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 33 

Abstract 34 

 35 

While timing and rhythm-related phenotypes are heritable, the human genome 36 

variations underlying these traits are not yet well-understood. We conducted a genome-37 

wide association study to identify common genetic variants associated with a self-38 

reported musical rhythm phenotype in 606,825 individuals. Rhythm exhibited a highly 39 

polygenic architecture with sixty-eight loci reaching genome-wide significance 40 

(p<5x10-8) and SNP-based heritability of 13%-16%. Polygenic scores for rhythm 41 

predicted the presence of musician-related keywords in the BioVU electronic health 42 

record biobank. Genetic associations with rhythm were enriched for genes expressed in 43 

brain tissues. Genetic correlation analyses revealed shared genetic architecture with 44 

several traits relevant to cognition, emotion, health, and circadian rhythms, paving the 45 

way to a better understanding of the neurobiological pathways of musicality.  46 

 47 

 48 

 49 

 50 
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Introduction 51 

Rhythm is a fundamental aspect of music across cultures 1,2 and more broadly, 52 

rhythmic patterns provide sensori-motor structure to human interactions. Our tendency 53 

to perceive, create, manipulate, and appreciate rhythms in a variety of contexts (e.g., 54 

speech, music, movement) is part of what makes us human. Even very young children 55 

are sensitive to the social and linguistic signals carried by rhythm 3, thus it is not 56 

surprising that parents use rhythmic vocalizations and synchronous movement (e.g., 57 

lullabies and rocking) to interact with their infants from birth 4. Moving in synchrony to a 58 

musical beat (“beat synchronization”) appears to be a key feature of human musical 59 

experiences throughout the lifespan 5-7. 60 

Although most people are able to effortlessly detect and synchronize with the 61 

beat even without musical training 6,7, there is substantial inter-individual variability 62 

(within cultures) in the extent to which individuals can perceive and produce musical 63 

rhythm accurately 8-10. While the neuroimaging literature points to auditory-motor 64 

networks in the brain underlying rhythm perception and production 11, less is known 65 

about the genetic underpinnings that give rise to individual differences in these 66 

networks. Heritability estimates from family-based studies, using a variety of measures 67 

relevant for rhythmic ability, range from 21% 12 to 50% 13. There is a gap in knowledge 68 

about genomic loci underlying variation in rhythm ability 14, in part due to the challenge 69 

of assessing the rhythm phenotype in a sample large enough to provide sufficient power 70 

to detect common variants with small effects, as expected for complex traits 15.  71 

Summary of Approach. 72 
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We conducted a genome-wide association study (GWAS) to identify common 73 

genetic variants associated with a self-reported musical rhythm phenotype, i.e. “Can 74 

you clap in time with a musical beat?”, collected from 606,825 individuals participating in 75 

research with the personal genetics company 23andMe, Inc. We then validated this self-76 

reported phenotype in a separate internet-based behavioural study conducted in 724 77 

individuals and found that it was significantly correlated with rhythm perception (Online 78 

Methods). In the GWAS, a total of 68 independent SNPs surpassed the threshold for 79 

genome-wide significance (p<5x10-08). In addition to determining which genes were 80 

implicated by these variants, we estimated how much of the total phenotypic variance 81 

could be explained by all variation across the genome (i.e., SNP-based heritability). We 82 

then further explored this heritability to test the hypothesis that variants associated with 83 

rhythm were enriched among genes expressed in brain compared to genes expressed 84 

in other tissues (e.g., muscle, adipose, etc.), and furthermore enriched in genes 85 

expressed in neurons compared to other brain cell types (e.g., oligodendrocyte, 86 

astrocyte).  87 

Using an independent sample of 67,441 genotyped individuals from the 88 

Vanderbilt University Medical Center biobank, BioVU, we tested whether a cumulative 89 

sum of the genetic effects for rhythm detected in our GWAS (i.e., rhythm polygenic 90 

score), was significantly associated with an indication of musician status in the 91 

electronic health record (EHR). Because little is yet known about the relationship of the 92 

genomics of rhythm to other traits, we also performed exploratory genetic correlation 93 

analysis including 764 complex traits for which a well-powered GWAS has been 94 

performed and deposited in LDHub 16. Finally, we evaluated the contribution to rhythm 95 
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of regions of the genome that have experienced significant human-specific evolutionary 96 

shifts (since the divergence of humans and chimpanzees from their last common 97 

ancestor, ~6 million years ago). 98 
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Results 99 

Validating the self-reported rhythm phenotype 100 

 101 

The study population is N=606,825 participants of European ancestry (59% females, 102 

mean age(SD)=52.09(18.5) years, who consented to participate in research with 103 

23andMe, Inc. Data were available from individuals who answered the question “Can 104 

you clap in time with a musical beat?” The majority of participants answered ‘Yes’ 105 

(91.57%) and 8.43% answered ‘No’, which is slightly higher than the estimated 106 

population prevalence of poor rhythm at ~5% 17,18 (Table 1 and Supplementary Note). In 107 

light of prior work suggesting that human rhythm is a complex trait that can be quantified 108 

with both objective and self-report measures 10, we sought to validate the self-report 109 

question against an objective measure of rhythm perception. We conducted a 110 

phenotype validation study with a sample (N=724; mean age=36 years, SD=10.9; 46% 111 

females) recruited anonymously from Amazon’s Mechanical Turk. Participants 112 

performed an objective musical rhythm perception test and were asked “Can you clap in 113 

time with a musical beat?” (details provided in Online Methods). In each of the 32 trials, 114 

participants had to judge whether a pair of rhythms were the same or different, following 115 

a standard procedure for assessing individual differences in musical perception ability 9 116 

and utilizing rhythm sequences with simple (highly metrical) and complex (syncopated) 117 

rhythms 19. Individuals who had better performance on discriminating musical rhythms 118 

were more likely to answer ‘Yes’ to the self-report synchronization question than those 119 

who answered ‘No’ (OR(95%CI)=1.94(1.28 to 3.01), p=0.002, McFadden’s R2=0.39 (i.e, 120 

we expect to see a 94% increase in the odds of answering ‘Yes’, for a standard 121 
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deviation increase in the rhythm discrimination test). In the remainder of the paper, the 122 

“rhythm” trait in our study refers to the self-reported beat synchronization phenotype. 123 

