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Unravelling subclonal heterogeneity and
aggressive disease states in TNBC through
single-cell RNA-seq
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Triple-negative breast cancer (TNBC) is an aggressive subtype characterized by extensive

intratumoral heterogeneity. To investigate the underlying biology, we conducted single-cell

RNA-sequencing (scRNA-seq) of >1500 cells from six primary TNBC. Here, we show that

intercellular heterogeneity of gene expression programs within each tumor is variable and

largely correlates with clonality of inferred genomic copy number changes, suggesting that

genotype drives the gene expression phenotype of individual subpopulations. Clustering

of gene expression profiles identified distinct subgroups of malignant cells shared by multiple

tumors, including a single subpopulation associated with multiple signatures of treatment

resistance and metastasis, and characterized functionally by activation of glycosphingolipid

metabolism and associated innate immunity pathways. A novel signature defining this

subpopulation predicts long-term outcomes for TNBC patients in a large cohort. Collectively,

this analysis reveals the functional heterogeneity and its association with genomic evolution

in TNBC, and uncovers unanticipated biological principles dictating poor outcomes in

this disease.
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T
riple-negative breast cancer, defined clinically as lacking
estrogen receptor (ER) and progesterone receptor (PgR)
expression as well as human epidermal growth factor

receptor 2 (HER2) gene amplification, represents up to 20% of all
breast cancers and is associated with a more aggressive clinical
course compared to other breast cancer subtypes1,2. The majority
of TNBCs share common histological and molecular features
including frequent p53 mutation, a high proliferative index, and
frequent expression of a basal-like gene expression signature3.
Nonetheless, TNBC is a disease entity characterized by extensive
inter-tumor as well as intra-tumor heterogeneity, and likely
represents multiple clinically and biologically distinct subgroups
that have not yet been clearly defined4,5.

Deep sequencing of tumor-associated somatic mutations has
revealed a substantial level of intratumoral heterogeneity of
TNBC3, while multi-region sequencing showed that a particularly
large extent of spatial subclonal diversification is associated with
TNBC compared to other breast cancer subtypes6. Single-nucleus
genome sequencing yielded similar observations and together
with mathematical modeling suggested a mutation rate within
ER+ tumors close to that of normal cells, while TNBC exhibited
a rate approximately 13-fold higher7. Thus, TNBC is uniquely
characterized by persistent intratumoral diversification.

Multiple lines of evidence suggest that the intratumoral
diversity of TNBC is not only a driver of pathogenesis, but also of
treatment resistance, metastasis, and poor clinical outcomes8.
While most primary TNBCs exhibit substantial responses to pre-
operative chemotherapy, a failure to achieve complete elimination
of viable tumor cells in the breast (so-called pathologic complete
response) is associated with very poor outcomes in TNBC but
not in ER+ breast cancers9,10. Therefore, unlike in ER+ cancers,
killing the majority of the bulk population of TNBC cells has
relatively little impact on outcomes. This finding implies that a
minor subpopulation of TNBC cells is responsible for metastatic
dissemination. Clonal evolution within the primary tumor is a
likely driver of this process, as multi-site metastases in TNBC can
be attributed to multiclonal seeding from individual clones that
are identifiable in the primary tumor11. Given that most studies
of human tumors are limited to bulk analysis, however, the
existence and precise nature of subclonal diversification, signal-
ing, and cooperation in human breast cancer remains to be
established.

A small number of studies have characterized the genomic
diversity of TNBC at the single-cell level, revealing a pattern that
reflects punctuated evolution of copy number variations during
TNBC progression, followed by expansion of a dominant
subclone7,12. While these findings imply that such subclones
harbor properties driving their selective advantage, DNA-based
analyses alone have been unable to elucidate the cell states and
fates that underlie this process. To address this issue, we con-
ducted single-cell RNA-sequencing on >1500 cells from six
freshly collected, untreated primary TNBC tumors. Through
detailed computational analyses of individual tumor cells and the
subpopulations they encompass, we reveal the phenotypes and
biology underlying the genetic evolution and clinical behavior of
TNBC.

Results
Acquisition of scRNA-seq profiles from primary TNBC. In
order to understand intercellular heterogeneity in TNBC, we
collected tumors from six women presenting with primary, non-
metastatic triple-negative invasive ductal carcinomas prior to any
local or systemic therapy. Assessment of ER/PR/HER2-negative
status was performed using strict clinical and histological criteria
(Supplementary Table 1). All tumors were histologically

characteristic of TNBC, comprised of a dense mass of invasive
ductal carcinoma cells with variable infiltration of immune and
stromal elements (Supplementary Fig. 1). Of six tumors with
sufficient tissue for analysis, two (tumors 84 and 126) were
associated with local axillary lymph node involvement (Supple-
mentary Table 1).

