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Abstract

Background: Recent efforts of gene expression profiling analyses recognized at least four different triple-negative breast can-

cer (TNBC) molecular subtypes. However, little is known regarding their tumor microenvironment (TME) heterogeneity.

Methods: Here, we investigated TME heterogeneity within each TNBC molecular subtype, including immune infiltrate

localization and composition together with expression of targetable immune pathways, using publicly available

transcriptomic and genomic datasets from a large TNBC series totaling 1512 samples. Associations betweenmolecular

subtypes and specific features were assessed using logistic regression models. All statistical tests were two-sided.

Results: We demonstrated that each TNBC molecular subtype exhibits distinct TME profiles associated with specific immune,

vascularization, stroma, and metabolism biological processes together with specific immune composition and localization.

The immunomodulatory subtype was associated with the highest expression of adaptive immune-related gene signatures

and a fully inflamed spatial pattern appearing to be the optimal candidate for immune check point inhibitors. In contrast,

most mesenchymal stem-like and luminal androgen receptor tumors showed an immunosuppressive phenotype as wit-

nessed by high expression levels of stromal signatures. Basal-like, luminal androgen receptor, and mesenchymal subtypes

exhibited an immune cold phenotype associated with stromal andmetabolism TME signatures and enriched in margin-

restricted spatial pattern. Tumors with high chromosomal instability and copy number loss in the chromosome 5q and 15q

regions, including genomic loss of major histocompatibility complex related genes, showed reduced cytotoxic activity as a

plausible immune escape mechanism.

Conclusions: Our results demonstrate that each TNBC subtype is associated with specific TME profiles, setting the ground for

a rationale tailoring of immunotherapy in TNBC patients.

Triple-negative breast cancer (TNBC), representing 15%–20% of

all breast cancers (BCs), has the worst outcome among BC sub-

types and is known to be a heterogeneous disease at the clini-

cal, biological, and genomic levels. Gene expression analyses

have led to the identification of several molecular subtypes

with distinct mutational profiles, genomic alterations, and bio-

logical processes, including basal-like (BL), immunomodulatory

(IM), luminal androgen receptor (LAR), mesenchymal (M), and
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mesenchymal stem-like (MSL) (1–4). TNBC treatment remains

challenging because therapeutic options are essentially limited

to chemotherapy (5).

Cancer development, progression, and treatment resistance

are known to be influenced by genetic and epigenetic altera-

tions as well as cross talk between tumor cells and their micro-

environment. The tumor microenvironment (TME) is composed

of multiple cell types, including fibroblasts, adipose and

immune-inflammatory cells, and blood and lymphatic vascular

networks (6). TNBC subtype is associated with the highest

tumor-infiltrating lymphocyte (TIL) levels. High TILs were asso-

ciated with better clinical outcome and response to neoadju-

vant chemotherapy (7–9).

Several agents targeting TME immune components by in-

ducing or enhancing antitumor immunity are under develop-

ment (10). Cancer immunotherapy immune checkpoint blockers

(ICB) have changed the treatment paradigm in a variety of neo-

plastic diseases (11). In BC, immunotherapy with ICB has dem-

onstrated clinical activity and survival benefit, mostly in

advanced TNBC and HER2þ subtype (12–14). However, a benefit

to ICB was observed in only a minority of BC patients, highlight-

ing the need to better elucidate the mechanisms of treatment

resistance allowing us to identify patients who will benefit the

most from immunotherapy.

Methods

Additional information on samples and methods used in this

study is provided in the Supplementary Methods (available

online).

Datasets

Bioinformatic analyses were performed on four publicly avail-

able datasets assembled as cohorts A, B, and C (Supplementary

Figure 1; Supplementary Tables 1 and 2, available online).

Cohort A was composed of 555 TNBC samples from the

Molecular Taxonomy of Breast Cancer International

Consortium (METABRIC) (15) and The Cancer Genome Atlas

Consortium (TCGA) (16) with available gene expression, somatic

mutation profiles, segmented copy number, and overall survival

(OS) data. Cohort B was composed of 360 TNBC samples from

patients with Asian ancestry, retrieved from Jiang and col-

leagues (3), including gene expression, somatic mutation, and

whole-genome copy number data. The validation cohort C was

composed of 597 TNBC samples with gene expression data re-

trieved from the Gene Expression Omnibus platform (GSE31519)

together with relapse-free survival data (17).

TNBC Molecular Subtyping

Three different classifications were used to define TNBC molec-

ular subtypes according to the recent publications by Bareche

et al. (2), Jiang et al. (3), and Burstein et al. (4).

