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Abstract

Background: The apicomplexan parasite Neospora caninum causes neosporosis, a disease that leads to abortion or

stillbirth in cattle, generating an economic impact on the dairy and beef cattle trade. As an obligatory intracellular

parasite, N. caninum needs to invade the host cell in an active manner to survive. The increase in parasite cytosolic

Ca2+ upon contact with the host cell mediates critical events, including the exocytosis of phylum-specific secretory

organelles and the activation of the parasite invasion motor. Because invasion is considered a requirement for

pathogen survival and replication within the host, the identification of secreted proteins (secretome) involved

in invasion may be useful to reveal interesting targets for therapeutic intervention.

Methods: To chart the currently missing N. caninum secretome, we employed mass spectrometry-based proteomics

to identify proteins present in the N. caninum tachyzoite using two different approaches. The first approach was

identifying the proteins present in the tachyzoite-secreted fraction (ESA). The second approach was determining

the relative quantification through peptide stable isotope labelling of the tachyzoites submitted to an ethanol secretion

stimulus (discharged tachyzoite), expecting to identify the secreted proteins among the down-regulated group.

Results: As a result, 615 proteins were identified at ESA and 2,011 proteins quantified at the discharged tachyzoite.

We have analysed the connection between the secreted and the down-regulated proteins and searched for putative

regulators of the secretion process among the up-regulated proteins. An interaction network was built by computational

prediction involving the up- and down-regulated proteins. The mass spectrometry proteomics data have been deposited

to the ProteomeXchange with identifier PXD000424.

Conclusions: The comparison between the protein abundances in ESA and their measure in the discharged tachyzoite

allowed for a more precise identification of the most likely secreted proteins. Information from the network interaction

and up-regulated proteins was important to recognise key proteins potentially involved in the metabolic regulation of

secretion. Our results may be helpful to guide the selection of targets to be investigated against Neospora caninum and

other Apicomplexan organisms.
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Background
The Apicomplexa phylum includes many parasites that are
relevant to human (such as Plasmodium and Toxoplasma)
and veterinary (such as Babesia, Eimeria, and Neospora)
health. Neospora caninum is the causative agent of neos-
porosis, a disease that leads to abortion or stillbirth in
cattle. Consequently, the worldwide economic losses in
the dairy and beef cattle trade vindicate the development
of an effective therapeutic strategy for neosporosis
control [1-3].
As with all apicomplexan species, N. caninum is an

obligate intracellular parasite that invades the host cell
in a conserved active manner, which involves the release
of proteins from phylum-specific secretory organelles
and the activation of the parasite invasion motor. These
organelles, known as micronemes, rhoptries and dense
granules, secrete proteins crucial for apical attachment,
moving junction formation, gliding motility, and parasi-
tophorous vacuole formation and establishment [4-6].
Upon contact with the host cell, there is an increase in
parasite cytosolic Ca2+ which mediates critical events, such
as secretion of adhesins, gliding motility, cell invasion, and
egress [7-9]. In vitro, ethanol is a known trigger of apical
organelle secretion by means of Ca2+ mobilisation [10].
Because invasion is considered a requirement for patho-

gen survival and replication within the host, the identi-
fication of secreted proteins (secretome) involved in
invasion may be useful to reveal interesting targets for
therapeutic intervention [8,11].
Previous proteomic studies in N. caninum have focused

on the identification of proteins in the total extract using
two-dimensional (2D) gels with or without immunoblot-
ting [12-17]. Other studies have used 2D-DIGE followed
by mass spectrometry (MS) analyses to compare tachy-
zoite versus bradyzoite profiles [18] or wild-type versus

attenuated isolates [19]. LC-MS/MS, i.e., MS-based
proteomics [20], has been employed in three reports:
the identification of antigens from an organelle fraction
after the generation of monoclonal antibodies [21], the
identification of antigens that stimulated bovine CD4 + ve
T cells [22] and the identification of proteins from a
rhoptry-enriched fraction [23].
In our study, the N. caninum secretome was investigated

using the following two different approaches: the iden-
tification of proteins present in the tachyzoite secreted
fraction (also known as ESA) and the relative quantification
of the tachyzoite proteome before and after submission
to ethanol stimulated secretion (here called discharged

tachyzoite). For both approaches, we performed state-of-
the-art nanoLC-MS/MS based proteomics, employing a
decision tree guided MS strategy, which determines the
best combination of fragmentation technique and mass
analyser based on the physicochemical properties of the
precursor peptide [24].

As a result, 615 proteins were identified in the ESA
fraction and 2,011 tachyzoite proteins were quantified
before and after discharge. We have analysed the overlap
between the secreted proteins observed in ESA and the
down-regulated proteins from the discharged tachyzoite.
Additionally, we searched for putative regulators of the
secretion process among the up-regulated proteins and
performed a protein interaction prediction analysis.

Methods
The entire experimental design is schematically represented
in Figure 1.

Identification of proteins from the tachyzoite-secreted

fraction (ESA)

N. caninum tachyzoite culture and purification

N. caninum tachyzoites of the Nc-1 isolate were cultured
on Vero cell monolayers in RPMI-1640 medium (Sigma-
Aldrich) supplemented with 2.05 mM glutamine and
0.1 mg/mL kanamycin at 37°C and 5% CO2 in T-25 cm2

and T-75 cm2 tissue culture flasks.
After partial destruction of the Vero cell monolayers,

the N. caninum tachyzoites were passaged five times
through a 26 G x ½ in. needle to disrupt the cells, filtered
through a 5 μm syringe filter and subjected to size-
exclusion chromatography in PD10 columns (Sephadex
G-25, GE). After purification, the tachyzoites were
subjected to flow cytometry (FACSCanto flow cytometer
and FACSDiva software, BD) to evaluate their viability
through the incorporation of 20 μg/mL propidium iodide.
Using heat-killed tachyzoites (85°C, 10 min) as controls,
90% of the tachyzoites were confirmed to be alive after
the purification process (data not shown).

