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Abstract. A better understanding of precipitation dynamics

in the Indian subcontinent is required since India’s society

depends heavily on reliable monsoon forecasts. We intro-

duce a non-linear, multiscale approach, based on wavelets

and event synchronization, for unravelling teleconnection in-

fluences on precipitation. We consider those climate pat-

terns with the highest relevance for Indian precipitation.

Our results suggest significant influences which are not

well captured by only the wavelet coherence analysis, the

state-of-the-art method in understanding linkages at multi-

ple timescales. We find substantial variation across India and

across timescales. In particular, El Niño–Southern Oscilla-

tion (ENSO) and the Indian Ocean Dipole (IOD) mainly

influence precipitation in the south-east at interannual and

decadal scales, respectively, whereas the North Atlantic Os-

cillation (NAO) has a strong connection to precipitation, par-

ticularly in the northern regions. The effect of the Pacific

Decadal Oscillation (PDO) stretches across the whole coun-

try, whereas the Atlantic Multidecadal Oscillation (AMO)

influences precipitation particularly in the central arid and

semi-arid regions. The proposed method provides a power-

ful approach for capturing the dynamics of precipitation and,

hence, helps improve precipitation forecasting.

1 Introduction

Understanding the spatial patterns, frequency and intensity

of precipitation in the Indian subcontinent is an active area of

research due to its essential impact on life and property (Pai

et al., 2015). The Indian monsoon is the pulse and lifeline of

over 1 billion people, and the socio-economic development

in this part of the world heavily depends on reliable predic-

tions of the monsoon (Goswami and Krishnan, 2013; Shukla

et al., 2018).

Numerous studies have emphasized the importance of un-

derstanding the influence of large-scale climatic patterns on

precipitation for improving forecast accuracy (Feng et al.,

2016), and therefore many studies have analysed the rela-

tionship between precipitation and climatic patterns for In-

dia. This research has shown that the relevant patterns are the

El Niño–Southern Oscillation (ENSO) (Kumar et al., 2006;

Mokhov et al., 2012), the Indian Ocean Dipole (IOD) (Be-

hera et al., 1999; Krishnan and Swapna, 2009), the North At-

lantic Oscillation (NAO) (Bharath and Srinivas, 2015; Feliks

et al., 2013), the Pacific Decadal Oscillation (PDO) (Dong,

2016; Krishnan and Sugi, 2003), and the Atlantic Multi-

decadal Oscillation (AMO) (Goswami et al., 2006; Krishna-

murthy and Krishnamurthy, 2016).
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Over the years, linkages between climatic patterns and

precipitation have been investigated by a range of statisti-

cal methods, such as correlation (Abid et al., 2018), princi-

pal component analysis (Luterbacher et al., 2006), empiri-

cal orthogonal functions (Hannachi et al., 2007), and regres-

sion and canonical analysis (Xoplaki et al., 2004). However,

all these methods are limited in capturing the scale-specific

feedbacks and interactions between the long-range climatic

patterns and precipitation. Such information is very crucial

since in climatic systems energy is stored and transported

differently on different temporal scales, resulting from inter-

actions of intertwined sub-components across a wide range

of scales (Miralles et al., 2014; Peters et al., 2007). Multi-

scale interactions have therefore received extensive attention

in the field of climate dynamics (Peters et al., 2007; Stein-

haeuser et al., 2012) and have been proposed as a mechanism

for triggering extreme events (Agarwal et al., 2018b; Okin et

al., 2009; Paluš, 2014; Peters et al., 2004) and abrupt tran-

sitions (Peters et al., 2007). This holds the promise of better

understanding the system dynamics compared to analysing

processes at one timescale only.

In recent decades, wavelet coherence has become the state-

of-the-art method for studying the influence of climatic pat-

terns on precipitation at different temporal scales. For exam-

ple, Ouachani et al. (2013) investigated the multiscale lin-

ear relationship between the Mediterranean region (northern

Africa) and large-scale climatic patterns such as ENSO, NAO

and PDO. The study reported a strong correlation between

ENSO and precipitation series at a lag of 2 years. The study

further reported that the influence of ENSO on precipitation

was stronger compared to other climatic modes considered in

this particular study. Coherently, Tan et al. (2016) analysed

the relations between Canadian precipitation and different

global climate indices. Similar studies using wavelet coher-

ence also reported in other parts of the world (Agarwal et al.,

2016; Araghi et al., 2017; Hu and Si, 2016; Tan et al., 2016),

though all such studies based on wavelet coherence were illu-

minating and contributed significantly to our existing knowl-

edge of the climate. However, there remains a large scope for

advancement, in particular in capturing the non-linear scale-

specific interactions between climate patterns and Indian pre-

cipitation.

To capture such non-linear scale-specific interactions, re-

cently event synchronization (ES) has emerged as a power-

ful similarity measure (Agarwal et al., 2019a; Mitra et al.,

2017; Ozturk et al., 2018; Quiroga et al., 2002) because ES

automatically classifies pairs of events arising at two loca-

tions as temporally close (and, thus, possibly statistically –

or even dynamically – interrelated) without the necessity of

selecting an additional parameter in terms of a fixed tolerable

delay between these events. Also, ES is a robust measure to

study the interrelationship between a series of non-Gaussian

data or data with heavy tails (Agarwal, 2019). These intrinsic

features of ES are advantageous in climate in general and for

quantifying interactions between climatic patterns and pre-

cipitation in particular since the time delay between such

patterns (for e.g. ENSO) and their effect on precipitation is

tedious to quantify beforehand.