 124 

GWAS results and heritability estimation 125 

GWAS was conducted using logistic regression under an additive genetic model, while 126 

adjusting for age, sex, the top five principal components of ancestry in order to control 127 

for population stratification, and indicators for genotype platforms to account for batch 128 

effects. We excluded SNPs with Minor Allele Frequency (MAF) <0.01, low imputation 129 

quality (R2<0.3) and indels, resulting in a final set of 8,288,851 SNPs for all subsequent 130 

analyses. Sixty-eight independent SNPs (after two rounds of LD pruning, first at r2=0.6 131 

and then at r2=0.1, kb = 250) reached genome-wide significance (p<5x10-8; Figure 1, 132 

Supplementary Table 1, Supplementary Figure 1), from a total of 6,115 SNPs that 133 

passed the significance threshold.  134 

 135 

Linkage Disequilibrium Score Regression (LDSC)20 analyses revealed that heritability 136 

estimates on the liability scale ranged from 13% to 16% when adjusted for a range of 137 

estimated population prevalence of rhythm deficits (from 3.5% to 6.5% 17,18) 138 

(Supplementary Table 2, Supplementary Note).The observed SNP-heritability explained 139 

5% (se=0.0002) of the phenotypic variance in the rhythm trait, with an LD score 140 

regression intercept of 1.02 (se=0.01).  141 

 142 

Gene-based analyses. Gene-based association analyses performed with MAGMA 143 

yielded 203 genes that surpassed the threshold of p<3x10-6 (Supplementary Table 3). 144 
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The top two genes are: CCSER1, in proximity to genes previously associated with 145 

musicality 21, and VRK2 (converging with the top locus identified in our SNP-based 146 

association analyses).  147 

 148 

We also examined potential replication of genetic associations with musicality in 149 

humans from prior reports (28 genes were selected including 26 reported in meta-150 

analysis by 21, and additionally, GATA2 and PCDH7 22 and UGT8 23. Although none of 151 

the genes reached statistical significance (Supplementary Table 4, Supplementary 152 

Note), several are located near CCSER1 in the 4q22-24 region.   153 

 154 

Heritability Partitioning  155 

One advantage to SNP-based heritability estimation is the ability to partition heritability 156 

according to SNP-annotations, which provides insight into the types of genetic variation 157 

that contribute most to rhythm. To determine whether heritability is enriched for specific 158 

functional categories of SNP annotations, stratified LDSC 24 was used to partition 159 

heritability (Supplementary Table 5). We hypothesized that SNPs falling into regions of 160 

open chromatin (i.e., accessible to transcriptional machinery), and regions with human-161 

specific variation, would be enriched for rhythm-associated variation. We found 162 

enrichment in regions conserved in mammals (regions of the genome identified by 163 

Lindblad-Toh et al. 2013 as being under purifying selection) (enrichment=15.8, p=1.19 x 164 

10-12) and in functional categories involved in acetylation of histone H3 at lysine 9 165 

(H3K9ac) (enrichment=8.0, p=1.85 x 10-8) and monomethylation of histone H3 at lysine 166 

4 (H3K4me3) (enrichment=1.29, p=2.16 x 10-5), supporting associations mediated by 167 
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effects on gene regulation. Enrichment was also found in the ‘Repressed’ category of 168 

chromatin states (enrichment=0.87, p=0.0002), and for introns. We also examined 169 

whether genes expressed in specific cell-types show enrichment among rhythm-170 

associated variants as described in 24: and found that genes expressed specifically in 171 

neurons contributed significantly to trait heritability (coefficient=1.19 x 10-9, p=0.037) 172 

conditional to the other annotations (Supplementary Table 6). 173 

 174 

Gene set analyses  175 

Using FUMA 25, we performed a gene-property analysis where the average expression 176 

of the genes per tissue type (using GTEx gene expression panels in 53 tissue types 26 177 

was added as a covariate in the model. As predicted, gene associations were 178 

significantly enriched in brain tissue compared to non-brain tissues (Figure 2). To further 179 

examine potential biological pathways associated with rhythm, we performed MAGMA 180 

gene-set analyses as implemented by FUMA 25. Two gene-sets out of 10,678 achieved 181 

statistical significance after Bonferroni correction (Supplementary Table 7). The top 182 

associated gene-sets with rhythm were: Negative regulation of transcription from RNA 183 

polymerase II promoter (p=8.6 x 10-07), gene-set from the Gene Ontology project 184 

27,28(i.e., any process that includes glucose and decreases the rate or frequency of 185 

transcription from an RNA polymerase II promoter) and Negative regulation of gene 186 

expression (2.9x10-6). 187 

 188 

Human Accelerated Region and Neanderthal Introgression Stratified Heritability 189 

Analyses 190 
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Given previous hypotheses about the origins of rhythm6,7,29, we evaluated the 191 

contribution of regions of the human genome that have experienced significant human-192 

specific shifts in evolutionary pressure using stratified LDSC 20,24. In particular, we 193 

analyzed the contribution to rhythm heritability from variants in genomic loci that are 194 

conserved across non-human species, but have elevated substitution rate on the 195 

human lineage 30. Many of these human accelerated regions (HARs) play roles in 196 

human-specific traits31, including cognition 32. The heritability of rhythm is enriched 2.26-197 

fold in variants in perfect linkage disequilibrium with HARs (p = 0.14). However, given 198 

the small number of variants in these regions and the enrichment of HARs in functional 199 

regions of the genome, it is difficult to explicitly link these shifts to rhythm. Nonetheless, 200 

two of the variants most strongly associated with rhythm (rs14316, rs1464791) fall 201 

within HARs, and the rs1464791 variant is near GBE1, a gene associated with a range 202 

of traits including body-mass index (BMI) 33 and cognitive deficits 34.  203 

We also evaluated the contribution of genetic variants detected in the 204 

Neanderthal genome present in modern Eurasians due to interbreeding (hereafter 205 

“Neanderthal variants”) to the heritability of the rhythm phenotype. Eurasian genomes 206 

contain ~1.5-4% of DNA as a result from interbreeding with Neanderthals around 207 

