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Abstract: Alzheimer’s disease (AD) is the most common form of dementia. An increasing body
of evidence describes an elevated incidence of epilepsy in patients with AD, and many transgenic
animal models of AD also exhibit seizures and susceptibility to epilepsy. However, the biological
mechanisms that underlie the occurrence of seizure or increased susceptibility to seizures in AD is
unknown. Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase that regulates various
cellular signaling pathways, and plays a crucial role in the pathogenesis of AD. It has been suggested
that GSK-3 might be a key factor that drives epileptogenesis in AD by interacting with the pathological
hallmarks of AD, amyloid precursor protein (APP) and tau. Furthermore, seizures may also contribute
to the progression of AD through GSK-3. In this way, GSK-3 might be involved in initiating a vicious
cycle between AD and seizures. This review aims to summarise the possible role of GSK-3 in the link
between AD and seizures. Understanding the role of GSK-3 in AD-associated seizures and epilepsy
may help researchers develop new therapeutic approach that can manage seizure and epilepsy in AD
patients as well as decelerate the progression of AD.
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1. Introduction

Alzheimer’s disease (AD) is the most common form of dementia and is clinically characterised
by cognitive impairment and progressive loss of memory. It has been estimated that one in every
85 individuals worldwide will be living with AD by 2050 [1], imposing a tremendous psychological
and financial burden on the patient’s family and the community. There is currently no cure for AD,
and treatments are mostly symptomatic [2].

Recent evidence has raised the possibility of a connection between AD and epilepsy, another
common CNS disorder in the elderly that is characterised by an enduring predisposition to generate
unprovoked seizures. Multiple studies have reported an increased incidence of unprovoked seizures
in AD patients [3–5]. For example, prospective studies showed that AD patients are 6- to 10-fold
more likely to develop seizures than age-matched controls [4,5], while it has been estimated that
10%–17% of AD patients have unprovoked seizures, suggesting that AD itself might be a risk factor
of epilepsy [3,6]. Additionally, it is reported that unprovoked seizures might aggravate cognitive
deficits of AD patients [7,8], which suggests that recurrent seizures lead to a vicious cycle of cognition
exacerbation in AD patients.

In addition to the clinical evidence, animal models harbouring AD-associated mutations provide a
useful insight on the possible causation and mechanisms underlying AD-associated epilepsy [9].
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There are two main pathological hallmarks in AD, senile plaques and neurofibrillary tangles
(NFT), the major molecular constituents of which are the amyloid precursor protein (APP) and
microtubule-associated protein tau (MAPT), respectively [10]. Several lines of evidence describe
AD-relevant mouse models, particularly those carrying APP or tau mutations, as being more susceptible
of developing unprovoked seizures and induced seizures [11–14]. Others have shown that the increase
of seizure susceptibility in APP mouse model was dependent on the expression of tau [15,16],
which suggests that intervening the interaction between amyloid and tau might have therapeutic
potential for epilepsy management in AD patients. Therefore, it is important to clarify the interaction
between APP and tau and their implication in AD-associated seizures.