TME Gene Signature Analysis

Ten gene signatures related to the TME were used for this analy-

sis (Supplementary Table 3, available online): two immune

related [reflecting “cytolytic activity” (18) and “lymphocytes”

(19)], three vascularization related [reflecting “angiogenesis” (2),

“hypoxia” (20), and “lymphangiogenesis” (21)], three stroma

related [reflecting “cancer associated fibroblast (CAFs)” (22) and

“stroma” (23)], and three metabolism related [reflecting

“glycolysis” (24), “lipid metabolism” (25), and a “pentose phos-

phate pathway” (26)]. The “cytolytic activity,” “lymphocyte,”

and “stroma” signature scores were calculated as a weighted

sum of genes’ normalized expression, with gene-specific

weights equal to þ1 or �1, depending on the association’s direc-

tion with the gene expression phenotype. The other signature

scores were calculated as an unweighted mean of the genes’

normalized expression. Gene signature scores were then scaled

so that the 2.5% and 97.5% quantiles equaled �1 and þ1 (27).

Tumor Immune Microenvironment (TIME) Molecular
Subtype

The TIME molecular subtypes were assigned to each tumor

sample, as described by Gruosso et al. (28).

Computational Immune Composition Quantification

Gene signatures allowing us to identify 16 distinct immune cell

types were obtained from Tamborero et al. (2018) (29). Gene set

variation analysis (GSVA) was performed to compute the 16 im-

mune cell type scores, using the gsva (30) R package with default

parameters. The 16 GSVA signature scores were then scaled so

that the 2.5% and 97.5% quantiles equaled �1 and þ1,

respectively.

Statistical Analysis

Associations between TME gene signatures, GSVA immune cell

types, and immune gene targets, used as continuous variables, to-

gether with TNBC molecular and TIME subtypes, used as categori-

cal variables, were evaluated using the logistic regression model

with P values computed from parametric Mann-Whitney U tests.

Spearman correlation analysis was performed between

chromosomal instability (CIN) scores and gene expression.

Genes with Spearman coefficient rho greater than 0.30 or less

than �0.30 and P values corrected for multiple testing (false dis-

covery rate [FDR]) less than .05 were considered statistically sig-

nificant for the Gene Ontology (GO) analysis. GO enrichment

was performed using GO.db (version 3.5.0) and limma (version

3.34.9) R packages.

Associations between TME gene signatures and GSVA im-

mune cell types with OS were evaluated using Cox proportional

hazards regression univariate and multivariable models [coxph

function, R package “genefu” (27), version 2.11.2] in cohort A and

with relapse-free survival using Cox proportional hazards re-

gression model in cohort C. Multivariable analyses were per-

formed adjusting for the dataset (TCGA vs METABRIC), nodal

status (0 vs 1), age (�40 years vs >40 years), tumor size (�2 cm

vs >2 cm), and histological grade (I or II vs III). Survival data

from cohort B were not used because of a relatively low relapse

rate (only 49 of 360 TNBC patients relapsed with a median

follow-up of 3.8 years). Cox proportional hazards assumptions

of proportionality were checked and verified using the

Schoenfeld residual test in cohorts A and B.

All statistical analyses were performed using R (version

3.4.4). P values were corrected for multiple testing using the

Benjamini-Hochberg FDR. Statistical tests were considered sta-

tistically significant if the FDRwas less than .05. All tests were

two-sided, and P less than .05 was considered statistically

significant.
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Results

TNBC Molecular Subtype AssociationWith Distinct TME
and Clinical Outcome

To evaluate whether TNBC molecular subtypes as defined by

Bareche et al. (2) exhibit distinct TME patterns, we interrogated

several specific gene expression signatures capturing different

biological features or cellular components, including immune

response (18,19), vascularization (2,20,21), stroma compartment

(22,23), and metabolic processes (24–26), using cohorts A and B

(Figure 1A; Supplementary Tables 3 and 4, available online).

As illustrated in Figure 1A, BL tumors were enriched with

metabolism processes together with low levels of stroma and

lymphangiogenesis signatures, whereas the IM subtype was

predominantly associated with tumor immune response signa-

tures. LAR and M subtypes showed similar TME patterns with

high stroma and metabolism expression levels together with

low immune signature expression levels. Finally, MSL was

mainly associated with high levels of lymphangiogenesis and

low levels of metabolism processes.

We then investigated whether different TME patterns were as-

sociated with a distinct clinical outcome. As shown in Figure 1B,

the two immune-related signatures were associated with a better

OS, whereas the CD10þ/GPR77þ CAF signature showed an associ-

ation with poor outcome. These associations were statistically

significant in both the univariate and multivariable analyses

(Figure 1B; Supplementary Table 5, available online). Altogether,

our results highlight that each TNBC molecular subtype presents

specific TME patterns associated with distinct clinical outcome.