50,000 years ago. Heritability of rhythm was significantly depleted among Neanderthal 208 

variants (1.97-fold depletion, P = 0.001). However, Neanderthal ancestry is significantly 209 

depleted in functional genomic regions overall 35, therefore, the depletion of rhythm 210 

heritability in these regions is likely the result of the overall depletion for Neanderthal 211 

ancestry in functional regions of the genome. This is supported by a non-significant 𝜏"
∗, 212 

illustrating that Neanderthal vs. human variants do not provide unique heritability when 213 
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conditioned on a broad set of regulatory elements 36(Supplementary Table 8, Online 214 

Methods). 215 

 216 

Proof-of-concept of the genetics of musicality in a health care context 217 

As a proof-of-concept that genetics of rhythm are more widely tied to the biology of 218 

musicality, we further examined whether the contribution of the common alleles 219 

associated with rhythm en masse (also known as polygenic scores (PGS)) predict the 220 

presence of keywords indicating “musician” status in clinical documentation collected in 221 

the electronic health record (see Supplementary Note for details). In a sample of 67,441 222 

individuals in Vanderbilt’s BioVU, we identified 864 individuals with the keyword 223 

“musician” (or other closely related keywords for musical instruments) present in the 224 

EHR that we compared with 66,577 without any mention of “musician” keywords in their 225 

EHR. We found evidence that the PGS for rhythm was significantly higher among 226 

individuals with the “musician” keywords in their chart (OR per SD increase in PGS, 227 

1.30, 95%CI:1.20-1.38, p<2.5 x 10-13, Nagelkerke’s R2=1%) (Supplementary Table 9, 228 

Figure 3), confirming our hypothesis that the rhythm phenotype assessed in our study 229 

captures a dimension of musicality.  230 

 231 

 232 

 233 

Rhythm beyond the contribution of intelligence  234 

In light of previous work linking rhythm and IQ 17,37, we used multi-trait conditional 235 

joint analysis 38 (mtcojo) to remove shared genetic effects between intelligence and 236 
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rhythm. This analysis generated a new set of summary statistics of rhythm in which 237 

betas, standard errors and p-values were adjusted based on the intelligence summary 238 

statistics from 39. Using FUMA as described above, we identified 66 independent, 239 

genome-wide significant loci in the conditioned GWAS, all of which were within 5kb of 240 

the loci in the unadjusted rhythm summary statistics (Supplementary Table 10, 241 

Supplementary Figure 2). We also compared effect estimates in 47 independent, 242 

genome-wide significant SNPs available from both the unadjusted rhythm and IQ 243 

GWAS datasets; all that were in common between these two datasets remained 244 

significant at the GWAS threshold, and their effect estimates were not changed 245 

(Supplementary Table 11). Also, the genetic correlation between the IQ GWAS dataset 246 

and rhythm was not significant (rg=-0.003(standard error=0.02), p=0.88). Similarly, the 247 

estimates of the heritability in the liability scale remained the same (13% to 16%). These 248 

findings indicate that our results are largely driven by associations with rhythm rather 249 

than cognitive ability.  250 

Table 2 shows the rhythm-related loci that are also present in the GWAS 251 

catalogue after adjusting for genetic effects shared with IQ (for a full list of loci see 252 

Supplementary Table 12). 253 

 254 

Cross-trait analyses 255 

To determine if rhythm shares genetic architecture with other traits, we tested 256 

genetic correlations 20 between rhythm and all 764 available traits in LDHub (v.1.9.2) 257 

using LDscore regression. This method is designed to show whether there is shared 258 

genetic variation linked to a particular trait (here, our rhythm trait) and traits measured in 259 
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other samples/studies. There were 31 statistically significant genetic correlations (p<6.5 260 

x 10-5) between rhythm and other traits after adjusting for multiple comparisons (Figure 261 

4, Supplementary Table 13).  262 

 263 

As expected, processing speed measured as ‘mean time to correctly identify 264 

matches’ was negatively correlated with rhythmic ability (rg=-0.16, p=3.22 x 10-13) (i.e., 265 

faster processing speed was associated with having rhythm). Educational qualifications 266 

(O’ levels/GCSEs or equivalent) (rg=0.16, p=4.6 x 10-7), evening chronotype (rg=0.09, 267 

p=3.8 x 10-5) and tinnitus (rg=0.20, p=6.7 x 10-6) were all positively associated with 268 

rhythm. While falling short of the correction for multiple testing, exposure to loud music 269 

was also correlated with a similar point estimate (rg=0.20, p=2.0 x 10-4) and could be 270 

due to a relationship between tinnitus and loud music exposure in the UKBB (rg=0.30, 271 

p=4.8 x 10-6) 36,40. 272 

Additionally, we identified significant genetic correlations between rhythm and 273 

hand grip strength (rg(left)=0.18, se=0.02, p=3.6 x 10-16, rg(right)=0.16, se=0.02, p=6.91 274 

x 10-15), smoking including ‘ever smoked’ (rg=0.16, p=2.5 x 10-11) and ‘past tobacco 275 

smoking’ (rg=-0.15, p=4.6 x 10-10) as well as with peak expiratory flow from both the 276 

UKBiobank (rg=0.15, p=2.11 x 10-9) and a second independent GWA study (rg=0.11, 277 

p=6.6, 10-8) and several other lung-related phenotypes (Supplementary Table 13). 278 

Given that the majority of these traits come from the UKBiobank, it is also possible that 279 

their genetic correlations with rhythm, may be a function of their correlation with each 280 

other, as some degree of phenotypic correlation is also expected.  281 
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Recent studies illustrate the potential for very subtle residual population 282 

substructure to influence some polygenic analyses 41 including genetic correlations. 283 