Glycogen synthase kinase-3 (GSK-3) is a proline-rich serine/threonine kinase which plays a pivotal
role in the pathogenesis of AD [17–19]. It is suggested that GSK-3 may be a critical connecting factor
between amyloid and tau [20–22], as amyloid activates GSK-3, which subsequently phosphorylates
tau, the process of which is shown in Figure 1. Since the occurrence of seizures might be related to the
interaction between amyloid and tau, it is likely that GSK-3 may play a unique role in the development
of unprovoked seizures in AD. Therefore, a better understanding of the role of GSK-3 in connecting
AD and seizures would be helpful for understanding causal mechanisms and for improving seizure
management in AD patients.
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secretase and γ-secretase, releasing sAPPα, P3, and AICD. (B) One possible pathway of the activation 
of GSK-3. After binding with Fe65, AICD directly or indirectly activates GSK-3 by removing the 
phosphorylation from serine site (Ser9 of GSK-3β and Ser21 of GSK-3α). The activation of GSK-3 can 
be inhibited by GSK-3 inhibitor such as lithium. (C) GSK-3 phosphorylates microtubule-associated 
protein tau (MAPT). Tau is involved in the stabilisation of microtubules and axonal transport. After 
being abnormally phosphorylated by activated GSK-3, hyper-phosphorylated tau detaches from 
microtubules and causes the dissociation of microtubules. 
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Figure 1. A schematic overview of a hypothesised pathway that GSK-3 is involved in the phosphorylation
of tau: (A) The sequential cleavage process of amyloid precursor protein (APP) in the amyloidogenic
and non-amyloidogenic pathway in Alzheimer’s disease (AD). In the amyloidogenic pathway,
the extracellular domain of APP is firstly cleaved by β-secretase, liberating a soluble extracellular
N-terminus fragment sAPPβ and a transmembrane fragment AP-C99. The remaining APP-C99 is further
cleaved by γ-secretase, generating β-amyloid (Aβ) and releasing APP intracellular domain (AICD) into
cytosol. In the non-amyloidogenic pathway, APP is cleaved by α-secretase and γ-secretase, releasing
sAPPα, P3, and AICD. (B) One possible pathway of the activation of GSK-3. After binding with Fe65,
AICD directly or indirectly activates GSK-3 by removing the phosphorylation from serine site (Ser9
of GSK-3β and Ser21 of GSK-3α). The activation of GSK-3 can be inhibited by GSK-3 inhibitor such
as lithium. (C) GSK-3 phosphorylates microtubule-associated protein tau (MAPT). Tau is involved
in the stabilisation of microtubules and axonal transport. After being abnormally phosphorylated by
activated GSK-3, hyper-phosphorylated tau detaches from microtubules and causes the dissociation
of microtubules.

In this article, we will review the possible mechanisms of AD-related seizures, present hypothesised
pathways of the role of GSK-3 in the development of seizures in AD, and propose future research
to clarify the role of GSK-3 in this process. It is worth noting that multiple studies using AD animal
models employed models that harbour familial AD mutations and, thus, the neuropathological process
in the context of familial AD. However, that does not exclude patients with sporadic AD from the
possibility of similar pathological changes.

2. AD-Associated Epilepsy and Epileptic Seizures

There is growing clinical evidence suggestive of an increased risk of epilepsy or epileptic seizures
in AD. Higher incidence of unprovoked seizures in AD patients has been reported by numerous
studies [3,23–25]. It has been shown that seizure-free AD patients are more likely to develop unprovoked
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seizures compared to age-match controls [4,6]. Furthermore, evidence showed that familial AD was
strongly associated with epileptogenesis [25,26], indicating that some AD-related mutations might
contribute to abnormal neuronal network functions that lead to the development of epilepsy. However,
it remains unclear whether seizure is an integral part of AD. There are a few confounding factors that
need to be considered. On the one hand, the causal relationship is far from conclusive as the onset
of seizures might merely be concurrent with severe AD or consequential to AD symptoms instead
of AD per se. It is reported that about 22% of patients with dementia might conduct self-injurious
behaviors [27]. Poor judgement and impaired consciousness can also lead to epilepsy-causing injuries
in AD patients. On the other hand, it is also possible that the incidence of seizures is underestimated.
AD patients might develop nonconvulsive seizures that can be misdiagnosed as AD symptoms such
as altered consciousness or amnestic wandering [8]. Using long-term electroencephalogram (EEG)
recording, clinically silent seizures were detected in AD patients [28,29], indicating that subtle seizures
might not be documented in some AD patients without routine EEG recording. Therefore, the causal
relationship and the underlying mechanism between AD and epilepsy need to be further clarified in
prospective clinical studies.

In parallel to the clinical evidence, many transgenic mouse models carrying identified AD
mutations also show unprovoked seizures or epileptiform EEG patterns. Although AD mouse models
cannot fully recapitulate the pathological features of AD, they serve as controllable models of the disease
with one or few genetic modifications that manifest AD-associated symptoms. The most well-studied
models are mice that overexpress human mutant APP or specific APP cleavage products such as
amyloid intracellular domain (AICD). The process of APP cleavage is shown in Figure 1A. Several APP
models with various mutations exhibit spontaneous seizures or epileptiform discharges [13,14,30–32],
while the genetic suppression of APP can abate epileptiform activities in APP transgenic mice [33],
suggesting that APP is involved in the development of seizure. Furthermore, transgenic mice
overexpressing AICD, the intracellular domain of APP, also exhibit EEG abnormalities and increased
susceptibility to induced seizure [34]. In addition, APP transgenic models with a C-terminus cleavage
site mutation which prevents the cleavage of AICD showed a complete reversal of AD phenotypes
susceptibility to induced-seizure [34–36], suggesting that AICD might be the excitotoxic fragment of
APP that contributes to the development of AD phenotypes and seizures in AD models. Overall, a vast
literature documents consistent evidence that mutated or overexpressed APP or its cleavage products
can result in seizures.