Spatial Immune Organization Within TNBC Molecular
Subtypes

Immune-related gene signatures were derived from bulk tumor

gene expression, ignoring immune cell spatial distribution. To in-

vestigate the spatial heterogeneity of tumor immune infiltration

within each of the TNBC molecular subtypes, we first applied to

cohorts A and B the recently reported TIME classification to group

tumors into three patterns according to CD8þ TIL spatial distribu-

tion: fully inflamed (FI), stroma restricted (SR), and margin re-

stricted (MR) subtypes (28). We then examined whether TNBC

molecular subtypes present specific TIL localization according to

TIME classification. As illustrated in Figure 2, A and B, IM tumors

showed the highest prevalence of FI patterns, which were absent

in the M subtype. M, MSL, and LAR molecular subtypes presented

the highest levels of the MR pattern, whereas the BL subtype was

predominantly associated with the SR pattern (28).

To investigate whether this classification reliably reflects TIL

localization as assessed by a pathologist, we reviewed

161hematoxylin–eosin (H&E) slides available from the TCGA se-

ries and compared TIL localization with TIME molecular classifi-

cation. Interestingly, we observed a statistically significant

concordance of 67% with a Cohen’s j coefficient value of 0.48

(P less than .001) (Supplementary Figure 2A, available online).

Furthermore, the pathologist classification showed similar results

as found using the TIME molecular classification (Supplementary

Figure 2, B–D, available online), thus demonstrating that the TIME

classification faithfully captures TIL spatial localization.

TIME classification was also associated with distinct expres-

sion of TME signatures (Figure 2C; Supplementary Table 6, avail-

able online). FI tumors were positively and negatively

associated with immune-related and stroma- and metabolism-

related signatures, respectively, in contrast to MR tumors show-

ing the opposite TME features. Finally, SR tumors were mainly

associated with metabolism-related signatures.

We next investigated whether TIME classification was asso-

ciated with distinct clinic-pathological features and clinical out-

come. FI tumors were statistically significantly enriched for

medullary carcinoma and smaller tumors, SR tumors were asso-

ciated with younger patients, and MR tumors were enriched for

low-grade tumors (Supplementary Table 2, available online).

Furthermore, in line with Gruosso et al., TIME patterns were sta-

tistically significantly associated with 10-year OS (log-rank test,
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Figure 1. Tumor microenvironment (TME) features associated with triple-nega-

tive breast cancer (TNBC) molecular subtypes and overall survival (OS). A)

Associations between TME gene expression signatures and TNBC molecular

subtypes. A logistic regression model was used to evaluate associations between

each specific gene signature and each TNBC molecular subtype. P values were

obtained from parametric Mann-Whitney U tests and corrected for multi testing.

Only statistically significant associations are shown (false discovery rate [FDR] �

.05), with negative and positive associations represented in red and green, re-

spectively. The left half-circle and the right half-circle represent cohorts A and

B, respectively. B) Associations between TME gene signatures and 10-year OS,

using univariate and multivariable Cox regression models, adjusted for the

dataset (The Cancer Genome Atlas Consortium vs Molecular Taxonomy of

Breast Cancer International Consortium), patient age (�40 y vs >40y), nodal sta-

tus (positive vs negative), tumor size (<2 cm vs �2 cm), and histological grade (I/

II vs III). The x- and y-axis represent the hazard ratio and the �log10 (FDR), re-

spectively. The horizontal bold dotted line represents the FDR threshold at .05

for statistically significant associations. BL ¼ Basal-like; CAF ¼ Cancer-associ-

ated fibroblast; IM ¼ Immunomodulatory; LAR ¼ Luminal androgen receptor;

M ¼ Mesenchymal; MSL ¼ Mesenchymal stem-like.
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P¼ .048), and patients with FI tumors exhibited the best progno-

sis (Supplementary Figure 2E, available online). These results

highlight that each TNBC molecular subtype is associated with

distinct immune localization together with specific TME pro-

cesses and clinic-pathological characteristics.

