more computationally 
demanding but achieve better results than those taking only successive frames into account. 
(a) The dynamics of cell-surface receptors were followed and rare merging (blue diamond) 
and splitting (red diamond) events were monitored. Global rather than local linking methods 
are needed here to quantify such events which−despite their rarity−are critical in 
understanding signal transduction.283 (b and c) Comparison between (b) an algorithm that 
takes into account information across space and time and (c) an algorithm that only 
considers two frames at a time. The latter algorithm yields many shorter, broken trajectories 
by failing to link segments (different colors). Dotted lines represent virtual detections, i.e., 
locations traced by a particle temporarily disappeared. See Danuser283 for details. 
Reproduced with permission from ref 283. Copyright 2011, Cell Press.

Lee et al. Page 122

Chem Rev. Author manuscript; available in PMC 2017 June 28.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 21. 

Particles may merge and/or split, leading to trajectories that are temporarily joined. This 
presents new challenges in identifying pre- and post- colocalization track segments for the 
same particle. Top: example of a trajectory segment where two formyl peptide receptor290 

particles (denoted by the green and red arrows at 0, 12 and 24 ms) merge (at 36 ms) and 
remain colocalized until 96 ms (yellow arrow), only to split again at 108 ms (blue and gray 
arrows). Bottom: Particle trajectories followed above. Trajectories colored to match the 
corresponding colored arrows in the figure above. Adapted with permission from ref 290. 
Copyright 2014, Nature Publishing Group.
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Figure 22. 

Motion models can be used to limit the search area for linking algorithms.311 (a) The two 
parabolas represent the past and future volumes in which a particle localized at their 
intersection may be found on the basis of a motion model. Limiting the search volume 
reduces the computational cost of the method. (b) Once a trajectory segment has been 
determined, it is possible to use different motion models in different spatiotemporal areas of 
the trajectory, as shown by the different shapes of the paraboloid search regions. In this case 
motion in the later end of the trajectory (designated “head”) is considerably more 
constrained than motion in the early part of the trajectory (designated “tail”). Reproduced 
with permission from ref 311. Copyright 2005, IEEE Computer Society.
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Figure 23. 

Biological images can be cluttered to the point where near-neighbor algorithms are bound to 
fail. (a) Superposition of two successive frames in synthetic data mimicking particle 
transport via turbulent fluid flow. Particles in the first and second frame represented as light-
colored spheres and dark-colored diamonds, respectively. (b) Trajectory track segments 
derived for particles in these two frames via the “passing messages between frames” 
method.291 It is obvious that nearest-neighbor algorithms would not work well for this data. 
Reproduced with permission from Michael Chertkov, Lukas Kroc, F. Krzakala, M. 
Vergassola, and L. Zdeborová. “Inference in particle tracking experiments by passing 
messages between images.” Proceedings of the National Academy of Sciences 107, no. 17 
(Apr 27, 2010): 7663−7668.
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Figure 24. 

Effects of blinking, or temporary disappearance of particles, present linking challenges. (a) 
No blinking. Three trajectories are associated with three localized points (P1, P2, and P3). 
Motion models constrain the possible areas within which each of the localized points 
terminating the trajectory could have moved, but ambiguity nevertheless exists. Thus, P1 can 
potentially be the terminal point for either red and yellow trajectories, and similarly for P2. 
The problem can only be resolved because P3 belongs to the blue trajectory, meaning that P2 

and P1 must belong to the red and yellow trajectories, respectively. (b) Blinking in the red 
trajectory before the current frame. Because no particle was detected for the red trajectory at 
frame t, the potential area in which the particle may be found in frame t + 1 is 
correspondingly larger. However, assignment of localized points at frame t + 1 to trajectories 
is still resolvable. On the contrary, combinations of blinks or, alternatively, blinks lasting 
longer than one time frame can lead to important misassignments.317 Adapted with 
permission from ref 317. Copyright 2008, Nature Publishing Group.
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Figure 25. 

