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Abstract: Melanoma is known as one of the most immunogenic tumours and is often characterised by
high mutation burden, neoantigen load and immune infiltrate. The application of immunotherapies
has led to impressive improvements in the clinical outcomes of advanced stage melanoma patients.
The standard of care immunotherapies leverage the host immunological influence on tumour cells,
which entail complex interactions among the tumour, stroma, and immune cells at the tumour
microenvironmental level. However, not all cancer patients can achieve a long-term durable response
to immunotherapy, and a significant proportion of patients develops resistance and still die from
their disease. Owing to the multi-faceted problems of tumour and microenvironmental heterogeneity,
identifying the key factors underlying tumour progression and immunotherapy resistance poses a
great challenge. In this review, we outline the main challenges to current cancer immunotherapy
research posed by tumour heterogeneity and microenvironment complexities including genomic
and transcriptomic variability, selective outgrowth of tumour subpopulations, spatial and temporal
tumour heterogeneity and the dynamic state of host immunity and microenvironment orchestration.
We also highlight the opportunities to dissect tumour heterogeneity using single-cell sequencing
and spatial platforms. Integrative analyses of large-scale datasets will enable in-depth exploration of
biological questions, which facilitates the clinical application of translational research.

Keywords: melanoma; single-cell; transcriptomics; sequencing; spatial; immunotherapy; cancer;
treatment; diagnosis

1. The Emergence of Single-Cell Sequencing and Spatial Platforms to Dissect
Melanoma Microenvironment

In recent years, the emergence of single-cell sequencing and spatially resolved multi-
omics platforms have rapidly advanced the field of immuno-oncology research. These
technologies brought higher resolution to characterise the cellular composition and tran-
scriptional programs within the tumour microenvironment (TME), offering new opportu-
nities to uncover rare cell types, infer cellular interactions and identify molecular targets,
hence offering better understandings of the mechanisms of immunotherapy response and
resistance. In this section, we provide a brief overview of single-cell platforms that are
widely used in cancer immunotherapy research.

1.1. Single-Cell Sequencing

Single-cell sequencing platforms are subdivided into cell-dissociated (individual cells
are sorted prior to sequencing) and spatially resolved methods (map the location of the
transcripts in an intact tissue section). Technologies that sequence the dissociated cells are
broadly classified by their respective cell isolation methods. Droplet encapsulation methods,
including 10x Genomics Chromium and Dolomite-Bio Nadia, are popular platforms for
the sequencing of tumour dissociate samples due to the high number of sorted cells,
allowing for high-throughput and relatively higher cost-effectiveness [1,2]. Microwell
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encapsulation platforms such as Fluidigm C1, Illumina/Bio-Rad ddSeq, Takara-Bio ICell8
and BD Rhapsody are commonly available platforms that have been developed over time.
These platforms can vary in cost, labour, and sample size, and would thus be selective for
different studies in cancer research. Since tumour samples often require the platform to
accommodate for a range of cell size due to the multitude of cell types within the TME,
more recent platforms such as the Rapsody and Illumina/Bio-Rad are more popular in
this field [3]. Lastly, traditional fluorescence-activated cell sorting (FACS) based single-cell
sequencing approaches such as SMART-seq2 [4] and MARS-seq [5] are well-established
techniques in the laboratory. FACS is unrestricted by the size and morphology of the cells
and total cell numbers, facilitating the selection of rare cell types from tumour samples.
However, FACS entails staining the cell dissociate with pre-selected antibodies, and thus
the identification of cell subtypes requires marker multiplexing for accurate cell sorting
and downstream analysis [3].

1.2. Spatially Resolved Genomics and Transcriptomics

The TME is a heterogenous tissue architecture containing not only the tumour cells,
but also a variety of non-immune and immune cells within the microenvironment. Each
cell is constantly communicating with other cells and this in turn influences the function
and fate of the cell. Furthermore, intracellular organisations of DNA and RNA can provide
critical clues to the gene expression and post-transcriptional regulation underlying drug
resistance. Thus, the spatial organisation of cells is critical for the accurate interpreta-
tion of tissue functions and cellular interactions. Single-cell spatial omics technologies
have been developed to preserve the tissue context which retain the cell location infor-
mation that helps to provide further insights into the interplay between tumour and the
microenvironmental cells.