Obtaining the secreted fraction (ESA) from N. caninum

tachyzoites

The ESA fraction was obtained after the freshly purified
tachyzoites were incubated (108/mL) in RPMI medium
containing 1% ethanol (Merck) at 37°C for 15 min and
cooled for 10 min on ice. The supernatant was purified
using a two-step centrifugation method, and the aliquots
were stored at −20°C. Using centrifugal concentrators
(Amicon Ultra Centrifugal Filter Devices 5 K, Millipore),
several ESA aliquots were washed at 4°C with 25 mM
ammonium bicarbonate, pH 7.4, followed by MilliQ
water, concentrated at 4°C in water to 700 μL and dried
in a vacuum concentrator.

Protein digestion

The ESA was resuspended using sonication (LABSONIC
M, Sartorius) in 120 μL of 50 mM ammonium bicarbon-
ate; 25% of this sample (38.5 μg) was loaded into one lane
of a 12% 1D SDS-PAGE gel and stained with colloidal
coomassie dye G-250 (Gel Code Blue Stain Reagent,
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Figure 1 Experimental design of the N. caninum secretome study. Purified N. caninum tachyzoites were stimulated with 1% ethanol, and the

ESA proteins were separated from the discharged tachyzoites. For the Secreted Fraction Approach, the ESA was concentrated, dried and after

separation with 1D SDS-PAGE, the proteins were digested. The tryptic peptides were analysed with the following: an LTQ-Orbitrap-XL, equipped

with a peptide fragmentation system by collision induced dissociation (CID), and an LTQ-Orbitrap-Velos, using a decision tree-guided peptide

fragmentation, equipped with electron transfer dissociation (ETD) with LTQ mass analysis, ETD with Orbitrap readout (ETD-FT), and higher-energy

collisional dissociation (HCD-FT) with Orbitrap readout. For the Quantitative Approach, unstimulated tachyzoites (control) and the tachyzoites

recovered after ESA collection (discharged), separately, had their total protein extract (TE) produced and digested with Lys-C and trypsin. The

peptides were dimethyl labelled with light (control) and medium (discharged) labelling reagents, mixed in a 1:1 ratio, fractionated by strong-cation

exchange (SCX) and analysed on an LTQ-Orbitrap-XL using a decision tree for the fragmentation methods CID and ETD. For both approaches,

combined MS data were analysed using Mascot software and in silico analyses were performed (details in Methods).
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Thermo Scientific). The lane containing the separated
ESA proteins was cut into 13 bands, which were treated
with 6.5 mM dithiothreitol (DTT) for 1 h at 60°C for
reduction and 54 mM iodoacetamide for 30 min for
alkylation. The proteins were digested overnight with
trypsin (Promega) at 37°C. The peptides were extracted
with 100% acetonitrile (ACN) and dried in a vacuum
concentrator.

Mass spectrometry: RP-nanoLC-MS/MS

The data were acquired using two different mass spec-
trometers. The same online nanoLC configuration was
used for all LC-MS experiments. Prior to MS analyses,
the peptides were separated with an Agilent 1200 series
LC system equipped with a 100 μm× 20 mm, 3 μm,
120 Å Reprosil C18-AQ double frit trapping column
(Dr. Maisch, Ammerbuch, Germany) and a 50 μm×
400 mm, 3 μm, 120 Å Reprosil C18-AQ analytical column
(Dr. Maisch, Ammerbuch, Germany). Trapping was
performed at 5 μL/min for 10 min in solvent A (0.1 M
acetic acid in water), 40% solvent B for 30 min, 100%
solvent B for 2 min, and solvent A for 15 min. The flow
rate was passively split to 100 nL/min during the elution
analysis. The nanospray was performed at 1.7 kV using
a fused silica capillary that was pulled in-house and
coated with gold (o.d. 360 μm; i.d. 20 μm; tip i.d.
10 μm). The tryptic peptides were analysed both with an
LTQ-Orbitrap-XL, equipped with a peptide fragmentation
system by collision induced dissociation (CID), and with
an LTQ-Orbitrap-Velos, using a decision tree-guided
peptide fragmentation. The mass spectrometers were
used in a data-dependent mode, which automatically
switched between MS and MS/MS.
For both mass spectrometers, full-scan MS spectra (from

m/z 350 to 1500) were acquired in the Orbitrap with a
resolution of 60,000 at m/z 400 after the accumulation
of a target value of 500,000 in the linear ion trap. The
five most intense ions were selected for fragmentation
in the linear ion trap at a normalised collision energy of
35% after the accumulation of a target value of 10,000.
For the LTQ-Orbitrap-Velos, a decision tree-based

method was used. The decision tree-guided peptide
fragmentation is based on the charge state and the m/z
of the precursor peptide, and a decision is made between
electron transfer dissociation (ETD) with LTQ mass
analysis, ETD with Orbitrap readout (ETD-FT), and
higher-energy collisional dissociation (HCD-FT) with
Orbitrap readout only. For details, see Frese et al., [25].

Protein identification

The data were searched against the N. caninum predicted
protein database (ToxoDB version 6.4, 7344 entries),
including a list of common contaminants (http://max-
quant.org/contaminants.zip), using Mascot software version

2.3.02 (Matrix Science). The carbamidomethylation of
cysteine and the oxidation of methionine were set as
fixed and variable modifications, respectively. The database
search was performed using Proteome Discoverer 1.3
software (Thermo Fischer Scientific) with a peptide
tolerance of 7 ppm and product ion tolerances of 0.6 Da
(ion trap readout) and 0.05 Da (Orbitrap readout),
allowing for two missed cleavages. The following filters
were applied: a Mascot ion score of at least 20 and a
position rank of 1 in the Mascot search. The resulting .MGF
data were converted to .DAT files and filtered in Proteome
Software Scaffold 3. Peptide and protein identifications
were accepted if they could be established at greater than
95.0% probability, and protein that contained at least 1
unique peptide, as specified by the Peptide and Protein
Prophet algorithm [26,27].

In silico prediction of signals for secretion

The amino acid sequences of the identified N. caninum

ESA proteins were submitted to the SecretomeP 2.0 Ser-
ver (http://www.cbs.dtu.dk/services/SecretomeP/) for the
prediction of non-classical secretion using the “mamma-
lian” search option. Proteins containing signal peptides
predicted according to SignalP were also displayed by
SecretomeP [28].