Therefore, we also adjusted the rhythm associations for SNP-loadings on the first 284 

principal component of ancestry estimated from 1KG European populations. We then 285 

used these SNP estimates of ancestry to adjust the rhythm GWAS results which yielded 286 

no change in the genetic correlations results 41 (Supplementary Table 14 and 287 

Supplementary Note).  288 

Although we cannot determine potential causality, we conducted MR analyses 289 

using the GSMR 38 to examine whether there are significant bi-directional relationships 290 

between rhythm and processing speed, handgrip strength, and chronotype 291 

(Supplementary Note).  We found significant bidirectional relationships for all traits in 292 

the analysis (Supplementary Table 15).  293 

 294 

Sensitivity Analysis of Chromosome 17 locus for chromosomal inversions and 295 

Parkinson’s Disease  296 

 Given that the genome-wide significant locus (lead SNP rs4792891) on 297 

chromosome 17q21 is located within a well-established inversion region that may also 298 

be associated with local population substructure 42, we conducted additional analyses 299 

focused on the region. The inversion was not associated with local ancestry within our 300 

study sample (Supplementary Table 16), suggesting that the association between this 301 

locus and rhythm is not likely to be due to local population confounding. 302 

In addition, we sought to explore the potential effect of Parkinson’s disease (PD) 303 

phenotype on this Microtubule Associated Protein Tau (MAPT) locus (17q21). Taking 304 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 9, 2019. ; https://doi.org/10.1101/836197doi: bioRxiv preprint 

https://doi.org/10.1101/836197


15 

 

into account that PD patients may have difficulty discriminating beat-based rhythms 43, 305 

and also that PD patients are over-represented in the 23andMe database, it was 306 

possible that the inclusion of PD patients in the sample may account for these 307 

associations. The associations between the independent SNP in the locus, rs4792891, 308 

and rhythm remained after removing PD patients from the sample, indicating that this 309 

MAPT association with rhythm is not driven by PD cases (Supplementary Note, 310 

Supplementary Table 17).  311 

 312 
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Discussion 313 

This study demonstrates that common genetic variation plays a role in a musical 314 

rhythm trait, complementing prior evidence of innate human rhythm sensitivity 6,7. Based 315 

on a self-reported beat synchronization phenotype that was validated with an objective 316 

measure of rhythm perception, the present large-scale study (606,825 participants from 317 

23andMe) is a significant first step towards well-powered genomic evidence of a 318 

musicality phenotype. Sixty-eight independent SNPs (Supplementary Table 1) 319 

surpassed the threshold for genome-wide significance, with the top-associated locus 320 

mapped to VRK2-FANCL (rs848293, p=9.2 x 10-18), a protein kinase with multiple 321 

spliced isoforms expressed in brain that was previously associated with behavioural and 322 

psychiatric phenotypes (i.e., depression, neuroticism and schizophrenia 44-46 323 

developmental delay) 47, indicating a biological connection between rhythm and 324 

neurodevelopment.   325 

The total SNP-based heritability of our rhythm trait on the liability scale ranged 326 

from 13 to 16%, in line with both estimates of other complex traits (e.g., asthma 48) and 327 

previously reported heritability estimates of musical rhythm abilities reported in twins 13. 328 

Enrichment of heritability of rhythm in multiple brain tissues, notably cerebellum, basal 329 

ganglia, and cortex, likely reflects the genetic contribution to subcortical-cortical 330 

networks underlying musical rhythm perception and production 11. Indeed, brain 331 

structures associated with rhythm include basal ganglia 49-51, cerebellum 52,53 and 332 

thalamus 54. Furthermore, we found heritability enriched in genes expressed in neuronal 333 

cell types and in SNPs and genes responsible for expression regulation; taken together, 334 
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these results suggest that genomic loci that influence rhythm are enriched for effects on 335 

the brain and mediated by regulation of gene expression.  336 

Initial clues about the evolution of rhythm traits in humans may be indicated by 337 

the occurrence of two of the rhythm-associated loci in human-accelerated regions 338 

(HARS) of the genome. In particular, rs1464791 is an eQTL that regulates expression of 339 

GBE1 in multiple tissues including adrenal gland and muscle 26. It is too early to tell 340 

whether the overlap between rhythm-associated loci and those two HARS support 341 

evolutionary theories about music (e.g., moving to a beat in synchrony during joint 342 

music-making and temporally coordination movements has been posited to have a 343 

selection effect in modern humans by enhancing group social cohesion and mother-344 

infant bonding 1,55.  345 

The genetic architecture of rhythm remained virtually unchanged after 346 

conditioning the analyses on known GWAS markers of intelligence, in line with twin 347 

studies showing specific genetic effects of rhythmic aptitude, over and above common 348 

genetic influences on rhythm and intelligence 17,56. Furthermore, 30 loci do not appear to 349 

have existing genome-wide significant associations with other traits in the current 350 

literature, and thus may represent genomic regions newly associated to some aspect of 351 

musicality. At the same time, the other 36 loci coincided with robust associations in the 352 

GWAS catalogue for a variety of cognitive, neuropsychological, and health traits (Table 353 

2, Supplementary Table 12), indicating that rhythm shares genetic architecture with 354 

many other traits. We replicated previous findings implicating location 4q22.1 in 355 

musicality-related traits 12,23 (CCSER1 was the top-associated gene in our MAGMA 356 

analysis) but did not find support for previous gene associations from prior candidate-357 
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gene, linkage, and GWAS studies with relatively small samples 21, potentially due to 358 

well-known methodological problems with these methods particularly when applied to 359 

small samples 57.  360 

Positive genetic correlations between rhythm and faster processing speed 361 

aligned with prior phenotypic and behavioural genetic studies of cognition, sensory 362 

processing, and musicality 17,56,58,59. The correlation between rhythm and chronotype 363 

opened up the possibility of a relationship between musical traits and evening 364 

chronotype, complimenting evidence of insomnia in musicians 60.  365 

We found positive genetic correlations with tinnitus, which could be driven by 366 

exposure to loud music (this latter correlation with rhythm was just above the 367 

significance threshold after multiple-test corrections); both commonly occur among 368 

musicians and may lead to hearing loss 61 highlighting the importance of estimating the 369 

prevalence of professional musicians within the study sample in future GWAS of rhythm 370 

(this information was not available in the current sample). Unexpected genetic 371 

correlations included associations of rhythm with better lung capacity, previous smoker 372 

phenotypes, and greater handgrip strength. In light of recent evidence that lung function 373 

is genetically related to motor function, processing speed, and cognition in older adults 374 

62, it is possible that rhythm shares common biology with a constellation of traits. These 375 

lines of research may have clinical-translational implications: for example, a recent 376 

intervention study found that music listening improved handgrip strength in older adults 377 

63. We also uncovered shared genetic effects between musical rhythm and biological 378 

rhythms including circadian chronotypes and breathing-related phenotypes. 379 
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More broadly, the genetic correlations between rhythm and other complex traits 380 

were relatively modest, suggesting that the present phenotype is not primarily 381 

confounded/co-occurring with any particular trait we examined. There are no large-382 

sample GWAS data for major processes fundamental to beat synchronization 7,11: 383 

auditory processing, sensori-motor synchronization, locomotion, or temporal processing 384 

as a component of general timing abilities 64, for which we may expect greater genetic 385 

correlations with rhythm in future studies.  386 

 The primary limitation of our study is the self-reported assessment of rhythm. 387 