Two classes of methods have been popularised for imaging-based single-cell genomics
and transcriptomics, based on multiplexed fluorescence in situ hybridisation (FISH) or in
situ sequencing. FISH has been well-established for the visualisation and quantification
of RNA at the single-molecule level [6,7], and multiplexed FISH, using combinatorial
fluorescent colours, is developed for the gene-expression profiling of single-cells [8]. But
the limited number of distinct colour channels posed a challenge to expanding the number
of detectable targets for genome-scale imaging. Until this date, multiplexed error-robust
(FISH) MERFISH has been used, which implements combinatorial labelling detected by
sequential imaging and error robust binary coding schemes [9]. MERFISH has since been ex-
tended to DNA imaging, which enables simultaneous imaging of the 3D organisation of the
chromatin at the genome scale [10]. Another multiplexed FISH method known as seqFISH+
uses sequential colour codes to detect RNAs and a binary code error-correction scheme
akin to MERFISH. Both MERFISH and seqFISH+ have reported the imaging of transcripts
for 10,000 genes in single cells [11,12]. Overall, multiplexed FISH approaches provide in
situ single-cell transcriptomics and 3D genome analyses with high spatial resolution.

Imaging-based in situ sequencing approaches for single cell transcriptomic analysis
are developed in parallel, and can be performed in either a targeted or untargeted man-
ner for hypothesis-testing or empirical studies in cancer research. For targeted in situ
sequencing, Ke et al. first described a method based on padlock probing, rolling-circle
amplification and sequencing-by-ligation chemistry that can be applied to fixed cells and
tissues [13]. More recent adaptations have used a multitude of methods to improve the
multiplexity or detection efficiency of in situ sequencing, such as eliminating the inefficient
RNA-to-cDNA conversion step, improving sequencing accuracy, using hydrogel-based
clearing or sample expansion, combining with FISH, or using more efficient gap-filling
enzymes [14–17]. An example is STARmap which integrates hydrogel-tissue chemistry,
targeted signal amplification and sequencing method to achieve simultaneous imaging
of up to 1020 targeted genes with a detection efficiency comparable to that of single-cell
RNA sequencing [14]. In untargeted in situ sequencing, FISSEQ, can achieve genome-wide
coverage and the detection of >8000 genes in the same sample [14].
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Spatial transcriptomic analysis can also be achieved by spatially resolved RNA capture
followed by sequencing. This was first demonstrated by Ståhl et al., where spatially
barcoded and oligo(dT) probes are printed as microarrays of spots on the surface of glass
slides [18]. After placing the tissue sections on the array, enzymic permeabilisation releases
the mRNA from the tissue, which becomes free to hybridise with surface probes. Initial
microarrays consisted of spots of ~100 µm in diameter, which captured a mix of tens
of cells for transcriptomic profiling. This spatial transcriptomic technology was further
developed and commercialised as 10x Genomics Visium, which increased the sensitivity
and throughput by reducing the spot diameter to 55 µm. Depending on tissue type and
thickness, the resolution was improved to offer an average gene expression profile of
1–10 cells in a single spot. To enable single cell resolution, Slide-seq [19] and HDST [20]
are developed to capture cellular and biological expression at a single-cell level. Slide-seq
operates on a monolayer of 10-µm beads, with each bead decoded by SOLiD [21] sequencing
chemistry, to identify its spatial location. In HDST, the spatial resolution was improved to
subcellular levels by packing 2-µm beads together, with a sequential hybridisation strategy
to decode the spatial barcodes [20]. As sequencing technology advances, multimodal
spatial profiling is becoming possible. The introduction of new in situ barcoding schemes
for more biomolecules will yield more layers of molecular information from the same tissue.
Combinations of barcoding strategies will enable spatial multi-omics approaches to retrieve
information about splice variants, non-coding RNA, genetic and epigenetic alterations and
proteins, all in a single experiment [22]. Some of these layers are already being added to
the transcriptomic profiling of tissues, such as SM (Spatial Multi-omics)-Omics [23] and
DBiT-seq [24], which offer parallel spatial transcriptomic profiling and antibody-based
protein barcoding.

