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Abstract

The genus Phytophthora comprises many economically and ecologically important plant pathogens. Hybrid species
have previously been identified in at least six of the 12 phylogenetic clades. These hybrids can potentially infect a
wider host range and display enhanced vigour compared to their progenitors. Phytophthora hybrids therefore pose
a serious threat to agriculture as well as to natural ecosystems. Early and correct identification of hybrids is
therefore essential for adequate plant protection but this is hampered by the limitations of morphological and
traditional molecular methods. Identification of hybrids is also important in evolutionary studies as the positioning
of hybrids in a phylogenetic tree can lead to suboptimal topologies. To improve the identification of hybrids we
have combined genotyping-by-sequencing (GBS) and genome size estimation on a genus-wide collection of 614
Phytophthora isolates. Analyses based on locus- and allele counts and especially on the combination of species-
specific loci and genome size estimations allowed us to confirm and characterize 27 previously described hybrid
species and discover 16 new hybrid species. Our method was also valuable for species identification at an
unprecedented resolution and further allowed correct naming of misidentified isolates. We used both a
concatenation- and a coalescent-based phylogenomic method to construct a reliable phylogeny using the GBS
data of 140 non-hybrid Phytophthora isolates. Hybrid species were subsequently connected to their progenitors in
this phylogenetic tree. In this study we demonstrate the application of two validated techniques (GBS and flow
cytometry) for relatively low cost but high resolution identification of hybrids and their phylogenetic relations.
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INTRODUCTION
The genus Phytophthora is an important genus of plant
pathogenic oomycetes. These organisms were long clas-
sified as fungi because of similarities in life-style and
morphology, but they differ in cytological, biochemical,
and genomic aspects. Moreover, oomycetes are diploid,

in contrast with the primarily monoploid fungi (Beakes
et al. 2012). Oomycetes are now classified in the diverse
Straminipila lineage within the Straminipila-Alveolata-

Rhizaria (SAR) eukaryotic supergroup (McCarthy and
Fitzpatrick 2017). Important Phytophthora species in
agricultural as well as natural plant ecosystems include
P. infestans, P. sojae, P. ramorum, and P. cinnamomi

(Fry 2008; Grünwald et al. 2012; Hardham 2005; Jung
et al. 2018b; Tyler 2007). Known Phytophthora species
are classified in 12 phylogenetic clades, some of which
are subdivided into rather diverse subclades (Jung et al.

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

* Correspondence: kris.vanpoucke@ilvo.vlaanderen.be
†Kris Van Poucke and Annelies Haegeman contributed equally to this work.
1Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant
Sciences Unit, Burg. Van Gansberghelaan 96, 9820 Merelbeke, Belgium
Full list of author information is available at the end of the article

IMA Fungus
Van Poucke et al. IMA Fungus           (2021) 12:16 

https://doi.org/10.1186/s43008-021-00068-w

http://crossmark.crossref.org/dialog/?doi=10.1186/s43008-021-00068-w&domain=pdf
http://orcid.org/0000-0003-1094-3611
http://creativecommons.org/licenses/by/4.0/
mailto:kris.vanpoucke@ilvo.vlaanderen.be


2017b; Yang et al. 2017). Species identification and
phylogenetic classification is typically based on DNA se-
quence information from specific loci (Blair et al. 2008;
Cooke et al. 2000; Kroon et al. 2004; Martin et al. 2014;
Yang et al. 2017), although the discriminative power of
some of these markers within subclades is limited (Yang
and Hong 2018).
Application of these molecular identification tech-

niques combined with an increasing number of surveys
has led to the description of many new Phytophthora

species in the last 25 years (Yang et al. 2017). Together
with the identification of novel species came the rela-
tively recent discovery of several Phytophthora hybrids.
So far, natural hybrids have been found in clade 1 (P.
andina (Goss et al. 2011a), P. ×serendipita, and P. ×pel-
grandis (Man in ‘t Veld et al. 2012)); clade 6 (P. ×stag-
num (Yang et al. 2014) and other hybrids (Burgess 2015;
Jung et al. 2018a; Nagel et al. 2013)); and clade 7 (P.
×alni, P. ×multiformis (Brasier et al. 1999, 2004; Husson
et al. 2015; Ioos et al. 2006), P. ×cambivora and other
hybrids (Jung et al. 2017c)). Also in clade 8 (Bertier et al.
2013; Safaiefarahani et al. 2016), clade 2 and clade 9
(Jung et al. 2017a) several unnamed or informally desig-
nated hybrids have been discovered. Clade 2 species P.

meadii has also been suspected to be a hybrid (Sansome
et al. 1991). In addition, sexual and somatic hybrids have
been created under laboratory conditions, even between
species from different clades (Érsek and Nagy 2008), but
natural interclade hybrids have not been reported
previously.
Hybridization and polyploidization not only play a key

role in the evolution of plants and animals (Mallet 2007;
Soltis 2013; Soltis and Soltis 2009; Van de Peer et al.
2017), but also in the evolution of fungi and oomycetes
(Bertier et al. 2013; Brasier 2001; Callaghan and Guest
2015; Schardl and Craven 2003). In plants and animals,
hybridization may result in increased vigour compared
to parental species (Abbott et al. 2013). In addition,
polyploidy plays a key role in bursts of adaptive speci-
ation (Alix et al. 2017). Moreover, hybridization (Chown
et al. 2015; Ellstrand and Schierenbeck 2000; Schieren-
beck and Ellstrand 2009) and polyploidization (Pandit
et al. 2011; te Beest et al. 2012) are thought to be im-
portant factors that affect invasiveness of species. This
also seems to be true in Phytophthora, where ploidy
levels can change (e.g. several polyploid lineages in P.

infestans; Catal et al. 2010; Yoshida et al. 2013; Li et al.
2017) and where hybrids such as P. ×serendipita and P.

×alni seem to outcompete their parental species (Ioos
et al. 2006; Man in ‘t Veld et al. 2007).
Host specialization can be a barrier that prevents na-

tive Phytophthora species from hybridizing (Giraud et al.
2006). In addition, reproductive barriers prevent sympat-
ric species from crossing. Allopatric species, on the other

hand, are considered to be more prone to hybridization
when they come into contact with each other (Becker-
man et al. 2014; Stukenbrock and McDonald 2008). Hu-
man activity, with plant trade in particular, can bring
allopatric Phytophthora species into contact (Goss et al.
2011b; Jung et al. 2016; Jung et al. 2018b; Liebhold et al.
2012; Redondo et al. 2018a; Santini et al. 2013). These
introduced species will likely have strong effects if they
infect native host plants because they lack a co-
evolutionary history with those hosts. This, in turn, in-
creases the chance of interspecific mating between the
native and the introduced Phytophthora species, which
might present a serious threat to biosecurity (Beckerman
et al. 2014; Callaghan and Guest 2015). Early detection
and characterization of invasive Phytophthora species
and especially of hybrids is therefore essential in the pre-
vention or containment of disease outbreaks (Keriö et al.
2019).
Phytophthora hybrids are usually identified via cy-

tology, isozyme analysis and/or sequencing of one or
multiple loci (see above for examples). Polyploid hybrids
can also be detected via genome size measurement be-
cause such hybrids contain the combined genomes of
their parental species (Bertier et al. 2013; Husson et al.
2015). However, large genome sizes can also be the re-
sult of autopolyploidization, as observed in P. infestans

(Li et al. 2017; Martens and Van de Peer 2010). Unam-
biguous detection of polyploid hybrids thus requires
additional techniques. For example, polyploid hybrids
can be recognized by the presence of more than two
clearly distinct alleles in a set of reference genes. For re-
liable detection, this type of analysis requires PCR ampli-
fication, cloning, and sequencing of multiple loci. This
costly approach limits its use on a large number of sam-
ples. Cost-effective alternatives include reduced-
representation library sequencing methods such as
genotyping-by-sequencing combined with sample index-
ing during library preparation, which allows genome-
wide fingerprinting and multiplexing of libraries (Elshire
et al. 2011; Poland et al. 2012; Zimmer and Wen 2015).
Genome-wide genetic fingerprinting with Next Gener-
ation Sequencing (NGS) techniques has been applied to
numerous plant and animal species (Anderson et al.
2017; Arbizu et al. 2016; Fernández-Mazuecos et al.
2018; Hohenlohe et al. 2013; Hou et al. 2015; Jones et al.
2013; Stetter and Schmid 2017) and recently to Phy-

tophthora betacei (Mideros et al. 2018). The abundance
of such genome sequence data provides unprecedented
genetic resolution that outcompetes the traditional
Sanger sequencing technique for species identification
and hybrid detection in a large number of samples. This
leads to better resolution of phylogenetic relationships
as compared to phylogenies based on one or a few
genes.
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Fig. 1 (See legend on next page.)
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In this study, we identify and characterize hybrids in
the genus Phytophthora based on a combination of
genome-wide genetic fingerprinting and genome size as-
sessment. During evolution, speciation is associated with
accumulating levels of genetic divergence (Fig. 1a). This
divergence is reflected in species- or genotype-specific
GBS fingerprints in extant species, which consist in the
presence (or absence) of loci and in allelic variants at
each locus (Fig. 1a and b). Because a hybrid combines its
progenitor genomes, it will display a composite finger-
print. On the one hand, a hybrid fingerprint comprises
the shared GBS loci of the parental species and their re-
spective unique loci. For this reason, a hybrid typically
contains a higher number of loci compared to its pro-
genitors (Fig. 1c). On the other hand, a hybrid finger-
print comprises the combined allelic diversity for shared
loci. For this reason, a hybrid typically displays a higher
number of alleles per locus compared to its progenitors
(Fig. 1c). Polyploid hybrids are further distinguished by
their higher number of multi-allelic loci combined with
a larger genome size than their progenitors (Fig. 1b).
In the most recent phylogenetic studies on Phy-

tophthora, hybrids have typically been treated as “pure”
species. Consequently, they are depicted as a single ter-
minal branch, positioned close to one of their progenitor
species (Blair et al. 2008; Kroon et al. 2004; Martin et al.
2014; Schardl and Craven 2003; Yang et al. 2017). It is
well conceived that reticulate evolutionary events such
as hybridization are difficult to fit into a tree-like phyl-
ogeny (Kroon et al. 2004) and can cause ambiguous po-
sitioning of hybrids in a phylogenetic tree, especially
when concerning hybrids of distantly related progenitors
(McDade 1992). Hybridization can also lead to artefacts
such as “trickle-down discordance” (Baum 2009). By ex-
cluding hybrids from primary phylogenetic analyses, and
only anchoring them afterwards to the phylogenetic tree,
these issues can be circumvented. In addition, applica-
tion of genome-wide data used for phylogenetic analyses