Classification of identified ESA proteins

The identified ESA proteins were classified according
to their parasite localisation and secretion pathways.
For uncharacterised proteins, localisation was primarily
predicted based on homologues from closely related
apicomplexan organisms, searched through the ToxoDB
website [29]. ToxoDB is a member of pathogen-databases
that are housed under the Eukaryotic Pathogens Database
(EuPathDB) Bioinformatics Resource Center (BRC).
Thus, the list of proteins that were putatively localised

to micronemes was obtained using the keyword “micro-
nem*” and proteins that were previously identified in
N. caninum or a homologue but absent from this list
were manually inserted into the final list. The search
was performed for other protein groups following the
same method: “rhoptr*” for proteins from rhoptries, “dense
granul*” for dense granule proteins, “surface*” or “SAG*”
(surface antigens) or “SRS*” (surface antigens related
sequences) for parasite surface proteins, “cycloph*” for
cyclophilins or cyclophilin-like proteins, “mitochond*”
for mitochondrial proteins, and “nuclear*” or “nucleus”
for nuclear proteins. It was not possible to obtain
results in Neospora using the word “apicoplast*,” thus,
we searched the T. gondii ME49 database for a list of
N. caninum homologues. The nomenclature adopted
here for the uncharacterised proteins follows Reid et al.

[30], however, new nomenclature might be eventually
accorded when these proteins are characterised.
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Relative quantification of proteins in the discharged

tachyzoite

Obtainment of control and discharged tachyzoites

The treatment to obtain the discharged tachyzoites was
the same for the ESA (section Obtaining the secreted
fraction (ESA) from N. caninum tachyzoites). After the
secretion stimulus, the discharged tachyzoites were
harvested by centrifugation and stored at −20°C. The
control was composed of purified and unstimulated
parasites (control tachyzoites).

Protein extraction from control and discharged tachyzoites

Total protein extracts (TE) from N. caninum control and
discharged tachyzoites were obtained by sonication (Sonic
Dismembrator 100 - Fisher Scientific) of approximately
8.5×108 parasites in 200 μL of lysis buffer containing
7 M urea, 2 M thiourea and 4% CHAPS (Sigma-Aldrich),
yielding 1 mg of proteins each. The proteins were pre-
cipitated in 30% trichloroacetic acid (Sigma-Aldrich) in
acetone (Merck) and dried in a vacuum concentrator.

Protein digestion and peptide labelling

Each extract was resuspended, with sonication (LABSO-
NIC M - Sartorius), in 300 μL of 8 M urea containing
Complete EDTA-free Protease Inhibitor Cocktail (Roche),
reduced with 0.4 mM DTT for 25 min at 56°C, and alky-
lated with 8 mM iodoacetamide for 30 min at room
temperature, in the dark. The proteins were first digested
with Lys-C (1:75 ratio w/w) at 37°C for 4 h and, after 8
times sample dilution in 50 mM ammonium bicarbonate,
digested with trypsin (1:100 ratio w/w) at 37°C, overnight.
Stable isotope dimethyl labelling of peptides was per-

formed as described in the standard protocol [31]. Equal
amounts of the extracted peptides from control and
discharged samples were separately labelled with light
and intermediate labels, respectively, using an in-solution
labelling method and SepPak C18 cartridges (Waters).
The percentage of labelled peptides and the correct
proportion of labelled control and discharged samples
were checked by mass spectrometry (MS) in a LTQ-
Orbitrap-XL, using decision tree guided fragmentation
for CID or ETD, with a 60 min running for proportion
checking and a 45 min running for labelling checking.
Control and discharged labelled samples were then mixed
in a 1:1 ratio.

Strong cation exchange fractionation

Strong cation exchange (SCX) fractionation was performed
as described previously [32] for the fractionation of the 1:1
mixture containing labelled peptides. SCX was performed
using a Zorbax BioSCX-Series II column (0.8 mm inner
diameter, 50 mm length, 3.5 μm). Solvents consisted of
0.05% formic acid in 20% acetonitrile (solvent A) and
0.05% formic acid, 0.5 M NaCl in 20% acetonitrile (solvent

B), used in the followed gradient: 0–0.01 min (0–2% B);
0.001–8.01 min (2–3% B); 8.01–18.01 min (3–8% B);
18.01–28 min (8–20% B); 28–38 min (20–40% B); 38–
44 min (40–100% B); 44–48 min (100% B); and 48–50 min
(100–0% B), at a flow rate of 40 μL/min. Between 40 and
90 minutes, 50 fractions of 1 minute were collected.

Mass spectrometry (MS)

For MS analysis, the 15 most intense fractions, containing
doubly and triply charged peptides, were selected and
reconstituted in 10% formic acid and 5% DMSO. Prior
to MS, peptides were separated using the same online
nanoLC configuration as described in section Mass
spectrometry: RP-nanoLC-MS/MS. The analysis of the
peptides was performed on an LTQ-Orbitrap XL mass
spectrometer (section Mass spectrometry: RP-nanoLC-
MS/MS), equipped with a decision tree-based method
for peptide fragmentation, in which a decision is made
between collision induced dissociation (CID) and electron
transfer dissociation (ETD) based on mass and charge, as
described elsewhere [25]. Trapping was performed at a
flow of 5 μL/min for 10 min, and the fractions were
eluted using a 3 h gradient from 0 to 40% solvent B
[0.1 m acetic acid in 80% ACN (v/v)] at 100 nL/min.
The 10 most intense ions were selected for fragmentation
in the linear ion trap at a normalised collision energy of
35% after accumulation of a target value of 10,000.