We, therefore, decided to use ES to quantify the (pos-

sibly non-linear) linkages between large-scale climatic pat-

terns and precipitation across India. More specifically, we

analyse the linkages between the 95th percentile extreme

events, extracted from gridded Indian precipitation data at

monthly resolution, and the climate patterns ENSO, IOD,

NAO, PDO, and AMO which have been shown to be of

significant relevance for precipitation in India. We combine

ES with the wavelet transform, as proposed recently (Agar-

wal et al., 2017). This combination, termed MSES (multi-

scale event synchronization), allows non-linear connections

between time series to be studied at different temporal scales.

To consider the spatial variation across India, we sub-divide

India into homogeneous regions that share rather similar pre-

cipitation characteristics and identify a representative grid

cell for each region. The homogenous regions and the repre-

sentative grid cells are obtained using the concept of a com-

plex networks approach (Agarwal et al., 2018a), and the re-

sultant network is referred to as a climate network (Agarwal

et al., 2019a; Boers et al., 2019; Ekhtiari et al., 2019; Tsonis

et al., 2006).

The novelty of this study is the integration of (1) the non-

linear method for quantifying the linkages between large-

scale climate patterns and the climate network (precipitation)

in India at (2) multiple timescales, considering (3) the spatial

variation of these linkages. To our knowledge, this combi-

nation (non-linear–multiple timescales–spatial variation) has

not yet been implemented, neither for India nor for any other

region. We argue that it allows the spatio-temporal diversity

of Indian precipitation teleconnections to be unravelled, of-

fering a compelling perspective for capturing the dynamics

of precipitation and improving precipitation forecasting.

2 Study area and data

2.1 Study area

Our study area is the Indian subcontinent, which shows a

significant variation in climate characteristics. India extends

over an area of 3 287 263 km2. Its climate regimes are clas-

sified as arid (north-western India), semi-arid (northern low-

lands and central peninsular India), humid (coastal lowlands,

south-western and north-eastern highlands) and alpine (Hi-

malayan mountains in the north). The spatio-temporal vari-

ation of precipitation, as well as temperature, is significant

over the country (Bharath and Srinivas, 2015). The entire

country receives 80 % of its total precipitation during the

south-western monsoon, from June to September (Bharath

and Srinivas, 2015). During the north-eastern monsoon (Oc-

tober to December), the precipitation is considerable but is

confined to the south-eastern part of the country.
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2.2 Gridded precipitation data

We use the high-resolution (0.25◦ × 0.25◦)monthly gridded

precipitation dataset for the period 1951–2013, developed by

the Indian Meteorological Department (IMD) for the spatial

domain of 66.5 to 100◦ E and 6.5 to 38.5◦ N, covering the

mainland region of India (Pai et al., 2014). The gridded data

have been generated from the observations of 6995 gauging

stations across India (Pai et al., 2014). The dataset captures

well the spatial distribution of precipitation over the country.

For our study, out of 17 415 grid cells, 4631 cells lying inside

the boundaries of India were identified.

2.3 Time series of global and regional climate indices

To understand the linkages between climate patterns and pre-

cipitation, we use time series of global and regional climate

indices for the same period, i.e. 1951–2013. We have se-

lected those indices for which earlier studies have shown a

relation to Indian precipitation. The selected climate indices

and the respective studies are ENSO (Mokhov et al., 2012),

IOD (Ashok et al., 2001), NAO (Bharath and Srinivas, 2015;

Feliks et al., 2013), PDO (Dong, 2016; Krishnan and Sugi,

2003) and AMO (Goswami et al., 2006; Krishnamurthy and

Krishnamurthy, 2016). For detailed information on these cli-

mate indices and the data sources, we refer the reader to

https://www.esrl.noaa.gov/ (last access: 26 May 2018).

3 Methodology

To investigate the non-linear, multiscale linkages between

climate patterns and precipitation, we propose an analysis

based on combining network reconstruction, community de-

tection, wavelet transformation, and event synchronization

(Fig. 1). First, we construct a precipitation network of the

precipitation dataset using event synchronization. We further

pool grid cells with similar precipitation characteristics into

homogenous regions and identify a representative grid cell

for each region as proposed by Agarwal et al. (2018a). The

linkages between the precipitation time series of the repre-

sentative cells and the teleconnection indices are analysed

by the MSES method developed by Agarwal et al. (2017).

Finally, the proposed methodology is compared to the state-

of-the-art wavelet coherence analysis (WCA).