Integrated analyses of single-cell sequencing and spatial multi-omics are revealing
TME details of cellular and subcellular organisation at an unprecedented level. Applications
of these technologies have demonstrated exciting results, such as the generation of highly
granular and functionally annotated spatial cell atlases [25], identification of potential
ligand-receptor and paracrine signalling [26], and the provision of insights into tumour
and immune cell evolution [27]. Future expansion of these technologies offers promising
opportunities to study tumour heterogeneity. Novel signalling pathways unravelled by
non-targeted sequencing can be screened for new therapeutic targets. Interaction events
identified by ligand-receptor analyses will be stratified by pairs of spatially colocalised cells,
thereby providing a more accurate view of routes of communication that will, for instance,
facilitate the differentiation of effector and bystander cells in the TME. Trajectory analysis
algorithms can also take advantage of the spatial positions of cells in associated transitional
stages with cell-cell interaction events or spatial niches within the tissue environment.

2. Insights into Heterogeneity of Tumour Microenvironment from Single-Cell
Expression Profiling
2.1. Inter- and Intra-Tumoural Heterogeneity

Tumour heterogeneity is a major driver of cancer progression, treatment resistance,
and recurrences [28,29]. The heterogeneity of tumours and TME is broadly categorised into
inter-tumour heterogeneity and intra-tumour heterogeneity [30–32].

Inter-tumoural heterogeneity (also known as inter-lesion heterogeneity) refers to the
variations of different tumour genotypes among patients, even within the same histo-
logical subtypes [32,33]. Upon evaluating the single-cell transcriptional program from
19 metastatic melanoma tumours, Tirosh et al. identified a rare therapy-resistant subpopu-
lation of melanoma cells expressing high levels of AXL Receptor Tyrosine Kinase inside the
heterogenous tumours harbouring MITF (microphthalmia-associated transcription factor)
due to clonal selection after targeted treatment with RAF/MEK inhibition [34]. MITF is an
established contributor of melanoma heterogeneity through its multi-pathway influence on
melanocyte differentiation, proliferation, and metastatic potential. In particular, low MITF
in melanoma was shown to induce phenotype switching as an invasive mechanism [35],
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and thus the changing expression of this transcription factor can lead to the subsequent
generation of resistant melanoma subpopulations [36,37]. In another cohort of patients
with triple negative breast cancer, Wu et al. observed that the non-immune cell population,
including cancer-associated fibroblasts in the complex stromal compartment, was func-
tioning as an immune checkpoint for molecule expression, and its close interactions with
T lymphocytes through lymphocyte activation and complement pathways were vital in
regulating anti-tumour immunity [25].

Intra-tumoural heterogeneity (also known as intra-lesion heterogeneity) refers to the
presence of distinct subpopulations of cancer cells with unique genetic traits in the single
tumour of a patient, which can exhibit across different spatial locations of a tumour or
evolve over time [32,38]. By inferring the genomic and transcriptional state changes of
the TME and non-neoplastic cells among primary and metastatic tumours in patients with
uveal melanoma (UM), Durante et al. found that class 1 UM subclones with low metastatic
rate and signature driver mutations (EIF1AX and SF3B1) continue to evolve with the devel-
opment of canonical/non-canonical aberrations that contribute to tumour progression [27].
Class 2 UM subclones with BAP1 inactivating mutations create an immunosuppressive
microenvironment that facilitates metastasis through immune evasion [27]. Intra-tumoural
heterogeneity was also observed in the transcriptomes of single cells from matched pri-
mary tumours and lymph node metastases in head and neck squamous cell carcinoma
(HNSCC) patients. Puram et al. identified that tumour cells varied within patients in
their expression of signatures strongly related to partial epithelial-to-mesenchymal tran-
sition (p-EMT), promoting resistance to anti-tumour immunity through dampening T
lymphocyte-specific cytokines or regulating the expression of multiple inhibitory immune
checkpoint molecules [39]. Such underlying heterogeneity provides deeper insights into
one of the major causes of patients who either fail to respond to immunotherapy initially,
or experience relapse after treatment.

2.2. The Spectrum of Spatial and Temporal Intra-Tumoural Heterogeneity

Heterogeneity in the tumour is not only limited to cancer cells, but also influences per-
itumoural stroma cells, tumour-infiltrating lymphocytes, and other stimulatory/inhibitory
elements [33,40]. This heterogeneity includes spatial heterogeneity, which describes the non-
uniform distribution of genetically diverse clonal populations across different disease sites
or within a single site or tumour, and temporal heterogeneity, a term applied to polyclonal
features of an individual tumour that evolve over time (i.e., heterogeneity between the
primary tumour and a subsequent local or distant recurrence within a patient) [28,41,42].