Data analysis

The raw data was analysed with the Proteome Discoverer
1.3 software (Thermo Fischer Scientific). The MS/MS
spectra were searched against the N. caninum predicted
protein database (version 6.4), including a list of common
contaminants (section Protein identification) and a decoy
database (composed of the reversed versions of all
sequences), with Mascot software version 2.3.02 (Matrix
Science). Trypsin was set for enzyme specificity allowing
for two missed cleavages. Carbamidomethylation (C) and
oxidation (M) were set as fixed and variable modifications,
respectively. Additionally, due to the dimethyl labelling,
dimethyl (K), dimethyl (N-term), dimethyl-2H(4) (K) and
dimethyl-2H(4) (N-term) were set as variable modifica-
tions. Using a peptide tolerance of 5 ppm and product ion
tolerance of 0.6 Da, and applying the peptide filters of
position rank of 1, Mascot ion score higher than 20,
and peptide length between 7 and 35 residues, the
resulting false discovery rate (FDR) was 1.2%.
Quantification was carried out with Proteome Discoverer

1.3 software (Thermo Fischer Scientific) using peak area
with the ‘precursor ions quantifier’ node. Only unique
peptides were quantified and the ratio reporting was
set as medium/light, where medium labeled peptide
intensities (peak areas) from the discharged sample
were divided by the light labeled peptide intensities
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from the control sample. Ratios were normalised on the
protein median and a fold change threshold of 2.0 was set
for up or down regulation of proteins in the discharged

tachyzoite.

Classification by protein localization

The quantified proteins were classified as described in
section In silico prediction of signals for secretion
according to their parasite localisation (micronemes,
rhoptries, dense granules and surface).

Interaction network

The prediction of protein-protein interactions among
the 2,011 quantified proteins was performed by using
the Universal Predictor of Protein-Protein Interactions
(UNISPPI) [33]. UNISPPI is a machine learning-based
computational method that predicts the probability of
physical interaction between any pair of proteins, based
solely on their physicochemical features associated with
amino acid sequences. The physicochemical features of
the identified proteins’ amino acid sequences were calcu-
lated with the PROFEAT software [34]. The interacting
protein pairs, with probability higher than 90%, containing
up or down regulated proteins were selected for their
visualisation with the software Cytoscape version 2.8
[35], using the Cytoscape layout Edge-Weighted Force-
Directed (BioLayout) using as weight the edge betweenness,
a network centrality that is defined as the number of
the shortest paths that go through an edge in the network.
The networks of up and down regulated proteins were
combined to build a net union containing the interactions
from both networks.

Results and discussion

Our study to comprehend the N. caninum secretome was
based on the secretory stimulus via increased intracellular
Ca2+, in vitro triggered by ethanol. The implementation
of two different but connected approaches, employing
techniques that ensure high resolution and sensitivity,
enabled the identification of several secreted proteins and
allowed for the search of new invasion-related targets.

Proteins identified from the N. caninum secreted

fraction (ESA)

The collected ESA proteins were separated into 13 bands
by 1D-SDS-PAGE (Figure 1) and were in-gel digested.
The tryptic peptides were analysed by nanoLC-MS/MS,
resulting in a total of 4,941 identified peptides, corre-
sponding to a total of 615 proteins, after the appropriate
cut-off filters were applied to the results. The Additional
file 1: Table AF1 (sheet A) lists all the proteins identified
displayed according to the number of protein abundances,
obtained after dividing their spectral counts by their

molecular weights, to prevent biases caused by protein
size [36]. The excel files containing information about the
peptides’ sequence and charge state used to identify each
protein are compressed and available in Additional file 2
(615_ESA_proteins.rar). Proteins predicted to be from the
secretory organelles (micronemes, rhoptries, and dense
granules) or parasite surface, are displayed in Additional
file 1: Table AF1 (sheet B), arranged in a descending order
of relative abundances in ESA.
Of the 615 ESA proteins identified (Figure 2), 37.4%

(n = 230) corresponded to secreted or putatively secreted
proteins: 3.1% (n = 19) were microneme proteins, 4.2%
(n = 26) rhoptry proteins, 1.5% (n = 9) dense granule pro-
teins, 7.6% (n = 47) proteins with unknown localisation
but containing signal peptides (SP), and 21% (n = 129)
were proteins predicted to have non-classical secretion
(“unknown secretory”). The high percentage of proteins
predicted to be secreted via non-classical pathways
corroborates studies on other organisms, in which some
alternative routes were associated with secretion via
vesicles [37,38]. Proteins from the parasite surface, which
can accumulate in the ESA as a result of proteolytic
shedding from the parasite [39], represented 2.0% (n = 12)
of the proteins. Proteins from non-secretory organelles
also appeared in the N. caninum ESA: eight proteins from
the apicoplast (1.3%), six from the mitochondria (1.0%),
36 from the cytoplasm (5.8%), and 31 from the nucleus
(5.0%). These proteins not expected to be secreted may
have been released from dead tachyzoites, since flow
cytometry showed that approximately 10% of the tachy-
zoites were dead after purification.
Proteins with unknown localisations and without sec-

retory signals totalled 47.5%. Additional file 1: Table AF1
(sheet C) lists proteins from the apicoplast, mitochon-
dria, cytoplasm and nucleus. Another interesting group
of proteins found in our results, included as “unknown” in
Figure 2, contained eight cyclophilins (1.3%, Additional file 1:
Table AF1 sheet B); of which only one (18 kDa cyclophi-
lin) had been previously identified and characterised
[40]. In N. caninum and T. gondii, 18 kDa cyclophilin
displays monocyte chemoattractant properties, as it
mimics the ligands of CC-chemokine receptor 5 (CCR5),
inducing cell migration to infection sites and enhancing
parasite invasion and proliferation [41,42].The other seven
identifications refer to putative cyclophilins or cyclophilin-
like proteins and, like in other Apicomplexan organisms
[43], they are composed of the Cyclophilin (Cyp) domain
(NCLIV_019970, NCLIV_017250, NCLIV_070210); the
Cyp combined to a signal peptide (NCLIV_036200); or
the Cyp combined to other domains, such as RNA
recognition motif - RRM (NCLIV_045550), WD40 repeat
(NCLIV_009630), and FK506-binding domain (FKBP) plus
tetratricopeptide repeat (TPR) (NCLIV_028870). Thus,
the presence of many cyclophilins in the N. caninum
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ESA may regulate RNA processing, host cell migration
and parasite proliferation [41-43].