Immune Infiltrate Composition of TNBC Molecular
Subtypes

To gain more insight into the relative composition of the im-

mune infiltrate between the different TNBCmolecular subtypes,

we used a compendium of mRNA gene signatures capturing 16

immune cell types depicting innate and adaptive immune

responses (29). IM subtype was mainly enriched with adaptive

immune cells as compared with MSL mainly composed of in-

nate immune cells (Figure 2D; Supplementary Table 7, available

online). LAR subtype was enriched with innate immune cells al-

though to a lesser extent as compared with MSL. Of note, BL and

M subtypes were characterized by poor adaptive and innate im-

mune responses. Overall, our results show a statistically signifi-

cant heterogeneity in the immune cell composition

characterizing each TNBCmolecular subtype.
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Figure 2. Characterization of the spatial immune landscape and immune composition in triple-negative breast cancer (TNBC) molecular subtypes. Associations be-

tween TNBC molecular subtypes and tumor immune microenvironment (TIME) subtypes in cohorts A (A) and B (B). C) Associations between tumor microenvironment

(TME) gene expression signatures and TIME subtypes. Logistic regression model was used to evaluate the association between each feature and each subtype.

D) Associations between 16 immune cell subsets scores with TNBC molecular subtypes. A logistic regression model was used to evaluate associations between each

immune cell population and each tumor TNBC molecular subtype. P values were obtained from parametric Mann-Whitney U tests and corrected for multi testing. Only

statistically significant associations are shown (FDR � .05), with negative and positive associations represented in red and green, respectively. The left half-circle and

the right half-circle represent cohorts A and B, respectively. aDC ¼ Activated dendritic cells; B cell ¼ B cell lymphocytes; BL ¼ Basal-like; CAF ¼ Cancer-associated fibro-

blast; FI ¼ Fully-inflammed; iDC ¼ Inactivated dendritic cells; IM ¼ Immunomodulatory; LAR ¼ Luminal androgen receptor; M ¼ Mesenchymal; MR ¼ Margin restricted;

MSL ¼ Mesenchymal stem-like; NK ¼ Natural killer cells; SR ¼ Stroma restricted; Tcm ¼ Central memory T cells; Tem ¼ Effector memory T cells; Tfh ¼ Follicular helper

T cells; Th ¼ Helper T cells; Treg ¼ Regulatory T cells.
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Association of Tumor Genomic and TME Features With
Cytotoxic Immune Response

We next aimed to determine the genomic and TME features as-

sociated with local cytotoxic immune activity (CYT), evaluated

through the geometric mean expression of GZMA and PRF1

genes (18), including CIN, intra tumor heterogeneity, homolo-

gous recombination deficiency scores, tumor mutational bur-

den, and several TME signatures as previously described. High

CYT was statistically significantly associated with high expres-

sion levels of lymphangiogenesis signature, whereas reduced

CYT was correlated with high levels of CD10þ/GPR77þ CAF and
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Figure 3. Chromosomal instability association with immune escape. A) Associations between tumor microenvironment (TME) and tumor-specific features with local

cytotoxic immune activity (CYT) in cohorts A and B. Spearman correlation was used to evaluate associations between each TME and tumor-specific gene expression

signature with the CYT gene signature. The x- and y-axis represent Spearman q and the �log10(FDR), respectively. The horizontal bold dotted line represents the FDR

threshold at 0.05 for statistically significant association. Chromosomal instability (CIN) distribution within each triple-negative breast cancer (TNBC) molecular (B) and

tumor immune microenvironment (TIME) (C) subtype in cohorts A and B. Differences between each subtype and the rest of the cohort were assessed using a two-sided

Mann-Whitney U test. A black star was displayed when statistically significant CIN score enrichment was observed within a specific TNBC and TIME subtype. D) Gene

ontology analyses of genes with mRNA expression statistically significant (FDR� .05) negatively (left, in red) and positively (right, in blue) correlated with CIN scores

(Spearman correlation) in cohorts A and B. BL ¼ Basal-like; CAF ¼ Cancer-associated fibroblast; CIN ¼ Chromosomal instability; FI ¼ Fully-inflammed; HRD ¼

Homologous recombination deficiency; IM ¼ Immunomodulatory; ITH ¼ Intra-tumoral heterogeneity; LAR ¼ Luminal androgen receptor; M ¼ Mesenchymal; MR ¼

Margin restricted; MSL ¼ Mesenchymal stem-like; SR ¼ Stroma restricted; TMB ¼ Tumor mutational burden.
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high CIN as well as to a lesser extent with hypoxia, glycolysis,

lipid metabolism, and homologous recombination deficiency

and tumor mutational burden (Figure 3A).