in several genera can prevent the problems that arise in
phylogenies based on a limited number of loci that lack
sufficient phylogenetic signal (Arbizu et al. 2016; Escu-
dero et al. 2014; Hou et al. 2015; Stetter and Schmid
2017).
The recognition of hybrids plays an important role in

phylogenetics, as well as in pest risk assessment, but
identification of hybrids is currently difficult. Therefore,
the main objective of this study was to develop a new
strategy to reliably identify and characterize known and
novel Phytophthora hybrids. A broad collection of 614
isolates was gathered, representing 132 Phytophthora

and four outgroup species. This collection was com-
prised of reference isolates and potential hybrids that
were selected based on ITS sequencing and morpho-
logical characterization. The entire collection was sub-
jected to GBS and subsequent reference-free data
analysis. This generated several critical genome finger-
print features: the absence/presence of GBS loci, the
total number of loci per isolate, and the number of al-
lelic variants per locus (Fig. 1b). The second objective
was to combine allele count analysis with genome size
measurements for the identification of polyploid hybrids
(Fig. 1b). The third objective was to improve the Phy-

tophthora phylogeny by constructing a genus-wide
phylogenetic tree of exclusively non-hybrid species by
applying both a concatenation- and a coalescent-based
phylogenomics method to the GBS data, followed by an-
choring the hybrids to their progenitors.

MATERIALS AND METHODS
Isolates and DNA collection

Phytophthora isolates were mainly collected using trad-
itional isolation or baiting techniques during surveys in
nurseries, forests, and rivers of European countries in
the framework of the EU BiodivERsA Resipath project
(https://www.biodiversa.org/1052/download). Details of
all isolates are provided in Table S1. In tables and

(See figure on previous page.)
Fig. 1 Concept that was used for the identification of Phytophthora hybrids using genotyping-by-sequencing (GBS) and flow cytometry. a)
simplified representation of the evolution of four species and the consequences it has on one of the GBS loci concerning presence/absence of
the locus and the SNPs it harbours. For the sake of clarity it does not take other biological processes into account that are important in
speciation such as polyploidisation, gene duplication or other genomic rearrangements; b) simplified representation of the effect of speciation
and hybridization on the genome size, the number of GBS loci and the number of alleles of each locus. The diploid non-hybrid species A-D have
a similar number of GBS loci (six in this case). Genetically closely related species are expected to share more loci, while distant species are
expected to present more unique loci. The proportion of shared alleles of loci common to two species will also depend on the phylogenetic
distance between species (illustrated for loci 9–14). The sexual reproduction system (homo- or heterothallic) will also influence the number of
alleles at a given locus. For example, the heterothallic species C will display a larger proportion of biallelic loci than the homothallic species A, B
and D. The barplot is based on real numbers (see Table S4); c) colour-coded matrix that is the result of the pairwise comparison of the GBS loci
as presented in Fig. 1b. The number of loci per species is determined (by adding them up horizontally in Fig. 1b) and is placed in the diagonal of
the matrix. Next, the loci that are shared among each pair of species are scored vertically in Fig. 1b and the resulting number is placed in the
corresponding cell in the lower triangle of the matrix. Finally, the allele similarity is determined for the shared loci and is placed in the upper
triangle of the matrix; d) example of the colour-coded matrix that is the result of the pairwise comparison of the loci of P. cactorum, P.
hedraiandra, P. nicotianae, P. ×serendipita and P. ×pelgrandis. Below the matrix the calculations are shown for P. cactorum, P. hedraiandra, and their
hybrid P. ×serendipita (see also Table 2)
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figures, species names are sometimes abbreviated with a
three letter code (Table 1). Abbreviations followed by “r”
are not included in this table; they concern species that
are genetically related to the species indicated by the
three letter code. Their genetic relationship was

determined based either on the GBS results and phylo-
genomic analyses in this study, or sequencing during
pre-screening, or both. The rDNA ITS sequence of the
isolates was used for preliminary identification and se-
lection (data not shown). Isolates with heterozygous sites

Table 1 Abbreviations of species names used in tables and figures

Abbreviation Species Abbreviation Species Abbreviation Species

ACE Phytophthora acerina HYD P. hydropathica PSY P. psychrophila

ALT P. alticola IDA P. idaei QCT P. quercetorum

AMN P. amnicola ILI P. ilicis QUI P. quininea

AND P. andina INF P. infestans RAM_EU1 P. ramorum EU1

ASP P. asparagi INS P. insolita RAM_EU2 P. ramorum EU2

AUS P. austrocedrae INU P. inundata RAM_NA1 P. ramorum NA1

BIL P. bilorbang IPO P. ipomoeae ROS P. rosacearum

BIS P. bisheria IRA P. iranica RUB P. rubi

BOE P. boehmeriae KEL P. sp. kelmania SIS P. siskiyouensis

BOT P. botryosa KER P. kernoviae SOJ P. sojae

BRA P. brassicae LAC P. lacustris SYR P. syringae

CAC P. cactorum LAT P. lateralis TEN P. tentaculata

CAP P. capsici MEA P. meadii TER P. terminalis

CAS P. castaneae MED P. medicaginis THE P. thermophila

CHL P. chlamydospora MEG P. megasperma TRI P. trifolii

CIN P. cinnamomi MEK P. megakarya TRO P. tropicalis

CIP P. citrophthora MEL P. melonis ULI P. uliginosa

CIT P. citricola MIR P. mirabilis UNI P. uniformis

CLA P. clandestina MOR P. morindae VIG P. vignae

COL P. colocasiae MUV P. multivora WAL P. taxon Walnut

CPT P. captiosa MVC P. multivesiculata ×ALN P. ×alni

CRA P. crassamura NEM P. nemorosa ×ATT P. ×attenuata

CRY P. cryptogea NIC P. nicotianae ×CAM P. ×cambivora

CRY_B P. cryptogea f.sp. begoniae NIE P. niederhauseri ×CIP P. ×citrophthora

DRE P. drechsleri NOV P. sp. novaeguineae ×HEN P. sp. ×Hennops

ERY P. erythroseptica OCC P. occultans ×HET P. ×heterohybrida

EUR P. europaea PAL P. palmivora ×INC P. ×incrassata

FAL P. fallax PAS P. parvispora ×LAC P. ×lacustris

FRA P. fragariae PER4 P. sp. Peru4 ×MUF P. ×multiformis

GAL P. gallica PIF P. pinifolia ×PCR P. ×pseudocryptogea

GEM P. gemini PIN P. pini ×PEL P. ×pelgrandis

GLO P. glovera PIS P. pistaciae ×SER P. ×serendipita

GON P. gonapodyides PLU P. pluvialis ×STA P. ×stagnum

GRE P. gregata PLV P. plurivora HpAVE Halophytophthora avicenniae

HED P. hedraiandra POL P. polonica HpPOL Halophytophthora polymorphica

HEV P. heveae POR P. porri PpCIT Phytopythium citrinum

HIB P. hibernalis PRI P. primulae PpVEX Phytopythium vexans

HUM P. humicola PSR P. pseudosyringae

HUN P. sp. hungarica PST P. pseudotsugae
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in the ITS sequence received special attention as poten-
tial hybrids. Cultures were either immediately used for
flow cytometry (FCM) or DNA extraction after hyphal-
tipping or were stored at 12 °C in sterile water until fur-
ther processing. Additional isolates or DNA were ob-
tained from laboratories participating in the EU Resipath
project (ILVO, PRC, JKI, SLU, DGAL, UMR IAM,
CRAW, ABI; see author affiliations). We also included
DNA from isolates from the Westerdijk Institute (Ut-
recht, The Netherlands; CBS) and Wageningen Plant Re-
search (Wageningen, The Netherlands; PRI). For DNA
extraction, isolates were grown in 20% clarified V8 broth
for one to two weeks, depending on the growth rate of
the isolate. We verified the absence of contaminating or-
ganisms via a shake culture to avoid contaminating se-
quences in the GBS analysis. The mycelium was placed
on a Whatman No1 filter paper (Sigma-Aldrich), rinsed
thoroughly with sterile water and vacuum-dried. Ap-
proximately 100 mg mycelium was placed in a 1.5 ml
microcentrifuge tube, frozen in liquid nitrogen, and
manually crushed using a micropestle. DNA was ex-
tracted using the Nucleospin Plant II kit (Macherey-
Nagel) with extraction buffer PL1, according to the man-
ufacturer’s protocol, except that DNA was eluted in
50 μl elution buffer. Some of the DNA samples from
previous collections had been prepared with alternative
techniques (marked with an asterisk in Table S1, e.g. all
CBS and PRI isolates). Additional analysis revealed that
the DNA extraction methods had no effect on the qual-
ity of the GBS data (see Table S3). DNA concentrations
were measured using a Quantus Fluorometer (Promega)
and DNA was stored at − 20 °C. A total of 661 samples
(including replicates) were used for GBS and/or FCM
analysis (indicated in Table S1).

Flow cytometry

Nuclei were prepared and stained using the CyStain PI
Absolute P kit (Sysmex Partec, Görlitz, Germany) and
flow cytometry was carried out using a Partec PAS III
flow cytometer (Sysmex Partec, Görlitz, Germany). De-
tails of the methods are described in detail in Jung et al.
(2017c), except that in most cases isolates were mea-
sured in three biological replicates, each time in three
technical replicates (nine measurements in total). Each
biological replicate was conducted using a different
preparation of nuclei, starting from a separate subcul-
ture, on a different day. The technical replicates were
separate measurements on the same preparation of nu-
clei, within the same day. The coefficient of variation
(CV) was calculated based on the three biological repli-
cates (n = 3). Sharper peaks and lower CVs between
measurements were obtained when cultures were grown
in 2% V8 broth compared to 5% or higher (data not
shown). Histograms were obtained on a linear scale and

no gating was applied. For some Phytophthora isolates
with a smaller genome we used Arabidopsis thaliana

Col-0 petals (2C = 0.32 pg = 314 megabase pairs (Mbp);
Bennett 2003) as a reference instead of leaves of Rapha-
nus sativus cv. Saxa (2C = 1.11 pg = 1086 Mbp; Doležel
et al. 1992). The genome size was expressed in Mbp/2C
or pg/2C (expression per 2C is regardless of the ploidy
level of the genome). Conversion from pg to Mbp was
made by multiplying the DNA content in pg by 978
Mbp/pg/2C (Doležel and Greilhuber 2010).