Although our independent phenotypic validation study indicated that an individual’s self-388 

assessment of beat synchronization is related to their objectively-measured rhythm 389 

perception abilities, the self-report itself is not an objective assessment of rhythm. 390 

Nevertheless, previous studies of other health traits based on self-report have 391 

effectively replicated associations from studies using validated assessments, indicating 392 

that a powerful sample size can overcome limitations arising from phenotyping error 65. 393 

The selection of the self-report beat synchronization phenotype was made because it 394 

theoretically relates to fundamental components of rhythm including motor periodicity, 395 

beat extraction, meter perception, and auditory-motor entrainment (see 7 and Glossary 396 

in Supplementary Note). Nevertheless, the phenotype available in our GWAS dataset 397 

did not allow us to separate the rhythm phenotype into those component factors, and 398 

the prevalence of individuals with musical training in the sample was not established. 399 

However, given the result that polygenic score for rhythm predicted the presence of 400 

musician keywords in an electronic health record-linked biobank, it is likely that we have 401 

indeed captured a robust aspect of musicality. These results are promising for future 402 
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large-scale genomic interrogations using comprehensive music phenotyping yielding 403 

continuous musicality variables (whether questionnaire-based 10,66 or objective aptitude-404 

based 13). Even without continuous measures of rhythm, here we have identified biology 405 

potentially differentiating rhythm deficits 67 from typical rhythm development. Once 406 

GWAS results are available from other heritable musicality traits such as pitch 407 

discrimination and music training 14, the field will be able to test for moderate genetic 408 

correlations between rhythm and other musical traits as predicted by family-based 409 

studies 12,13,68. Another important area of inquiry will be to investigate musicality and 410 

cross-trait correlations in populations of non-European ancestry, hence capturing the 411 

spectra of musicality, a human universal, in a wider range of ethnic, cultural and socio-412 

economic contexts. 413 
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Online Methods  414 

Study sample 415 

We obtained genome-wide association study summary statistics from the personal 416 

genetics company 23andMe, Inc. Phenotypic status was based on responses to online 417 

surveys in which individuals self-reported “Yes” (cases) or “No” (controls) to the 418 

question ‘Can you clap in time with a musical beat?”. Individuals who responded “I’m 419 

not sure” were excluded from our genomic study.  The GWAS included a total of 420 

555,660 cases and 51,165 controls (total N=606,825, mean age(SD)=52.09(18.5), 421 

prevalence=92%). Specifically, 10.4% of the individuals were 30 years old or younger, 422 

24.4% were between 30 and 45 years old, 27.1% were between 45 and 60 years old 423 

and 38.1% were older than 60 years old (Table 1). All individuals provided informed 424 

consent according to 23andMe’s human subject protocol, which is reviewed and 425 

approved by Ethical & Independent Review Services, a private institutional review board 426 

(http://www.eandireview.com).  427 

Phenotype validation study 428 

Overview. To validate the rhythm phenotype used in the genetic study, we conducted a 429 

separate internet-based study in N=724 participants from Amazon’s Mechanical Turk. 430 

The experiment was designed to determine if self-reported rhythm abilities measured 431 

with the question used in the GWAS (i.e., ‘Can you clap in time with a musical beat?’) 432 

would be associated with objective performance on a task of rhythm abilities. The Beat-433 

based advantage paradigm was selected as a rhythm discrimination test due to its 434 

design of stimuli with simple and complex meter 69 and prior history investigating 435 
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individual differences in rhythm perception in a variety of brain and behavioural studies 436 

in adults and children with typical and atypical development 19,43,70,71, as well as 437 

feasibility for internet-based adaptation. The questionnaire (self-report questions) was 438 

administered prior to the perception task, to avoid biasing participant self-report 439 

responses by how they perceived they performed on the objective test. 440 

 441 

Participants 442 

We recruited 724 participants anonymously from Amazon Mechanical Turk. The study 443 

received ethical approval from the Columbia University Institutional Review Board. 444 

Participants (333 females) were 18-73 years old (mean = 36.1 years, SD=10.9) with 0-445 

45 years of self-reported musical experience (mean 3.7 years, SD=5.8).  446 

 447 

Stimuli 448 

Stimuli consisted of 32 rhythms drawn from prior work 19,69; half were “simple” rhythms 449 

(strong beat-based metrical structure and generally easier to discriminate) and half were 450 

“complex” rhythms (weaker metrical structure due to syncopation and generally more 451 

challenging to discriminate). Each rhythm was presented as a pure tone in one of 6 452 

frequencies (294, 353, 411, 470, 528, and 587 Hz, selected at random), and one of 4 453 

durations (ISI of 220, 230, 240, and 250 ms). Each trial consisted of 3 rhythms 454 

separated by 1500 ms of silence. As in prior work, the two first presentations were 455 

always identical, and in half of the trials (counterbalanced) the third rhythm was also 456 

identical (standard condition); in the other trials the rhythm was slightly different (deviant 457 

condition).  458 
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 459 

Procedure 460 

Amazon Mechanical Turk (M-Turk) participants were invited to participate in an 461 

experiment where they would “listen to sounds and answer questions”. To simulate the 462 

user environment within 23andMe where research participants answer a series of 463 

unrelated questions about health and other traits, we asked participants to provide 464 

answers for a series of randomly presented questions on a variety of other topics 465 

(presented at random order; see methods), such as “Do you have wisdom teeth?”. 466 

Among these questions we embedded two rhythm-related questions: the target 467 

question: “Can you clap in time with a musical beat?” and an additional question, “Do 468 

you have a good sense of rhythm?”.  After answering these questions, participants 469 

passed a test for usage of headphones 72. This test checks whether participants can 470 

hear sounds that are presented through headphones, and guarantees good listening 471 

conditions as well as the ability to follow instructions. Participants that passed the 472 

headphone test were invited to perform the rhythm perception task (Supplementary 473 