3.1 Event synchronization and network construction

ES measures the non-linear synchronization of point pro-

cesses (Quiroga et al., 2002). Each grid cell of the precip-

itation dataset serves as a network node, while the precipi-

tation estimates at each cell provide the time series for that

node. Following Agarwal et al. (2018a), we define heavy pre-

cipitation events at each node as events with precipitation

larger than the 95th percentile at that grid cell. The 95th per-

centile threshold for event selection is globally accepted as

a tradeoff between a sufficient number of events and a high

threshold value. Then ES is used to calculate the strength of

synchronization (Q) between all possible pairs of grid cells.

ES has advantages over other time-delayed correlation tech-

niques (e.g. Pearson lag correlation), as it uses a dynamic

(not fixed) time delay (Agarwal et al., 2017). The latter refers

to a time delay that is adjusted according to the two time se-

ries being compared, which allows its application to different

situations. Another advantage of ES is that it can be applied

to non-Gaussian data. Having its roots in neuroscience, ES

only considers events beyond a threshold and ignores the ab-

solute magnitude of events, which could be a challenge to

incorporate in future work.

Here, we define an event when a value in the signal x (t)

(or y (t)) exceeds a threshold (selected by a α percentile).

Events in x(t) and y(t) occurring at time txl and t
y
m, where

l = 1,2,3,4. . .Sx , m= 1,2,3,4. . .Sy , are considered to be

synchronized when they occur within a time lag ±τ
xy

lm which

is defined as in Agarwal et al. (2017).

τ
xy

lm = min
{

txl+1 − txl , t
x
l − txl−1, t

y

m+1 − t
y
m, t

y
m − t

y

m−1}/2 (1)

Sx and Sy are the total number of events (greater than thresh-

old α) that occurred in the signals x(t) and y (t), respectively.

This definition of the time lag helps to separate independent

events. Then we count the number of times an event occurs

in the signal x(t) after the maximum time lag τ
xy

lm of an event

that appears in the signal y(t) and vice versa, resulting in the

quantities C (x|y) and C (y|x):

C (x|y)=

Sx
∑

l=1

Sy
∑

m=1

Jxy and C (y|x)=

Sx
∑

l=1

Sy
∑

m=1

Jyx, (2)

with

Jxy =







1 if 0< txl − t
y
m < τ

xy

lm ,
1
2

if txl = t
y
m,

0 else.

(3)

From these quantities, we define a measure of the strength

of event synchronization (Qxy) between x (t) and y(t) by

Qxy =
C (x|y)+C (y|x)
√

(Sx − 2)(Sy − 2)
. (4)

Qxy is normalized to 0 ≤Qxy ≤ 1.Qxy = 1 refers to perfect

synchronization between the signals x(t) and y (t). ES has

been specifically designed to identify non-linear associations

among event time series with varying lags between them.

A link between two grid cells is set up if their heavy pre-

cipitation occurrences are strongly synchronized, which we

define as having a Q value greater than a predefined thresh-

old (θ
Q
x,y). A number of criteria have been proposed to gen-

erate an adjacency matrix from a similarity matrix, such as a
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Figure 1. Schematic of the methodology to investigate the linkages between climate patterns and precipitation. (“M” stands for method and

“R” for result.)

fixed amount of link density (Agarwal, 2019) or fixed thresh-

olds (Donges et al., 2009). Here, we consider a 5 % link den-

sity since it is a well-accepted criterion in general for the net-

work construction. Also, the 95th percentile is a good trade-

off between having a sufficient number of connections and

capturing high synchronized connections.

We repeat the procedure for all possible pairs of nodes to

construct a precipitation network with the adjacency matrix

Ax,y =

{

1, ifQx, y ≥ θ
Q
x, y,

0, else.
(5)

Here, θ
Q
x,y = 95th percentile is a chosen threshold, Ax,y = 1

denotes a link between the xth and yth nodes and 0 denotes

otherwise. The adjacency matrix represents the connections

in the rainfall network. In this study, we use an undirected

network, meaning we do not consider which of the two syn-

chronized events happened first, in order to avoid the possi-

bility of misleading directionalities of event occurrences be-

tween nodes that are topographically close to one another.

3.2 Community detection and the Z − P approach

The linkages between climate indices and precipitation are

evaluated on a regional scale. India is subdivided into homo-

geneous regions with similar characteristics of heavy precip-

itation events using the concept of complex networks (Agar-

wal et al., 2018). Several studies such as Agarwal et al.

(2019b), Halverson and Fleming (2015), Lancichinetti and

Fortunato (2009), Newman (2006), Sivakumar et al. (2015),

and Tsonis et al. (2011) have reported superior performance

of complex networks in identifying homogeneous regions

compared to more traditional methods, such as the hierar-

chical clustering algorithm or the information-theoretic al-

gorithm (Harenberg et al., 2014).

There exist several community detection approaches aim-

ing at stratifying the nodes into communities in an optimal

way (see Fortunato, 2010, for an extensive review). The ques-

tion of which community detection algorithm should be used

is difficult to answer. However, it has been found that the

choice of the community detection algorithm has a small im-

pact on the resultant communities in geophysical data sci-

ence studies (Halverson and Fleming, 2015). In this study,

we use the Louvain method which maximizes the modularity

to find the optimal community structure in the network. The

optimal community structure is a subdivision of the network

into non-overlapping groups of nodes, which maximizes the

number of within-group edges and minimizes the number

of between-group edges (Blondel et al., 2008; Rubinov and

Sporns, 2011).