Contextual information on a tagged particle’s microenvironment may be used in linking. In 
the top panels above, a lysosome (red trajectory) was transported by molecular motors on a 
microtubule network (green background). By using super-resolution to image the 
microtubule network with high precision (lower panels), it became possible to closely match 
a lysosome trajectory to a particular microtubule and quantify when the lysosome detached 
or switched between microtubules.319 Reproduced with permission from Štefan Bálint, Ione 
Verdeny Vilanova, Ángel Sandoval Álvarez, and Melike Lakadamyali. “Correlative live-cell 
and superresolution microscopy reveals cargo transport dynamics at microtubule 
intersections.” Proceedings of the National Academy of Sciences 110, no. 9 (Feb 26, 2013): 
3375−3380.
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Figure 26. 

A tree can be constructed by linking particle positions. Here a trajectory that has been 
established from time frame k − 5 to k − 1 is examined for possible extensions to time 
frames k and k + 1. z refers to a measurement (circle) or a predicted virtual particle position 
(square). In the zi(j) notation j is the time frame and i enumerates the possible particle 
locations, real or virtual. All possible track extensions are considered, whether they consist 
of real detected particles or virtual detections. See Chenouard et al.287 for details. 
Reproduced with permission from ref 287. Copyright 2013, IEEE Computer Society.
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Figure 27. 

Temporal and spatial blur have different PSFs. While spatial blur (left) can be well 
approximated by a Gaussian, temporal blur (right) is a “box-shaped” pulse that cannot 
reliably be considered Gaussian. Algorithms that make Gaussian assumptions may therefore 
fail when used to temporally localize particles.329 Reproduced with permission from ref 329. 
Copyright 2005, IEEE Computer Society.
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Figure 28. 

Sampling rates and “connect-the-dots” schemes can bias interpretation. Consider two 
particles that are undergoing oscillatory motion with the same amplitude and frequency but 
are slightly off-phase (top and middle, blue curves). At a frame rate less than the period of 
the particle motion, observations (top and middle, yellow curves) suggest an oscillatory 
model with the same amplitude but a different frequency. This effect, where some motion 
characteristics are inferred correctly while others are not, is called “aliasing” and is a key 
challenge of temporal super-resolution.
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Figure 29. 

Multiscale super-resolution image data reveals critical contextual information. The plot 
displays a 3D multiresolution microscopy measurement of a particle approaching the 
membrane of a fibroblast cell. The fast diffusing nanoparticle was tracked using a 3D SPT 
module (the moving particle was kept in the focus of the objective via a piezoelectric stage 
and an optical feedback loop running at 100 kHz). The background (cell membrane, nucleus, 
etc.) was tracked with a conventional two-photon scanning fluorescence microscope. 
Valuable “contextual information” along single particle tracks is obtained from the 
combination of these two modalities. The arrows show trajectory segments where the 
nanoparticle traced out structured protrusions on the cell boundary.15 Reproduced with 
permission from ref 15. Copyright 2015, Royal Society of Chemistry.
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Figure 30. 

Idealized MSD curves. The theoretical limits of some common motion models used in single 
particle tracking (SPT). Graphical illustration of information contained in Table 1.
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Figure 31. 

vbSPT is used to determine the number of diffusive states arising from changes in 
interaction of RNA helper protein (Hfq) in E. coli treated with rifampicin. (a) Trajectories 
sample three different diffusion coefficients identified as differently colored trajectories in 
the untreated cell. The transition probabilities linking each diffusive state along with each 
state’s diffusion coefficient is inferred and represented in the kinetic scheme shown below. 
(b) The slowest diffusive state from (a) vanishes for E. coli treated with rifampicin, a 
transcription inhibitor, suggesting that this state coincided with an interaction of Hfq with 
RNA. Throughout this figure, ∆t = 300 Hz. In addition, the scale bar indicates 0.5 μm. See 
details in Chenouard et al.61 Reproduced with permission from ref 61. Copyright 2013, 
Nature Publishing Group.
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Figure 32. 