Spatial heterogeneity is often defined as the differences in features such as genomics
and cell morphology within an individual primary or metastatic tumour (intra-tumoural),
and between different tumours within the same individual (intra-patient). In a retrospective
cohort study, Jerby-Arnon et al. revealed a resistance programme associated with T cell
exclusion and cyclin-dependent kinases (CDK4 and CDK6) using single-cell RNA sequenc-
ing from 33 melanoma patients, and further validated on 90 samples from 26 patients with
multiple biopsies per patient [43]. The inter-patient differences in the therapy-resistant
expression programs were larger than intra-patient, implying the intrinsic differences
that reflect different treatment responses and outcomes [43]. In addition, a prospective
cohort study of 327 tumour regions from 100 cases of early stage non-small-cell lung cancer
highlighted that more than 75% of driver mutations in somatic cells were broadly het-
erogenous and were inconsistent in all samples when metastases were detected in patients
with the same tumour [44]. The extent of spatial heterogeneity of molecular and cellular
features within an individual tumour affects the utility of bulk gene expression signatures
as markers associated with poor prognosis or therapy-resistant biomarkers.

Temporal heterogeneity refers to the initial (primary) tumour cells that have evolved
with different mutational processes and selective pressures, resulting in variations of
molecular composition of the tumours. The tumour cells also affect the intravascular cells,
immune cells, stroma cells, and other cell types that constitute the complex TME [29,45]. The
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tumour immune compartment, along with the clonal selection of tumour cells, can influence
response to anti-tumour treatments [29]. Analysis of single-cell transcriptomic profiles
of 32 melanoma patients before and after checkpoint-based treatment indicated that the
transitions between exhausted and memory effector T cell states were reflective of tumour
regression, and the presence of CD8+ T cells with a specific transcription factor, TCF7,
was identified as a predictive marker of response for immunotherapy [46]. Furthermore,
the tracking of T cell clones and their transcriptional phenotypes from patients with basal
or squamous cell carcinoma before and after anti-PD-1 therapy, highlighted the fact that
the clonal expansion of neoantigen-specific T cells from the peripheral compartment were
associated with responses to immunotherapy [47].

3. Clinical Considerations of Tumour Microenvironment Heterogeneity in Response
and Resistance to Checkpoint-Based Immunotherapies
3.1. Impact of Tumour and Immune Microenvironment Heterogeneity on Response
to Immunotherapies

In recent years, a plethora of evidence has demonstrated that the genetic and immuno-
logical heterogeneity in the TME influences the likelihood of malignant cells surviving
immunotherapies in patients with solid tumours, including melanoma [3,33,40,43,46].
Achieving objective responses to immune checkpoint therapies can vary, based on the
neoantigen and immunological profiles of the TME [48]. For instance, patients with high
intra-tumoural heterogeneity of neoantigens that responded to T cell-antitumoural immu-
nity had decreased fractions of clonal immunogenic neoantigens and generally responded
less to T cells during immune checkpoint therapies [49]. Experimental mouse model studies
also demonstrated that a homogenous population of immunogenic neoantigens was critical
to the success of responsiveness to immunotherapies [38,50,51]. In the CA209-038 study
of 68 patients with advanced melanoma who progressed on ipilimumab before and after
nivolumab treatment, cytolytic activity was increased during treatment and represented
the immune-inflamed environment (a high level of T cell infiltration) that enriched pre-
treated tumours of anti-PD-1 responders [52]. However, in another cohort of the study,
tumours with high cytolytic activity and interferon-γ scores failed to associate with clinical
responses to anti-PD-1 therapy [40]. Jerby-Arnon et al. raised the difficulty of using bulk
genomic and transcriptomic data to recover intracellular programmes of malignant cells,
resulting in the discrepancy of linking malignant cell states to high (immune-inflamed
tumour) or low (non-inflamed tumour) levels of tumour-infiltrating T cells [43]. The inte-
grative single-cell strategy has enabled Jerby-Arnon et al. to define an immune-exclusion
gene expression programs, including a cyclin-dependent kinase pathway to differentiate
immune-inflamed from non-inflamed tumours [43]. Dissecting heterogeneity in the TME
at single cell resolution will be necessary to fully understand tumour behaviour and its
response to treatment.