Aside from the potential immediate consequences of epileptic seizures, such as physical injuries,
to AD patients, it is found that the occurrence of seizures might also be relevant to the acceleration of
cognition impairment, which creates a complex bidirectional association between AD and seizures.
The cognitive functions of patients with AD or other dementias may abruptly worsen after the first
onset of seizure [37,38], suggesting a short-term impact on cognitive deficit. In addition, it has also
been reported that AD patients with seizures had an earlier onset of cognitive decline and worse
cognitive outcome compared to AD patients without seizures [30,39,40], suggesting that seizures might
also have long-term effects on cognition. Similar to the clinical observation, studies on animal models
also showed worsened cognitive conditions in animals with seizures [39]. Further studies suggested
that epileptiform activity might disrupt memory consolidation and cause cognitive impairment in
animal models [30,40,41]. Strikingly, multiple lines of evidence showed that antiepileptic drugs (AEDs),
which can prevent these seizures and/or epileptiform discharges, seem capable of rescuing the cognitive
deficit in AD models [42–45]. These studies highlight the significance of seizures and epilepsy in the
development of AD, which also points to a potentially new therapeutic strategy for decelerating the
cognitive deficit in AD patients.

3. GSK-3 Is Involved in the Development of Seizures in AD

GSK-3 is a ubiquitously expressed kinase that is involved in various physiological and pathological
processes. GSK-3 was originally found as a key kinase that phosphorylated glycogen synthase during
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glycogen accumulation, a fundamental process of energy storage [46]. There are two genes coding for
the GSK-3 protein, from which two homologous forms are expressed, GSK-3α and GSK-3β. Similar to
most kinases, the activity of GSK-3 is regulated by phosphorylation at certain sites. The inhibition of
GSK-3 is regulated by phosphorylation at serine residue near N-terminus (Ser9 of GSK-3β and Ser21
of GSK-3α) [47]. When GSK-3 is activated, the tyrosine site of GSK-3 will be auto-phosphorylated
(Tyr216 of GSK-3β and Tyr279 of GSK-3α) [48]. Although GSK-3α shares 98% sequence identity with
GSK-3β [49], most studies have focused on GSK-3β and the functions of GSK-3α are not well understood.
It is possible that GSK-3β serves a more fundamental physiological function because the GSK-3β
knockout is lethal [50], whereas knockout of GSK-3α is tolerable [51]. GSK-3 is involved in multiple
molecular events including cell signalling [52], maintaining cellular structure [53], and modulation of
transcription [52]. Other studies suggested that GSK-3 might also be involved in epileptogenesis [54].

The role of GSK-3 in the pathogenesis of AD has been discussed in recent reviews [17,55–57].
GSK-3 was initially known as one of the key kinases that was involved in the phosphorylation of
tau [46,58,59], which is a biological process that regulates the binding of tau to microtubules, as being
shown in Figure 1C [60]. However, GSK-3 is excessively activated in AD, which contributes to
the hyper-phosphorylation of tau [60]. Hyper-phosphorylated tau has been identified as one of
the critical factors and causal drivers of pathogenesis of AD [61,62]. Furthermore, studies showed
that hyper-phosphorylation of tau also plays a role in epileptogenesis and ictogenesis in AD. It is
reported that the hyper-phosphorylation of tau is implicated in the development of seizures in
AD model [63] while reduction of tau or tau phosphorylation supresses seizure and impedes the
development of epilepsy [64–67]. This body of evidence suggests a mechanistic relationship between
tau phosphorylation and development of seizures and epilepsy. It is likely that GSK-3, as one of the
main kinases of tau, plays a critical role in this process. Furthermore, studies suggested that GSK-3
might be a downstream regulator of other tau kinases such as cyclin-dependent kinase 5 (CDK5) as well
as protein phosphatase 2A (PP2A) [68–70], which suggested the potential regulating role of GSK-3 in
tau phosphorylation. Therefore, GSK-3 represents an attractive target of intervention in AD-associated
seizures, such that inhibiting the activity of GSK-3 might have a therapeutic potential in ameliorating
or suppressing epileptic seizures in AD models. Although the therapeutic potential of GSK-3 inhibitor
in AD patients has not been clarified, several GSK-3 inhibitors such as AZD1080 and Tideglusib are
undergoing clinical trial [71,72].