Modularity is defined, besides a multiplicative constant,

as the number of edges falling within groups minus the ex-

pected number in an equivalent network with edges placed at

random. Positive modularity values suggest the presence of

communities. Thus, one can search for community structures

by looking for the network divisions that have positive, and

preferably large, modularity values (Newman, 2004). Modu-

larity (M) is calculated as

M =
1

2m

∑

x,y

⌊

Axy −
kxky

2m

⌋

δ(CxCy), (6)

where Axy represents the number of edges between x and

y,kx =
∑

y

Axy is the sum of the number of the edges (de-

gree) attached to vertex x, and Cx is the community to which

vertex x is assigned, and the δ function δ(u,v) is 1 if u= v

and 0; otherwise, m= 1
2

∑

xy

Axy .
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Equation (6) is solved using the two-step iterative algo-

rithm proposed by Blondel et al. (2008), also known as the

Louvain method. The first step consists in optimizing the

modularity by permitting only a local modification of com-

munities; in the second step, the communities identified are

pooled to assemble a new network of communities. High-

modularity networks are densely linked within communi-

ties but sparsely linked between communities. The algorithm

stops when the highest modularity is achieved.

Further, for each community, we identify a representative

grid cell using the Z−P space approach, where Z is the

within-module degree or Z score and P is the participation

coefficient (Agarwal et al., 2018a). The within-module de-

gree (Zx orZ score) is a within-community version of degree

centrality (total number of links of any node) and shows how

well a node is connected to other nodes in the same commu-

nity. It is estimated as in Guimer and Amaral (2005).

Zx =
Kx −Ksx

σksx
, (7)

where Kx is the total number of links (degrees) of node x in

the community sx , Ksx is the average degree of all nodes in

the community sx , and σksx is the standard deviation of K in

sx . Since two nodes with the sameZ score may play different

roles within the community, this measure is often combined

with the participation coefficient Px .

The participation coefficient (Px) compares the number of

links of node x to nodes in all communities with the number

of links within its own community. We define the Px of node

x as in Guimer and Amaral (2005).

Px = 1 −
∑NM

sy=1

(

kxsy

kx

)2

, (8)

where kxsy is the number of links of node x to nodes in com-

munity sy and kx is the total number of links (degrees) of

node xNM representing the number of communities in the

network. The participation coefficient of a node is therefore

close to one if its links are uniformly distributed among all

the communities and zero if its entire links are within its own

community because in the latter case Kxsy =Kx and hence

Px = 0.

The cell with the highest number of intracommunity links

is considered representative (Halverson and Fleming, 2015),

based on the argument that this cell shows the strongest syn-

chronization within the community. We expect its climato-

logical properties, such as the linkage to large-scale climate

patterns, to have the highest similarity to the properties of the

other cells in the community. We could also use a composite,

e.g. by normalizing the grid cell time series and defining the

time series of the mean of the normalized series as represen-

tative. However, this definition would reduce the variability

and could mask existing connections to climatic patterns.

3.3 Multiscale event synchronization

In this study, we use the MSES measure (Agarwal et al.,

2017) that combines the wavelet transform and event syn-

chronization to quantify the relationship between precipita-

tion and climate indices. The multiscale event synchroniza-

tion measure is based on a combination of wavelet transform

and event synchronization (Sect. 3.1). The following subsec-

tions discuss briefly the wavelet transform and finally the

methodology for MSES.

3.3.1 Wavelet analysis

Synthetically the temporal data series of any continuous geo-

physical variable is the superposition of variations occur-

ring at different scales. Different physical processes drive

these patterns, and a partitioning of the variability at dif-

ferent scales can help to isolate and characterize underly-

ing processes (Agarwal et al., 2018b; Agarwal et al., 2019a).

Wavelets have been successfully used to characterize the

timescale of interactions across fluxes and physical drivers

(Katul et al., 2001; Ding et al., 2013).

The wavelet transform of a signal decomposes it into a set

of components with predefined central frequencies and spec-

tral bandwidths. Here we use the maximal overlap discrete

wavelet transform (MODWT) (Percival and Walden, 2000)

because the orthogonal discrete wavelet transform (DWT)

results in a pyramid of wavelet coefficients which does not

contain the time synchronization of the events. Further, our

experience with DWT suggests that the latter approach suf-

fers from “shift sensitivity”, also known as “shift variance”,

and is undesirable because it implies that DWT coefficients

fail to distinguish between input-signal shifts (Maheswaran

and Khosa, 2012). Even though the MODWT has large re-

dundancy, it is shift-invariant, and this property renders the

MODWT more suited to time series analysis.