Of note, higher CIN scores were observed in the BL and M

subtypes as well as in the SR tumors (Figure 3B). Gene ontology

analysis using the Spearman correlation test (jSpearman qj �

0.30) showed that CIN scores were positively correlated with

genes involved in cell cycle processes and inversely correlated

with genes involved in immune response. A total 73.2% (361 of

493) of these inversely correlated genes also showed higher

copy number losses in tumors with high CIN scores (Figure 3C;

Supplementary Table 8, available online). Of interest, 33 of these

genes were associated with reduced CYT levels, including B2M

and TMEM173 (STING) genes, both involved in major histocom-

patibility complex (MHC) class I and II complex molecules and

required for tumor antigen presentation; nearly all of these

genes are located in chromosomes 5q and 15q (Figure 4A). We

further showed that among the 23000 genes with copy number

alterations, 84.1% of the genes associated with reduced CYT

were located in the chromosome 5q and 15q regions, indepen-

dent from CIN status (Supplementary Table 9, available online).

Of note, CIN and the chromosome 5q region remained
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Figure 4. Loss of chromosome 5q and 15q regions is associated with reduced cytotoxic immune activity (CYT) levels. A) Copy number aberration (CNA) status distribu-

tion according to the three different triple-negative breast cancer (TNBC) classifications of the 33 genes associated with high CNA loss and low CYT scores in chromo-

somal instability (CIN) high (CIN�0.38, third tertile) and CIN low (CIN�0.08, first tertile) tumors in cohort A. B) CNA status distribution of 27 of these 33 genes validated

in cohort B associated with high CNA loss and low CYT scores in CIN high (CIN�0.39, third tertile) and CIN low (CIN�0.11, first tertile) tumors. Differences in CNA sta-

tus between both CIN subgroups were assessed using a two-sided Fisher exact test. P values were adjusted for multiple testing using the Benjamini-Hochberg proce-

dure. A logistic regression model was used to evaluate the association between each gene CNA loss with CYT activity. P values were obtained from parametric Mann-

Whitney U tests and corrected for multi testing.
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statistically significantly associated with reduced CYT in a mul-

tivariable model, suggesting that both CIN and 5q region are in-

dependently associated with CYT (Supplementary Figure 3,

available online). Finally, we identified two regions on chromo-

some 5q (5q11.2–5q21.2 and 5q.31.1–5q31.3) and two regions on

chromosome 15q (15q14–15q21.1 and 15q22.31) statistically sig-

nificantly associated with decreased CYT levels (Figure 5). Of

great interest, similar findings were observed in cohort B, dem-

onstrating the reproducibility of our results (Figures 3–5;

Supplementary Figure 3; Supplementary Tables 9 and 10, avail-

able online). Altogether, these data highlight the importance of

CIN as well as the chromosome 5q and 15q region lossess as po-

tential immune escape mechanisms in TNBC tumors.

Association of Targetable Immune Marker Expression
With TNBC Molecular Subtypes

We next evaluated the expression of key immune targets, in-

cluding coinhibitory as well as costimulatory ligands and recep-

tors, chemokines, and enzymes, to guide immune therapeutic

strategies according to each TNBC and TIME subtype

(Supplementary Table 11, available online).

Our analyses showed that most of the evaluated immune

targets were highly expressed in the IM and to a lesser extent in

the MSL subtype (Figure 6A; Supplementary Table 12, available

online) in contrast to the M, LAR, and BL subtypes, which

showed low immune target expression. Notably, BL tumors
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Figure 5. Specific 5q and 15q region losses associated with reduced cytotoxic immune activity (CYT). Associations between chromosome 5q (A) and 15q (B) specific

region logR with cytotoxic activity using a linear regression model. Forestplots displaying hazard ratios and 95% confidence intervals (CI). Horizontal bars repre-

sent the 95% CI of odds ratios (OR). Variables with statistically significant effect (P � .05) are shown in red. Gray boxes highlight common regions significantly asso-

ciated in both cohorts.
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were characterized by an immunosuppressed TME, including

association with IM proteins involved in negative immune regu-

lation of T cells (B7-H4) and myeloid cells (CD47). GARP was the

only immune target observed in the LAR subtype and was

strongly enriched in MSL tumors.

Other molecules from immune-negative regulation path-

ways were associated with MSL tumors, including CD39 and

CD73 ectoenzymes, responsible for the generation of immuno-

suppressive adenosine in the TME (31). In contrast to MSL

tumors, IM tumors were characterized by a more balanced pat-

tern of immune targets with the association of immune stimu-

latory receptors such as 4-1-BB, OX40, and IL2-R and ligands

such as ICOS and CD40L as well as molecules involved in the

dysfunction of proinflammatory status as inhibitory receptors

(TIGIT, PD-1, CTLA4). Mesenchymal tumors did not appear

immune reactive, with a negative association for most tested

immune targets except for two immune inhibitory receptors,

B7-H3 and B7-H4, also expressed by tumor cells and involved in

the regulation of cancer initiation and progression (32).