Fresh tumors underwent rapid dissociation followed by flow-
cytometry sorting of viable single cells. To capture the full
spectrum of tumor cellular composition, we sorted a subset of
cells and tumors with no pre-selection, and to ensure adequate
numbers of malignant cells for analysis, we sorted another subset
following depletion of immune cells based on CD45 staining
(Fig. 1a). Individual cells underwent preparation of cDNA and
library construction, followed by next-generation sequencing
(NGS). After stringent quality control and normalization, we
analyzed a total of 1189 cells ranging among patients from
78 cells (tumor 58) to 286 cells (tumor 89) (Fig. 1a).

Cellular heterogeneity within primary TNBCs. Our first ana-
lysis involved identifying distinct cell populations within the
tumors using a multi-step approach involving marker genes
together with clustering (Fig. 1b, c; Supplementary Methods).
This combination approach was designed to provide a more
robust identification of cell types than that achieved by using
either methodology alone. Thus, we first evaluated the expression
of specific sets of genes previously established to define immune,
endothelial, and stromal cells, as well as key mammary epithelial
subpopulations including basal cells, luminal progenitors, and
mature luminal cells13,14. We then used clustering to refine the
identified cell types. This combined analysis reliably classified
1112 of 1189 cells into non-epithelial (n= 244) and epithelial
(n= 868) types. A subset of TNBCs are known to exhibit sub-
stantial immune cell infiltration, and as anticipated, CD45-
unselected tumors contained large proportions of immune cells,
the majority of which were T lymphocytes15,16. The next most
prevalent immune cell subset were macrophages, which were
present in each CD45-unselected tumor. Like immune cells,
stromal elements are known to vary between TNBC cases17, and
we identified such cells as <15% of total cells in each tumor.
Endothelial cells were a minority population, representing at most
4% of cells in one tumor (Fig. 1c). The most prominent epithelial
cell population in each tumor expressed luminal cell and luminal
progenitor markers, while in some tumors (e.g., tumor 89), a
minority population was evident that expressed markers of
myoepithelial cells including ACTA2 and TAGLN (Fig. 1b).

As a first step to identifying malignant cells, we determined
their cell cycle status using validated gene signatures previously
shown to identify G1/S and G2/M cell cycle phases and
distinguishing high cycling from low cycling cells13. This analysis
revealed substantial variation among tumors in the proportion of
cycling cells, ranging from <5% (tumor 58) to >34% (tumor 81,
Fig. 1d). Notably, most cycling cells (98.5% of all cycling cells)
were identified as epithelial, consistent with our cell type
classification and suggesting that the malignant cells reside in
this compartment (Fig. 1e; Supplementary Fig. 2). We validated
these findings by immunohistochemical staining of tumor
sections with Ki67, a widely used clinical marker of cycling
cells18. Indeed, we observed a high correlation between the
predicted proportion of cycling cells and the percentage of Ki67-
positive cells within each tumor (Fig. 1e; Supplementary Fig. 2).

Subclonal heterogeneity defines malignant TNBC cells. To
further support the classification of malignant versus non-
malignant cells, we used complementary approaches based on
(i) gene expression clustering, (ii) estimated copy number
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variations (CNVs), and (iii) intercellular heterogeneity of
transcriptomes13,19. Analysis of all cells across patients using
tSNE clustering20 revealed substantial separation between non-
epithelial populations, which were well-segregated into distinct
clusters based on their cell type, and epithelial populations, which
formed multiple subgroups (Fig. 2a). This pattern was most
apparent when non-epithelial and epithelial cells were analyzed
separately (Fig. 2b, c). In contrast to non-epithelial cells, epithelial

cells generally separated into tumor-specific clusters (particularly
tumors 39 and 81), but interestingly also into clusters with con-
tribution of cells from multiple tumors (Fig. 2a–c). Prior single-
cell analyses of melanoma and glioblastoma showed clustering of
malignant cells primarily by patient13,21, supporting a significant
degree of inter-tumor heterogeneity. In contrast, in keeping with
our findings, a recent single-cell analysis of breast cancers showed
both patient-specific and shared clustering of malignant cells,
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representative TNBC patients, depicted as either the inferred cycling status of single cells (left) or immunohistochemistry staining for Ki67 (right). Scale
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alluding to particular intratumoral heterogeneity in breast cancers
and the existence of subpopulations defined by common
states22,23.