MODWT decomposes the time series into different

timescales or frequency components. The wavelet decompo-

sition is realized using the two basis functions known as fa-

ther wavelets and mother wavelets. Any function f (t) can be

expressed in these basis functions and their scaled and trans-

lated versions as given in Eq. (9).

f (t)=
∑

k

sJ,kϕJ,k (t)+
∑

k

dJ,kψJ,k (t)

+
∑

k

dJ−1,kψJ−1,k (t) . . .+
∑

k

d1,kψ1,k (t) , (9)

where J is the number of multiresolution components

(scales) and k is in the range of 1 to the number of

the coefficient in the specified component. The coefficients

sJ,k are the approximation coefficients and dJ,k ,. . . , d1,k

are the wavelet transform coefficients, while the functions

ϕJ,k (t) and ψj,k (t))|j = 1, . . .J,−1,J are the approximat-

www.nonlin-processes-geophys.net/26/251/2019/ Nonlin. Processes Geophys., 26, 251–266, 2019
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ing wavelet function and detailed wavelet functions, respec-

tively.

These basis functions are defined in terms of father and

mother wavelets as follows:

ϕj,k (t)= 2−j/2ϕ
(

2−j t − k
)

, (10)

ψj,k (t)= 2−j/2ψ
(

2−j t − k
)

. (11)

Further,

sJ,k ≈

∫

ϕJ,k (t)f (t)dt (12)

dj,k ≈

∫

ψJ,k (t)f (t)dtj = 1, . . .J − 1,J (13)

where the scaling coefficients sJ,k capture the smooth trend

of the time series at the coarse scale 2J , which are also called

smooth coefficients; and the wavelet coefficients dj,k , also

known as detail coefficients can detect deviations from the

coarsest scale to the finest scale.

The original series f (t) can be reconstructed by the sum-

ming the detailed components and the smooth components.

f (t)= SJ,k +DJ,k +DJ−1,k + . . .D1,k, (14)

where

SJ,k =
∑

k

sJ,kϕJ,k (t) ,DJ,k =
∑

k

dJ,kψJ,k (t)

. . .D1,k =
∑

k

d1,kψ1,k (t) . (15)

Equation (14) defines a multiresolution analysis (MRA) of

f (t); i.e. we express the series f (t) as the sum of a con-

stant vector SJ and J other vectors Dj , j = 1, . . .,J , each of

which contain a time series related to variations in f (t) at a

certain scale. We refer to Dj as the j th-level wavelet detail.

Figure 2 shows the MODWT decomposition of a sample sig-

nal up to seven scales resulting in seven detailed components

(D1–D7) and one approximate component (S7).

Let Yt represent a time series history of a geophysical pro-

cess. In order to partition the variability of the process at dif-

ferent scales j = 1. . .J the signal Yt is transformed into the

wavelet space which provides the required information at dif-

ferent scales. This is obtained by convolving Yt with a set of

low-pass (g) and high-pass (h) filters. For instance, at each

scale j , the MODWT applies a high-pass wavelet filter hj,l
and a lower-pass filter gj,l of length (l) to the time series Y to,

Figure 2. Scheme of multi-scale decomposition of signals us-

ing maximum overlap discrete wavelet transformation (MODWT).

The relationship between signal Yt (blue), detailed component Dj
(black), and approximate component Sj (red) is shown.

respectively, yield the wavelet coefficients Wj,t and Vj,t for

every point t in the time series (Percival and Walden, 2000).

Wj,t =

Lj−1
∑

l=0

hjYt-lmod2N

Vj,t =

Lj−1
∑

l=0

gj,lYt-lmod2N























(16)

The Wj,t wavelet coefficients distinguish fluctuations in the

time series of scale 2j−1, while the Vj,t coefficients provide

information about the variations at scale 2j and higher. Let

the maximum level of decomposition be j = J . This would

result in a total ′J + 1′ series of wavelet coefficients, with

Wj,t , j = 1,2,3. . .J , and one series of VJ,t .

Let us now defineDj which represents the time domain re-

construction ofWj . It represents the portion of Y attributable

to scale j . Let SJ represent the time domain reconstruction

of VJ . For the maximum level of decomposition, VJ has all

of its elements equal to the sample mean of Y .

Therefore, we can write

Y =

J
∑

j=1

Dj + SJ . (17)
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3.3.2 Stepwise procedure to estimate MSES

The MSES values between precipitation and climate indices

are estimated in the following manner.

a. The climate indices and precipitation values at monthly

resolution are decomposed into its various scale-specific

components as proxies of the corresponding signal us-

ing the maximum overlap discrete wavelet transforma-

tion (MODWT). These components represent the fea-

tures of the signal at different timescales. We limit the

analysis to scale 7, i.e. 16 years, due to the distortion

created by the boundary effects of the wavelet decom-

position (Percival, 2008).

b. After fixing a 95 % threshold for each of the decom-

posed components of precipitation and climate indices,

the event synchronization values are estimated. The

95 % threshold values are estimated for each scale com-

ponent separately, ensuring a reliable estimation of the

synchronization between the events.

c. The estimated ES values are considered significant if

they are higher than the ones obtained from a signifi-

cance test (Agarwal et al., 2017).

d. These steps (a–c) are repeated for all combinations of

climate indices and precipitation for the different re-

gions.

3.4 Significance test for similarity measure

To evaluate the statistical significance of the ES values, a

surrogate test is used as proposed by Agarwal et al. (2017).