Genotyping-by-sequencing

Library preparation and sequencing

GBS libraries were prepared from the isolates listed in
Table S1 according to the method described by Poland
et al. (2012), with some modifications. Approximately
100 ng DNA of each sample was digested for 15 min at
37 °C with 1 μl PstI FastDigest, 1 μl HpaII FastDigest and
2 μl FastDigest buffer (Thermo Fisher Scientific) in a
total volume of 20 μL. The PstI adapter containing the
barcodes (0.02 μM) and the HpaII Y-shaped adapter
(0.3 μM) were ligated to the restriction sites (2 h at
22 °C) using 200 units T4 ligase and T4 DNA ligase buf-
fer (NEB), followed by enzyme inactivation at 65 °C dur-
ing 20 min. The ligate was cleaned up using Sera-Mag
SpeedBeads (Thermo Fisher Scientific) and DNA was
eluted in 30 μl 0.1x TE. In total, 10 μl DNA was used in
a PCR mix containing Taq 2x Master Mix (NEB) and
0.75 μM each of primer IlluminaF_PE and IlluminaR_PE
in a total volume of 50 μL. The fragments were amplified
in a PCR-machine (Applied Biosystems 9800 Fast Ther-
mocycler) using a 30 s denaturation step at 95 °C
followed by 12 cycles of 30 s at 95 °C, 20 s at 65 °C, and
30 s at 68 °C. Subsequently, 25 μl of each sample were
cleaned using Sera-Mag SpeedBeads and eluted in 30 μl
0.1x TE. Library quality was assessed by quantifying the
DNA with a Quantus Fluorometer and by visualizing the
fragment length profile using a QIAxcel Advanced Sys-
tem (Qiagen). The amount of library DNA of each sam-
ple was adjusted based on the genome size of the species
(or a closely related species if the genome size was not
known), in order to sequence a similar number of gen-
ome equivalents and thus a more constant sequencing
depth per locus. Mean locus depths per sample were cal-
culated and visualized as a histogram (Figure S1). In
total, 96 samples with 96 unique barcodes were pooled
for one lane of Illumina HiSeq3000 sequencing. This
number was based on saturation analyses (number of
unique GBS loci identified at increasing total number of
sequence reads mapped per library; see below for de-
tailed analyses) to avoid insufficient read depths. The li-
braries were paired-end sequenced on an Illumina
HiSeq3000 instrument (2 × 150 bp) at the Oklahoma
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Medical Research Foundation Genomics Facility (Okla-
homa City, OK, USA).

GBS data analysis

Data assembly The sequence reads were submitted to a
custom pre-processing pipeline which consisted of: (1)
demultiplexing and sorting of the reads based on the
barcodes using the GBSX software v1.1.5 (Herten et al.
2015); (2) trimming of the adapters, removal of the re-
mainder of the restriction sites at the 5′- and 3′-ends
and discarding reads smaller than 10 bp using cutadapt
v1.16 (Martin 2011) and FastX toolkit v0.0.14 (https://
hannonlab.cshl.edu/fastx_toolkit/index.html); (3) mer-
ging of the forward and reverse reads that had a mini-
mum overlap of 10 bp using PEAR v0.9.8 (Zhang et al.
2014); and (4) several filtering steps using FastX toolkit,
prinseq-lite (Schmieder and Edwards 2011), OBITOOLS
v1.2.5 (Boyer et al. 2016) and pairfq 0.14 (https://github.
com/sestaton/Pairfq). In this last step reads with a mean
phred quality score of less than 25, reads that were
shorter than 30 bp or those that contained any Ns were
discarded. Additionally, singletons, non-merged paired
reads and merged reads that still contained a PstI or
HpaII restriction site were discarded using the “obigrep”
function of OBITOOLS. The trimming and quality filter-
ing script were parallelized using “GNU parallel” (Tange
2018).

Loci identification We performed GBS on hundreds of
Phytophthora isolates but the reads were not mapped to
a particular reference genome sequence, nor were refer-
ence genome sequences used for SNP discovery. There
were two reasons for this: (1) reference genomes were
available for only 21 Phytophthora species at the time of
the analysis; and (2) analysis of the species themselves
was not in the scope of this study. Instead, we used a
reference-free approach as implemented in GibPSs
(Hapke and Thiele 2016) to construct a tag collection
covering all possible genome complements in the dataset
including genome sequences not covered by the 21 se-
quenced genomes. All merged reads were consecutively
analysed with indloc, poploc, and indpoploc to identify
loci and additionally to correct errors by indloc. This
was done using the programs’ default settings, except for
the frequency threshold method in indloc where we used
a character frequency threshold of 0.1 (instead of 0.2).
These settings were chosen after testing different param-
eter combinations and checking reproducibility of bio-
logical and technical replicates (see below for detailed
analyses). Loci with a length of 32 to 250 bp were se-
lected with data selector. Indelchecker was used to iden-
tify loci that contained indels and these loci were
removed from the dataset. Depth analyzer was used to

assess the read depth of the loci and loci that were se-
quenced extremely deeply were subsequently discarded,
as these could belong to repeats, transposons, mitochon-
dria, etc. This was done by removing loci with a median
depth percentage of less than 1% and a median scaled
depth of more than 0.1. Finally, split loci were removed
from the dataset. Isolates with a deviating curve in the
depth analysis graph were potentially contaminated with
non-Phytophthora loci and were thus omitted from the
analysis. Additionally, all remaining loci in the dataset
were used in a local BLAST search against a custom
database composed of a representative set of prokaryotes
(“ref_prok_rep_genomes” from ftp://ftp.ncbi.nlm.nih.
gov/blast/db), refseq genomes of fungi (“fungi_XX_gen-
omic” from ftp://ftp.ncbi.nlm.nih.gov/refseq/release/
fungi), the human genome (build 38) and all available
whole-genome shotgun sequence data of the genus Phy-
tophthora in the NCBI WGS database. Isolates for which
more than 250 GBS tags had significant BLASTn hits
(E < 1e-4) with non-Phytophthora sequences were re-
moved from the dataset and the GibPSs pipeline was
restarted, as loci derived from contaminations could lead
to inflated numbers of GBS loci for that isolate.

Determination of shared loci and allele similarity

The GibPSs output table containing the identified geno-
types (genotypes.txt) was exported and used as input for
a custom-made Python script that performs a pairwise
comparison of all isolates and determines: (1) how many
loci an isolate contains; (2) how many loci are shared for
each pair; and (3) the allele similarity of these shared loci
based on the haplotype data, i.e. the percentage of the
loci that have at least one identical allele in common
(see Fig. 1c). For each pair of isolates the Dice similarity
coefficient (Dice 1945) was calculated using the number
of loci of each isolate and the number of loci they share.
This coefficient was subsequently multiplied with the al-
lele similarity, resulting in a combined similarity index
(CSI), expressed as a value between 0% (no alleles
shared) and 100% (all loci shared and allele similarity of
100%). This index was used for species delimitation of
non-hybrid isolates. Saturation curves were constructed
showing the dependency of “estimated genetic similarity
scores” (shared loci and % allele similarity) versus “total
number of reads per sample” (Figure S2). The curves
were calculated based on a subset of the reads (compu-
tationally subsampled as a random set of all reads per
sample at 0.25, 0.5, 0.75, 1, 1.5, 2, 3, and 3.5 M) com-
pared to all available data per sample as reference for a
selected number of isolates. This was done either within
a single sample (Figure S2a-b; i.e. comparing subsampled
datasets to all available reads of that sample), or between
samples (Figure S2c-f; i.e. comparing subsampled data-
sets of the first sample against all available reads from
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the second sample. The number of shared alleles, num-
ber of unique alleles and allele similarity was also calcu-
lated for biological and technical replicates in order to
evaluate the reproducibility of the technique (Table S3).

Allele count analysis The GibPSs output table contain-
ing the identified genotypes (genotypes.txt) was read into
Rstudio v1.0.153 running R v3.4.3 and stored as a data
table, a high performance version of a data frame, using
the data.table package v1.11.2 (Dowle and Srinivasan
2018). For each isolate the number of loci with one, two,
three and four alleles was calculated. These data were vi-
sualized as a stacked bar chart using ggplot2 v2.2.1
(Wickham 2016).

Hierarchical clustering and Phylogenomic analyses

GBS resulted in two types of data. Absence/presence of
GBS loci was used in hierarchical clustering while SNP
data was used for phylogenomic analyses. Hybrids and
suspected hybrids were removed from the GBS dataset
and only the data of representative genotypes (max.
three per species) from the non-hybrid species (and spe-
cies that are suspected to be non-hybrids) were retained.
For the hierarchical clustering, the locus data from a

selection of non-hybrid isolates (144 isolates; not more
than three genotypes per species) was read into Rstudio
and converted to binary data (presence = 1, absence = 0).
Subsequently a dendrogram was inferred using the
supraHex package v1.26.0 (Fang and Gough 2014) with
the Euclidean distance, Minimum Evolution algorithm
with ordinary least-squares fitting (“fastme.ols”) and 500
bootstrap replications.
For the phylogenomic analysis we applied two phylo-

genetic methods on the GBS data: (1) a method based
on the concatenated SNPs as identified by GibPSs; and
(2) a coalescent-based method (ASTRAL-III). For both
methods, a dataset was made that consisted of one geno-
type per non-hybrid species (97 isolates). This reduced
dataset was used to select the loci that were present in
at least 80% or 30% of these isolates (referred to below
as loci80 and loci30, respectively) using a custom R
script. This corresponded to 29 and 1610 loci, respect-
ively. Phylogenetic analyses were subsequently applied
on the selection of non-hybrid isolates (144 samples, see
hierarchical clustering). For the concatenation-based
method, all loci were concatenated and aligned into a
single fasta file using a custom Perl script. Next, the fasta
file was converted to a phylip file using jModeltest2
v2.1.10 (Darriba et al. 2012) and all invariant SNPs were
removed from the alignment using the “ascbias.py” script
from https://github.com/btmartin721/raxml_ascbias.
This resulted in 1062 and 61,111 variant SNPs for loci80
and loci30, respectively. Phylogeny was assessed using
maximum likelihood with the program RAxML v8.2.10

(Stamatakis 2014), using the GTRCAT model without
rate heterogeneity with a correction for ascertainment
bias. No invariant SNPs appeared in the dataset, thus the
Lewis correction was used. Statistical support was calcu-
lated by applying 500 bootstrap runs.
For the coalescent-based method, the sequence of each

locus was aligned using a custom Perl script resulting in
per locus alignment files. The fasta files were converted
into phylip files and invariant SNPs were removed as de-
scribed above. A tree was inferred for each locus using
RAxML, with the same settings as with the
concatenation-based method but without bootstrapping.
We then applied ASTRAL-III v5.6.2 (Zhang et al. 2018)
to the resulting maximum likelihood trees. Local poster-
ior probabilities (Sayyari and Mirarab 2016) were used
for assessing the branch support. All trees were visual-
ized using FigTree v1.4.4 (Rambaut 2018).