3.2. Heterogenous Responses in Patients with Innate and Acquired Resistance

The patterns of treatment response heterogeneity are becoming more relevant from
a clinical point of view, especially for patients who relapse after treatment and develop
disease progression or recurrence [53,54]. Drugs that target a single biological pathway
may induce the emergence of new mutation(s) in the tumour cells, favouring alternative
pathways and further tumour progression [55,56]. These drugs can cause changes in the
molecular composition of the tumour cells, leading to the dominance of therapy-resistant
clones [57]. Non-responding patients with drug-resistant subpopulations of cells within the
tumours can be categorised into two main groups: (i) primary or innate resistance refers to
those who fail to respond to immunotherapies or have stable disease for less than 6 months
before disease progression, and (ii) secondary or acquired resistance refers to those who re-
lapse after an initial response to immunotherapies and develop disease progression [58–60].
Using a targeted single-cell approach, Kakavand et al. observed that the respective 28%
and 22% of metastatic melanoma patients with acquired resistance to anti-PD-1 based
therapies developed tumoural PTEN loss and impaired HLA-A regulation in the TME,
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implying tumours across patients achieved resistance in different ways [61]. Most of the
current research on tumour heterogeneity of treatment responses has come from targeted
drug therapies. In an early landmark study conducted by Tirosh et al. using Smart-seq2
protocol to dissect a heterogenous mixture of malignant cells expressing different levels of
AXL kinase, it was identified that AXL-high cells were resistant in tumours treated with
vemurafenib (BRAFi) or dabrafenib (BRAFi) and trametinib (RAF/MEKi), a mechanism
that infers the use of checkpoint-based immunotherapies for patients who fail convectional
targeted therapies [34]. Furthermore, since a low MITF/AXL ratio was recognised as
a predictor of early resistance [36], microRNA (miRNA) regulation of MITF expression
was also explored as a novel therapeutic target to reverse the resistant phenotype [62–64]
among many other miRNA pathways dysregulated in melanoma [65]. MITF expression
regulates melanogenesis via the active transcription of pigmentation genes, including DCT,
which encodes for dopachrome tautomerase [66]. Ho et al. identified the upregulation
of DCT in rare drug-resistant subpopulations of human melanoma cells, prior to BRAFi
treatment, which was only present in the single-cell RNA analysis when compared to bulk
RNA sequencing [67]. Another mechanism of resistance to targeted therapies in melanoma
involves the intrinsic control of apoptotic pathway mediated by the overexpression of
pro-survival members of the BCL-2 family, shown in cell culture studies [68,69]. Selec-
tive inhibition of these BCL-2 family proteins is being explored in potential combinatory
targeted therapy drugs, and is further reviewed elsewhere [70]. Overall, the genetic and
non-genetic features of heterogeneity present at baseline and acquired post-treatment must
be considered in clinical decision making, and similar single-cell investigations should
be performed on longitudinal patient samples undergoing immunotherapy to reveal new
mechanisms of resistance.

4. Heterogenous Expression of PD-L1 in the Tumour-Immune Microenvironment

PD-L1 expression level is identified in either tumour or immune cells and is often a
selection criterion for predicting clinical response to PD-1 or PD-L1 inhibitors across various
solid tumour types, including melanoma [71,72]. Although PD-L1 diagnostic testing is
now established as a routine clinical practice, the expression level of PD-L1 is heterogenous
both within and among tumour sites on various spatial and temporal scales [73,74]. A
plethora of studies, including the CheckMate 067 trial, highlight the fact that the level of
PD-L1 expression alone is a poor predictive biomarker, for which approximately 20% of
patients whose tumours have minimal or no PD-L1 expression may achieve an objective
response to anti-PD-1/PD-L1 treatment [71,73–76]. Upon evaluating pre-treatment biopsies
from melanoma patients treated with anti-PD-1 therapy in a phase I clinical trial, Shin
et al. observed that the upregulation of surface PD-L1 expression through the interferon-γ
receptor pathway was heterogenous in subclones harbouring defective Janus kinases JAK1
and JAK2 [77]. In addition, the discrepancy in PD-L1 expression was also identified in
subclones within the tumour immune microenvironment harbouring impaired antigen
processing and presentation machinery in patients receiving immunotherapies, and has
been associated with poor clinical outcomes in melanoma and other cancer types such as
lung cancer and colorectal carcinoma [78–80]. It is likely that the emerging heterogeneity of
PD-L1 expression may explain why a subset of patients with tumours expressing PD-L1+
fail to respond, while some with PD-L1– negative neoplasms respond well to checkpoint-
based immunotherapies.