Relative quantification of proteins in the discharged

tachyzoite

Identification and relative quantification of proteins

The quantitative approach was performed to avoid the
contamination of proteins from dead tachyzoites and to
observe secreted proteins among the “down-regulated”
group of proteins.
The peptides from discharged and control samples were

labelled with stable isotopes using dimethyl triplex label-
ling, allowing robust and accurate relative quantification
[31,44]. The labelled samples were mixed and fractionated
using strong cation exchange (SCX) and the 15 most
abundant fractions were selected for MS analysis. From a
total of 2,163 identified proteins, 2,011 were quantified.
Additional file 3: Table AF3 displays all the identified and
quantified proteins, disposed according to their medium/
light (discharged/control) ratio, and information about
identification and quantification of proteins and peptides.
For further analysis we chose a fold-change threshold of

2 for the discharged/control ratio, resulting in 150 proteins
being up-regulated (log2 ratio higher than 1) and 90
proteins down-regulated (log2 ratio lower than −1) in
the discharged tachyzoite. Additional file 4: Table AF4 lists
the up (sheet A) and down (sheet B) regulated proteins.
The distribution of the quantified proteins from

N. caninum total extract (TE) was plotted for visualization
of the protein log2 ratios against their intensities. The
up-regulated proteins in the discharged tachyzoite are
highlighted in blue, while the down-regulated are

highlighted in pink (Figure 3A). Figure 3B depicts the
proteins identified in both ESA and TE (n = 497) coloured
in purple in the ESA protein distribution. Finally, Figure 3C
depicts the proteins localised to the parasite surface and to
the organelles micronemes, rhoptries and dense granules
among the quantified proteins and their ratios plotted
against their intensities. Additional file 5: Table AF5
(sheet A) displays the proteins found in each group
with their discharged/control ratio.
De facto, microneme proteins, which were experimen-

tally shown to be secreted in response to Ca2+ increase
[7], represented a great percentage of the down-regulated
proteins (16.7%), and the sum of microneme, rhoptry
and dense granule proteins corresponded to 30.1% of
the down-regulated proteins. Overlaying the proteins
identified in ESA and quantified by dimethyl labelling with
all dimethyl-quantified proteins (Figure 3B) demonstrated
a preference to the left side of the log2 scale, meaning
down regulation of these specific proteins. While most
of the microneme proteins have a log2 ratio of less
than −1 (Figure 3C), most of the rhoptry and dense
granule proteins show ratios higher than micronemes,
albeit still negative.

Comparison of both approaches

Both approaches were compared (Figure 4, details in
Additional file 5: Table AF5. B). It is notable that several
highly abundant proteins identified in ESA, such as MIC3,
GRA9 and ROP7, although identified in the dimethyl
labelling experiment, did not appear as being down
regulated. This could indicate that the fold change
threshold of 2 might be too strict, since the mechanism

Figure 2 Percentage of proteins in the ESA of N. caninum tachyzoites, from a total of 615 identified proteins. Classification was based on

parasite localisation (confirmed or putative) and predicted secretion pathways (classic secretion, unknown with signal peptide (SP); non-classical

secretion, unknown secretory (predicted by Secretome P). Unknown, unknown localisation.
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of protein release from the three organelles is still not
completely understood. However, the comparison between
the ESA and TE was advantageous to more precisely
determine the most likely secreted proteins.

A total of 20 microneme proteins were identified
(Figure 4), wherein three were identified only in ESA
(MIC16, TLN4 and MIC17B) and one only in TE (MIC5).
The three proteins solely from ESA, although not so
abundant, may take part in parasite invasion since MIC16
is a new transmembrane protein containing putative TSR
(thrombospondin) type 1 domains and is susceptible to
rhomboid cleavage [45]; MIC17B contains adhesive Apple
domains and was identified from a N. caninum organelle
fraction by monoclonal antibody [21], and toxolysin 4
(TLN4) is a putative metalloproteinase processed into
multiple proteolytic fragments within the parasite sec-
retory system, and some of these proteolytic fragments
remain associated in a large molecular complex [46].
MIC5, in T. gondii, occupies the parasite surface during
invasion and regulates the adhesive activity of other

Figure 3 Distribution of the N. caninum quantified proteins

after secretion stimulus. A, Distribution of the proteins in the

discharged tachyzoite (ratio discharged/control). Up-regulated proteins

are in blue and down-regulated proteins are in pink. B, Comparison

of the distribution of proteins identified from N. caninum secreted

fraction (ESA) to the proteins from the total extracts (TE). ESA proteins

are in purple, TE proteins are in light green. C, Ratio distribution of

the proteins identified in the TE, from secretory organelles. MIC,

micronemes (yellow); ROP, rhoptries (green); GRA, dense granules

(blue); surface (light pink).

Figure 4 Schematic representation of identified proteins

between both approaches: secreted fraction (ESA) and relative

dimethyl quantification (QUANT). N. caninum proteins identified

in the present study were grouped according to their known or

putative localisation. Proteins in the purple zone were identified by

the ESA approach; proteins in the green zone were identified by the

quantitative approach; proteins in the intersection of purple and

green zones were identified by both approaches. ESA proteins are

arranged in descending order of protein abundance. QUANT

proteins in red belong to the down-regulated group, and in

yellow were classified as not differentially expressed.
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secreted proteins [47]. Highly abundant and identified
by both approaches, SUB1 [48], AMA1 [49], and MIC1
[50] are extensively studied microneme proteins. Other
N. caninum microneme proteins, such as MIC2-like1
[51], MIC3 [52], MIC10 [53], MIC4 [54] and MIC2
[55], were also highly abundant in the ESA. M2AP,
MIC6, and MIC8 are well-characterised microneme
proteins in other apicomplexan parasites [56-58]; in
contrast to N. caninum, where identification was only
from genomic or gene expression profile studies [30,59].
One of the most abundant N. caninum ESA proteins,
MIC11, has been shown to stimulate bovine CD4 + naive
T cells [22]. Less abundant proteins, such as PLP1, SPATR,
CPL1 and MIC15, were identified in N. caninum for
the first time, and play important roles in other api-
complexan parasites. In T. gondii, PLP1, a perforin-like
protein secreted from micronemes, aids in the parasite
egress from the parasitophorous vacuole membrane [60].
SPATR [61], CLP1 and MIC15 [Carruthers 2010 – un-
published observations from ToxoDB] are proteins with
cell invasion-related domains.
The signalling pathways for rhoptries and dense granules