In addition, studies showed that GSK-3 might be involved in AD-associated seizures through
alternate pathways. Multiple studies have shown that GSK-3β can be associated with the activity
of Fyn [73–75], a tyrosine kinase involved in mediating seizure susceptibility through activation of
N-methyl-D-aspartate (NMDA receptors which is an ion channel modulating the influx of calcium [76].
Fyn could phosphorylate a unique site Tyr18 (Y18) of tau [77], and Y18-phosphorylated tau is implicated
in tau-related NMDA receptor overactivation and excitotoxicity in vitro [78]. Y18-phosphorylated
tau subsequently over-activates NMDA receptors and causes excitotoxicity and eventually seizures.
Taken together, these results might lead to another pathway of seizure development that involves
GSK-3 in AD (Figure 2). However, it is worth mentioning that evidence in physiological condition is
required to prove this hypothesis. Studies in AD animal models are also important to connect the dots
among GSK-3, Fyn, and AD.
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Figure 2. Illustration summarising an alternative pathway of Glycogen synthase kinase-3 (GSK-3): It is
possible that GSK-3 activates Fyn by phosphorylation. Activated Fyn then binds to tau and mediates
the phosphorylation of tau at tyrosine 18 (Y18). Y18 phosphorylated tau induces the phosphorylation
of the NR2 subunit of NMDA receptor at tyrosine 1472 (Y1472) near the C-terminus, which causes the
abnormal activation of NMDA receptor and excessive Ca2+ influx and excitotoxicity.

4. Putative Interaction Between APP and GSK-3

Although the interaction between GSK-3 and tau has been widely studied, the mechanisms which
initiate the dysregulation of GSK-3 activity potentially leading to subsequent seizures and epileptiform
events in AD remain to be clarified. Multiple results from in vitro and in vivo experiments showed that
GSK-3β might be activated by APP or its metabolites [57,79–81]. Studies found that the C-terminus
fragment of APP, including AICD and its downstream cleavage product C31, increased the expression
of GSK-3 [82,83]. Furthermore, other study also found the increase of activated GSK-3 in AICD
overexpressing mice [84]. These lines of evidence showed that it might be this intracellular cleavage
product instead of the extracellular β-amyloid peptides that activates GSK-3β (Figure 1B). However,
further research is needed to clarify specifically which metabolite(s) of the APP protein are relevant.

Interestingly, some evidence showed that the AICD may also be pertinent to the occurrence of
spontaneous seizures and increased susceptibility of induced seizures in animal models. It is reported
that the cleavage of APP at the C-terminus may be related to neuronal network abnormality [34],
while other studies suggested that the AICD from C-terminus cleavage is critical to neuronal network
excitability, possibly leading to the increased spontaneous seizures in transgenic mice harbouring the
human AICD gene [34,85]. Therefore, these studies established that AICD or the pathway that AICD is
involved in may modulate neuronal excitability and epileptogenesis. Furthermore, there are some
studies mentioning that the excitotoxic effect of AICD was exerted through GSK-3 [82,83] whereas
inhibition of GSK-3 abated AD phenotypes in AICD transgenic mice [86], which suggests that GSK-3
might be part of the AICD pathway involved in AD phenotypes. However, if GKS-3 is involved in
an AICD-related pathway, the relationship between GSK-3 and AICD is unclear, as the activation of
GSK-3 in AICD transgenic mice does not clarify whether GSK-3 is upstream or downstream of AICD.
On the one hand, observations that GSK-3 activation occurs after the expression of AICD in vitro [87]
and in vivo [84,86] provide some lines of evidence that GSK-3 might be downstream of AICD. On the
other hand, another report showed that GSK-3 acts upstream of AICD by regulating the activity of
AICD through phosphorylation at site Thr668 (T668), thereby greatly enhancing binding of AICD and
Fe65 [83], an adaptor protein that facilitates the functions of AICD [88]. As results from multiple studies
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showed that the binding between AICD and its binding partner Fe65 is essential for the pathogenic
role of AICD in AD and epilepsy [34,86,88], it is possible that the activity of AICD is regulated by
GSK-3. However, more research is required to prove the causal relationship between AICD and GSK-3,
as direct evidence is still missing to clarify whether GSK-3 activity is involved in the development
of seizures in AICD transgenic mice. It is possible that activation of GSK-3 and the development of
seizures are two independent events in AICD transgenic mice. Therefore, further study is necessary to
support the role of GSK-3 in epileptogenesis and ictogenesis in AD.