Figure 3).  474 

 475 

Participants received 8 training trials that were selected from rhythms that were not part 476 

of the test set, and then performed 32 rhythm perception task trials. In all trials (practice 477 

and task) participants received feedback regarding their performance (“correct” and 478 

“incorrect”), and each correct trial resulted in adding a small monetary bonus. 479 

Participants were paid for their performance about $1.60-$2.00 depending on their 480 

performance, and the duration of the test was about 16-18 minutes. Participants who 481 
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did not pass the headphone test received $0.20 for about one minute of answering the 482 

initial questions and performing the headphone test. Participant demographic data was 483 

collected after the rhythm test.  484 

 485 

Phenotype Validation Results  486 

654 (90.3%), 25 (3.5%) and 45 (6.2%) participants answered “yes”, “no,” and “I’m not 487 

sure” to the target question, “Can you clap in time to a musical beat”. Regarding the 488 

self-report question ‘Do you have a good sense of rhythm?’, 503(67%) answered ‘Yes’, 489 

102(14%) answered ‘No’ and 117(16%) answered ‘I don’t know’. N=488 answered Yes 490 

to both questions, while 166 answered Yes to the Clap to Beat question and 15 491 

answered Yes to the sense of rhythm question, resulting in a total tetrachoric correlation 492 

between these two self-report questions of r=0.73.  493 

 494 

Responses to the rhythm discrimination perception test were analysed using signal 495 

detection theory 73, as in 19; this method is appropriate for discrimination tasks where 496 

the participant has to categorize stimuli along some dimension; the resulting d’ values 497 

the strength of detection of the signal relative to noise. d’ values were calculated on the 498 

32 test trials (16 simple rhythm trials and 16 complex rhythm trials) and are reported in 499 

Supplementary Table 18. As expected from prior work 19,70, individuals scored better in 500 

the simple rhythms than the complex rhythms (t(724)=11.11, p<2.2 x 10-16, Cohen’s 501 

d=0.58 (Supplementary Figure 4).  502 

To examine whether the self-report of rhythm ability was related to the objective 503 

performance on the rhythm discrimination/perception test (see task performance in 504 
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relation to responses to self-report, shown in Supplementary Figure 5a), we performed 505 

a logistic regression analysis in which the self-report rhythm question (Yes vs. No) was 506 

the outcome and the rhythm discrimination test performance (standardized d’ scores 507 

mean = 0, SD = 1) was the predictor. Covariates included age at time of assessment, 508 

education, and sex.  Individuals with higher performance in the rhythm discrimination 509 

test (total d’) were more likely to answer that they can clap to the beat 510 

(OR(95%CI)=1.94(1.28 to 3.01), p=0.002, McFadden’s R2=0.39), indicating there is 511 

approximately a 94% increase in the odds of answering ‘Yes’, per standard deviation 512 

increase in the rhythm discrimination test.  We did not include ‘I’m not sure’ in the 513 

regression, because this answer is not included in the phenotype assessment of the 514 

genetic study. Because the simple rhythms have a strong metrical structure and are 515 

known to facilitate detection and synchronization of the beat 19, we also tested whether 516 

performance on the simple rhythm trials predicted self-reported beat synchronization 517 

(i.e., those who responded Yes to the clap-to-beat question). As above, we found that 518 

individuals with higher scores on the simple rhythm trials were more likely to answer 519 

that they can clap to the beat (OR(95%CI=1.99(1.36-2.90), p<0.001, McFadden’s 520 

R2=0.40 (Supplementary Figure 5b). Taken together, these results suggest that the 521 

“clap to the beat” self-report phenotype is a broad representation of musical rhythm 522 

ability, potentially capturing aspects both of rhythm perception ability and of self-523 

perceived beat synchronization ability. 524 

 525 

Genotypes and QC 526 

23andMe dataset 527 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 9, 2019. ; https://doi.org/10.1101/836197doi: bioRxiv preprint 

https://doi.org/10.1101/836197


26 

 

The National Genetics Institute (NGI) performed the DNA extraction and genotyping on 528 

saliva samples. Overall, there were five genotyping platforms and subjects were 529 

genotyped on only one of them. The v1 and v2 platforms had variants of the Illumina 530 

HumanHap550+ BeadChip, including approximately 25,000 custom SNPs selected by 531 

23andMe, with a total of about 560,000 SNPs. The v3 platform had variants of the 532 

Illumina OmniExpress+ BeadChip, with custom content to improve the overlap with the 533 

v2 array, with a total of about 950,000 SNPs. The v4 platform covered about 570,000 534 

SNPs, providing extra coverage of lower-frequency coding variation. The v5 platform, in 535 

current use, is based on an Illumina Infinium Global Screening Array (~640,000 SNPs) 536 

supplemented with ~50,000 SNPs of custom content. In cases where samples did not 537 

reach the 98.5% call rate, the sample was re-genotyped. When analyses failed 538 

repeatedly, then customers were re-contacted by 23andMe customer service to provide 539 

additional samples. 540 

 541 

23andMe restricted participants to a set of unrelated individuals of European ancestry 542 

as determined through an analysis of local ancestry 74. Relatedness was defined using 543 

a segmental identity-by-descent (IBD) estimation algorithm 75. Imputation was 544 

conducted by combining the May 2015 release of 1000 Genomes Phase 3 haplotypes 76 545 

with the UK10K imputation reference panel 77 to create a single unified imputation 546 

reference panel. Phasing was conducted using an internally-developed tool, Finch, 547 

which uses the Beagle graph-based haplotype phasing algorithm 78 for platforms V1 to 548 

V4 while for the V5 platform a similar approach was used with a new phasing algorithm, 549 

Eagle2 79. SNPs with a Hardy-Weinberg p<10-20, or a call rate of <90% were flagged. 550 
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SNPs were also flagged if they were only genotyped on their ‘V1’ and/or ‘V2’ platforms 551 

due to small sample size and also if SNPs had genotype date effects. Finally, SNPs 552 

were also flagged if they had probes matching multiple genomic positions in the 553 

reference genome 75-79.  554 

 555 

GWAS 556 

GWAS was conducted using logistic regression under an additive genetic model, while 557 

adjusting for age, sex, the top five principal components of ancestry in order to control 558 

for population stratification, and indicators for genotype platforms to account for batch 559 

effects. We excluded SNPs with Minor Allele Frequency (MAF) <0.01, low imputation 560 

quality (R2<0.3) and indels, resulting in a final set of 8,288,851 SNPs for all subsequent 561 

analyses.  562 

 563 

Statistical analyses 564 

FUMA-based analyses. The FUMA 25 web application was used on the Genome-Wide 565 

Association summary statistics to identify the SNPs that were independent in our 566 

analysis with a genome-wide significant P-value (<5 x 10-8) that are in approximate 567 

linkage disequilibrium (LD) with each other at r2<0.1 and to generate Manhattan and 568 