We randomly reshuffle each time series 100 times (arbitrary

number) but keep the distribution the same. The reshuffling

will ensure that any potential synchronization between the

even series will be destroyed and that they will be equivalent

to independent random series. Then, for each pair of time se-

ries (rainfall and climate time series), we calculate the MSES

values for the different scales. At each scale, the empirical

test distribution of the 100 MSES values for the reshuffled

time series is compared to the MSES values of the original

time series. Using a 1% significance level, we assume that

synchronization cannot be explained by chance if the MSES

value at a certain scale of the original time series is larger

than the 99th percentile of the test distribution.

3.5 Testing of MSES on a synthetic dataset

In a previous study, we have tested the MSES measure with

different synthetic time series and have shown the efficacy of

the method (Agarwal et al., 2017). In this paper, we further

test the method with synthetic datasets and compare the re-

sults with those of the traditional methods such as correlation

analysis and wavelet coherence.

Figure 3. Test signals X(t) (a) and Y (t) (b) with two distinct fre-

quencies having a lagged relationship induced by H (t) used to ex-

plain the methodology.

Consider two time series X and Y (of length 1000) as de-

fined by

X(t)= sin(0.5t)+ e(t)+ a×H(t), (18)

Y (t)= sin(0.1t)+ e(t)+ a×H(t − 3), (19)

where e(t) and H (t) denote a white noise process ∼N(0,1)

and a random binary series with values 1 or 0. H(t) repre-

sents the aperiodic extreme events in the given time series.

Figure 3 shows the plot of X and Y with respect to time.

It can be observed that X and Y are time series with two

distinct frequencies but have a lagged relationship induced

by H(t). In this example, we have considered a = 4. The

zero lag correlation coefficient between X and Y can be es-

timated as −0.02 and the Pearson lag correlation is found

to be 0.3, both showing no significant correlation. However,

as expected, the MSES given by Agarwal et al. (2017) was

estimated to be 0.9375 at scale 1, revealing the underlying

synchronization between the two series in this scale only.

3.6 Wavelet coherence analysis (WCA)

We benchmark the MSES results against the WCA because

wavelet coherence is the state-of-the-art method in evaluat-

ing linkages between hydroclimatological variables at mul-

tiple timescales (Peters et al., 2004; Tan et al., 2016). We

use the Grinsted Toolbox (Grinsted et al., 2004) for calcu-

lating the WCA between precipitation of the representative

grid cells and the climatic indices. The wavelet coherence

between time series X{Xt } and {Yt } was defined by Torrence

and Compo (1998) as

R2 (j, t)=
|ς(j−1Wxy(j, t)|

ς(j−1|Wx (j, t) |2)ς(j−1
∣

∣Wy (j, t)
∣

∣

2
)
. (20)

ζ is a smoothing operator and can be written as ς (W)=

ςscale (ςtime (W (j, t))). Wxy represents the cross-wavelet co-

efficient between X and Y . Wx (j, t) and Wy (j, t) denote

the wavelet coefficients obtained from wavelet transform of

X and Y , respectively, at scale j and time t .
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The global wavelet coherence at a certain scale j is defined

as the time-averaged value of the wavelet coefficients at the

scale with the COI. It is estimated by

R2 (j)=
1

n

t2
∑

t=t1

R2(j, t), (21)

where nj is the number of points with COI and nj = t2 −

t1 + 1.

Global wavelet coherence is a useful measure to exam-

ine the common characteristic periodicities between x and y.

Grinsted et al. showed the applicability of WC analysis of the

association of precipitation with climate variables (Grinsted

et al., 2004). A more detailed description of wavelet coher-

ence analysis can be found in Grinsted et al. (2004).

It is important to note that WCA uses the complete, contin-

uous time series for quantifying the linkages between precip-

itation and climate patterns, whereas MSES first derives ex-

treme events at the different timescales and then uses the syn-

chronization between these events to identify the linkages.

4 Results and discussion

4.1 Homogeneous regions and representative grid cells

To reduce the number of pairs of precipitation and climate

index time series for finding synchronization, we pool pre-

cipitation grid cells with similar heavy precipitation event

characteristics into homogeneous regions. These regions and

their main physical characteristics are given in Fig. 4. A more

detailed discussion of these regions is provided in a previ-

ous study (Agarwal et al., 2018a). For each community (C1

to C7), we identify a representative grid cell (black dots in

Fig. 4) using the Z−P space approach. C1 and C2 (Fig. 4)

both are in southern India but are differentiated by topologi-

cal (elevation, land, coastline and climate regimes) features.

C3 has moderate elevation, equatorial grasslands and semi-

arid climate regimes. C4 covers almost all of the greenest and

most mountainous regions of India (north-eastern India). C5

in north-western India covers dry and lowland areas. C6 in

the western coastline is near to both coastlines and low-lying

areas with two different climate regimes (arid and humid). C7

is very high mountainous region with alpine climate regimes.

Next, we investigate the non-linear linkages between the pre-

cipitation time series of the representative cells and the cli-

mate indices.

4.2 Linkages between precipitation and climatic

patterns at multiple timescales

Figures 5a–e and 6a–e show the MSES values and WCA

values between precipitation and the climate indices, respec-

tively. They are given for the five chosen climate indices and

extreme precipitation in each of the representative grid cells

of the seven homogeneous regions.

