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Lead halide perovskites have recently been used as light absorbers in hybrid organic–inorganic solid-state solar cells, with
efficiencies as high as 15% and open-circuit voltages of 1 V. However, a detailed explanation of the mechanisms of
operation within this photovoltaic system is still lacking. Here, we investigate the photoinduced charge transfer processes
at the surface of the perovskite using time-resolved techniques. Transient laser spectroscopy and microwave
photoconductivity measurements were applied to TiO2 and Al2O3 mesoporous films impregnated with CH3NH3PbI3
perovskite and the organic hole-transporting material spiro-OMeTAD. We show that primary charge separation occurs at
both junctions, with TiO2 and the hole-transporting material, simultaneously, with ultrafast electron and hole injection
taking place from the photoexcited perovskite over similar timescales. Charge recombination is shown to be significantly
slower on TiO2 than on Al2O3 films.

H
ybrid organic–inorganic all-solid-state solar cells based on
methylammonium lead halide perovskite absorbers are cur-
rently attracting increasing interest because of their ease of

fabrication and performances rivalling the best thin-film photovol-
taic devices1–7. Of the various types of perovskites and morphologies
reported to date, CH3NH3PbI3 deposited on a mesoporous film of
titanium dioxide through a sequential deposition method appears
to yield the best certified conversion efficiency1. The optical and
electronic properties of perovskite materials have been studied
thoroughly in recent decades8–11. As hybrid organic–inorganic
lead halide perovskites can cumulate functions of light absorption,
n-type conduction6 and p-type conduction12, the current picture
for the hybrid spiro-OMeTAD|perovskite|TiO2 cell could be
described as follows (Fig. 1). The perovskite absorbs light and elec-
tron–hole pairs are created in the material, which can possibly
evolve towards the formation of excitons after thermalization of
the carriers. Charge separation can then occur through two possible
primary reactions: injection of photogenerated electrons into TiO2

nanoparticles (equation (1a)) and/or injection of holes (equation
(2a)) into a hole-transporting material (HTM) such as spiro-
OMeTAD2,13. However, which electron or hole injection process
occurs first and, in the latter case, whether electron injection into
and transport within the oxide mesoporous film (equation (2b)) is
playing any role, remain unclear. The precise role of titanium
dioxide in efficient perovskite solar cells based on mesoporous
films of this particular metal oxide has indeed not been established
clearly. Evidence has been found for electron injection from the
mixed halide CH3NH3PbI2Cl into TiO2 (refs 6,14), and the same
material has also been reported to yield efficient photovoltaic con-
version once dispersed on an insulating alumina framework, in
which electron injection is not energetically feasible and where no
sensitization of the oxide material can be invoked6.

Electron injection as the primary charge separation step:

(e− . . . h+)perovskite � e −
cb (TiO2) + h+(perovskite) (1a)

h+(perovskite) � h+(HTM) (1b)

Hole injection as the primary charge separation step:

(e− . . . h+)perovskite � h+(HTM) + e−(perovskite) (2a)

e−(perovskite) � e −
cb (TiO2) (2b)

Exciton annihilation:

(e− . . . h+)perovskite � hn′ (3)

(e− . . . h+)perovskite � ∇ (4)

Back electron transfer at the TiO2 surface:

e −
cb (TiO2) + h+(perovskite) � ∇ (5)

Back charge transfer at the HTM surface:

h+(HTM) + e−(perovskite) � ∇ (6)

Charge recombination at the TiO2|HTM interface:

e −
cb (TiO2) + h+(HTM) � ∇ (7)

Undesired reactions such as exciton annihilation, leading to
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photoluminescence (equation (3)) or to non-radiative recombina-
tion (equation (4)), as well as recombination of the charge carriers
at the three interfaces (equations (5) to (7)) compete with the extrac-
tion of the photogenerated charges. The kinetics of these processes
is thus expected to control, to a large extent, the overall photovoltaic
conversion efficiency of the system.

In this work, we applied time-resolved spectroscopy techniques
to assess the individual dynamics of all occurring interfacial photo-
induced charge transfer processes and to derive the effective mech-
anism for charge separation. This information is of paramount
importance for understanding the functioning of the devices and
eventually for the improvement of their photovoltaic performances.