Finally, we evaluated the expression of immune targets

according to TIME subtypes (Figure 6B; Supplementary Table 13,

available online). Almost all immune targets were highly

expressed in the FI subtype. MR tumors were enriched in B7-H3

and GARP expression yet were negatively associated with most

other targets, reflecting the immunosuppression of these

tumors. Finally, SR tumors were characterized by a low expres-

sion of most evaluated immune targets. Overall, these analyses

show that different immune targets are differentially expressed

across TNBC and TIME subtypes, allowing a rationale tailoring

of immunotherapy in TNBC patients.
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Figure 6. Therapeutic immune targets according to triple-negative breast cancer (TNBC) molecular and tumor immune microenvironment (TIME) subtypes.

Associations of 44 immune genes corresponding to immunomodulatory targets with TNBC molecular (A) and TIME (B) subtypes. A logistic regression model was used

to evaluate associations between each gene expression with each subtype. P values were obtained from parametric Mann-Whitney U tests and corrected for multi

testing. Only statistically significant associations are shown (FDR � .05), with negative and positive associations represented in red and green, respectively. The left

half-circle and the right half-circle represent cohorts A and B, respectively. BL ¼ Basal-like; FI ¼ Fully-inflammed; IM ¼ Immunomodulatory; LAR ¼ Luminal androgen

receptor; M ¼ Mesenchymal; MR ¼ Margin restricted; MSL ¼ Mesenchymal stem-like; SR ¼ Stroma restricted.
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Figure 7. Validation of tumor microenvironment (TME) heterogeneity within triple-negative breast cancer (TNBC) molecular subtypes. A) Associations between TME

gene expression signatures and TNBC molecular subtypes within cohort C. A logistic regression model was used to evaluate associations between each specific gene

signature and each TNBC molecular subtype. P values were obtained from parametric Mann-Whitney U tests and corrected for multi testing. Only statistically signifi-

cant associations are shown (FDR � .05), with negative and positive associations represented in red and green, respectively. B) Associations between TME gene signa-

tures and relapse-free survival (RFS) using a cox regression model. The x- and y-axis represent hazard ratio and the �log10 (false discovery rate [FDR]), respectively.

The horizontal bold dotted line represents the FDR threshold at .05 for statistically significant associations. C) Associations between TNBC molecular subtypes and tu-

mor immune microenvironment (TIME) subtypes in cohort C. D) Associations between TME gene expression signatures with TIME subtypes in cohort C. A logistic re-

gression model was used to evaluate associations between each specific gene signature and each TNBC molecular subtype. P values were obtained from parametric

Mann-Whitney U tests and corrected for multi testing. Only statistically significant associations are shown (FDR � 0.05), with negative and positive associations repre-

sented in red and green, respectively. (E) Kaplan-meier analysis of relapse-free survival of cohort C stratified according to TIME subtypes (fully inflamed [FI] vs stroma

restricted [SR] vs margin restricted [MR]). F) Associations between 16 immune cell population scores with TNBC molecular subtypes in cohort C. A logistic regression

model was used to evaluate associations between each immune cell population and each tumor subtype. P values were obtained from parametric Mann-Whitney U

tests and corrected for multi testing. Only statistically significant associations are shown (FDR � .05), with negative and positive associations represented in red and

green, respectively. BL ¼ Basal-like; CAF ¼ Cancer-associated fibroblast; FI ¼ Fully-inflammed; IM ¼ Immunomodulatory; LAR ¼ Luminal androgen receptor; M ¼

Mesenchymal; MR ¼ Margin restricted; MSL ¼ Mesenchymal stem-like; SR ¼ Stroma restricted.
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Validation of the TME Heterogeneity Within TNBC
Molecular Subtypes

The robustness of our findings was further evaluated using an

independent cohort of 497 TNBC samples with available clinical

and transcriptomic data (cohort C). Similar TME patterns were

found for each TNBC subtype, with immune signatures being

statistically significantly associated with better relapse-free sur-

vival (Figure 7, A and B; Supplementary Tables 4 and 6, available

online). The same distribution of the TNBC molecular subtypes

according to TIME classification was observed between all

cohorts (Figure 7C). In line with our previous results, the TIME

classification was also statistically significantly associated with

distinct TME processes and relapse-free survival (Figure 7, D

and E; Supplementary Table 5, available online). The IM subtype

was mainly enriched with adaptive immune cells compared

with MSL, which was mainly composed of innate immune cells

(Figure 7F). Finally, IM and FI subtypes were positively associ-

ated with almost all evaluated immune targets, in contrast to

MSL and MR subtypes, which were more associated with a pro-

tumoral TME, overall validating our results (Supplementary

Figure 4; Supplementary Tables 12 and 13, available online).