secretion are not elucidated. It is supposed that, following
receptor-engagement by microneme proteins, their cyto-
plasmic domains may play a role in signal transduction
leading to rhoptry release [62]. Interestingly, several
proteins from rhoptries and dense granules were identified
from T. gondii sporocyst/sporozoite fractions [63]. How-
ever, two proteomic T. gondii studies using tachyzoites
had poorly identified proteins from rhoptries and dense
granules [7,39]. In contrast, we identified a large number
of proteins from these two organelles, probably due to
increased sensitivity.
Numerous rhoptry proteins were detected (n = 42), the

majority in both ESA and TE (n = 25), one solely in ESA,
and 16 proteins only in TE. Many of these proteins,
including abundant ones, such as ROP15B, ROP26 and
toxofilin, have been previously detected only in genome
or transcriptome N. caninum studies [30]. The BPK1
and ROP15 genes had their expression levels reduced in
a temperature-sensitive N. caninum mutant (relatively
avirulent), suggesting their roles in parasite virulence
[59]. RON2, RON4, RON5, and RON8 are rhoptry neck
proteins that comprise the moving junction complex
AMA1-RON2/4/5/8 in T. gondii [64]. In a N. caninum

lysate, RON2 and RON5 reacted with T. gondii antiserum,
and coimmunoprecipitation indicated them as part of
the N. caninum moving junction complex, together with
RON4 and RON8 [65]. Some proteins were predicted to
be rhoptry kinases, as the paralogs ROP19 and ROP47,
and some may act as proteases, like TLN1 and SUB2,
which were characterised in T. gondii [66,67].
Although less abundant than microneme or rhoptry

proteins, some interesting dense granule proteins were

found; eight were identified by both approaches, one
only in ESA, and eight solely in TE. The most abundant
dense granule proteins in ESA were GRA9, serpin
(NCLIV_063150), NTPaseII, and GRA2. Two members
of the serpin family (serine protease inhibitors) were
identified; protease inhibitor 2 (PI-2) demonstrated to
have activity against trypsin in T. gondii [68], and serpin
NCLIV_063150, most likely a new member of the
serpin family, as it is closer to an undescribed putative
serpin of T. gondii (TGME49_246130). TgPI-1 is secreted
from dense granules into the parasitophorous vacuole
(PV) and inhibits trypsin, chymotrypsin, and neutrophil
elastase inhibitor, suggesting a possible protection role
for the parasite [69]. The presence of these serine proteases
might be important for the ability of the parasite to survive
within its host [68].
Twelve surface proteins were identified in ESA and,

although 11 were also quantified, none belonged to the
down-regulated group. Six other putative surface proteins
were detected only in TE. SRS2, a potential vaccine
candidate for neosporosis [70,71], was highly abundant
in the N. caninum ESA, as well as SAG1 and SAG3,
which are vaccine targets against toxoplasmosis [72-74].
Three proteins (NCLIV_010720, NCLIV_010730 and
NCLIV_068920) compose a group of four SRS protein
paralogs in N. caninum. Another group of SRS protein
homologues, including NCLIV_068872 and NCLIV_052740,
contains 15 paralogs that do not exist in T. gondii.

Proteins putatively involved in secretion signalling

pathways

Proteins putatively involved in the secretion process
were also investigated in the present work. Plasmodium

falciparum and T. gondii studies indicate that, upon
contact with the host cell, the second messengers inositol
triphosphate (IP3) and cyclic ADP ribose (cADPR) are
generated and bind to calcium channels putatively
localised in the ER, releasing the stored Ca2+ [9,75].
Ca2+ mobilisation signals, such as the activation of
CDPKs (calcium dependent protein kinases) and the
activation of kinases by cAMP and cGMP, regulate the
exocytosis of invasion organelles and the activation of
the invasion motor [9,62,75]. Three metabolic pathways
sensitive to Ca2+ increase are, according to the Library
of Apicomplexan Metabolic Pathways (LAMP) [76], the
inositol phosphate, purine, and pyrimidine. The proteins
from these pathways are highlighted in Additional file 6:
Figure S1 and Additional file 7: Figure S2 according to
their quantification in this work (Additional file 8: Table
AF8, sheets A, B and C). Thirteen proteins were related
to the inositol phosphate metabolism, where phosphoi-
nositide 5-phosphate (NCLIV_000140) presented down
regulation, which facilitates the accumulation of the IP3
precursors (Additional file 6: Figure S1). Five homologues
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of the enzyme phosphatidylinositol-4-phosphate-5-kinase,
which favours the synthesis of the IP3 precursors, were
identified. For the purine metabolism 25 proteins were
identified. It is notorious that the synthesis of inosine
monophosphate (IMP) is favoured, since adenosine kinase,
which consumes adenosine, was down-regulated, while
AMP deaminase (AMP → IMP) was up-regulated. The
accumulated IMP may result in an increase of GDP
(precursor of cGMP), since the enzymes GMP synthase
and guanylate kinase were up-regulated (Additional file 7:
Figure S2).
Other proteins related to increased Ca2+ levels were

identified by the quantitative approach, such as the
homologues of T. gondii phosphoproteins (Additional
file 8: Table AF8, sheet D), potentially involved in mediating
intracellular signalling cascades, regulating exocytosis
of invasion organelles, or controlling parasite motility
[75]. Nebl and colleagues have used the same ethanol
stimulus and quantitative analyses of the stimulated

parasite to reveal calcium-dependent phosphorylation
sites. As an example found in both studies, the armadillo
repeat-containing protein (ARM1) was up-regulated in
our study and, although not yet characterised, animal
proteins containing ARM repeats function in important
processes, including intracellular signalling and cyto-
skeletal regulation [77]. The core components of the
invasion motor MyoA, MLC1, GAP40, GAP45, GAP50
and ELC1 were here also identified; however, even
though motility appears to be dependent on calcium
signalling transduction [75], none were up-regulated.
Calcium-dependent protein kinases (CDPKs), impli-
cated in mediating crucial calcium-dependent signal
transduction pathways in apicomplexan parasites [9]
were also found. In T. gondii, CDPK1 is an essential
regulator of calcium-dependent micronemal exocytosis
[78]; but no syntenic homologue is predicted in N.