The dynamics of the various charge transfer processes were first
assessed by probing optical transient absorption signals in the near-
infrared with CH3NH3PbI3 deposited on either mesoporous TiO2 or
Al2O3 films, in the absence of HTM. To support and complement
the mechanistic picture of the processes, time-resolved photocon-
ductance measurements were also performed in the microwave fre-
quency range. Because of the mismatch of the energies of the
conduction bands of Al2O3 and the perovskite, electron injection
is not thermodynamically feasible in this oxide. On alumina and
in the absence of HTM, the only possible pathway for energy con-
servation after light absorption is electron–hole recombination,
either through luminescence or non-radiative processes (equations
(3) and (4)). Comparison with TiO2 samples thus provides evidence
of electron injection (equation (1a)) and subsequent back charge
transfer and recombination processes at the TiO2 surface (equations
(5) and (7)) once the HTM is introduced into the system. A high
power conversion efficiency of the photovoltaic device must
obviously imply that the charge recombination processes (equations
(3) to (7)) occur on a much slower timescale than the charge separ-
ation and extraction processes (equations (1) and (2)). It is therefore
of crucial interest to determine the kinetics of these reactions so as to
ultimately improve the cell’s performance.

Ultrafast transient optical absorption spectroscopy
Femtosecond pump–probe transient absorption experiments were
carried out at a probe wavelength of 1.4 mm and an excitation
wavelength of 580 nm for CH3NH3PbI3 samples deposited on
TiO2 and Al2O3 films, with and without HTM. The resulting
transient absorption was found in all cases to rise within the
first picosecond (Fig. 2). The decay of the signal traces was
observed to be multi-exponential for all samples and was fitted
with a double exponential starting at t¼ 1 ps. The corresponding
fast component developed within 40–60 ps for all samples, while a
slower component appeared in the 140–270 ps time range. The
1.4 mm probe wavelength was initially selected to probe oxidized
spiro-OMeTAD, which absorbs in the near-infrared15,16.
However, samples deprived of HTM yielded an important
transient absorption signal originating from the perovskite itself.
Comparing the signals obtained on the two different metal
oxides, it is inferred that they reflect the time evolution of the

CH3NH3PbI3 photoexcited states population. These excited
states correspond to photogenerated electrons and holes, which
can either be paired in excitons or exist in the form of free or
even trapped charge carriers. In systems prepared on TiO2

films, a small contribution to the transient absorption signal of
conduction-band electrons injected in TiO2 cannot be excluded.
Similarly, for all systems containing spiro-OMeTAD HTM, contri-
butions to the transient absorption signal of oxidized HTM
species cannot be omitted and will be discussed later.

In the case of samples without HTM, a transient signal arising
from the perovskite deposited on Al2O3 was observed and attributed
to the decay of the carriers’ population through recombination
within the absorber material (blue trace, Fig. 2) as no interfacial
reaction can take place in this case. Transient absorbance of a
perovskite|TiO2 sample shows that the relative signal amplitude of
the slower part, defined as the normalized absorbance change at
25 ps, is larger than on Al2O3 (Table 1, 24% and 14%, respectively).
This relative signal amplitude is subsequently used as a metric to
compare the various samples. We will assume in the following dis-
cussion that charge recombination within the perovskite is similar
on TiO2 and Al2O3 samples. This assumption is corroborated by
the observation from transient photoconductance (TPC) measure-
ments (Fig. 3) that the charge decay within the perovskite is not
influenced by deposition on a mesoporous framework with
respect to perovskite deposited as a flat film on glass. For reasons
that will be discussed in the following, the contribution to the tran-
sient absorption signal of electrons injected in the TiO2 conduction
band is believed to be negligible. From this perspective, the larger
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Figure 1 | Schematic diagram of energy levels and electron transfer

processes in an HTM|perovskite|TiO2 cell.