5. Integrating Tumour Microenvironment Heterogeneity into Clinical
Decision Making

The rapid advancements in single-cell sequencing and spatial technologies have shed
light on modern cancer research, while the improved understanding of patient and tumour
microenvironmental heterogeneity has brought new challenges to optimising therapeutic
strategies. The field is moving towards translational applications of biological discoveries
and has great potential in guiding clinical decision making.
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As reviewed in the earlier sections, inter- and intra-tumoural heterogeneity encom-
passes a multitude of factors that define the unique biology of a tumour or tumour clone.
These unique factors are driven by a combination of intrinsic and extrinsic changes which
can be detected as variability at a multi-omics level. These changes can be leveraged using
next-generation sequencing to reveal therapeutic vulnerabilities of cancer patients. This
was demonstrated by the development of highly selective BRAF inhibitors (vemurafenib
and dabrafenib) for melanoma patients after the identification of the target mutation [81,82].
Although the development of targeted therapies has transformed the treatment landscape
for advanced melanoma, acquired resistance still poses a great challenge to improving
patient outcome [59]. Over the years, several published works have identified the activation
of compensatory pathways, which has led to the development of combinatory therapies
such as dual BRAF/MEK inhibition [83,84]. However, the heterogeneity of resistance mech-
anisms presents a challenge in creating a rationally designed combination strategy that
will be applicable for all patients. Previous studies have identified many more overlapping
pathways with defined mechanisms of resistance, including NRAS, PI3K, PDGFR, IGF-1R,
and GFR, among others [85,86]. A study analysing 132 melanoma samples that progressed
with BRAF inhibitor treatment reported that a defined resistance mechanism was only
identified in 58% of samples [85]. Further work using non-targeted sequencing methods is
required to decipher novel mechanisms of therapy resistance and guide the development
of therapeutic strategies.

In relation to discovering the features of TME heterogeneity and mechanisms of resis-
tance, combinatory and personalised checkpoint immunotherapy strategies for melanoma
are being actively researched. The CheckMate 067 trial demonstrated the superior efficacy
of combination nivolumab plus ipilimumab over nivolumab or ipilimumab alone, though
with increases in the rates of immune-related adverse events [87]. Clinical trials for other
cancers have also validated the combination of immunotherapy and other therapeutic
agents with independent anti-tumour effects, showing prolonged overall and progression-
free survival in patients treated with combinatory regimens [88,89]. To overcome adaptive
immunotherapy resistance in the TME, targeting other checkpoints including lympho-
cyte activation gene-3 (LAG-3), T cell immunoglobulin and ITIM domain (TIGIT), T cell
immunoglobulin and mucin-domain containing-3 (TIM-3), V-domain immunoglobulin
suppressor of T cell activation (VISTA), B7 homolog 3 protein (B7-H3), inducible T cell
costimulator (ICOS), and B and T lymphocyte attenuator (BTLA) are currently being tested
in multiple clinical trials [90], with those involving solid tumours summarised in Table 1.
With the expansion of translational research and the validation of novel drug targets in
clinical trials, alternative checkpoint inhibitors are becoming feasible and promising options
for personalising immunotherapy for solid tumours.

The complex and dynamic signalling network within the TME can also provide
insight into the degree of interactive heterogeneity seen in tumours. Inhibition of the
RAS/RAF/MAPK pathway not only results in the upregulation of compensatory receptor
tyrosine kinase pathways [91], but has also been shown to modulate the host immune
response, including alterations in T-cell responses and the expression of PD-L1 [92,93]. A
separate study reported that the loss of tumour suppressor PTEN was associated with T cell
exclusion and an immunosuppressed TME [94]. These findings identified genetic changes
with cellular and phenotypic features that facilitated crosstalk between the intrinsic and
extrinsic factors in the modulation of TME heterogeneity. This also sparked interest in
combining targeted agents and immunotherapy to offer both short- and long-term benefits
to cancer patients, which led to multiple clinical trials where molecular testing strategies
are employed for both patient stratification and biomarker discovery purposes [95,96].
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Table 1. Current clinical trials of novel and combinatory checkpoint inhibitor drugs for solid tumours.