Quantile-Quantile plots and the SNP functional annotations.  569 

Gene analysis and gene-set analysis was performed with MAGMA (v1.07) using FUMA 570 

(v1.3.4) and the association analysis summary statistics. Gene expression analysis was 571 

obtained from GTEx v7 (https://www.gtexportal.org/home/) integrated by FUMA 80. More 572 

specifically, the gene expression values were log2 transformed average RPKM per 573 
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tissue type after winsorization at 50 based on GTEx RNA-seq data. Tissue expression 574 

analysis was performed for 53 tissue types where the result of gene analysis was tested 575 

for one side while conditioning on average expression across all tissue types.  576 

 577 

LD score regression and genetic correlations. SNP-heritability was computed with LD 578 

Score regression software 24, and heritability estimates were adjusted to the liability 579 

scale based on population prevalence of rhythm deficits of 3.5%-6.5% (Supplementary 580 

Table 2, Supplementary Note). We then partitioned heritability of rhythm by functional 581 

category and investigated cell-type-specific enrichments using stratified LD score 582 

regression as per 24. The Bonferroni-corrected p-value was 0.05/1015=4.9 x 10-5. 583 

The set of human accelerated regions (HARs) was taken from 30. All variants in 584 

perfect LD (r2 = 1.0 in 1000 Genomes European individuals) with variants in HARs were 585 

considered in the analysis. Similarly, variants tagging Neanderthal introgressed 586 

haplotypes were defined as in 81. All variants in perfect LD with a Neanderthal tag SNP 587 

were considered Neanderthal variants. For each set, we performed stratified LDSC 588 

(v1.0.0) with European LD scores and the baseline LD-score annotations v2.1. The 589 

heritability enrichment is defined as the proportion of heritability explained by SNPs in 590 

the annotation divided by the proportion of SNPs in the annotation. Standard effect size 591 

(𝜏"∗), which quantifies the effects unique to the annotation, is the proportionate change in 592 

per-SNP heritability associated with a one standard deviation increase in the value of 593 

the annotation, conditional on other annotations in the baseline v2.1 model 82. 594 

Genetic correlations between rhythm and other complex traits were estimated 595 

using LDSC through LD Hub v1.9.0 (http://ldsc.broadinstitute.org/ldhub/) 16 and publicly 596 
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available GWAS summary statistics.  764 traits were examined and the Bonferroni 597 

corrected p-value threshold for significance was 0.05/764=6.5 x 10-5. To examine 598 

whether the genetic correlations are influenced by residual population stratification, we 599 

adjusted the rhythm GWAS summary statistics for the SNP PC-loadings of all top 10 600 

PCs. PC loadings were generated from the 1000 Genomes Project because individual-601 

level genotype data was unavailable on the analysed sample 83, following 41. 602 

 603 

We used the gsmr R-package (gcta version:v1.92.1beta6) to implement Generalised 604 

Summary-data-based Mendelian Randomization to test for causal genetic associations 605 

38; see Supplementary Note. 606 

 607 

Conditional analyses. 608 

To control for pleiotropy between cognition and rhythm abilities(23) and identify genetic 609 

effects of rhythm traits above and beyond those shared with IQ, we ran a multi-trait 610 

conditional and joint analysis (mtCOJO) 38, conditioning on intelligence using GWAS 611 

summary statistics from 39.  612 

 613 

 614 
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 923 

FIGURES 924 

 925 

Figure 1. Manhattan plot of GWAS results for rhythm. Results are shown for 926 

606,825 research participants with 23andMe who responded Yes (N=555,660) vs. No 927 

(N=51,165) to the question “Can you clap in time to a musical beat?”, controlling for 928 

age, sex, top 5 PC’s for ancestry, and genotype platform. The x-axis shows 929 

chromosomal position and the y-axis shows -log10 p-values). 68 loci surpassed the 930 

threshold for genome-wide significance of p<5x10-8 (dotted horizontal line). For 931 

illustration purposes, we only included 500,000 SNPs with p<0.1 932 

 933 

 934 
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Figure 2. Gene expression profiles for genes associated with rhythm in 53 tissue 935 

types from the GTEx database. Gene property analysis was conducted in FUMA on 936 

the MAGMA gene-based results, in which the average expression per gene was added 937 

as a co-variate to the model. Associations with rhythm were significantly enriched in 938 

brain tissue compared to other tissues (-log-10 p-values are on y-axis, with type on x-939 

axis). 940 

 941 

 942 

 943 

 944 
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Figure 3. Polygenic score of rhythm predicts presence of musician-related 945 

keywords in electronic health record (EHR) biobank. With weights derived from the 946 

23andMe GWAS, we applied polygenic scores (PGS) for rhythm to genomic data from 947 

N=864 individuals in Vanderbilt’s BioVU whose EHR contained “musician” and related 948 

keywords, and compared to a control sample of N=66,577 (See Supplementary Note). 949 

PGS-rhythm were higher for musician vs. controls (OR=1.3) but did not predict 3 950 

negative-control traits, shown here. 951 

 952 

 953 

 954 
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Figure 4. Selected results from the cross-trait genetic correlations analysis. 955 

Rhythm summary statistics were significantly genetically correlated with several health, 956 

cognitive, emotion, and circadian phenotypes in our analysis comparing rhythm to traits 957 

available in LDHub. Full results are presented in Supplementary Table 13. The y-axis is 958 

the rg correlation, the bars represent standard errors and the p-values are also 959 

indicated. 960 

 961 

 962 
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 964 

 965 

Tables 966 

 967 

Table 1. Number of participants in each rhythm phenotype group, broken down by sex 968 

and age range in the GWAS sample. 969 

 970 

Phenotype group 
(response to Clap-
to-beat question) Total N Males Females 

0 to 30 
years old 

30 to 45 
years old 

45 to 60 
years old 

60 years old 
and over 

Yes (cases) 555660 226188 329472 57898 135168 150939 211655 
No (controls) 51165 23998 27167 5186 12909 13312 19758 