1.2

1.0

0.8

0.6

0.4

0.2

0.0

N
o

rm
al

iz
ed

 ∆
A

 

10−12 10−11 10−10 10−9

Time (s)

 TiO2

 Al2O3

 
CH3NH3PbI3 + spiro

 TiO2

 Al2O3

 

A2

CH3NH3PbI3

Figure 2 | Time evolution of electron and hole populations in photoexcited

CH3NH3PbI3 perovskite in various systems. Transient absorption signals

were measured at a probe wavelength of 1.4mm following femtosecond-

laser pulsed excitation at 580 nm: CH3NH3PbI3 on TiO2 (black);

CH3NH3PbI3 on Al2O3 (blue); CH3NH3PbI3 and spiro-OMeTAD on TiO2

(red); CH3NH3PbI3 and spiro-OMeTAD on Al2O3 (green). Thick solid lines

represent bi-exponential fits of experimental points starting at t¼ 1 ps. A2

represents the normalized absorbance change at 25 ps, used as a metric to

compare the various samples.

Table 1 | Ratio of amplitude A2 relative to the total
normalized amplitude DA0 for CH3NH3PbI3 on TiO2 and
Al2O3, with and without spiro-OMeTAD HTM.

A2/DA0* Without HTM With HTM

TiO2 0.24 0.34

Al2O3 0.14 0.26

*A2 measured from data displayed in Fig. 2 at t¼ 25 ps; DA0 at 1 ps.
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relative amplitude for the slower part of the decay observed for the
perovskite in contact with TiO2 indicates that some of the charges
have already been separated through ultrafast electron injection
(equation (1a)). The latter process leaves an excess of holes in the
perovskite that take longer to recombine with the remaining elec-
trons, whose population has been depleted. As the decay curves
for the TiO2 case begin lagging behind that for Al2O3 at delay
times≥3 ps (Fig. 2, black and blue curves, respectively), it is inferred
that charge separation must occur at the perovskite|titania junction
on a similar or shorter timescale.

Pairs of samples prepared on Al2O3 and TiO2 films were also
measured with spiro-OMeTAD impregnating the mesoporous
oxides. Interestingly, for a sample of Al2O3 with HTM, the relative
amount of remaining charges at a delay time of 25 ps is similar to
that observed for the previously discussed sample prepared on
TiO2 and without spiro-OMeTAD (Table 1, 26% relative ampli-
tude). This indicates that hole injection into the HTM (equation
(2a)) must be completed within a comparable timescale as electron
injection into TiO2 (equation (1a)). In the case of perovskite in
contact with both TiO2 and the HTM, the amount of longer-lived
charges is higher (Table 1, 34% relative amplitude). This result
shows that the most efficient charge separation is obtained when
using TiO2 and HTM together and is rationalized by the fact that
the recombination of the remaining charges in the perovskite
must account for charges that are injected at both separate junctions
(TiO2|perovskite and perovskite|HTM). Here, in contrast to the case
of perovskite deposited on Al2O3 and in contact with the HTM, no
residual absorption is observable on the nanosecond timescale, as
every carrier in the perovskite should have found an opposite
charge with which to recombine. It could be argued that the long-
lived absorption actually results from the contribution of oxidized
spiro-OMeTAD molecules—hþ(HTM)—as well as that of conduc-
tion-band electrons in TiO2 , as both species absorb at 1.4 mm
(refs 15–17). However, this would not affect the reasoning above,
as it would also provide direct evidence of charges having been
separated at the junctions. Yet, we believe that these contributions
are negligible in our measurements. Indeed, the reactions of ecb

2

(TiO2) or hþ(HTM) recombining with carriers in the perovskite
(equations (5) and (6)) are likely to take longer than a nanosecond
(we show hereafter that the second reaction actually occurs over a
microsecond timescale) and thus would appear as a long-lived
plateau in the dynamics of the TiO2þHTM sample. This is not
observed in this case.

Time-resolved microwave photoconductance measurements
As a complementary technique, we used TPC measurements in
the microwave frequency range to monitor directly the mobile
charge carrier population within the perovskite material. The
effect of electron injection from the perovskite into the mesoporous
TiO2 and the resulting increase in charge carrier lifetime were
observed with a time resolution of 10 ns (Fig. 3). No TPC signal
was detected for pure TiO2 or Al2O3 films at the light intensities
and excitation wavelength (532 nm) used in these experiments,
showing that the observed photoconductance phenomena are
induced only by photon absorption in the perovskite. As a result
of charge separation or exciton splitting, an increase in the lifetime
of the separated charge carriers can normally be observed. For the
case with perovskite deposited on Al2O3 without any HTM
present, one can expect the degradation of the absorbed photon
energy by luminescence or thermalization. This can be clearly
seen in Fig. 3, where no significant difference between a pure perovs-
kite film on glass and perovskite deposited on Al2O3 can be
observed. In the case where the perovskite is deposited on TiO2 ,
an extension of the decay time is observed, indicating separation
of the electron–hole pair and therefore the injection of electrons
into titanium dioxide.