Finally, TME heterogeneity was also explored in all three

cohorts using two other TNBC molecular classifications

reported by Burstein et al. (4) and Jiang et al. (3), showing similar

TME profiles and clinical outcome associations (Supplementary

Figures 5 and 6, available online).

Discussion

TILs and immune signatures were previously reported to be as-

sociated with better survival and response to treatment in

TNBC (7–9); however, it is not clear which immune cell types or

which spatial organizations drive clinical outcome. This is the

largest analysis, exploiting 1512 TNBC samples from four large

and independent public datasets, demonstrating the extent of

TME heterogeneity that characterizes each TNBC molecular

subtype beyond the genomic and transcriptomic diversity (2,3).

We also explored for the first time, to our knowledge, the

TIME classification integrating immune cell spatial localization

(28). We showed that IM and FI subtypes are associated with

high expression of most evaluated immune targets (eg, immune

checkpoint receptors) and adaptive immune-related cell popu-

lations, suggesting that these “immune hot” tumors are the best

potential candidates for ICB. In contrast, most MSL and LAR

tumors showed an immunosuppressive and protumorigenic

phenotype with high expression levels of stromal signatures

known to promote an immunosuppressed TME, suggesting that

they are potential candidates for treatment targeting regulatory

T cells or immunosuppressive pathways such as the adenosine

pathway. The M and MR subtypes could be considered as

“immune cold” tumors with low expression of different im-

mune cell populations and downregulation of most immune

targets.

Tumor metabolic reprogramming is a known cancer hall-

mark characterized by an adaptive mechanism promoting tu-

mor development in a hostile TME. Our analysis revealed an

activation of the metabolic pathways in the “immune cold” BL,

LAR, and M molecular subtypes as well as in the SR subtype,

pointing out the tight interplay between tumor metabolism and

TME. Targeting the metabolic pathways therefore appears as a

promising anticancer strategy in these specific TNBC subtypes.

We are the first, to our knowledge, to demonstrate that TIME

classification faithfully reflects TIL localization, as witnessed by
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Figure 8. Response to immunotherapy through targeting triple-negative breast cancer (TNBC) tumor microenvironment and genomic heterogeneity. The inner pie

chart represents the relative proportion of the TNBC molecular subtypes. The outer pie chart represents the relative proportion of the tumor immune microenviron-

ment (TIME) subtypes within each TNBC molecular subtype. Observed TNBC subtype-specific aberrations are listed in each quadrant with the corresponding rational

therapeutic strategies presented in the dotted box. BL ¼ Basal-like; DNMT ¼ DNA methyltransferase; HDAC ¼ Histone deacetylase; IM ¼ Immunomodulatory; LAR ¼

Luminal androgen receptor; M ¼ Mesenchymal; MSL ¼ Mesenchymal stem-like.
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a good 67% concordance rate between TIL localization assessed

by pathologists and the gene expression-based TIME classifica-

tion. Discordant cases could notably be explained using H&E in-

stead of CD8þ IHC-stained slides to assess the TIL localization.

Discordant cases could notably be explained by the use of H&E

instead of CD8þ IHC-stained slides to assess the TIL localization

and/or the exclusion by the pathologist of highly infiltrated ne-

crotic areas captured by gene expression analysis from bulk

tumors. Indeed, about 25% of discordant cases showed an im-

mune infiltration in either necrotic areas or normal adjacent tis-

sue. Our findings suggest that TIME classification should be

evaluated to discriminate responders from nonresponders to

immunotherapy as a complementary biomarker to TIL assess-

ment (14,33).

Furthermore, our analysis provides novel evidence of poten-

tial mechanisms of resistance to ICB. We have notably shown

that tumors with high CIN and chromosomal 5q and 15q region

loss, including TMEM173 (5q31.2; STING) and B2M (15q21.1)

genes leading to the downregulation of several MHC class I and

II genes, were independently associated with reduced immune

cytotoxicity. Downregulation of MHC class I molecules by tumor

cells decreases tumor antigenicity and could be an immune es-

cape mechanism to avoid recognition and tumor cell death by

the immune system (10). In some cases, the absence of MHC

class I on tumor cells could explain the low tumor immune infil-

tration and the lack of response to ICB (34). Inducing MHC recov-

ery to overcome the MHC loss using oncolytic viruses or

demethylating agents as well as NK cell therapy activated by

the loss of MHC-I on tumors cells therefore appear as potential

treatment options for these tumors (35–37). Chromosomal 5q re-

gion loss also includes GZMA encoding for proteins involved in

cytotoxic activity of immune cells (5q11.2). Although our bulk

sequencing analyses do not allow us to discriminate between

tumor and immune cell expression, we considered that this loss

does not interfere with our findings because it is mainly

expressed by immune cells (38,39).