 971 

 972 

 973 

 974 
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Table 2. Genomic loci associated with rhythm after adjusting for intelligence and traits 975 

with which they have been previously associated (loci in pink do not exist in GWAS 976 

catalog) 977 

 978 

SNPs after 
IQ cojo 

chr p-value 
GWAS 
catalog 
(yes/no) 

GWAS catalog 

rs34762587 1 2.21584E-13 no   
rs2635634 5 9.96339E-12 no   
rs12913592 15 6.59873E-11 no   
rs2061843 1 1.08739E-09 no   
rs4443239 4 1.5082E-09 no   
rs1901739 5 2.15026E-09 no   
rs8079923 17 3.11892E-09 no   
rs7501911 17 3.99553E-09 no   
rs2284901 14 7.46306E-09 no   
rs10978661 9 9.75689E-09 no   
rs4263335 4 9.25137E-09 no   
rs7939759 11 1.45292E-08 no   
rs9710427 19 1.26321E-08 no   
rs12638746 3 1.56044E-08 no   
rs2505344 10 1.6844E-08 no   
rs6548147 2 2.0951E-08 no   
rs10885458 12 2.56522E-08 no   
rs10877461 10 2.61599E-08 no   
rs1996148 8 2.90685E-08 no   
rs12056186 7 2.93356E-08 no   
rs7856850 9 3.38293E-08 no   
rs4704043 5 3.49958E-08 no   
rs43182 3 4.50456E-08 no   
rs7875397 9 2.21728E-13 no   
rs2018545 14 3.58572E-10 no   
rs7002174 8 4.75329E-08 no   
rs34863893 5 8.60406E-10 no   
rs7297439 12 5.07484E-09 no   
rs72826882 17 2.58837E-09 no   
rs7625774 3 3.12812E-09 no   
rs848293 2 1.01057E-17 yes depression, neuroticism, schizophrenia 
rs62340585 4 2.2504E-14 yes neuroticism, schizophrenia, highest math class taken 

rs10168817 2 1.83859E-14 yes 
reaction time, worry, pneumonia, phonic sneeze reflex, reaction 
time, HIV-1 viral set point 

rs10779987 3 2.04673E-14 yes hand grip strength 
rs10875125 1 3.43636E-13 yes educational attainment, schizophrenia, ASD, ADHD, MDD 
rs4792891 17 7.06239E-13 yes general cognitive ability, depressed affect, neuroticism 
rs1468701 7 2.72542E-12 yes intelligence 

rs9626920 22 9.91369E-12 yes 
self-reported risk-taking behaviour, smoking status, dupuytren's 
disease 

rs764299 2 1.47E-11 yes 
educational attainment, highest math class taken, cognitive 
performance 

rs1426371 12 1.34602E-11 yes extraversion, worry 
rs7586405 2 7.19E-10 yes heel bone mineral density 

rs55678522 1 2.81431E-09 yes 
glioma, non-glioblastoma glioma, highest math class taken, 
general cognitive ability, educational attainment, intelligence 

rs6087848 20 3.75408E-09 yes 
inflammatory bowel disease, Crohn's disease, cognitive 
performance, 

rs13163173 5 6.08339E-09 yes 

platelet count, intelligence, depressive symptoms, subjective 
well-being, depressed affect, neuroticism, BMI, 
conscientiousness, depression 
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rs67264739 5 5.89821E-09 yes adolescent idiopathic scoliosis 
rs1596431 5 5.77642E-09 yes intelligence 

rs12909047 15 1.46255E-08 yes 
caffeine metabolism (plasma 1,3, 7, -trimethylxanthine 
(caffeine)level) 

rs67816799 4 1.64433E-08 yes educational attainment 
rs10932201 2 1.55342E-08 yes systolic blood pressure 
rs526904 11 1.54544E-08 yes Alzheimer's disease, family history of Alzheimer's disease, 

rs13197257 6 2.77659E-08 yes 
reaction time, educational attainment, general cognitive ability, 
highest math class taken 

rs11692449 2 3.2277E-08 yes immature fraction of reticulocytes 
rs62014217 15 3.1548E-08 yes atrial fibrillation, urinary albumin excretion 
rs476141 1 4.68634E-08 yes diabetic retinopathy 
rs7715357 5 1.30965E-13 yes smoking status 
rs11865086 16 5.94369E-13 yes blood protein levels, menarche(age at onset) 

rs1536057 6 1.35469E-12 yes 

platelet distribution width, smoking status (ever vs. never 
smokers), smoking initiation (ever regular vs. never regular), 
anxiety/tension(special factor of neuroticism) 

rs1972582 12 7.90101E-12 yes 
chronic kidney disease, glomerular filtration rate(creatinine), 
blood metabolite levels, chronotype 

rs3780420 9 6.39377E-11 yes 
quantitative traits, platelet distribution width, platelecrit, platelet 
count 

rs9385269 6 1.96812E-10 yes 

educational attainment, cognitive performance, intelligence, 
regular attendance at a pub or social club, Tourette’s syndrome, 
educational attainment, bipolar disorder, highest math class 
taken, self-reported math ability, cognitive function, alcohol 
consumption (drinks per week), general risk tolerance, extremely 
high intelligence, autism spectrum disorder, QT interval, risk 
taking tendency  

rs16837903 1 4.74528E-10 yes monocyte chemoattractant protein-1 levels, lung function 
rs778353 2 3.01299E-08 yes heel bone mineral density 
rs10497357 2 3.42377E-08 yes longitudinal change in brain amyloid plaque burden 
rs2467452 12 9.8837E-09 yes automobile speeding propensity, chronotype, morning person 

rs6684973 1 1.01877E-08 yes 

schizophrenia, depression, smoking initiation, smoking status, 
alcohol consumption self-reported math ability, highest math 
class taken 

rs2819336 1 4.59116E-09 yes 

smoking cessation, smoking initiation, cognitive ability, 
intelligence, general cognitive ability, cognitive performance, age 
of smoking initiation, hypertension risk in short sleep duration, 
menarche (age of onset), red blood cell count, educational 
attainment, self-reported math ability, highest math class taken, 
attention deficit hyperactivity disorder, male-pattern baldness 
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