Nanosecond transient optical absorption spectroscopy
Flash photolysis experiments were carried out over an extended
microsecond-to-millisecond time domain at a probe wavelength of
1.4 mm and an excitation wavelength of 580 nm, similarly to the
femtosecond experiments. The expected transient signal in the
microsecond timescale results from the absorption of the oxidized
form of the spiro-OMeTAD–hþ (HTM)–. Indeed, spectral overlap
with charge absorption of the perovskite could be avoided at this
wavelength, as the decay of these charges should be completed
much earlier within the nanosecond time span. This is confirmed
by transient absorption, which shows no signal in the microsecond
domain for CH3NH3PbI3 samples without HTM, either on TiO2 or
Al2O3 (Fig. 4a). Although we expected to observe a transient signal
corresponding to conduction-band electrons in the TiO2 that
do absorb at this wavelength, this contribution to the signal
appears to be buried in noise in this particular experiment. The
time evolution of transient absorbance signals at 1.4 mm for
CH3NH3PbI3 samples with HTM (Fig. 4b) on TiO2 and on Al2O3

can, therefore, be assigned to the decay of the oxidized spiro-
OMeTAD population through recombination processes. On
Al2O3 , we observe recombination between hþ (HTM) and e2

(perovskite) (equation (6)), while on TiO2 , recombination occurs
between hþ (HTM) and ecb

2 (TiO2) (equation (7)). The signal
trace decay could be fitted with a stretched exponential (stretching
exponent b¼ 0.5). Excitation energy fluence in this particular
experiment being rather low (70 mJ cm22, corresponding to ≏40
photons per nanoparticle), the stretched exponential reflects a
broad distribution of distances between the recombining charges.
The difference between the time constants for the decay on TiO2

and Al2O3 is quite evident, and shows that recombination is
slower when TiO2 is used (99 ms versus 15 ms on Al2O3). This
demonstrates that process (6) is faster than process (7). It therefore
provides additional evidence that electron injection has taken place
and that recombination occurs via a mechanism that involves diffu-
sion of carriers over a larger distance.

Discussion
The intrinsic physical properties of the perovskite material, such as
exciton diffusion length, carrier mobility, nature and density of
trap states, and the energetics of the bands, are obviously impor-
tant in explaining why this exceptional material appears to be
working in a variety of configurations. Rather than dealing with
the intrinsic properties of the perovskite semiconductor, the
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Figure 3 | Transient microwave photoconductance measurements of the

perovskite material deposited on various substrates. CH3NH3PbI3 on
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CH3NH3PbI3 on flat glass (orange). The build-up rate of the TPC signal is

limited here by the excitation laser pulse duration (≏10 ns).
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present work focuses on interfacial charge transfer processes
occurring at the junctions between the light absorber and the
electron- and/or hole-conducting materials. A sequence of inter-
facial electron transfer steps is derived from the kinetics
determined experimentally in configurations that have already
been proven to function efficiently in solar cells. We can then
take for granted that the exciton diffusion length and carrier
mobility within the perovskite are easily sufficient and that all
energy levels are conveniently aligned18,19.

In samples containing the perovskite absorber deposited on a
titanium dioxide electron acceptor with HTM infiltrating into the
pores of the mesoscopic film, non-ideal morphologies obtained
during the preparation will lead to various local situations within
the same sample, where perovskite domains could be insulated, in
contact with only TiO2 or the HTM, or form two junctions with
both the TiO2 and the HTM. All these different scenarios are
encountered in current solar energy conversion devices of various
architectures. Interest in discussions about the charge transfer
mechanism taking place in TiO2|perovskite|spiro-OMeTAD solid-
state solar cells therefore extends beyond this particular example
to other types of perovskite-based photovoltaic systems.