caninum. The highest expressed CDPK in our study
was CDPK2A, followed by CDPK7. Furthermore,

NCLIV_031320

NCLIV_016700

NCLIV_022690

NCLIV_018290

NCLIV_051340

NCLIV_025130

NCLIV_006060

NCLIV_006470

NCLIV_002780

NCLIV_019600

NCLIV_004790

Figure 5 Cytoscape visualisation of interaction network involving up and down regulated proteins in N. caninum discharged

tachyzoite. The discharged/control tachyzoite ratios defined the protein classification in up-regulated (log2 ratio higher than +1.0; nodes in blue),

down-regulated (log2 ratio lower than −1.0; nodes in pink), or non-differentially expressed proteins (log2 ratio between −1.0 and +1.0; nodes in

yellow). NCLIV_031320 is an up-regulated protein predicted to interact with 466 proteins; NCLIV_051340, NCLIV_025130 and NCLIV_006060 are

down-regulated proteins showing 129 predicted interactions; NCLIV_018290, NCLIV_016700, NCLIV_022690, NCLIV_006470, NCLIV_002780,

NCLIV_019600 and NCLIV_004790 are proteins predicted to interact with both up and down regulated proteins.
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other cell-cycle-associated kinases (CMGC), such as
NCLIV_020950, NCLIV_007880 and NCLIV_001240,
were up regulated (Additional file 8: Table AF8, sheet D).

Interaction network

The exploration of protein-protein interactions is a new
strategy to identify antimalarial drug targets, which should
have effects on important functional nodes controlling
crucial networks for parasite survival [79]. The physical
interactions among the 2,011 quantified proteins were
predicted with the Universal Predictor of Protein-Protein
Interactions (UNISPPI) [33]. Additional file 9: Table AF9
displays all predicted interactions with probabilities higher
than 90% (sheet A); and the pairs of interacting proteins
involving the up- or down-regulated proteins (sheet B).
The interaction network involving up and down regu-

lated proteins (Figure 5, details in Additional file 10:
Figure S3) revealed central proteins involved in the
calcium-induced pathways and potentially in invasion.
The up-regulated protein NCLIV_031320 exhibited the
highest number of interactions (466 proteins). NCLIV_0
31320 is a potential RNA binding protein, since it contains
a nuclear localisation signal (NLS) [80,81] plus a Gly-rich
region, prone to promote homo and heteromeric interac-
tions to create ribonucleoprotein (RNP) complexes [82].
Three down-regulated proteins presented 129 interactions:
toxofilin (NCLIV_051340); a putative translation initiation
factor 1 (NCLIV_025130); and a hypothetical protein
(NCLIV_006060). Other non-differentially expressed
proteins showed a high number of interactions: the
homologue of T. gondii small GTPase Rab6 (NCLIV_0
54540) with 168 interactions, and a putative receptor
for activated C kinase RACK (NCLIV_059430) with
148 interactions. Interestingly, six proteins were pre-
dicted to interact both with up- and down-regulated
proteins, ergo strong candidates to be involved in the
invasion process (Additional file 9: Table AF9 C). From
these six proteins, only one has been characterised, the
18 kDa cyclophilin (NCLIV_004790) [40].

Conclusion

In summary, this secretome study explored two different
approaches using high-resolution nanoLC-MS/MS. The
comparison between the protein abundances in ESA and
their measure in the discharged tachyzoite allowed for a
more precise identification of the most likely secreted
proteins. Information from the network interaction and
up-regulated proteins was important to recognise key
proteins potentially involved with the metabolic regulation
of secretion. Our results may be helpful to guide the se-
lection of targets to be investigated for therapy against
Neospora caninum and other Apicomplexan organisms.

Associated content

The mass spectrometry proteomics data have been depos-
ited in the ProteomeXchange Consortium (http://proteo-
mecentral.proteomexchange.org) via the PRIDE partner
repository [83] with the dataset identifier PXD000424.

Additional files

Additional file 1: Table AF1 Proteins identified in the ESA from N.

caninum tachyzoites. A. All 615 proteins indentified in the ESA from

Neospora caninum tachyzoites, discriminated by their ToxoDB ID and

arranged in descending order of relative abundance. Information is given

on predicted molecular weight, protein probabilities, number of

spectrum counts, relative protein abundance (spectrum counts divided

by molecular weight), number of unique spectrum counts, number of

unique peptides, and percentage of total spectra. The consulted high

throughput studies are displayed below the table. The files containing

information about the peptide sequences and charge state used to

identify each protein are compressed and available in Additional file 2

(615_ESA_proteins.rar). B. ESA proteins from Neospora caninum

tachyzoites displayed by their known or predicted protein groups:

micronemes, rhoptries, dense granules, surface and cyclophilins. Proteins

are arranged in descending order of relative abundance, and the

references of protein identification and/or characterisation are included.

C. ESA proteins from Neospora caninum tachyzoites displayed by their

known or predicted protein groups: apicoplast, mitochondria,

cytoplasm and nucleus. Proteins are arranged in descending order of

relative abundance, and the references of protein identification are

included. The consulted high throughput studies are displayed below

the table.

Additional file 2: Peptides used in the identification of ESA

proteins. In each file, information is given on peptide sequence and

charge state of all peptides used to identify each of the 615 proteins

present in the ESA from the Neospora caninum tachyzoite.

Additional file 3: Table AF3 Proteins from N. caninum Quantitative

Approach. A. Proteins identified and quantified in the total extract of

the N. caninum discharged tachyzoite, decreasingly disposed according to

their medium/light (discharged/control) ratio. Information is given on

protein coverage; number of proteins, unique peptides, peptides, and

peptide spectrum matches (PSMs); peak area; and medium/light ratio.

The number of amino acids, predicted protein molecular weight (MW),

and predicted isoeletric point (pI) are displayed in the last columns.