We then sought to further define malignant cells among the
epithelial population by identifying large-scale CNVs inferred
from single-cell gene expression profiles using a previously
described approach13,21. For normalization purposes, we used
single-cell gene expression data from normal mammary epithe-
lia23. Previous single-cell genomic studies established that TNBCs
exhibit highly variable patterns of CNVs, driven in part by
punctuated tumor genome evolution7,12. Consequently, although
some TNBCs demonstrate subclones characterized by large
CNVs, the subclones within many tumors exhibit relatively small
CNVs that are beyond the resolution of inference by transcrip-
tome data12. As predicted, we found that subclonal large-scale
CNVs were evident in some (particularly tumors 39 and 81) but
not all tumors, and no tumors showed a clonal pattern of CNVs
shared by all cells (Fig. 2d). We then validated these findings by
bulk whole-exome sequencing (WES, Fig. 2e; Supplementary

Fig. 3), which demonstrated high concordance between CNVs
inferred by single-cell transcriptomic data and CNVs demon-
strated in the genomic data (Fig. 2d, e). For example, gains in
chromosome 1 were evident by both approaches in tumors 39
and 81; distinct loss in chromosome 5 and gain in chromosome
12 were verified in tumor 39, while gain in chromosome 8 was
evident in tumor 81. Additionally, tumor 89, which demonstrated
an absence of inferred clonal or subclonal gains or losses, also
showed very few copy number alterations by WES. We also found
that the size of the primary tumor at diagnosis was associated
with the presence of a dominant subclone, evident in both the
scRNAseq-inferred CNVs and the bulk WES. For instance, tumor
39 (9.5 cm tumor) exhibited a dominant subclonal population,
whereas tumor 89 (1.5 cm tumor) showed little evidence for
such a population (Fig. 2d, e). Despite the small number of
tumors, this finding extends our prior single-cell genomic analysis
documenting stable aneuploid rearrangements, and suggests that
such alterations govern transcription during clonal expansion in
breast cancer7.
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Since the absence of clonal CNVs in some tumors precluded
the assignment of each epithelial cell as benign or malignant, we
next investigated transcriptional heterogeneity within and
between the tumor epithelial populations compared to the
heterogeneity among normal primary mammary epithelial cells19

(Fig. 2f). Based on the findings of recent single-cell analyses in
other tumor types, we reasoned that non-malignant epithelial
cells would be highly concordant, as would tumor epithelial
populations defined by subclonal CNVs, whereas the remaining
malignant cells would likely be heterogenous and thus non-
concordant13. As anticipated, the normal epithelial cells showed a
reasonably high degree of concordance (mean Spearman correla-
tion 0.38), as did the subgroups of cells from patients 39 and 81
defined by subclonal CNVs (Spearman correlations 0.45 for
tumor 39 and 0.41 for tumor 81), which were also identified as
distinct clusters of epithelial cells (Fig. 2c; Supplementary Fig. 4).
In contrast, the remaining tumor epithelial cells generally showed
weaker concordance both within and between tumors, supporting
their heterogeneity and therefore their likely identity as malignant
cells (Spearman correlations: 0.25 for patient 89, 0.26 for 84, 0.30
for 58 and 126) (Fig. 2f). Taken together, these data demonstrate
that epithelial cells within these tumors are characterized either
by expression patterns reflecting subclonal CNVs, or by a lack of
CNVs and a corresponding high degree of intercellular hetero-
geneity. These findings and the presence of cycling cells almost
exclusively within the epithelial compartment collectively support
the hypothesis that the majority of the identified epithelial cells
are malignant cells.