Four different cases related to the morphology of the sample
could coexist in perovskite-based devices:

(1) All the perovskite is conformally deposited on top of the metal
oxide (either the insulating Al2O3 or the TiO2 electron acceptor)
as a thin light-harvesting film, with a thickness of at most a few
nanometres.

(2) Part of the perovskite is not in direct contact with the oxide sub-
strate but is present in the form of isolated crystalline domains in
the pores and/or a capping layer on top of themesoporous network.

All perovskite-based devices deposited on a mesoporous struc-
ture, regardless of preparation type, should fall into one of the
two categories (1) or (2). When adding an HTM, these cases can
be coupled with two additional cases in relation to the junction:

(3) All the HTM is conformally deposited into the pores, forming a
continuous junction with the perovskite material.

(4) Not enough HTM is present in the pores, or the interfacial
contact between the perovskite and the HTM is only partial as
a result of infiltration problems.

We will rationalize, for each case, what could be observed by
time-resolved laser spectroscopy, keeping in mind the possible
influence of the contact at the various heterojunctions. In case (1),
the intimate contact between the two semiconductors allows the
electron injection process to be resolved unequivocally by a direct
comparison between TiO2- and Al2O3-based samples. In case (2),
a capping layer of perovskite that is not in direct contact with the
mesoporous oxide can be found and optical features of isolated per-
ovskite material could be observed. In the specific case of TiO2 ,
where we expect electron injection to take place, the presence of a
capping layer would result in strong light absorption within this
layer and consequently poor quenching by TiO2 due to lack of a
good TiO2|perovskite interface. Consequently, strong photolumi-
nescence will be observed. In the absence of a good intimate
contact with TiO2 , the device can still work, with the perovskite
playing the role of the electron-transporting material, as in
the so-called meso-superstructured cells built on an insulating
Al2O3 framework6. In case (3), a hole is easily extracted at the
perovskite|HTM interface, according to measurements already
reported5, where the spiro-OMeTAD was shown to very efficiently
quench perovskite’s photoluminescence within a sub-picosecond
time frame. In case (4), the absence of intimate contact between
the light absorber and spiro-OMeTAD is likely to lead to a situation
where the device resembles a p-type perovskite cell, where the
CH3NH3PbI3 works as the hole-transporting material12. For a
perovskite|HTM bilayer, in which holes have to diffuse across a
65-nm-thick absorber layer to reach the HTM junction, the extrac-
tion time extends to the picosecond-to-nanosecond timescale, much
longer than for case (3)19. Case (4) will often occur in type (2)
samples, because a capping layer of perovskite tends to prevent
good infiltration of the HTM into the pores. Deposition of spiro-
OMeTAD on a case (1) sample will, in contrast, favour case (3),
resulting in an optimal device1.

Part of the charge recombination observed in
TiO2|perovskite|spiro-OMeTAD samples can still occur from elec-
trons in the perovskite (equation (6)) if they have not been injected
efficiently into the TiO2. This would be the case if there were insuf-
ficient contact between the TiO2 and the perovskite—case (2). The
time constant measured by flash photolysis experiments for a
TiO2þHTM sample thus might include contributions from the
recombination reactions (equations (6) and (7)).

The time-resolved measurements reported in the present work
highlight, for the first time, some of the important processes in
CH3NH3PbI3-sensitized samples and corresponding samples built
on an Al2O3 scaffold. Probing in the near-infrared provides a way
to circumvent spectral overlap arising from different types of mor-
phological issue—case (1) or (2)—by observing only the carriers’
population decay inside the perovskite itself rather than in the
bulk luminescence that constitutes the main spectral feature
observed in the visible range. In previous work by Kim and col-
leagues5, electron injection could not be demonstrated by monitor-
ing the stimulated emission of the perovskite, most likely because
the observed transient was originating from a capping layer of the
material. The method originally used in this work to produce the
samples consisted in spin-coating a mixed solution of CH3NH3I
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and PbI2 in gamma-butyrolactone5. This has now been replaced by a
sequential deposition method yielding more conformal films1.
Near-infrared optical probing, which monitors the decay of the
population of charges remaining in the photoexcited perovskite, is
key in demonstrating charge separation processes taking place
through both electron and hole injection.