The recent results from the first phase III trial evaluating

anti-PD-L1 therapy in combination with chemotherapy demon-

strated a survival benefit in metastatic TNBC patients (13). Of

note, the survival benefit was observed in only the PD-L1þ

subgroup. Considering our results, the identification of novel

predictive biomarkers could allow us to determine the most

appropriate immunotherapeutic strategy to optimally

enhance antitumor immune responses. Hence, combinatorial

approaches targeting diverse immune escape mechanisms may

potentially improve the response rate and clinical benefit to ICB

(Figure 8).

To conclude, despite being limited by its retrospective nature

and restricted to bulk tumor sequencing data analysis, this

study allowed us to gain more insight into the complex interac-

tions between tumor cells and their microenvironment, particu-

lar immune cells. However, prospective validation of our

findings is warranted before their clinical implementation. New

technologies such as single-cell sequencing and spatial tran-

scriptomics (40,41) may further allow us to investigate the ex-

tent of tumor heterogeneity that characterizes TNBC at an

unprecedented level.
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Bioconductor package for computation of gene expression-based signatures

in breast cancer. Bioinformatics. 2016;32(7):1097–1099.

28. Gruosso T, Gigoux M, Manem VSK, et al. Spatially distinct tumor immune

microenvironments stratify triple-negative breast cancers. J Clin Invest. 2019;

129(4):1785–1800.

29. Tamborero D, Rubio-Perez C, Mui~nos F, et al. A pan-cancer landscape of inter-

actions between solid tumors and infiltrating immune cell populations. Clin

Cancer Res. 2018;24(15):3717–3728.

30. Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for

microarray and RNA-Seq data. BMC Bioinformatics. 2013;14(1):7.

31. Allard B, Longhi MS, Robson SC, Stagg J. The ectonucleotidases CD39 and

CD73: novel checkpoint inhibitor targets. Immunol Rev. 2017;276(1):

121–144.

32. Wang F, Wang G, Liu T, et al. B7-H3 was highly expressed in human primary

hepatocellular carcinoma and promoted tumor progression. Cancer Invest.

2014;32(6):262–271.

33. Loi S, Adams S, Schmid P, et al. LBA13Relationship between tumor infiltrating

lymphocyte (TIL) levels and response to pembrolizumab (pembro) in meta-

static triple-negative breast cancer (mTNBC): results from KEYNOTE-086.

Ann Oncol. 2017;28(5):605–649.

34. Davoli T, Uno H, Wooten EC, Elledge SJ. Tumor aneuploidy correlates with

markers of immune evasion and with reduced response to immunotherapy.

Science. 2017;355(6322):eaaf8399.

35. Gujar SA, Lee PWK. Oncolytic virus-mediated reversal of impaired tumor an-

tigen presentation. Front Oncol. 2014;4:1–7.

36. Garrido F, Aptsiauri N, Doorduijn EM, Garcia Lora AM, van Hall T. The urgent

need to recover MHC class I in cancers for effective immunotherapy. Curr

Opin Immunol. 2016;39:44–51.

37. Morvan MG, Lanier LL. NK cells and cancer: you can teach innate cells new

tricks.Nat Rev Cancer. 2016;16(1):7–19.

38. Uhl�en M, Fagerberg L, Hallström BM, et al. Tissue-based map of the human

proteome. Science. 2015;347(6220):1260419.

39. Barretina J, Caponigro G, Stransky N, et al. The Cancer Cell Line Encyclopedia

enables predictive modelling of anticancer drug sensitivity. Nature. 2012;

483(7391):603.

40. Edsg€ard D, Johnsson P, Sandberg R. Identification of spatial expression trends

in single-cell gene expression data.Nat Methods. 2018;15(5):339–342.

41. Salmen F, Vickovic S, Larsson L, et al. Multidimensional transcriptomics pro-

vides detailed information about immune cell distribution and identity in

HER2þ breast tumors. bioRxiv 358937. 2018. doi:10.1101/358937.

A
R
T
IC

L
E

Y. Bareche et al. | 719

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/jn
c
i/a

rtic
le

/1
1
2
/7

/7
0
8
/5

6
0
9
1
1
6
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2