RESULTS
Flow cytometry

Flow cytometry analyses (Table S2) revealed highly vari-
able genome sizes among the Phytophthora isolates, ran-
ging from 112 ± 11 Mbp/2C to 844 ± 32 Mbp/2C, with a
median of 187 Mbp/2C. Approximately 63% of the spe-
cies had a genome size between 120 and 200 Mbp/2c.
The average CV across all samples was 3.1%.
The hybrids P. ×serendipita (a hybrid of the diploid

species P. cactorum and P. hedraiandra) and most iso-
lates of P. ×pelgrandis (a hybrid of P. cactorum and P.

nicotianae) had a genome size of 182 ± 5 Mbp/2C and
184 ± 4 Mbp/2C, respectively. This was similar to the
genome size of the parental species P. cactorum (182 ± 5
Mbp/2C), P. hedraiandra (188 ± 2 Mbp/2C) and P. nico-

tianae (184 ± 6 Mbp/2C). P. ×pelgrandis isolate 15/007
had an exceptionally small genome size (119 Mbp/2C),
which is smaller than the genome sizes found in both
parents.
A very large genome size (> 300 Mbp/2C) was re-

corded for all clade 7 species, with the exception of P.
fragariae¸ P. europaea, and P. parvispora. For P. ×alni,
P. ×multiformis and P. ×incrassata this even exceeded
500 Mbp/2C. Given the average genome size of the dip-
loid P. uniformis (330 Mbp/2C) and tetraploid P. ×multi-

formis (653 Mbp/2C), the monoploid genome size is
expected to be 165 and 163 Mbp/1C, respectively. All P.
×alni isolates, except isolate AC03, had a genome size
that corresponds to a triploid state, confirming the find-
ings of Husson et al. (2015), while the genome size of P.
×alni isolate AC03 (844 Mbp/2C) suggests a pentaploid
(or a degenerate hybrid with a higher ploidy level). How-
ever, chromosome counts are needed to decisively deter-
mine the ploidy level of this isolate. We also recorded a
large genome size (> 300 Mbp/2C) for several other spe-
cies (e.g. P. cinnamomi, P. niederhauseri). The smallest
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genome sizes (between 110 and 140 Mbp/2C) were
mostly recorded for species from clade 2 and clade 9,
but also P. heveae (clade 5), P. taxon Walnut (clade 6a),
P. ramorum (clade 8c), and P. kernoviae (clade 10), have
a genome size in this range.

Genotyping-by-sequencing and species identification

On average we obtained 3.8M read pairs per isolate,
ranging from 726,474 for P. quercetorum isolate TJ025
to 12,890,320 for P. ×alni isolate AC03. Overall, we
could identify 1,762,508 loci that harbour 4,857,367
SNPs in a total of 661 samples (incl. replicates) that rep-
resent 132 hybrid and non-hybrid Phytophthora, two
Halophytophthora, and two Phytopythium taxa. The
average read depth per locus per isolate was 71, with
96.6% of the loci having an average read depth of at least
15 and 91.2% of at least 20 (Figure S1). To obtain accur-
ate genotype calling, a minimum of 8 reads per locus,
and 20 reads per locus yield a 99% chance to detect all
alleles at least once in diploids and tetraploids, respect-
ively (Griffin et al. 2011; Joly et al. 2006). The average
locus length was 126.6 bp and the median 120.0 bp
(range 32–250 bp). Taken together, this means that
about 1 in 43 nucleotides carry a polymorphism across
the complete dataset spanning 661 isolates belonging to
> 100 different species. There were no loci common to
all isolates, underlining the high genome diversity within
the genus and the need for reference-free data analysis.
Saturation curves in a selection of representative isolates
were used to investigate the relationship between total
read depth and accuracy of our genetic similarity scores
(the number of shared loci and the allele similarity). We
analysed the data within samples (Figure S2a-b) and be-
tween samples of diploid (Figure S2c-d) and polyploid
(Figure S2e-f) hybrids. For diploid non-hybrid species
(e.g. P. cactorum, P. hedraiandra) 1M reads per sample
were sufficient, while for diploid hybrids (e.g. P. ×seren-
dipita, P. × pelgrandis) about 2M reads were sufficient
to reach a plateau and a higher total number of reads
did not further increase the number of loci detected per
sample (Figure S2a and S2c). For polyploid hybrids with
a more complex genome such as P. ×heterohybrida and
P. ×incrassata 3M to 4M reads were necessary to reach
complete saturation (Figure S2a and S2e). In all cases, al-
lele similarity stabilizes with at least 1.5M reads per
sample (Figure S2b, d, f). Replicate samples were ana-
lysed to assess the reproducibility of GBS. In some cases,
we detected a number of alleles that were not shared be-
tween replicates, but the allele similarity between repli-
cates was always higher than 99.89%, therefore we
preferred to use this measure to compare alleles between
samples (Table S3). The cumulative sequence length of
all GBS loci per species was calculated for P. cactorum,
P. ×alni, and P. kernoviae and corresponds to 4.8%,

4.6%, and 5.2%, of the total genome size in these species,
respectively.
Speciation is associated with accumulated genetic di-

versity (Fig. 1a), which results in species-specific GBS
fingerprints (Fig. 1b). The fingerprints are compared be-
tween all samples to identify shared loci and to assess
the allele similarity (i.e. the percentage of the shared loci
with at least one identical allele). This comparison is dis-
played in a colour-coded matrix (Fig. 1c, Fig. 2, Table
S4) and shows the number of loci per isolate on the di-
agonal (cfr. Figure 1c). This number of loci per isolate
varied strongly and ranged from 10,923 loci for P. occul-
tans isolate 13/037 to 54,693 loci for P. ×incrassata iso-
late TJ061, with an average of 22,958 loci (median = 21,
707; SD = 8270; n = 661). Table S4 also shows the allele
similarity. Many loci were shared between closely related
species and the allele similarity of these loci was high
(cfr. Figure 1b and c). For more distantly related species
the number of shared loci and the allele similarity dra-
matically dropped. For instance, the two closely related
subclade 1a species P. cactorum and P. hedraiandra con-
tained on average 15,565 and 15,914 loci, respectively, of
which 11,858 loci (76.2% of the P. cactorum and 74.5%
of the P. hedraiandra loci) were shared between the two
species. These shared loci displayed an allele similarity
of 42.5%. Subclade 1b species P. tentaculata contained
on average 21,829 loci of which 1559 loci (7.1%) were
shared with P. cactorum and displayed an allele similar-
ity of 0.5%. Clade 2a species P. botryosa contained 12,
136 loci and had only 462 shared loci (3.8%) with P. cac-

torum (allele similarity of 0.2%). This is reflected in CSI
values that decreased from 32.0% for P. cactorum and P.

hedraiandra (both clade 1a) to 0.05% for P. cactorum

and P. tentaculata (clade 1b) and 0.01% for P. cactorum
and P. botryosa (clade 2a) (Table S5). Within most spe-
cies, the CSI between different genotypes was higher
than 80%. The non-hybrid species P. meadii, P. capsici,
P. multivora, P. pseudosyringae, P. palmivora, P. gonapo-
dyides, P. lacustris, P. bilorbang, P. ramorum, and P. syr-

ingae, contained diverse genotypes with CSI values down
to 54.3% (between P. bilorbang isolates TJ166 and
TJ167). The highest CSI between isolates of distinct spe-
cies was 54.4%, noted between P. acerina isolate 14/013
and P. plurivora isolate SS06. Based on these observa-
tions we consider isolates with a CSI > 55% as conspe-
cific, while values between 50 and 55% suggest diverging
or recently diverged species.
Global analysis of the number of shared loci, the allele

similarity and/or the CSI across all isolates revealed that
out of the 614 Phytophthora isolates, 73 isolates repre-
senting 40 species had been incorrectly identified prior
to this study. In these cases, species identity was cor-
rected. Some of these corrections involve putative novel
species, e.g. P. hedraiandra-related1, P. hedraiandra-
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related2 and P. citrophthora-related. Initial and corrected
species names are listed in Table S1.