Shared malignant subpopulations reflect diverse phenotypes.
As our clustering analysis demonstrated subgroups of epithelial
cells sharing common transcriptional profiles but derived from
multiple tumors (Fig. 2c), we next sought to reveal the common
biology of these groups via clustering of all epithelial cells while
excluding patient-specific effects through linear regression. Using
this approach, we identified five clusters of cells, of which one
(cluster 2) was represented by a substantial proportion of cells in
all tumors, and another (cluster 3) was present in five of six
tumors (Fig. 3a, b). Cluster 4 was most prominent in tumor 81,
the one tumor that lacked cluster 3 cells, while clusters 1 and 5
represented <70 cells in total and were present only in tumors 84
and 89 (Fig. 3b). Importantly, the majority of cells in cluster 2
(55%) contained large-scale CNVs, thereby identifying this cluster
as consisting of malignant cells (Supplementary Fig. 5). Accord-
ingly, cluster 2 contained the highest proportion of high cycling
cells (40%), while both clusters 3 and 4 also contained significant
high cycling populations (11 and 13% high cycling cells, respec-
tively), and clusters 1 and 5 did not (1 high cycling cell/cluster)
(Supplementary Fig. 6). Taken together with the analyses in
Fig. 2, these findings support the malignant identity of clusters 2,
3, and 4, while the small number of cells in clusters 1 and 5 can
less confidently be identified as malignant cells due to their less
proliferative phenotype.

We then investigated the malignant cell clusters and the individual
tumors for enrichment of gene expression signatures derived from
bulk RNA-seq of established basal, luminal progenitor (LP), and
mature luminal (ML) cells from the normal mammary gland (Fig. 3b,
c; Supplementary Fig. 7). Clusters 2 and 4, which comprise the
majority of malignant cells, were most highly associated with the LP
signature, in keeping with data supporting the LP as the cell of origin
for breast cancers24,25. Cluster 3, in contrast, was clearly distinguished
by the ML cell signature. Thus, we found that distinct subpopulations
of cycling cells bearing malignant phenotypes are characterized by
expression profiles reflecting a spectrum of differentiation along the
luminal epithelial lineage.

We next investigated the cluster subpopulations using a set of
gene expression signatures derived from unsupervised analysis of
bulk breast tumors. These tumor-specific signatures included the
TNBCtype-4 signatures, which define certain clinical and
biological features of four TNBC subtypes26,27, and the Intrinsic
Basal signature, which was established by comparison across
breast cancer subtypes (ER+, HER2+, and TNBC)28. Intrinsic
Basal tumors represent the majority of TNBCs; they overlap with
multiple TNBCtype subtypes, and are associated with increased
clonal heterogeneity compared to non-Intrinsic Basal TNBCs
(Fig. 3d; Supplementary Figs. 8, 9)3,28. We found that the cluster
2 subpopulation was most strongly associated with a single
TNBCtype signature known as “Basal Like 1”, which is enriched
for cell cycle and DNA repair genes, in agreement with the high
proportion of cycling cells present in this cluster (Fig. 3e;
Supplementary Fig. 8). This cluster was also the most highly
enriched for the Intrinsic Basal signature (Fig. 3d; Supplementary
Fig. 9). Cluster 4 was also enriched for the Basal-Like 1 signature,
while cluster 3 was most highly enriched for the TNBCtype
“Luminal Androgen Receptor” signature, concordant with
enrichment in this cluster of the differentiated luminal (ML)
signature (Fig. 3b–e; Supplementary Fig. 8)29. Therefore, the
cluster subpopulations are distinct in their expression of
established TNBC phenotypes. Of note, in Fig. 3a two potential
“subclusters” of clusters 2 and 3 are apparent. Applying multiple
signatures to these subpopulations showed they are not
consistently different from their respective main clusters,
although the cluster 3 subcluster did show more mature luminal
character than cluster 3 as a whole (Supplementary Fig. 10).

Performing this analysis for each individual tumor, we found that
tumor 81 was comprised predominantly of Basal-Like 1 cells
corresponding to LP-like clusters 2 and 4, and had the highest
proportion of cycling cells (31%). This finding agrees with the
relative homogeneity of this tumor documented by CNV and
intercellular heterogeneity analyses (Fig. 2d–f; Supplementary
Figs. 11, 12). Tumors 84 and 89, in contrast, included Basal-Like
1/LP cells but also a substantial subpopulation of more differ-
entiated luminal-like cells expressing the luminal androgen receptor
and ML signatures. Overall, in the majority of tumors, multiple
TNBCtype subtypes were identified (Fig. 3g). Thus, while the most
prevalent malignant population within TNBCs corresponds to cells
with characteristics of proliferative luminal progenitors, we revealed
distinct cell subsets within each tumor, demonstrating the presence
of cells with discrete epithelial differentiation status and diverse
malignant transcriptional phenotypes. These findings parallel data
from single-cell analysis of glioblastoma that demonstrated intra-
tumor heterogeneity of gene expression subtypes21.