Traditional application of the Kalman Filter (KF). The underlying trajectory evolving in 
continuous time is shown by the solid black line. The observed or measurement data consists 
of discretely sampled data corrupted by measurement noise shown with blue circles along 
with their corresponding 95% confidence interval. The KF exploits knowledge of the model, 
its parameters and noise measurement in order to obtain improved estimates of position. The 
data set was created via an implementation of an Ornstein−Uhlenbeck stochastic differential 
equation, while processing was performed by a simple implementation of the KF, both in 
MATLAB.
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Figure 33. 

Dependencies of HMM and Markovian SLDS models. In both HMM and SLDS, 
unobservable states (latent variables) are denoted by white circles. The observations are 
denoted by filled circles. The subscripts index time and arrows connecting variables 
indicates conditional statistical dependencies between variables. For instance in the HMM, 
the latent variables determine the observations. While observations themselves do not affect 
observations at different times, the same is not true of the states. That is, once the states of 
the HMM are determined, past observed measurements no longer help predict subsequent 
measurements. The SLDS adds an additional layer of latent variables which determine the 
“position” estimates (rt). By contrast to the HMM, in the SLDSs, both “position” estimates 
(rt) and state estimates can be used to predict future observation.
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Figure 34. 

Nonparametric Bayesian analysis is helpful to SPT trajectory analysis. (a) Position trajectory 
of a 2D simulation illustrating nonlinear time dependent kinetics; the bottom portion of the 
plot displays the true state label as well as the number of states (and label) inferred by the 
HDP-SLDS algorithm.68 The vertical red line denotes the point at which the potential 
abruptly changes; potential before and after this change are plotted in rightmost panels. (b) 
The potential energy surface governing the particle dynamics before an abrupt state change 
in the position of the potential energy’s global minimum location at t = 40 s. The x and y 
coordinates of the measured position are plotted; the portion of the trajectory governed by 
the potential plotted in this panel is colored in red. (c) Potential energy surface of trajectory 
after an abrupt state change in the position corresponding to the potential energy’s minimum 
location at t = 40 s. The x and y coordinates of the measured position are plotted; the portion 
of the trajectory subject to the potential plotted in this panel is colored in black. (d) The 
MSD curve of the simulated trajectory exhibiting transitions between three types of diffusive 
motion; the MSD was computed using all measurements shown in the top left panel. See text 
for additional discussion. The data set for this simulation was created by a simple Gillespie 
algorithm while the labels and number of states were found via a simple MATLAB 
implementation of the HDP-SLDS algorithm.68 Standard MATLAB functions were used to 
calculate the MSD.
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Table 1

Mean Square Displacement (MSD) Curves Continue to Be Used to Drawn Ensemble Information from SPT 

Measurements60,65a

qualitative diffusion type MSD Signature

normal diffusion ⟨r(τ)2⟩ = 2dDτ

confined/corralled diffusion ⟨r(τ)2⟩ = C1(1 − C2 exp(−C3τ))

immobile/stationary ⟨r(τ)2⟩ < σloc2

directed diffusion (constant velocity v) ⟨r(τ)2⟩ = 2dDτ + v2τ2

anomalous subdiffusion (α < 1) ⟨r(τ)2⟩ = Cτα

a
In the right column, we find the predicted theoretical MSD trend associated with ideal sampling (“ideal” is used since both infinite sample sizes 

and no measurement noise effects are included) where the Ci’s coincide with constants determined from the assumed dynamical model, α is an 

anomalous exponent, D corresponds to the normal diffusion coefficient, d to the dimension of the trajectory (e.g. such as two or three common in 
SPT), and σloc2 corresponds to the measurement/localization noise variance.
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Table 2

Values for the Parameter Values Reproducing the Limits of Table 1a

qualitative diffusion type SDE constraints in eq 80

standard diffusion D > 0, κ = 0, v = 0

confined/corralled diffusion D > 0, κ > 0

immobile/stationary D = 0, v = 0, κ = 0

directed diffusion (constant velocity v) D > 0, v ≠0

a
Left column coincides with the left column of Table 1. The right column lists the constraints on θ ≡ (v, κ, D) corresponding to those parameters 

from eq 80 needed to reproduce the MSD shown on the right column of Table 1 under the same N → ∞ limit.
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