Identification and characterization of hybrids

Due to the vast diversity among the species and hybrids
in the genus Phytophthora and the relatively small num-
ber of shared loci between species that are distantly re-
lated, traditional methods for hybrid detection proved to
be challenging. Initial attempts using likelihood-based
ancestry proportion estimation methods (e.g. Admixture;
Alexander and Lange 2011) and phylogenetic network
methods (e.g. Phylonet; Than et al. 2008) either gave in-
consistent or extremely complex results, or were simply
not able to capture all introgression events between the
individuals, even when testing different population sizes
(K) and/or limiting the number of individuals in the ana-
lysis (data not shown). Therefore, we developed a novel
strategy to easily detect hybrids.
This strategy is illustrated in Fig. 1 and comprised a

combination of three distinct features typical for hybrid

species. First, a hybrid shares GBS loci with more than
one species and the loci shared with the progenitors
have a high allele similarity (in general more than 70%).
This was visualized as a tripartite relationship between
hybrid and progenitors in the pairwise comparison of
the loci in all samples (Fig. 1c, Fig. 2, Table S4).
Second, a hybrid always has a larger number of loci

compared to the number of loci of its progenitors as it
contains the two parental genomes. The level of this in-
crease is directly proportional to the genetic divergence
of the parental species because the number of loci of a
hybrid is the sum of the shared loci of the parental spe-
cies plus the unique loci of each parent (see Fig. 1d).
Highly divergent progenitors (e.g. species B and C in Fig.
1b) share only a limited number of loci and thus have a
larger number of unique loci compared to progenitors
that are closely related (e.g. species A and B in Fig. 1b),
causing a substantial increase in the number of loci in
the hybrid. This feature allowed us to identify hybrids in
cases where only one or no progenitor was present in

Fig. 2 Pairwise comparison of GBS loci of a selection of isolates from Phytophthora clades 1, 6 and 7. Isolate codes in bold are ex-type strains or
authentic strains (see Supplementary Table 1 for details). Isolate codes marked in grey have been identified as hybrids, either previously or in this
study. Numbers in the diagonal (with border) indicate the number of loci of each isolate. Numbers under the diagonal represent the number of
loci shared among each pair of isolates (expressed as thousands). The colour code in this part of the table denotes the number of shared loci
and has a range from green (highest number = 47,273 loci for P. ×alni isolate AC03), to yellow (5000 shared loci) and to red (lowest number = 357
loci shared between P. humicola isolate CBS200.81 and P. ipomoeae isolate CBS109229). Numbers above the diagonal represent the allele
similarity (percentage of the shared loci in which at least one allele is identical) of the shared loci (expressed as a percentage). The colour code in
this part of the table ranges from green (100%), to yellow (50%) and red (0%). Table S4 contains these data for all isolates in this study
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our set of reference isolates, combined with the third
feature if necessary.
The third feature consisted of a combination of a large

number of multi-allelic loci (empirically estimated
threshold at more than 5% of the loci; see Figure S3a-g)
and a large genome size (> 250 Mbp/2C; see Fig. 3). This
feature was mainly used for the identification of poly-
ploid hybrids. Loci shared between the parental species
may contain SNPs up to a level where they will be classi-
fied as two or more alleles (if the level of SNPs becomes
too high the two alleles will be classified as two separate
loci in the reference-free loci identification method im-
plemented in GibPSs). The allele counts are visualized in
a barplot diagram (Fig. 1b, Fig. S3). These hybrids also
have a large genome size due to the genome doubling
that usually occurs after hybridization between two
highly divergent species. However, a large genome size
alone does not suffice to discern between diploid and
polyploid hybrids as enlarged chromosomes can also
generate large genome sizes. Thus, this characteristic
should always be evaluated together with the proportion
of multi-allelic loci in the barplot.
In clade 1a we identified four hybrid species of which

two were previously known, i.e. P. ×serendipita (P. cac-
torum × P. hedraiandra) and P. ×pelgrandis (P. cac-

torum × P. nicotianae). The other two hybrid species are
the result of hybridization of a species we designated as
P. hedraiandra-related1 (based on their position in the
phylogenetic tree; see below) with either P. cactorum or
P. hedraiandra. The observed number of loci in the
clade 1a hybrids corresponded well to the expected

number as calculated based on the unique and shared
loci of the respective parental species (Table 2, e.g. P.
×serendipita in Fig. 1d). Also P. andina, a known hybrid
from clade 1c with P. infestans as one of its parental spe-
cies, shared a large number of loci with P. infestans and
as expected had more loci (average 23,808) than P. infes-

tans (average 19,287).
In some cases, not only the hybrids but also their par-

ental genotypes could be identified based on the allele
similarity between the hybrid and its progenitors. For in-
stance, all P. ×serendipita and nearly all P. ×pelgrandis
isolates have a P. cactorum genotype that is either identi-
cal or very closely related to that of isolates SW08 and
07/008. The parental P. hedraiandra genotype of the P.

×serendipita hybrids is closely related to that of ex-type
isolate 06/018 (= CBS111725). In contrast, the parental
P. nicotianae genotype of the P. ×pelgrandis isolates is
not present in our set of isolates.
In clade 2, isolate CBS111726, originally identified as

P. citrophthora, appeared to be a novel hybrid of P.

occultans and a species closely related to P. citrophthora,
as it shared nearly all P. occultans loci (with 98.8% allele
similarity with most P. occultans isolates) and 10,705 of
the 13,544 P. citrophthora loci (with 77.9% allele similar-
ity). Based on the ITS and coxI sequencing Phytophthora

clade 2 isolates TJ100, TJ101, TJ103 and TJ104 were
previously designated as hybrids (Jung et al. 2017a). We
therefore conclude that TJ093, TJ102 and TJ184 are also
hybrids. The parental species of isolates TJ093, TJ100,
TJ101, TJ102, and TJ103 are not in our dataset. One of
the parental species of isolates TJ104 and TJ184 is

Fig. 3 Average number of loci and genome size of Phytophthora species. The colour refers to the clade of the species while the shape refers to
the hybrid status of the species. Isolates that deviate significantly from other isolates of their species in terms of average number of loci and/or
genome size are shown separately, together with their isolate code. The second P. gonapodyides point (marked with an asterisk) refers to isolates
05/025, 06/001, 07/004 and 07/007. For isolates with multiple nuclear genome sizes we used the one corresponding to the predominant flow
cytometry fluorescence peak (for additional peaks, see Table S2)
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Table 2 Comparison of expected and observed numbers of GBS loci of selected hybrid Phytophthora species in clades 1, 6 and 7

Clade Parental species Number of parental loci Hybrid species Number of hybrid loci

Observed Uniquea Shared Expectedb Observed Shared with parental species

1a P. cactorum 15,565 3707 11,858 P. ×serendipita 19,621 19,181 15,231

P. hedraiandra 15,914 4056 15,444

1a P. cactorum 15,565 3827 11,738 P. cactorum ×
P. hedraiandra-related1

19,243 18,325 14,812

P. hedraiandra-related1 15,416 3678 14,639

1a P. hedraiandra 15,914 3055 12,859 P. hedraiandra ×
P. hedraiandra-related1

18,471 18,081 15,363

P. hedraiandra-related1 15,416 2557 14,961

1a P. cactorum 15,565 14,000 1565 P. ×pelgrandis 28,992 27,550 14,706

1 P. nicotianae 14,992 13,427 13,194

6b P. thermophila 21,405 13,904 7501 P. thermophila ×
P. amnicola

36,190 32,562 19,368

P. amnicola 22,286 14,785 19,083

6b P. amnicola 22,286 14,828 7458 P. amnicola ×
P. chlamydospora

35,077 32,010 17,966

P. chlamydospora 20,249 12,791 19,378

6b P. chlamydospora 20,249 15,356 4893 P. chlamydospora ×
P. lacustris

38,305 31,337 17,760

P. lacustris 22,949 18,056 16,028

7a P. uniformis 22,757 10,059 12,698 P. ×alni 46,703 45,128 21,957

P. ×multiformis 36,644 23,946 34,259

7b P. niederhauseric 15770c 14,183 1587 P. niederhauseri ×
P. asparagi-related

42,486 42,192 15,770

6 P. asparagid 28,303 26,716 24,851
aNumber of unique loci calculated as the average number of loci for the species minus the average number of loci shared with the other parental species
bExpected loci in the hybrid calculated as the sum of the number of unique loci for each parental species and the number of loci shared between the

parental species
cBecause P. niederhauseri is a hybrid itself, the theoretical number of loci for non-hybrid P. niederhauseri was estimated based on the number of shared loci of the

P. niederhauseri × P. asparagi-related hybrid and the hybrid P. niederhauseri isolates that have an allele similarity = 93%
dP. asparagi-related is not present in our set of isolates so P. asparagi was used instead, assuming it has a similar number of loci

Fig. 4 Number of GBS loci with one to four alleles in representative Phytophthora isolates of clades 1, 6 and 7. The data for isolates of all clades
are presented in Figure S3a-g
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closely related to P. citrophthora (10,223 and 10,395 loci
in common with an allele similarity of 69.8 and 79.0%,
respectively). TJ104 also has 13,254 loci in common
(with 95.4% allele similarity) with isolates TJ100, TJ101,
TJ102 and TJ103, indicating that all of these isolates
share one as yet unknown parental species.
In clade 6b, isolates TJ114, TJ115, TJ116, TJ117,

TJ121, TJ122, TJ124 and TJ125 are hybrids of P. amni-

cola and P. thermophila (or a species closely related to
P. thermophila). The P. thermophila parent of isolate
TJ124 is genetically almost identical to P. thermophila

isolates TJ127 and TJ165 (99.0% allele similarity). Based
on their large number of loci, all isolates of P. chlamy-

dospora were identified as hybrids, except for isolate 12/
040. For P. gonapodyides we found two groups. One
group had an average of 24,855 loci and an average gen-
ome size of 172 Mbp/2C. The second group contained
27,119 loci on average and had an average genome size
of 271 Mbp/2C. This second group also had a large
number of triallelic loci (≥ 5%; Fig. 4) indicating they are
likely polyploid hybrids. For P. lacustris we found one
isolate (MR44) with a very large number of loci (31,448
loci) which is probably the result of hybridization with
an unknown species. The expected number of loci of the
hybrids P. thermophila × P. amnicola, P. amnicola × P.

chlamydospora, and P. chlamydospora × P. lacustris

were higher than those observed (Table 2). Especially for
P. chlamydospora × P. lacustris the difference was con-
siderable, primarily due to the relatively limited presence
of P. lacustris loci in the hybrids (only 16,028 loci out of
the 22,949 loci). The high diversity of P. lacustris could
be the reason for this discrepancy.
In clade 7a, P. ×alni has the expected combination

of the loci of progenitors P. uniformis and P. ×multi-

formis (Table 2). The loci that are shared between
the P. ×alni isolates and the isolates of P. uniformis

have an average allele similarity of 97.2%, except for
P. ×alni isolate AC03, which has an allele similarity
of only 90.5%. Genome sizes of P. ×alni (± 505–565
Mbp/2C) are intermediate to P. uniformis (± 348
Mbp/2C) and P. ×multiformis (± 653 Mbp/2C), ex-
cept for P. ×alni isolate AC03 which has a much lar-
ger genome size of 844 Mbp/2C. The parental
species of P. ×multiformis and the other known hy-
brids in clade 7a, P. ×cambivora, P. ×cambivora-re-
lated, P. ×heterohybrida, and P. ×incrassata, have
not been described previously and were also not de-
tected in our set of isolates. Phytophthora ×cambi-

vora, P. ×cambivora-related and four isolates related
to P. ×heterohybrida (TJ106-TJ109) had a large num-
ber of triallelic loci, while P. ×incrassata had a rela-
tively large number of loci with four alleles,
indicating that all these species are polyploid
hybrids.