Comparable kinetics for the decay of the remaining recombining
charges in the perovskite|TiO2 and spiro-OMeTAD|perovskite|Al2O3

samples indicate that electron and hole injection occur on similar
timescales. Furthermore, it is possible to conclude that both
charge separation processes happen on a femtosecond-to-picose-
cond timescale, as our previous study showed that hole injection,
observed through stimulated emission quenching, has already
taken place within the first picosecond following excitation5.
Direct monitoring of the dynamics of primary charge separation
is beyond the scope of this study.

The efficiency of charge extraction in a perovskite solar cell
depends on the ratio between the rate constants for charge recom-
bination and charge separation. It is thus important to determine
the timescale for charge recombination processes in the cell.
Results obtained by flash photolysis show that the recombination
reaction for electrons and oxidized spiro-OMeTAD (equations (6)
and (7)) is slow, taking place in the microsecond range. This indi-
cates a factor of at least 106 between charge separation and recom-
bination rate constants at the HTM interface, ensuring a
quantitative yield for sustained charge separation. Additionally,
reaction (7), being slower than reaction (6), proves that the use of
TiO2 as electron acceptor and transporter in conjunction with an
organic HTM in contact with the perovskite is indeed
quite beneficial.

Conclusion
Time-resolved techniques were applied to CH3NH3PbI3 deposited
as a conformal film on TiO2 and Al2O3 samples to study the
kinetics of interfacial electron transfer processes. Using ultrafast
spectroscopy in the near-infrared, we were able to monitor transi-
ent absorption by photogenerated charges in the perovskite. The
results showed that the decay of the charge population is delayed
upon infiltration with the hole-transporting material spiro-
OMeTAD, which is consistent with previous evidence of primary
hole injection from the photoexcited perovskite into the HTM.
Moreover, evidence for electron injection from CH3NH3PbI3 into
the TiO2 film was found. The latter process appears to occur
over a similar timescale as hole injection. Further evidence was
provided by TPC measurements, with a slower charge decay in
the presence of TiO2 found in the microwave frequency range.
Additionally, transient absorbance decay of oxidized spiro-
OMeTAD was monitored in the near-infrared. Experimental data
showed that charge recombination with oxidized HTM species,
which occurs over a microsecond timescale, is delayed on TiO2

films with respect to Al2O3 , indicating that the mechanism
involves recombination of charges separated by a longer distance.
The observation of charge separation and charge recombination
reactions is closely related to the method of preparing the
samples. Optical signals can be largely influenced by the presence
of a capping layer of perovskite that is not conformally deposited
on the mesoporous oxide film. Conformal coating of the TiO2

surface with CH3NH3PbI3 facilitates charge separation by ensuring
direct electron injection into the oxide. These findings highlight
the advantage of employing two heterojunctions with titanium
dioxide and the HTM while using perovskite as a solid-state
light absorber.

Methods
Sample preparation. For the preparation of substrate films, TiO2 and Al2O3 pastes
were chosen that had porosities and particle sizes as similar to each other as possible.
A commercial TiO2 paste (Dyesol 18 NR-T, 18 nm average nanoparticle diameter)

was used, diluted 1:3 (wt) in EtOH, yielding mesoporous films with an average pore
size of 24 nm. A home-made Al2O3 paste (17 nm average nanoparticle diameter)
was used diluted 1:3 (wt) in EtOH, yielding films with an average pore size of 32 nm.

The TiO2 and Al2O3 pastes (100 ml) were spin-coated on 2× 2 cm glass
microscope slides (5,000 r.p.m.,1,000 r.p.m. s21, 30 s). The films were then dried for
15 min at 100 8C and sintered for 30 min at 500 8C. These conditions yielded an
average thickness of 400 nm for the TiO2 and 270 nm for the Al2O3 films, as
measured by atomic force microscopy (Asylum Research Chypher).