A TNBC subpopulation generates a clinically relevant sig-
nature. Since single-cell analysis may provide enhanced power to
reveal tumor cell subpopulations driving poor clinical outcomes,
we analyzed the malignant cluster subpopulations for enrichment
of distinct gene expression signatures related to aggressive
clinical behavior30–33 (Fig. 4a; Supplementary Figs. 13–15). These
include a 70-gene prognostic signature that was initially derived
from an analysis of genes differentially expressed between pri-
mary tumors of patients who did versus did not experience
metastatic relapse30,31. A second signature (49-gene metastatic
burden signature) distinguishes high versus low metastatic bur-
den conferred by single circulating metastatic cells identified in
patient-derived murine xenograft models of TNBC32. The third
signature (a 354-gene residual tumor signature) was obtained
from genes enriched in the residual viable tumor population of
patients undergoing pre-operative chemotherapy for treatment
of their primary breast cancer33. Notably, the overlap among
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these signatures was small, and no single gene was present in all
three signatures (Supplementary Fig. 16). Remarkably, despite
their diverse derivations and small degree of overlap, all three
aggressive disease signatures were most highly enriched in the
cluster 2 subpopulation (Fig. 4a, b).

To further investigate the biology of cluster 2 cells, we
identified the subset of genes differentially expressed between
cells in this cluster and all other epithelial cells. We found that
these cluster 2-selective genes were significantly associated with
genomic copy number gains identified by WES analysis in the
three tumors that demonstrated such gains (39, 81, and 84)
(Supplementary Table 2). In contrast, the gene sets characterizing
the other two malignant clusters (3 and 4) did not demonstrate
significant associations between their genomic and transcriptomic
profiles. These findings collectively suggest that cluster 2 cells may

drive tumor progression and thereby confer poor outcomes to
patients whose tumors contain significant numbers of such cells.

To test this hypothesis, we next derived a unique signature
consisting of the top most significantly differentially expressed
genes in cluster 2. We applied this signature to a large publicly
available data set containing bulk RNA-seq profiles of primary
TNBC linked to long-term patient outcomes, the METABRIC
cohort34. We observed a statistically significant association
between tumors with high expression of the cluster 2 signature
and shortened overall survival (Fig. 4c). In contrast, none of the
three original aggressive disease signatures that were enriched in
cluster 2 were themselves predictive of outcomes in this patient
cohort (Fig. 4b, c). Furthermore, none of the signatures defining
clusters 1, 3, 4, or 5 were associated with clinical outcomes in this
cohort (Supplementary Fig. 17). Similarly, the intrinsic Basal
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signatures in the epithelial clusters. Clusters 2 and 4 most strongly express the proliferative Basal-Like 1 signature, while cluster 3 prominently expresses
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TNBC signature was not associated with clinical outcomes in this
cohort (Supplementary Fig. 18). Collectively, these findings reveal
the ability of single-cell analysis to unveil clinically relevant cell
states that have not been uncovered through bulk tumor analysis.

Metabolism and immunity programs characterize the poor
prognosis subpopulation. We then sought to determine the
functional programs underlying the cluster 2 subpopulation by
investigating the pathways enriched among the genes differen-
tially expressed in cluster 2 compared to the other epithelial
cells35. We found that the most enriched pathways were asso-
ciated with glycosphingolipid biosynthesis and lysosomal turn-
over, which impinge on cytokine pathways of the innate immune
system that were also enriched (Fig. 4d; Supplementary Table 3).
Glycosphingolipids have recently been implicated as mediators of
numerous tumor-promoting properties in breast cancer, includ-
ing altered growth factor signaling, EMT, and stem-like beha-
vior36–38. Multiple key genes in this pathway are selectively
expressed in the cluster 2 subpopulation, including the glycolipid
transfer protein gene GLTP and the key sphingolipid biosynthesis

subunit gene SPTLC1. Glycosphingolipids are also recognized as
important modulators of both the innate and adaptive immune
systems, and have been linked to inflammation-associated carci-
nogenesis in multiple epithelial tissues39. Indeed IHC staining
confirmed expression of SPTLC1 in a subpopulation of cells in all
six TNBCs, and in addition we observed high levels of the
sphingosine-1-phosphate receptor S1PR1, which functions in a
reciprocal feedback loop to activate STAT3 in multiple cancer
contexts40, upon IHC staining in all tumors (Supplementary
Figs. 19, 20). Another notable cluster 2-selective gene related to
innate immunity in the epithelium is GPI/AMF (glucose-6-
phosphate isomerase/autocrine motility factor), a tumor-secreted
cytokine implicated in EMT, migration, and metastasis (Fig. 4d)
41,42. Additionally, expression of the epithelial tight junction
assembly factor gene F11R has been linked to breast cancer
progression and patient survival43. Deregulation of barrier factors
such as F11R can induce established pro-tumorigenic cytokines,
and indeed a subset of these, including CCL20 and CCL2244,45, is
highly expressed selectively in the cluster 2 subpopulation.