In clade 7b, the P. niederhauseri isolates contained a
large number of loci, indicating the hybrid nature of this
species. Two genotypes could be discerned based on
their number of loci (27,935 vs 30,688) and their allele
similarity (83.9%). Interestingly, isolate PRI0413, origin-
ally designated as P. asparagi, contained 42,180 loci. Of
those loci, 15,826 loci are shared with P. niederhauseri

genotype 1, 14,720 loci with P. niederhauseri genotype 2,
and 24,812 loci with P. asparagi (from clade 6). These
data indicate that this isolate is a hybrid between species
from clades 6 and 7, and is thus the first reported nat-
ural interclade hybrid. The allele similarity was 93.3%
with the P. niederhauseri isolates of genotype 1 and
82.0% with those of genotype 2. The allele similarity with
the three P. asparagi isolates in our collection was only
53.6%, suggesting the second parent could be a species
closely related to P. asparagi rather than P. asparagi

itself.
In clade 8a, the P. ×pseudocryptogea hybrids, identi-

fied based on ITS and coxI sequencing (data not
shown), have only 17,409 loci. Due to the absence of
the parental species in our set of isolates we could
not directly confirm their hybrid status. Among the P.

cryptogea isolates we found two clearly distinct
groups. The first group consists of non-hybrids, rep-
resented by isolates 05/059, CBS418.71, SW35 (origin-
ally misidentified as P. drechsleri), P. cryptogea ex-
type strain CBS113.19 and the P. erythroseptica ex-
type strain CBS129.23, which possess on average 17,
182 loci. The second group contains hybrid species
with an average of 23,647 loci. Their parental P. cryp-
togea genotype is in most cases closely related to the
genotype of CBS417.71.
In clade 8b, P. porri isolate CBS138.87 possesses 17,

655 loci, which is notably more than the average of
the other P. porri isolates and P. primulae. This iso-
late shares on average 8925 loci with P. porri and 10,
199 loci with P. primulae. The number of loci (18,
231) approximates the sum of the unique P. porri and
P. primulae loci (6312 and 7017 loci, respectively)
and their shared loci (4902 loci). However, the allele
similarity is only 62.3% with P. porri and 71.1% with
P. primulae. Hence, isolate CBS138.87 appears to be
a hybrid between P. porri and P. primulae, or at least
of very closely related species.
In clade 8d the P. austrocedrae isolate included in the

analysis contained a relatively large number of loci and
large numbers of bi- and triallelic loci (Figure S3f) com-
pared to the other clade 8d species P. syringae. This sug-
gests this P. austrocedrae isolate could also be a hybrid.
In clade 9a1 both P. sp. Peru4-related and P. ×Hen-

nops-related were found to be hybrids, based on their
large number of loci (on average 39,418 loci) of which
22,709 are shared between the two taxa. These loci are
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also shared with P. hydropathica (22,873 and 22,233 loci
shared with P. ×Peru4-related and P. ×Hennops-related,
respectively), indicating that this species is one of the
progenitors of these two hybrids. The allele similarity of
the shared loci (88%) points to a P. hydropathica geno-
type not present in our set of isolates.

Discerning diploid and polyploid hybrids

Figure 2 shows the relationship between the number of
GBS loci and the genome size as determined by FCM.
Polyploid hybrids such as P. ×alni are located in the
upper right corner of the graph, as they combine a large
number of loci with a large genome size. Also, these hy-
brids have a large number of triallelic loci (Fig. 4 and
Figure S3a-g).
Diploid hybrids such as P. ×serendipita and P. ×pel-

grandis are located in the vicinity of their parents in the
left part of Fig. 2, as their genomes have a similar size.
Their vertical position in the graph depends on the gen-
etic divergence between the parental species.
Not only the previously described polyploid hybrids P.

×alni, P. ×multiformis, P. ×cambivora, P. ×heterohy-
brida, and P. ×incrassata combine a large number of loci
with a large genome size, but also species from several
other (sub)clades: P. inundata (clade 6a), P. megasperma

and some isolates of P. gonapodyides (clade 6b), P. nie-
derhauseri, P. niederhauseri-related (clade 7b), and P.

cinnamomi and P. parvispora (clade 7c) (Fig. 3). Most of
these species possess a relatively large number of trialle-
lic loci, suggesting allopolyploidy. Autopolyploid species
such as P. infestans have a large genome size but the
number of loci does not increase proportionally. Phy-
tophthora uniformis, P. fragariae and P. tentaculata also
have a limited number of loci and hardly any triallelic
loci (Fig. 4) but a relatively large genome size. These
species are positioned in the lower half of the graph (Fig.
3). This could indicate that their genome was at least
partially duplicated.

Phylogenomic analysis

Hierarchical clustering

The dendrogram resulting from the minimum evolution
analysis of the binary (absence/presence) locus data (Fig-
ure S4) showed excellent correspondence with the clades
and subclades that were defined in previously published
studies (Blair et al. 2008; Cooke et al. 2000; Jung et al.
2017b; Yang et al. 2017). There were two exceptions,
however. First, subclade 8b was separated from the other
clade 8 subclades and clusters together with clade 10
species P. boehmeriae, P. kernoviae, and P. morindae. In
turn, these species are separated from the other clade 10
species, P. gallica.

Concatenation- and coalescent-based phylogeny

Inferring the phylogenomic tree of 144 selected isolates
using the concatenated SNPs from loci30 resulted in a
high bootstrap support (> 70) for most branches (Figure
S5a). Without exception, the clades and subclades corre-
sponded with those previously published (Blair et al.
2008; Cooke et al. 2000; Jung et al. 2017b; Yang et al.
2017).
The topology of the loci30 tree fitted the data of the

shared loci and allele similarity better than the loci80
tree. The latter one displayed a low bootstrap value for
many branches, both between and within clades (Figure
S5b). Additionally, in the loci80 tree clades 9 and 10
were not resolved, P. asparagi did not cluster within
clade 6 but was positioned between clades 6 and 8, and
clade 8b was placed next to clades 4 and 5.
Similar results were obtained with coalescent-based

phylogeny using ASTRAL-III: overall there was stronger
statistical support in the tree based on loci30 both
within and between clades (Figure S5c). In the ASTRAL
tree of loci80, subclades 2d, 2e, 8b, 9a1 and 9a2 had
been erroneously separated from their main clade (Fig-
ure S5d).
The concatenation-based phylogenomic tree of loci30

was used to anchor the hybrids to their progenitors
(Fig. 5, Figure S6). When the progenitors were not
known, the hybrids were anchored to the branch where
their progenitors reside in.

DISCUSSION
Our objectives were to apply genome-wide fingerprint-
ing (i.e. GBS), supplemented with FCM, to better iden-
tify and characterize Phytophthora hybrids and to use
this information to construct an improved phylogeny of
the genus. We present a method that is highly reprodu-
cible, and that can be applied to a wide range of other
organisms. One critical point is the availability of non-
contaminated DNA. It is essential to review the data for
the presence of sequence reads from non-target organ-
isms, even when no visible contamination of the cultures
is present. Contaminating sequences inflate the number
of loci from the target organism, which may erroneously
suggest hybrid status, and can hamper correct phylogen-
etic inference. Performing a BLAST search with the
identified Phytophthora loci to a custom made database
containing sequences of possible fungal and bacterial
contaminants was an important step to prevent this
artefact.

Power of GBS for species identification

Genome sequence data from tens of thousands of GBS
loci allowed unprecedented high resolution genomic fin-
gerprinting, and were used for sample identification at
species level and beyond. It can help to elucidate species
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complexes in which morphological analysis and even se-
quence data from barcoding genes provide insufficient
information. Here, we introduce a novel similarity index
(combined similarity index, CSI) which combines two
types of similarity measures, i.e. the number of shared
GBS loci between isolates and the SNP-based allele simi-
larity of these loci. This similarity index expresses the

genomic divergence between two non-hybrid isolates
and was used as an objective measure for species delimi-
tation. Based on our empirical calibration, which was
based on sets of species with known related and unre-
lated identity, we show that CSI values higher than 55%
consistently indicate identical species, while CSI values
lower than 50% consistently indicate distinct species. In

Fig. 5 Phylogenomic trees of Phytophthora clades 1, 6 and 7 (subtrees excerpted from Figure S6, which contains all species used for the
phylogenomic analyses). Hybrids are indicated in bold, positioned separately and linked to their parental species. If a parental species is unknown,
the accolade points to the longest branch of the subclade to which the parental species belongs. If the genotype of (one of) the parental species
is unknown, accolades are placed at the branch in which the parental species reside. The P. gonapodyides hybrids indicated with an asterisk refer
to isolates 05/003, 05/020, 05/025, 06/002, 07/004, 07/007, 08/001, CBS114340, MR30, MR37, SS07 and TJ181
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the range between 50 and 55%, the CSI alone is insuffi-
cient for conclusive species delimitation. This is mainly
the case for species that display extreme levels of intra-
specific genetic diversity. In clade 6b for instance, the 27
distinct non-hybrid P. lacustris genotypes display CSI
values ranging from 95.3 to 54.0% and the CSI of the
three distinct P. bilorbang genotypes ranges from 60.4 to
54.3%.
Using the CSI we confirmed the findings of Oudemans

and Coffey (1991) and Mchau and Coffey (1994) that P.
arecae isolate CBS148.88 is a genotype of P. palmivora

(average CSI of 61.9%) and not a separate species. An-
other example concerns P. cactorum and P. hedraiandra,

closely related species that are difficult to distinguish
based on morphology, AFLP and gene sequence data of
three loci, on which basis they were previously suggested
to be conspecific (Pánek et al. 2016). In contrast, we
confirmed their status as separate species based on their
low CSI (32.0%). Furthermore, the identity of nine out of
43 clade 8a isolates was corrected. The ex-type strain of
P. erythroseptica (CBS129.23) for instance, was nearly
identical (allele similarity = 99.9%) to the ex-type strain
of P. cryptogea (CBS113.19) and differed from the other
P. erythroseptica isolates. This is in agreement with the
observations of Robideau et al. (2011) and Q-bank
(www.q-bank.eu; Bonants et al. 2013), in which
CBS129.23 is the only P. erythroseptica isolate with an
ITS and coxI sequence identical to the P. cryptogea ex-
type strain. Possibly due to uncertainty about the iden-
tity of the ex-type strain, Safaiefarahani et al. (2015) used
sequences of P. erythroseptica isolates CBS951.87 and
CBS956.87 as a reference in their re-evaluation of the P.

cryptogea species complex. Most probably the P. erytho-

septica ex-type strain had already been mixed up with P.

cryptogea immediately after the deposition in the CBS
collection (A. De Cock, pers. comm.). Verification of the
identity of the strains maintained as P. erythroseptica ex-
type strains in other culture collections is therefore
needed.
In total, our genome fingerprinting method led to cor-

rection of species identity in 12% of the samples in our
collection, including some from culture collections
(Table S1). This high percentage can be partially ex-
plained by the preselection of potential hybrids with
more complex ITS profiles. On the other hand, misiden-
tifications have already been reported in Phytophthora

collections (Simamora et al. 2015), as well as in mamma-
lian cell lines (Lorsch et al. 2014) and Arabidopsis thali-

ana accessions in stock centres (Anastasio et al. 2011;
Bergelson et al. 2016). Culture collections are extremely
valuable for the scientific community and we confirm
that validation of accessions via GBS or other techniques
(e.g. Pisupati et al. 2017) is appropriate (Bergelson et al.
2016). We also advise researchers to verify the identity

of received samples with molecular methods, e.g. by
using the two-step approach suggested by Yang and
Hong (2018).