Some other studies suggest that GSK-3 might also be involved in the production of AICD through
the cleavage of APP [55,89]. Phiel and colleagues showed that GSK-3 accelerated the cleavage of APP
and the production of C-terminus fragments, whereas inhibition of GSK-3 reduces the production
of C-terminus fragment [90]. Therefore, as the increased production of AICD is correlated to the
development of seizures and epilepsy [34,85], it is possible that GSK-3 is implicated in epilepsy
development through increasing the production of AICD. However, in what way GSK-3 is involved in
the processing of APP has not been clarified to date. Although it has been reported that suppressing
the expression of GSK-3α after birth of mice reduces the production of C-terminus fragments [90],
other study showed that knockout of GSK-3α gene before birth does not alter the processing of
APP [89]. This discrepancy can be explained by a compensatory mechanism that both GSK-3α and
GSK-3β mediate the processing of APP. While inhibiting GSK-3α acutely decreases the cleavage of
APP, the functions of GSK-3α might be overtaken by GSK-3β chronically. However, further research is
needed to verify this mechanism.

Collectively, accumulating evidence suggests that there might be a GSK-3-amyloid-tau triad that
induces the development of seizures and epilepsy in AD. However, the specific interaction between
GSK-3 and AICD remains to be clarified. Answering these questions might help us understand the
pathophysiology of AD-associated epilepsy as well as develop new therapeutic approaches to manage
seizures and epilepsy in AD patients.

5. Alternative Roles of GSK-3 in AD and Seizures

As previously discussed, the occurrence of seizures may accelerate the progress of AD.
Some evidence showed that GSK-3 might also be involved in this process. It is clear that GSK-3 plays an
important role in the pathogenesis of AD through the phosphorylation of tau [56,91] and that inhibiting
GSK-3 decelerates the progression of AD phenotypes in animal models [86]. Therefore, it is possible
that seizures aggravate AD phenotypes by increasing GSK-3 activity and hyper-phosphorylated tau.
The activation of GSK-3 and phosphorylation of tau have been shown in chemical and electrical
induced epilepsy models [54,92,93]. However, the results of GSK-3 activation are not always consistent
in post-seizure models. One study showed that GSK-3 was not activated 24 h after kainate-induced
seizures [94], which might be explained by the observation that the activation of GSK-3 might last for
less than 8 h [95]. Furthermore, some studies showed that there might be some regulatory factors
working against the activation of GSK-3 after seizures. It is reported that GSK-3 could not be activated
24 h after seizures, while the activation of GSK-3 lasted longer than 24 h in Dopamine D2 receptor
(D2R) knockout mice [94,96]. Interestingly, the loss of D2R was also reported in AD patients [97,98].
Lines of evidence suggest that D2R might suppress the activation of GSK-3 while decrease of D2R
releases the suppression and causes the activation of GSK-3. However, the relevance of these results to
AD still needs to be considered cautiously, as they were not conducted in AD animal models. More
importantly, these studies do not specify whether it is seizures per se that directly activate GSK-3, as it
might be the exogenous stimuli such as chemical or electrical stimulations that increase the activity of
GSK-3. Therefore, it is too early to draw the conclusion that seizures exacerbate AD through GSK-3.

Based on the current evidences, it may be hypothesized that GSK-3 contributes to the “vicious
cycle” between seizure and AD. After being activated in AD, GSK-3 might induce the occurrence of
epileptic seizures, which could further increase the activity of GSK-3 and establish a positive feedback
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mechanism. Therefore, regulation of GSK-3 activity might be a potential intervention for both AD and
epileptic seizures.