Finally, we determined the impact of the glycosphingolipid
pathway expression itself on clinical outcomes in order to validate
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its relevance for the cluster 2 subpopulation specifically and to
TNBC in general. We found that a gene signature representative
of glycosphingolipid metabolism46 (Supplementary Table 4) was
predictive of overall survival for TNBC patients in the
METABRIC cohort, with progressively higher expression sig-
nificantly associated with increasingly worse overall survival in
this TNBC cohort (Supplementary Fig. 21). Collectively, these
findings reveal an unanticipated subpopulation of TNBC cells
whose transcriptome reflects genomic evolution and whose
distinct biology confers poor clinical outcomes for TNBC
patients.

Discussion
Here we provide fundamental new insights into the subclonal
biology of TNBC through single-cell RNA-sequencing of >1500
cells obtained from six fresh tumors. We characterized the extent
of diversity among TNBC cells with regard to their expression of
normal breast and established TNBC signatures, identifying a
subpopulation of cells, shared among tumors, whose properties
drive poor outcomes. These findings support accumulating evi-
dence that intra-tumor heterogeneity is central to the clinical
behavior of this disease. For example, prior studies have docu-
mented that TNBCs exhibit ongoing mutational diversification,
giving rise to genomic heterogeneity that can be inferred through
deep sequencing and confers worse clinical outcomes3,7. Clini-
cally, a failure to achieve pathologic complete response following
pre-operative chemotherapy is associated with high relapse rates,
consistent with evidence we provide that a minor refractory
subpopulation of cells determines patient outcomes.

Our single-cell transcriptome analysis reveals that tumors are
comprised of variable proportions of malignant, stromal, and
immune components, and we showed that proliferating cells are
confined almost exclusively to the malignant cell compartment.
Concordant with recent studies reporting single-cell analysis of
other tumor types including glioblastoma and melanoma, we
found that normal cells cluster together by cell type (not by
patient) upon unsupervised analysis13,21. The malignant cells in
these other tumor types primarily formed tumor-specific clusters.
In contrast, we showed that TNBCs are comprised only partly of
tumor-specific clusters, which correspond to subpopulations
defined by large clonal CNVs that are lacking in some tumors. In
addition, we observed subpopulations of cells from multiple
tumors that exhibit malignant characteristics and yet cluster
together rather than with other cells from the same patient. Taken
together, these findings suggest that subclonal diversification can
give rise to tumor-specific cell populations, but also imply that
TNBCs are characterized by subpopulations with shared biolo-
gical properties across patients.

We further determined that these shared malignant sub-
populations express distinct expression profiles resembling the
normal epithelial cell types and previously defined TNBC sub-
types. The major cell subtype present in most TNBCs we analyzed
was a highly proliferative group most closely related to the nor-
mal LP cell, in keeping with the emerging view that LPs represent
the cell of origin for many breast cancers24,25. The most prevalent
tumor-derived (TNBCtype) signature among all cells was the
Basal-Like 1 proliferative signature, which corresponds largely to
these proliferating LP-like cells. However, most tumors also
contain cells with an intermediate proliferative index bearing the
more differentiated ML signature and corresponding to the
Luminal Androgen Receptor TNBCtype subtype. Our finding that
each tumor was comprised of multiple TNBCtype and normal cell
subtypes implies that the dominant signature reflected in bulk
analysis may be a poor representation of the functional hetero-
geneity within and between tumors. Significantly, this observation

may explain in part why such gene expression signatures have
largely failed as useful clinical diagnostics for TNBC. In contrast,
in hormone receptor-positive breast cancer, which exhibits sub-
stantially less intra-tumor heterogeneity, gene expression sig-
natures are now routinely integrated into clinical decision-
making47.