Identification of diploid and polyploid hybrids based on

GBS and flow cytometry

We used a strategy for the identification of Phytophthora
hybrids based on three features that are indicative of
hybridization (illustrated in Fig. 1). The first indicator is
a large number of GBS loci shared with more than one
species and a high allele similarity with the parents (in
general more than 70%; see Fig. 2 and Table S4). A sec-
ond indicator of hybridization is a large number of loci,
compared to the parental species, as hybrids combine
the shared loci of the two parental species with the
unique loci of each of these species (see Table 2 for ex-
amples). On average, hybrids indeed contained consider-
ably more loci (28,176 ± 8913, range 13,321 to 50,938)
than non-hybrid species (19,112 ± 4723 loci, range 11,
002 to 29,091). The third indicator is specific for poly-
ploid hybrids and consists of a combination of a large
genome size and a large number of multi-allelic loci. Al-
though little is known about the cellular processes
underlying hybridization in Phytophthora, it is well
established that polyploid hybrids can be formed
(Schardl and Craven 2003; Érsek and Nagy 2008). Gen-
ome sizes alone cannot be correlated to ploidy levels as
different species can have different basic chromosome
numbers or chromosome sizes. Counting chromosomes
in oomycetes is difficult, however, due to their relatively
small sizes (Kamoun 2003; Sansome et al. 1991). There-
fore, the genome size should be combined with the data
on the proportion of multi-allelic loci.
In total, we identified 43 distinct hybrid taxa in six

clades, 24 of which reside in clades 6 and 7, including
one interclade hybrid. In clades 1, 2 and 9 we detected
only diploid hybrids, while clade 7 contained almost ex-
clusively polyploid hybrids (Fig. 3). Clades 6 and 8 har-
boured both ex-type strains of hybrids. Although
hybridization seems to occur more often than previously
recognized, we did not find hybrids in clades 3, 4, 5, 10,
and 12. This could in part be explained by a relatively
small number of representatives from those clades in
our study. Expanding the number of isolates might re-
veal novel species and/or hybrids. The absence of hy-
brids could also reflect a reduced hybridization potential
of species in these clades because they almost never
occur in aquatic settings, which are environments that
seem to favour hybridization (Burgess 2015; Jung et al.
2017c, 2018a; Nagel et al. 2013).
Theoretically, the genome size of homoploid hybrids

are half the sum of the parental genome sizes. This is in-
deed the case for P. ×serendipita, P. ×pelgrandis, and P.
×alni. Hybridization between genetically divergent
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species can cause sterility. Subsequent polyploidization
can overcome this and results in an initial genome size
of the sum of the genome sizes of the parental species
(Soltis and Soltis 2009). The triploid hybrid P. ×alni is
sterile and cannot survive long in soil or harsh climates
without oospores (Redondo et al. 2015). If P. ×alni were
to regain fertility through genome duplication, this could
have important epidemiological consequences. Over
time, post-hybridization rearrangements of the hybrid
genome can, however, significantly influence the genome
size. Interspecific hybridization with or without genome
doubling and subsequent genome rearrangements can
lead to “neospecies” (Chapman and Burke 2007). Espe-
cially for plant pathogens one can assume that in poly-
ploids the neofunctionalization of genes can lead to
changes in virulence and host range.
Two known hybrids of P. cactorum, i.e. P. ×serendipita

and P. ×pelgrandis, reside in clade 1a. In addition, we
identified two novel hybrids, designated P. cactorum × P.

hedraiandra-related1 and P. hedraiandra × P. hedraian-

dra-related1. It is striking that all samples isolated from
strawberry belong to the same genotype, except for iso-
late 06/002. Similar results were reported in previous
studies (Hantula et al. 1997, 2000). Also, this particular
genotype gave rise to, or was at least very closely related
to, all P. cactorum hybrids included in our study, except
for P. ×pelgrandis isolate 15/009. This indicates that it is
more prone to hybridization than the other genotypes
and/or that its hybrids have a higher fitness.
No hybrids have previously been formally recognized

in clade 2. We identified at least five novel hybrids in
clade 2a, three of which involved P. citrophthora as a
progenitor. One of these, isolate CBS111726, concerns a
hybrid with the closely related P. occultans. Other re-
lated species, such as P. terminalis and P. himalsilva,

were not present in our set of isolates and could also be
involved in the other hybrids (Vettraino et al. 2011).
Hybrids among several clade 6b species have previ-

ously been described (Burgess 2015; Nagel et al. 2013).
Yang et al. (2014) reported P. ×stagnum, a hybrid be-
tween P. chlamydospora and a species related to P. mis-

sissippiae. We also found that clade 6a species P.

inundata and clade 6b species P. megasperma, P. sp.
hungarica and several P. chlamydospora and P. gonapo-

dyides isolates are putative hybrids. The high level of
sterility among members of clade 6b (Brasier et al. 2003)
may in part be explained by the large number of hybrids
in this subclade. The tendency of species from this sub-
clade towards hybridization may be facilitated by their
riparian natural habitat, where substrates can easily be
colonized by more than one species. Several clade 6b
species are frequently detected in irrigation water of nur-
series, an environment that might promote
hybridization. Also, some isolates originating from

different countries belong to the same clonal lineage, in-
dicating that plant trade is probably involved in their
spread.
Several polyploid hybrids have previously been identi-

fied in clade 7a (Brasier et al. 1999; Jung et al. 2017c). It
is striking that so many clade 7a hybrid species contain a
large proportion of triallelic loci. Phytophthora ×incras-
sata even had a significant proportion of loci with four
alleles, an indication of allopolyploidy. These observa-
tions emphasize the role of hybridization and polyploidi-
zation in the evolutionary process of the species in this
clade (Jung et al. 2017c). Phytophthora ×multiformis,
one of the progenitors of P. ×alni, was itself identified as
an allopolyploid hybrid between two species. Conse-
quently, P. ×alni is a hybrid involving three species
(Husson et al. 2015; Ioos et al. 2006), which is reflected
in the large number of loci and the large proportion of
triallelic loci (Fig. 2, Figure S3e). Similar proportions
were found in P. ×cambivora and P. ×heterohybrida-re-
lated, confirming these species are also hybrids. The
large genome size of P. uniformis but limited number of
loci and small proportion of biallelic loci would indicate
autopolyploidization but clearly not hybridization. Bra-
sier et al. (1999) counted 11–13 chromosomes in P. uni-

formis, 10–12 chromosomes in P. ×cambivora and 10–
12 chromosomes in P. fragariae. However, they consid-
ered P. ×cambivora and P. fragariae as diploid species,
which we now know are possible polyploids. Indeed, also
P. fragariae as well as P. tentaculata had genome sizes
larger than 250 Mbp/2C but only had a relatively small
number of loci and a small fraction of biallelic loci, indi-
cating that these species might also be autopolyploids.
More reliable and extensive chromosome counts are
however necessary to correctly determine the ploidy
level of species in the genus Phytophthora and to assess
its correlation with the genome size. Due to the speed
by which generative cycles occur in Phytophthora it is
conceivable that processes like whole genome duplica-
tion (WGD) and hybridization occur more rapidly than
in many other organisms. Especially in the case of patho-
gens, hybridization followed by WGD might therefore be
a driving force in speciation and specialization.
In clade 7b we identified P. niederhauseri as a hybrid,

based on genome size and the large number of loci. We
observed that the species consists of at least two genetic-
ally distinct groups. The P. niederhauseri-related isolates
are presumably hybrids from three parental species, pos-
sibly involving P. niederhauseri or one of its progenitors.
Interestingly, we also identified a hybrid between clade
7b species P. niederhauseri and a clade 6 species closely
related to P. asparagi. The P. niederhauseri x P. aspar-

agi-related hybrid nature of this isolate was confirmed
by its dual β-tubulin sequence, while its rDNA ITS se-
quence was identical to that of P. asparagi (data not
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shown). This could be the result of concerted evolution
or a side effect of hybridization. It shows once more that
species identification and hybrid detection can fail if only
ITS and/or mitochondrial loci are used.
Both clade 7c species P. cinnamomi and P. parvispora,

are putative hybrids based on our GBS and FCM data.
Phytophthora cinnamomi contained considerably more
loci than P. infestans, also a heterothallic species, which
would not be the case if it were an autopolyploid. The
analysed isolates consist of four genotypes, with the ex-
type strain of P. cinnamomi (PRI0393 = CBS144.22) be-
ing clearly distinct from the other isolates. The hybrid
status of P. cinnamomi could explain why this species
has an exceptionally wide host range (Zentmyer 1980)
and causes such devastating disease in natural and horti-
cultural environments (Burgess et al. 2017; Kamoun
et al. 2015). Phytophthora hybrids indeed can display an
expanded host range compared to their parental species
and can potentially have an increased pathogenicity
(Bertier et al. 2013; Érsek 1995; Gu and Ko 2001; Jafari
et al. 2020; Man in ‘t Veld et al. 2007).
Extensive hybridization between several clade 8a spe-

cies has been demonstrated previously (Safaiefarahani
et al. 2016). We identified several P. cryptogea isolates as
hybrids, based on the large number of loci and the
shared loci with the P. ×pseudocryptogea hybrids and
non-hybrid P. cryptogea isolates. Two of these hybrids
were included in the study of Robideau et al. (2011),
CBS114074 and CBS468.81, and have an ITS sequence
similar to P. cryptogea but a coxI sequence identical to
that of P. pseudocryptogea, which indicates that they are
hybrids of P. cryptogea and P. pseudocryptogea. Also P.