PbI2 (99%, Sigma-Aldrich) was dissolved in dimethylformamide at 70 8C to
yield a concentration of 1 M. The PbI2 solution (100 ml) was spin-coated on the
mesoporous substrates (6,500 r.p.m., 5,500 r.p.m. s21, 30 s). The films were then
dried for 15 min at 70 8C. Methylammonium iodide was synthesized according to a
reported procedure7 and a solution of 20 mg ml21 of CH3NH3I in isopropanol was
prepared. PbI2 substrates were immersed in this solution for 1 min 40 s, leading to a
drastic colour change of the film from yellow to dark brown. The films were rinsed in
isopropanol for 10 s.

A solution of spiro-OMeTAD (Merck KGaA) was prepared by dissolving 90 mg
in 1 ml chlorobenzene at 60 8C. 4-Tert-butylpyridine (tBP, Sigma-Aldrich; 8.75 ml)
was added to the latter chlorobenzene solution to yield a concentration of 0.06 M
tBP. Lithium bis(trifluoromethylsulphonyl)imide (LiTFSI, Sigma-Aldrich; 17 mg)
was predissolved in 100 ml acetonitrile, and 18.75 ml of this solution was added to
the same chlorobenzene solution to yield a concentration of 0.011 M LiTFSI. The
spiro-OMeTAD solution (80 ml) with tBP and LiTFSI added was deposited onto the
perovskite films and allowed to infiltrate for 10 s to maximize the penetration of the
HTM before spin-coating (4,000 r.p.m., 770 r.p.m. s21, 30 s). All spin-coating
operations were carried out in a dry glovebox under an argon atmosphere. After
preparation, samples were placed under vacuum for a few minutes, stored in the
glovebox, and finally encased in a sealed cell containing argon to avoid contact with
air and oxygen during measurements.

Nanosecond flash photolysis. Transmission-mode transient absorption
spectroscopy experiments were conducted using a frequency-tripled, Q-switched
Nd:YAG laser (Continuum, 20 Hz repetition rate) pumping an optical
parametric oscillator (OPO-355, GWU). The output wavelength of the OPO was
tuned at lexc¼ 580 nm (7 ns pulse duration) and attenuated to 70 mJ cm22. The
continuous-wave probe light from a xenon arc lamp was passed through various
optical elements, the sample and a monochromator (lprobe¼ 1.4 mm) before
being detected by an InGaAs photodiode with 1 kV load (SM05PD5A, Thorlabs).
Averaging over at least 2,000 laser shots was carried out. Dynamics were recorded
over 10,000 points and a second-order Savitzky–Golay smoothing algorithm on
45 points was applied.

Femtosecond laser spectroscopy. Transient absorption spectra were recorded using
femtosecond pump–probe spectroscopy. The pump beam (lexc¼ 580 nm) was
generated by pumping a two-stage non-collinear optical parametric amplifier
(NOPA) by the 778 nm output of an amplified Ti:sapphire laser system (Clark-
MXR, CPA-2001), providing 150 fs pulses at a repetition rate of 1 kHz. The probe
beam (lprobe¼ 1.4 mm) was generated by a second OPA (Light Conversion, TOPAS
model 4/800) and used without any compression (pulse duration ≏150 fs). The
change in transmittance of the sample, that is, the change in intensity of the probe
beam, was measured by an InGaAs photodiode (New Focus, model Nirvana 2017)
protected by cutoff filters to avoid any scattered light from the pump. The low-
amplitude signal was extracted by a lock-in amplifier (SR-830, Stanford Research)
referenced to the chopper. The pump energy at the sample was 360 nJ/pulse with a
spot size diameter of ≏560 mm. Temporal overlap between the pump and probe
pulses at the sample position was measured with a Kerr gating technique and gave a
typical instrument response function of 180 fs.

Time-resolved microwave conductivity measurements. TPC measurements in the
microwave frequency range were performed by using a Ka-band (28.5–40 GHz)
apparatus, as described previously20. Samples were excited by 10 ns (full-width at
half-maximum) pulses of a frequency-doubled Q-switched Nd:YAG laser at a
wavelength of 532 nm with a beam diameter of ≏1.6 mm. The excitation intensity
was adjusted by the use of calibrated filters and set to 1,200 mJ cm22 for samples on
mesoporous films, while 7 mJ cm22 was used for samples deposited on glass, which
contained more perovskite material.
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