Given the established intratumoral heterogeneity of TNBC, it is
perhaps not surprising that established signatures derived from
bulk normal cells and TNBCs did not reveal a distinct biology of
the shared subpopulations we identified. Thus, we interrogated
these cluster subpopulations for their expression of diverse sig-
natures related to treatment resistance and metastasis. This
analysis pointed to a single malignant subpopulation (cluster 2),
present in each tumor we analyzed, that was most highly enriched
for each of these aggressive disease phenotypes. Notably, the
genes defining the cluster 2 subpopulation (but not other sub-
populations) were significantly associated with subclonal genomic
copy number gains, underscoring the role of genomic evolution
in driving a poor prognosis transcriptional state. Strikingly, the
expression of differentially expressed genes specific to cluster 2
was predictive of outcomes in TNBC, while the previously defined
signatures related to aggressive tumor behavior, as well as those
associated with the other cluster subpopulations, were not. We
then revealed the biological pathways associated with these cluster
2 cells, demonstrating enrichment of genes involved in glyco-
sphingolipid/lysosome function, and innate immune sensing and
inflammation. Emerging data point to an underappreciated role
for glycosphingolipids in multiple tumor phenotypes, while the
role of inflammatory responses as a tumor promoter is well-
established48,49. Finally, we demonstrated that a glyco-
sphingolipid pathway signature itself was a significant predictor
of outcomes for TNBC patients.

Given their relevance to clinical outcomes, our findings may
form the basis for the future development of patient and tumor-
specific markers that could more accurately identify refractory
subpopulations at the time of diagnosis, and thereby predict
treatment resistance and prognosis in TNBC. Additionally, the
specific pathways we implicate include numerous potentially
attractive therapeutic targets, including S1PR1, which is highly
expressed in these tumors50–52. Undoubtedly, future studies will
uncover additional features and cell subpopulations that govern
tumor behavior, particularly with respect to non-malignant
compartments. By unveiling clinically relevant states and their
relationship to genomic evolution at the level of individual cells,
this study substantiates the far-reaching promise of single-cell
analysis in TNBC and other cancer types characterized by
extensive intra-tumor heterogeneity.

Methods
Human tumor specimens. Fresh tumors from TNBC specimens (Supplementary
Table 1) were collected at Massachusetts General Hospital with approval by the
Dana Farber/Harvard Cancer Center Institutional Review Board (93-085), and
signed informed consent was obtained from all patients. Five of six patients
underwent genetic testing, revealing that patient 84 was a BRCA2 mutation carrier
and the others lacked BRCA1/2 mutation, while patient 58 did not undergo such
testing. Tumor tissues were mechanically and enzymatically dissociated using
tumor dissociation kit (Miltenyi Biotec). Single-cell suspensions were collected after
removing large pieces of debris using a 40-μm cell strainer.

Flow cytometry and sorting. Tumor cells were blocked in 3% FBS in Hanks
buffered saline solution, and then stained first with CD45-Vioblue direct conjugate
antibody (130-092-880, Miltenyi Biotec, Bergisch Gladbach, Germany). Cells were
washed and then stained for viability (Calcein AM, TO-PRO-3, Life Technologies,
Carlsbad, CA, USA). FACS was performed on FACSAria Fusion (Becton Dick-
inson, Franklin Lakes, NJ, USA). Strict singlets were selected by using standard
criteria for forward scatter height versus area. Viable cells were identified by
staining positive with Calcein (FITC) and negative for TO-PRO-3 (APC). Single
cells were sorted into 96-well plates containing 10 μl TCL buffer (Qiagen, Hilden,
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Germany)+ 1% β-mercaptoethanol. Plates were spun briefly, snap-frozen on dry
ice immediately, and then stored at −80 °C until further processing.

cDNA synthesis, library construction, and sequencing. Smart-seq2 was per-
formed on single sorted cells53, with the following modifications: RNA was cleaned
up using Agencourt RNAClean XP beads (Beckman Coulter, Pasadena, CA, USA).
Reverse transcription was carried out using oligo-dT primers, Maxima reverse
transcriptase and locked TSO oligonucleotide prior to PCR amplication with
KAPA HiFi HotStart ReadyMix (Kapa Biosystems). Subsequently, Agencourt
AMPure XP bead (Beckman Coulter, Pasadena, CA, USA) purification was applied.
Full-length cDNA libraries were barcoded using the Nextera XT Tagmentation
protocol (Illumina, San Diego, CA, USA). Libraries from 96 pooled cells were
sequenced as 38 bp paired end on NextSeq 500 (Illumina, San Diego, CA, USA).