Information of each fragmentation method (CID or ETD) on protein

score, coverage, number of peptides and PSMs are also included. The

sequences of the identified peptides can be visualised by clicking the “+”.

B. Proteins identified and quantified in the total extract of the N. caninum

discharged tachyzoite. The medium/light (discharged/control) ratios and

the respective log2 ratios are displayed.

Additional file 4: Table AF4 Up- and down-regulated proteins in

the discharged N. caninum tachyzoite. A. Proteins in the UP-

REGULATED group of the N. caninum discharged tachyzoite, arranged in

descending order of log2 ratios (discharged/control). Information is given

on their peak area; known or predicted localisation, or their protein

group (when available); signal peptide (SP), transmembrane domains

(TM); presence of these proteins in the N. caninum ESA; gene ontology;

and protein domains. B. Proteins in the DOWN-REGULATED group of the

N. caninum discharged tachyzoite, arranged in descending order of log2
ratios (discharged/control). Information is given on their peak area; known

or predicted localisation, or their protein group (when available); signal

peptide (SP), transmembrane domains (TM); presence of these proteins in

the N. caninum ESA; gene ontology; and protein domains.

Additional file 5: Table AF5 Quantified proteins classified by

localisation. A. N. caninum quantified proteins classified by known or

predicted localisation (microneme, rhoptry, dense granules or surface).

*ratio < 0.5, down-regulated (pink); 0.5 < ratio < 2.0, not differentially

expressed (yellow); > 2.0, up-regulated (no example present in this table).

B. Comparison of the proteins identified from the ESA with the ones
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from the total extracts (TE). Proteins are classified by known or predicted

localisation (microneme, rhoptry, dense granules or surface). *, identified

only in ESA. **, identified only in TE. *ratio < 0.5, down-regulated (pink);

0.5 < ratio < 2.0, not differentially expressed (yellow); > 2.0, up-regulated

(no example present in this table).

Additional file 6: Figure S1 Inositol phosphate metabolism adapted

from LAMP (Library of Apicomplexan Metabolic Pathways). The

quantified proteins in N. caninum discharged tachyzoite are surrounded

by coloured circles designating their expression level (blue, up-regulated;

pink, down-regulated; yellow, not differentially expressed), and their log2
ratios are also displayed.

Additional file 7: Figure S2 Purine metabolism adapted from LAMP

(Library of Apicomplexan Metabolic Pathways). The quantified

proteins in N. caninum discharged tachyzoite are surrounded by coloured

circles designating their expression level (blue, up-regulated; pink, down-

regulated; yellow, not differentially expressed), and their log2 ratios are

also displayed.

Additional file 8: Table AF8 Proteins related to pathways linked to

calcium mobilisation. A. Proteins quantified in the discharged tachyzoite

that are involved in inositol phosphate metabolism, searched in Library of

Apicomplexan Metabolic Pathways - LAMP [76]. Proteins are sorted by

their EC numbers (Enzyme Commission). The protein intensities (peak

area) and ratios (medium/light or discharged/control) are displayed. B.

Proteins quantified in the discharged tachyzoite that are involved in the

purine metabolism, searched in Library of Apicomplexan Metabolic

Pathways - LAMP [76]. Proteins are sorted by their EC numbers (Enzyme

Commission). The protein intensities (peak area) and M/L ratios (medium/

light or discharged/control) are displayed. The ratio values lower then 0.5

(or close) are shown in pink and represent down-regulated proteins. The

ratio values higher then 2.0 (or close) are shown in blue and represent

up-regulated proteins. C. Proteins quantified in the discharged tachyzoite

that are involved in the pyrimidine metabolism, searched in Library of

Apicomplexan Metabolic Pathways - LAMP [76]. Proteins are sorted by

their EC numbers (Enzyme Commission). The protein intensities (peak

area) and M/L ratios (medium/light or discharged/control) are displayed.

The ratio values lower then 0.5 (or close) are shown in pink and

represent down-regulated proteins. The ratio values higher then 2.0 (or

close) are shown in blue and represent up-regulated proteins. D. Proteins

quantified in the discharged tachyzoite putatively involved in invasion.

Proteins were classified as components of the invasion motor; proteins

involved in signalling cascades, organelle exocytosis, or parasite motility;

and kinases. M/L ratios (medium/light or discharged/control) are

displayed. The ratio values lower then 0.5 (or close) are shown in pink

and represent down-regulated proteins. The ratio values higher then 2.0

(or close) are shown in blue and represent up-regulated proteins. The

T. gondii homologues previously identified in Nebl et al. 2011 [75] are

included.

Additional file 9: Table AF9 N. caninum interaction network.

A. Predicted protein interactions among the 2,011 quantified N. caninum

proteins, with probability higher than 90% (0.9). The protein IDs are the

ToxoDB accession numbers without the “NCLIV_” and zeros at the left

side of the numbers (for example, NCLIV_053220 is shown as 53220).

B. Predicted protein interactions involving up-regulated or down-

regulated proteins in N. caninum. Networks involving up-regulated (blue)

or down-regulated (pink) proteins. The pairs of interacting proteins

(protein_1 and protein_2) are displayed. In the next columns, the ID of

the up- or down-regulated component in the protein pair is evidenced,

and its log2 ratio is provided. All the up- (blue) and down- (pink)

regulated proteins involved in the interaction networks are listed in

columns E and K, respectively. C. Additional interacting proteins

predicted among the 2,011 quantified proteins. The proteins with the

highest numbers of interactions are displayed. They are sorted according

to their classification from the quantitative approach. (i) up-regulated

proteins (blue), and (ii) down-regulated proteins (pink) predicted to make

more interactions comprising the 2,011 quantified proteins. Non-

differentially expressed proteins (yellow), which make more interactions

with the up-regulated proteins (iii), with the down-regulated proteins (iv),

with other non-differentially expressed proteins (v), and with both

up- and down-regulated proteins (vi).

Additional file 10: Figure S3 Interaction network involving up and

down regulated proteins in N. caninum discharged tachyzoite -

details. Down-regulated proteins are represented by nodes in pink, up-

regulated proteins by nodes in blue, and non-differentially expressed

proteins by nodes in yellow. The edges are displayed in black lines.
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