There are also multiple studies that link GSK-3 to seizures in non-AD models. One study showed
that GSK-3β is an essential regulator of the cystine/glutamate antiporter xc-, a system that imports
cystine and exports glutamate [97]. The disturbance of GSK-3β activity might lead to the spillover of
glutamate, which may trigger spontaneous seizures [99]. Inhibition of GSK-3 showed anticonvulsant
effect in rodents and zebrafish models of temporal lobe epilepsy [100]. However, some studies suggest
that simply decreasing the activity of GSK-3 might not be the appropriate solution. Engel and colleagues
showed that both increase and decrease of GSK-3β activity acutely aggravated the development of
seizures in acquired seizure model [95]. Furthermore, a recent research showed that modified GSK-3β
with increased activity decreased the progression of kainate-induced epileptogenesis [101], which was
contradictory to many other results. Therefore, the specific role of GSK-3 in epileptic seizures and
AD-associated epileptic seizures has to be further clarified.

6. Future Research Directions

There is increasing evidence supporting the cooccurrence of AD and seizures. To improve the
understanding of both fields and to develop novel therapeutic approaches targeting AD-associated
seizures, there are many questions to be addressed. Firstly, GSK-3 activity in AD models has not
been well studied. Although some studies have found that GSK-3 could be activated in transgenic
human APP mouse models [79,84], the results need to be interpreted cautiously. Some studies inferred
GSK-3 activity by measuring protein levels of either activated GSK-3 (Y216/Y279) or inactivated GSK-3
(S9/S21), which might not necessarily correlate with the enzymatic activity of the protein. Therefore,
it is important to accurately measure GSK-3 activity through a quantitative kinase activity assay.

Importantly, whether and at what time point GSK-3 is activated in AD models requires further
study. To date, no study has reported the chronological analysis on the activity of GSK-3 in animal
models carrying AD-relevant mutations. It is possible that GSK-3 activity is increased at an early
age due to the gene mutation or the overexpression of genes, such as APP and AICD. The former is
more likely to be relevant to human condition while the latter is limited to animal models, so carefully
designed studies need to exclude simple overexpression of APP as a driving factor. In addition,
a concern raised by Saito et al. suggested the possibility that some phenotypes in APP-overexpressing
mice might come from membrane protein overexpression [102]. Furthermore, it is also likely that
GSK-3 activity fluctuates over time in animal models. Notably, some studies showed that unprovoked
seizures and epileptiform events could occur in AD transgenic models [14,31]. As epileptic seizures
might also disturb the activity of GSK-3, it is possible that the GSK-3 activity also changes with the
occurrence of seizures. Therefore, the variables that can change GSK-3 activity in AD have to be
considered cautiously. It might be AD-associated seizures instead of AD mutations that induce the
activation of GSK-3. Investigating GSK-3 activity at different timepoints with the monitoring of seizures
might help us unravel the cause and effect relationship between AD phenotypes and GSK-3 activation.

Second, the roles of GSK-3 in AD-associated seizure need to be clarified. Although GSK-3 has been
recognised as one of the contributors of AD pathogenesis, whether GSK-3 causes or accelerates the
development of epilepsy in AD has not been well studied. One study reported that genetically modified
GSK-3 with increased activity decelerates kainate-induced epileptogenesis [101], which suggests that the
role of GSK-3 in epileptogenesis can also be different in AD and non-AD animal models. Furthermore,
presuming that GSK-3 contributes to epileptogenesis does not necessarily mean that reducing GSK-3
activity can impede this process. Therefore, inhibiting GSK-3 activity, as most studies proposed,
might not be the optimal intervention for AD-associated seizure.

Last but not least, the pathway that involves GSK-3 in AD-associated epileptic seizures requires
further investigation. GSK-3 is involved in multiple cell signalling pathways [54], which suggests that
GSK-3 might not be implicated directly in the development of seizure and epilepsy. It might be another
downstream molecule, such as Fyn and tau, that directly contributes to the onset of seizures, but more
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evidence is needed to establish the pathway and to verify the therapeutic potential of regulating the
targets involved. Therefore, it would be valuable to pinpoint the position of GSK-3 in the pathway that
leads to AD-associated seizure.

To summarise, emerging evidence suggests that GSK-3 may play a crucial but complex role in the
pathogenesis of epileptic seizures in AD. Unravelling this relationship could potentially open up new
therapeutic strategies.
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