Bioinformatics analysis. FASTQ files were quantified to transcript per million
(TPM) expression values with RSEM54 with default parameters. Quality control
was performed by removing both low quality cells, as well as genes with too low
expression. We identified low quality cells by (i) small library size, (ii) few
expressed genes, and (iii) low total amount of mRNA. All cells that were at least 4
median absolute deviations (MADs) below the median for any of these three
metrics were removed from downstream analyses55 (Supplementary Fig. 22). For
each of the six patients, we identified the genes that were not expressed (log2
(TPM+ 1) < 0.1) in at least 95% of cells for that respective patient, and removed
the intersection of these six sets from the set of all genes. A total of 13280 genes
remained after filtering. To normalize single-cell RNA-seq data, a three step
strategy was employed: (1) transform the TPM values into relative counts with the
Census algorithm (function relative2abs from the R package monocle56); (2)
normalize the Census counts with the deconvolution strategy implemented in the R
package scran57; (3) remove additional sources of unwanted variation in the scran-
normalized Census counts with RUVSeq58(RUVg) (Supplementary Fig. 23). After
removing all cells with size factors equal to 0, 1189 cells remained for downstream
analyses (Supplementary Table 5). This normalization strategy strongly reduced
the impact of many known sources of technical variability and confounding factors
from the expression data (Supplementary Figs. 24–30 and Supplementary Table 6).
For more details, see Supplementary Methods.

Identifying cell types: We employed a two-step combination approach to
identify the different cell types that tumors consist of: (1) literature-based list of
specific expression markers previously established to define cell types
(Supplementary Table 7); (2) clustering (Supplementary Tables 8 and 9;
see Supplementary Methods).

Identifying cycling cells: To identify cycling cells, scores for the G1-S and G2-M
phases of the cell cycle were computed by averaging the expression of a set of
relevant genes13. Cycling cells were defined to be the ones with high G1-S score or
G2-M score, and non-cycling cells were the ones with low G1-S and G2-M
scores13. Data-derived thresholds of 2 MADs above the median were used to decide
whether a score is high or low (see Supplementary Methods).

Identifying copy number alterations from scRNA-seq data. The expression
profiles were normalized by subtracting, from the expression of each cell, the
average expression of 240 normal epithelial cells profiled in a different study23.
20,337 transcripts were common between our data set and the data set profiling the
normal epithelial cells. Expression was quantified as log2 (TPM+ 1)/10, and all
genes with average expression across all cells <0.1 were removed. This amounted to
keeping 4673 transcripts. Genes were ordered by their chromosomal location after
removing the average expression of the 240 normal cells. All expressions greater
than 3 and lower than −3 were leveled. The copy number value of each gene was
defined as the sliding average value with a window size of 100 and centered at the
gene of interest. Finally, for each gene, the resulting copy number values were
centered across all cells (see Supplementary Methods).

Clustering of epithelial cells. The 886 epithelial cells were clustered using the
algorithm developed in Monocle and regressing out the patient effect. The number
of clusters was automatically chosen by Monocle, implementing a density-based
approach59. Five epithelial clusters were identified as follows: cluster 1 (22 cells);
cluster 2 (398 cells); cluster 3 (231 cells); cluster 4 (170 cells); cluster 5 (47 cells)
(see Supplementary Methods).

Gene expression signatures. The expression of each cell under the normal breast
and TNBCtype-4 signatures was computed by subtracting the mean expression of
the downregulated genes from the mean expression of the upregulated genes. Each
cell was assigned to the signature for which it had highest expression. For the
prognostic signature, metastatic burden signature, residual tumor signature and
intrinsic basal signature, the expression of each cell under each signature was
computed by averaging the mean expression of its genes. Expression heatmaps
were plotted using the ComplexHeatmap R package60 (see Supplementary
Methods).

Survival analysis. Survival analyses were performed using Cox proportional
hazards regression models, and p-values were obtained from log-rank tests
(see Supplementary Methods).

Whole-exome sequencing. Library construction, data processing, and copy
number profiling of the exome data were performed as described in Supplementary
Methods.

Immunohistochemistry. Five micron sections were cut and stained for anti-Ki67
(M7240, Agilent Dako, Santa Clara, CA, USA), anti-SPTLC1 (HPA010860, Atlas
Antibodies, Voltavägen, Bromma, Sweden), and anti-S1PR1 (ab11424, Abcam,
Cambridge, MA, USA) using standard protocol.

Code availability. All computational analyses were performed in R (version 3.4.3).
The code used for these analyses is available at naseq.

Data availability
All data supporting the findings of this study are available within the article and its

supplementary information files or upon request. The scRNAseq and WES data have

been deposited in the Gene Expression Omnibus (GEO) database under accession code

GSE118390.
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