Figure 5a shows a significant association between El

Niño–Southern Oscillation (ENSO) and precipitation in all

regions of India at the interannual scale. Its strength varies

in space and with temporal scale. It is stronger for the south-

eastern peninsular (C1, C2, C3 and C4) and decreases no-

tably in the north-western Himalayan (C5, C6 and C7) re-

gions. In the south-eastern peninsula, the highest synchro-

nization for the low (C1), mild (C2) and moderate (C3)

elevation regions occurs at the 4-year scale and at the 2-

year scale for the high-elevation (C4) region. For the south-

eastern regions of India, we observe a significant synchro-

nization at the decadal scale (8–16 years) which is counter-

intuitive given the interannual timescale of ENSO (D’Arrigo,

2005; McGregor et al., 2013). The analysis based on WCA

(Fig. 6a) shows substantially less correlation between precip-

itation and ENSO in all regions.

Overall, the association between ENSO and precipitation

at the interannual scale is coherent with the general under-

standing that extreme precipitation in India is associated with

ENSO (Rajeevan and Pai, 2007). Additionally, our analy-

sis reveals the important spatial variation of this linkage

across India, which has not yet been reported before. We find

stronger linkages for the regions close to the ocean (south-

eastern peninsular comprising C1 to C4) compared to the in-

land regions with higher elevation (north-western India com-

prising C5 and C7). The results mentioned above are in con-

gruence with the findings by Guhathakurta et al. (2017) and

Mishra et al. (2012). The spatial heterogeneity in the strength

of the relationship between ENSO and precipitation may be

a result of the tropical convection during the ENSO events

(Bansod, 2011). Other studies have confirmed that there is a

decrease in the strength of the relationship between precipita-

tion and ENSO events with distance from the ocean. A sim-

ilar pattern is observed in Mexico where the Niño 3.4 tele-

connection is weaker, if not opposite in sign, in northern ver-

sus southern Mexico (Hu and Feng, 2002). This observation

leads us to the understanding that the ENSO teleconnection

is strong in regions of climatologically strong convection.

Interestingly, an association between ENSO and precipita-

tion at the decadal scale has not been reported for India so far.

This association might be a consequence of the interdepen-

dencies between ENSO and IOD at the decadal scale (Luo et

al., 2010). Recently, Izumo et al. (2010), demonstrated that

IOD events tend to not only co-occur with ENSO events, but

also to lead them through tropospheric biennial oscillation

(Pillai and Mohankumar, 2010). MSES has the potential to

capture such interdependencies when applied directly to such

indices. However, this is beyond the scope of the study.

The synchronization and coherence between the Indian

Ocean Dipole (IOD) and precipitation are given in Figs. 5b

and 6b, respectively. The non-linear dependence measure

points to a significant synchronization at timescales of 8–

16 years in the south-eastern regions C1–C4. The rest of the

country seems to be unaffected by IOD. The WCA analysis

obtains a similar spatial pattern; however, the significant as-
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Figure 4. Spatial distribution/extent of the seven regions, or communities, with similar heavy precipitation event characteristics across India.

Black dots indicate the representative grid cells for each of the community identified using the Z−P space approach. Terrain characteristics

of the Indian subcontinent are shown using the SRTM DEM (in the background).

sociations occur at shorter timescales (1–4 years, Fig. 6b). In-

terestingly, with both methods, we cannot find any coupling

with the Himalayan region (C7).

The results obtained by MSES and WCA are in accor-

dance with the general understanding that IOD plays a vital

role in the Indian monsoon system in the south-eastern re-

gions, i.e. in close proximity to the Indian Ocean, at interan-

nual and decadal scales (Krishnan and Swapna, 2009). This

result can be explained by the fact that two of the general

conditions for Indian precipitation are the Tropical Easterly

Jet and Tropical Westerly Jet (Rai and Dimri, 2017). In the

case of occurrence of IOD, the pressure dipole generated be-

tween the Tibetan Plateau and Madagascar either strengthens

the south-eastern Indian monsoon (positive IOD) or weakens

it (negative IOD) (Jiang and Ting, 2017). However, the rea-

son for the association at the decadal scale is not apparent

and needs further investigation.

Unlike IOD, NAO demonstrates significant synchro-

nization with precipitation across the entire subcontinent

(Fig. 5c). The linkages to the northern regions C4, C5 and

C7 are strong and significant at interannual and decadal

scales, whereas the southern regions C1, C2, C3 and C6 show

weaker linkages. Overall, the strength of synchronization be-

tween NAO and Indian extreme precipitation is higher at the

decadal scale than at the interannual scales. The compari-

son of the results obtained by MSES (Fig. 5c) and WCA

(Fig. 6c) reveals that the non-linear method shows an in-

crease in the association, particularly in the north-eastern

Himalayan foothill region (C4). For some regions, MSES

detects linkages which are not found by WCA. For exam-

ple, in the Himalayan region (C7), MSES shows a signifi-
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Figure 5. Multiscale event synchronization (MSES) between precipitation and climate indices. From top to bottom: Niño 3.4, IOD, NAO,

PDO, and AMO. From left to right: community 1 to community 7. MSES values are shown as solid lines, and significant connections (at the

95 % significance level) are marked in grey.
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Figure 6. Global wavelet coherence (GWC) between precipitation and climate indices. Top to bottom: Niño 3.4, IOD, NAO, PDO, and AMO.