drechsleri and P. sp. kelmania are hybrids, probably be-
tween species that have yet to be identified. Just like P.

pseudocryptogea × P. sp. kelmania, these hybrids contain
a substantial proportion of triallelic loci, confirming they
are the result of hybridization.
Our results of clade 8b are in line with the observations

made by Bertier et al. (2013). They identified isolate
CBS138.87 as a hybrid between P. porri and P. taxon pars-
ley. The latter species is very closely related to P. primulae

as it has identical ITS and Ypt1 sequences. This agrees
with the high allele similarity we observed between this
hybrid and P. primulae. The reported genome size of this
hybrid (319 Mbp/2C; Bertier et al. 2013) is substantially
larger than the diploid genome of P. porri and the genome
of P. primulae, which is assumed to be a tetraploid spe-
cies. Also, the number of loci is much higher than those
of both these species. These results suggest it is an allo-
polyploid hybrid. The genome size of P. primulae agrees
with that observed by Bertier et al. (2013). Because in this
species nearly all loci are monoallelic, the large genome
size is probably the result of genome duplication, suggest-
ing it is an autopolyploid species.

Hierarchical clustering

The classification of Phytophthora in multiple phylogen-
etic clades as previously determined (Blair et al. 2008;
Cooke et al. 2000; Jung et al. 2017b; Yang et al. 2017)
was largely corroborated by the hierarchical clustering.
An exception was clade 8b, which clustered together
with all clade 10 species, except P. gemini. The analyzed
clade 8b species shared few loci with the other clade 8
species and even fewer with Phytophthora species from
other clades (Table S4). Similar results were obtained for
Halophytophthora and Phytopythium species. However,
clade 8b clustered together with the other clade 8 spe-
cies in the phylogenetic trees assessed by RAxML and
ASTRAL-III on loci30 (Figure S5a and c). In all our
phylogenetic trees, as well as in published trees (Blair
et al. 2008; Kroon et al. 2004; Martin et al. 2014; Yang
et al. 2017), the clade 8b branch lengths are exception-
ally long, confirming that this subclade is genetically very
distinct from the other clade 8 species. In addition, these
species behave differently as they cause disease under
cold conditions and mainly infect winter-grown vegeta-
bles (Redondo et al. 2018b). The separation of the clade
8b species P. porri and P. primulae could be a reflection
of their primitive and Pythium-like combination of mor-
phological characters, i.e. lateral and multiple, paragy-
nous antheridia, and semipapillate, persistent, and
intercalary sporangia (Brasier and Hansen 1992; Erwin
and Ribeiro 1996). Clade 8d species P. syringae is less
primitive, lacking the lateral and multiple antheridia and
intercalary sporangia. Clade 8a species P. cryptogea, P.
drechsleri, and P. erythoseptica, form amphigynous an-
theridia and terminal non-papillate sporangia (Erwin and
Ribeiro 1996). Clade 8c species have terminal sporangia,
which are exclusively (P. hibernalis and P. ramorum) or
partly (P. lateralis) caducous as adaptation to a fully or
partially aerial lifestyle, and have mostly amphigynous
antheridia (Brasier et al. 2012; Erwin and Ribeiro 1996;
Werres et al. 2001).
Another discrepancy was that clade 10 species P. boeh-

meriae, P. kernoviae, and P. morindae, were separated
from P. gallica and were positioned in proximity of clade
8b and clade 4. P. gallica differs from the other clade 10
species in that it is sterile and produces non-papillate
sporangia (Jung and Nechwatal 2008; Nelson and Abad
2010).

Phylogenomic analysis

Since preliminary tests using phylogenetic network
methods (e.g. PhyloNet) gave inconsistent or extremely
reticulated results, we decided to leave out the putative
hybrids and construct phylogenomic trees rather than
networks.
As suggested by Dupuis et al. (2017) and Anderson

et al. (2017), we used both a concatenation- and
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coalescent-based phylogenomic approach on two sets of
selected loci (loci30 and loci80). Both methods generally
gave higher statistical support when using loci30, be-
tween as well as within (sub)clades (Figure S5a and S5b).
A higher support when a large proportion of the data is
missing is in agreement with previous phylogenomic
GBS studies (Anderson et al. 2017; Arbizu et al. 2016;
Nute et al. 2018). It should be emphasized that in our
case the missing data itself are true biological observa-
tions in the sense that they are the result of genetic di-
vergence (SNPs in the restriction sites cause the loss of
loci or a high number of SNPs causes the reads to be
assigned to different loci; see Fig. 1a), and not merely
the result of an unsaturated sequencing depth. The loci
in loci80 were present in most species and thus repre-
sent a conserved fraction of the Phytophthora genome
because the restriction sites were conserved and SNP di-
vergence was low. Therefore, these loci are relatively un-
informative, leading to low bootstrap support/posterior
probabilities and wrong placement of some species and
subclades (Figure S5c and d).
Topology largely agrees on the ASTRAL and concat-

enation tree in case of loci30, although some clades (4
and 12), subclades (2d and 2e, 8b and 8d, 9a2 and 9b)
and species (P. botryosa, P. mirabilis, P. cactorum, P.

pseudotsugae, P. palmivora, P. pseudosyringae, P. amni-

cola, P. thermophila, P. pinifolia, P. chlamydospora, P.
quininea, and P. richardiae) are positioned differently.
Agreement between two alternative phylogenomic
methods depends on the dataset (Dupuis et al. 2017)
and might be explained by reduced accuracy of summary
methods such as ASTRAL when gene tree estimation
error (GTEE) is high (Roch and Warnow 2015; Vachas-
pati and Warnow 2018). The short GBS sequences can
indeed lead to high GTEE (Chou et al. 2015; Roch and
Warnow 2015) and poorly informative gene trees
(Dupuis et al. 2017; Fernández-Mazuecos et al. 2018). In
that case, concatenation-based methods perform better,
even when incomplete lineage sorting (ILS) is high
(Chou et al. 2015; Hosner et al. 2016; Vachaspati and
Warnow 2018). Higher statistical support in
concatenation-based phylogenies may, however, mask
real biological reasons for low support of branches such
as ILS or hybridization (Anderson et al. 2017). Since we
do not know the true species tree and gene trees, we also
do not know the levels of ILS and GTEE in our dataset.
Minimal incongruence between the two phylogenomic
methods for closely related species suggests limited ILS,
and we assume high GTEE because of short GBS loci.
The contrasting topology of both methods was

mostly associated with a different placement of clades.
This is probably the result of the very small number of
shared loci among highly divergent species. Indeed, re-
duced representation methods such as RAD-seq or

GBS are especially suitable for studying closely related
species (Arbizu et al. 2016; DaCosta and Sorenson
2016; Leaché et al. 2015; Zimmer and Wen 2015).
Nevertheless, we find similar interclade relationships as
the ones observed in trees that were constructed based
on protein data from complete genomes of 21 Phy-

tophthora species from eight clades using Matrix repre-
sentation using parsimony (MRP), gene tree parsimony
(GTP) and a supermatrix of concatenated datasets
(McCarthy and Fitzpatrick 2017). We equally obtain
low statistical support for the close relationship be-
tween clades 1, 2 and 3 (mainly in the concatenation-
based tree). While in the trees of McCarthy and Fitzpa-
trick (2017) clades 2 and 3 are sister clades (but with
varying bootstrap support), in our trees clade 3 is basal
to clades 1, 2, 4 and 12 (clades 4 and 12 were not in-
cluded in their study). Also, clade 6 is a sister clade of
clade 8 in their MRP and GTP phylogenies, albeit with
limited support (bootstrap of 59 and 57, respectively).
However, in their tree based on a supermatrix analysis,
like in our trees, clade 6 is basal to all other clades ex-
cept clade 10 (there were no clade 9 species included
in their study). Applying GBS to a more comprehensive
set of species per clade might help to further elucidate
interclade and interspecies relationships in the Phy-

tophthora phylogeny.
Positioning hybrids in a phylogeny can create prob-

lems, particulary because a reticulation process such as
hybridization cannot be displayed by a simple bifurcating
tree. Therefore, hybrids should be identified by the
method we applied here and excluded from the phylo-
genetic analysis. Only after construction of a phyloge-
nomic tree of non-hybrid species, hybrids can be
anchored to (the branches of) their progenitors, without
exerting their disturbing effects during the construction
of the phylogenetic tree. In this way, we endeavoured to
eliminate these hybrid-induced errors and produce a re-
liable phylogeny.
This study is yet another step in the exploration of the

genus Phytophthora. Future studies with an expanded
set of species, including additional ex-type strains, can
provide new insights on genetic relationships in and be-
tween clades. GBS – separately or in combination with
other techniques such as FCM – can also be applied to
related oomycete or fungal genera for species identifica-
tion, to assess the presence of hybrids or to elaborate
their phylogeny.
Finally, our GBS data can be further explored and used

to develop applications such as real-time PCR,
hybridization probes, multiplex amplicon sequencing,
etc. and may eventually lead to the development of
(sub)clade-, species or genotype specific markers that
can routinely be used for the identification of species
and their hybrids.
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CONCLUSIONS
Our study sheds a new light on the occurrence of inter-
specific hybridization in Phytophthora. By applying GBS,
in combination with genome size estimation, we were
able to identify Phytophthora hybrids, including 16 new
hybrid species and the discovery of the first interclade
hybrid. Reliable recognition of hybrids is important for
plant protection, as they can display an increased epi-
demiological risk compared to their progenitors. It is
also indispensable for the correct treatment of hybrids in
phylogenetic studies, as their positioning in phylogenetic
tree can be cumbersome and lead to suboptimal tree
topologies. By excluding the identified hybrids from phy-
logenomic analyses, we have constructed a reliable phy-
logenomic tree of the genus Phytophthora. We could
also employ the GBS data for reliable species identifica-
tion and reveal intraspecific genetic diversity at an un-
precedented resolution.
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