From left to right: community 1 to community 7. WCA values are shown as solid lines, and significant connections (at the 95 % significance

level) are marked in grey.
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Figure 7. Schematic map of spatial diversity of Indian precipitation teleconnections at different timescales. (a) Niño 3.4, (b) IOD, (c) NAO,

(d) PDO, and (e) AMO. Colours are consistent with the community shown in Fig. 4. Presence of colour (irrespective of magnitude of

synchronization) in the community segment indicates significant synchronization between teleconnection and Indian precipitation. Every

single segment of circle shows the temporal scale. The cardinal direction has been projected in the background of each circle.

cant association at timescales of 4–16 years, whereas WCA

shows only a signal just at the significance level at the scale

of 16 years. The overall MSES results are in congruence

with other studies (Bhatla et al., 2016; Feliks et al., 2013;

Goswami et al., 2006), but so far space and scale variation in

the associations between NAO and Indian precipitation has

not gained attention. The linkages between precipitation and

NAO in the northern part of the country might be due to west-

erly influences from the Eurasian region which are, in turn,

strongly affected by NAO. Another explanation (Goswami et

al., 2006) suggests that the linkage of NAO and Indian pre-

cipitation at higher scales (decadal and beyond) in the north-

ern part of India results from the interdependency of NAO

and AMO.

In the case of PDO, we infer a robust decadal synchroniza-

tion across the entire subcontinent (Fig. 5d). The strength of

synchronization varies in space and reaches values of around

0.7 for several regions. By contrast, WCA (Fig. 6d) does

not reveal significant associations at the decadal scale except

for the eastern coastline (C1) and Himalayan foothills (C4),

where values at the boundary with significance are found.

The MSES results agree with Krishnan and Sugi (2003),

who demonstrate a strong relationship between PDO and pre-

cipitation across the country. The interannual synchroniza-

tion might be an indirect influence because of the interdepen-

dency of PDO and ENSO (Krishnan and Sugi, 2003; Rathi-

nasamy et al., 2014).

The highest strength of synchronization between AMO

and Indian precipitation is observed in the north-western and

central regions C3 to C6 (Fig. 5e). Weaker associations are

detected in the south (C1, C2), whereas no significant syn-

chronization is found for the Himalayan region (C7). The

linkages are most prominent at the decadal scale; in some re-

gions significant synchronization at interannual scales is also

found. In contrast, WCA shows only weak linkages (Fig. 6e).

Our MSES results confirm the assertion made by Zhang

and Delworth (2005), who found an in-phase relationship be-

tween Indian precipitation and AMO. A study by Goswami

et al. (2006) also unravelled a link between AMO and mul-

tidecadal variability of Indian precipitation. However, our

study is the first to observe that the strength of the coupling
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between AMO and precipitation varies according to the dif-

ferent climate regions and is strongest at the decadal scale.

In summary, our findings re-confirm known physics-based

associations, thus implicitly affirming the validity of our ap-

proach, but also provide new insights into Indian precipi-

tation teleconnections. We find substantial spatial variation

in the significant linkages across India and for different

timescales (Fig. 7). MSES reveals an appreciable increase

in the association between climate patterns and precipita-

tion in most regions when compared to WCA. In some re-

gions, the synchronization values increase by 40 %–50 %.

The much higher skill of MSES in detecting associations

suggests the presence of non-linear and threshold relation-

ships which cannot be captured by WCA, which is limited to

linear processes.

5 Conclusions

A novel non-linear, multiscale approach (MSES) based on

wavelets and event synchronization is used for unravelling

teleconnection influences on the Indian climate network at

multiple timescales. The analysis considers those climate

patterns with the highest relevance for Indian precipitation.

To understand the spatial heterogeneity, India is sub-divided

into homogeneous regions using complex networks. The

comparison with wavelet coherence analysis (WCA), the

state-of-the-art method in understanding linkages at different

timescales, shows a much higher skill for MSES in detecting

linkages between climate indices and precipitation. This sug-

gests that there are significant non-linear linkages which are

not well captured by linear approaches such as WCA.

The application of MSES to the homogeneous regions, ob-

tained using a complex network approach, allows the spatial

diversity in the teleconnection patterns over India to be un-

ravelled. ENSO has a strong influence on precipitation in the

south-eastern parts of the country. These regions are also af-

fected by IOD; however, the IOD influence is much weaker

compared to ENSO. NAO has a strong connection to extreme

precipitation, particularly in the northern regions. The effect

of PDO stretches across the whole country, whereas AMO

influences precipitation particularly in the arid and semi-arid

regions. The substantial variation in precipitation teleconnec-

tions across India and across timescales that is unravelled

by the proposed method provides an exciting perspective for

rainfall forecasting for India and for making better sense of

its weather.
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