Target Drug Clinical Trial ID Phase Settings Tumour Types Treatment Arms Status

LAG-3 Eftilagimod α
(IMP321) NCT03252938 1 Advanced/metastatic Solid tumours Eftilagimod α Recruiting

NCT00324623 1 Advanced/metastatic Melanoma

Cyclophosphamide,
fludarabine followed by

melan-A VLP vaccine and
eftilagimod α

Completed

NCT00365937 1 Adjuvant Melanoma Eftilagimod α ± HLA-A2
peptides Terminated

NCT01308294 1, 2 Stage II-1V Melanoma
Eftilagimod α + tumour

antigenic peptides
+ monatide

Terminated

Relatlimab
(BMS-986016) NCT02966548 1 Advanced/metastatic Solid tumours Relatlimab ± nivolumab Active, not

recruiting

NCT01968109 1 First. second line Solid tumours Relatlimab ± nivolumab Active, not
recruiting

NCT03743766 2 Advanced/metastatic Melanoma Relatlimab + nivolumab Recruiting

NCT03470922 2, 3 Advanced/metastatiC Melanoma Relatlirnab ± nivolumab Active, not
recruiting

NCT03335540 1, 2 Advanced/metastatic Sold tumours

Relatlimab + nivolumab or
cabiralizumab or

ipilimumab or IDO1
inhibitor or

radiation therapy

Active, not
recruiting

NCT02519322 2 Neoadjuvant and
adjuvant Melanoma Nivolumab ± relatlimab

or ipilimumab Recruiting

NCT03459222 2 Advanced/metastatic Solid tumours

Relatlimab + nivolumab
+ IDO1 inhibitor or

relatlimab + nivolumab
+ ipilimumab

Recruiting

LAG525 NCT02460224 1, 2 Advanced/metastatic Solid tumours LAG525 ± spartalizumab
(anti-PD-1) Completed

NCT03365791 2 Advanced/metastatic
Solid or

hematologic
malignancy

LAG525 + spartalizumab
(anti-PD-1) Completed

Fianlimab
(REGN3767) NCT03005782 1 Advanced/metastatic Solid tumours

or lymphomas
Fianlimab ± cemiplimab

(anti-PD-1)
Active, not
recruiting

BI 754111 NCT03433898 1 Advanced/metastatic Solid tumours BI 754111 ± BI 754091
(anti-PD-1)

Active, not
recruiting

NCT03156114 1 Advanced/metastatic Solid tumours BI 754111 ± BI 754091
(anti-PD-1)

Active, not
recruiting

NCT03697304 2 Advanced/metastatic Solid tumours
BI 754111 or BI 836880

(bispecific VEGF and Ang2
Ab) + BI 754091 (anti-PD-1)

Active, not
recruiting

NCT03964233 1 Advanced/metastatic Solid tumours
BI 754111 + BI 754091 ± BI

907828 (MDM2-p53
antagonist)

Recruiting

Sym022 NCT03489369 1 Advanced/metastatic Solid tumours
or lymphomas Sym022 Completed

NCT03311412 1 Advanced/metastatic Solid tumours
or lymphomas

Sym022 + Sym021
(anti-PD-1) ± Sym023

(anti-TIM-3)
Completed

MGD013 NCT03219268 1 Advanced/metastatic
Solid or

hematologic
malignancy

MGD013 + margetuximab
(anti-HER2 monoclonal

antibody)

Active, not
recruiting
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Table 1. Cont.

Target Drug Clinical Trial ID Phase Settings Tumour Types Treatment Arms Status

TSR-033 NCT03250832 1 Advanced/metastatic Solid tumours
TSR-033 ± dostarlimab

± mFOLFOX6 or FOLFIRI
± bevacizumab

Active, not
recruiting

INCAGN02385 NCT03538028 1 Advanced/metastatic Solid tumours INCAGN02385 Completed

NCT04370704 1, 2 Advanced/metastatic Solid tumours

INCAGN02385 +
INCAGN02390
(Anti-TIM-3) ±

INCMGA00012 (anti-PD-1)

Recruiting

XmAb22841 NCT03849469 1 Advanced/metastatic Solid tumours XmAb22841 ±
pembrolizumab

Active, not
recruiting

LBL-007 NCT04640545 1 Advanced/metastatic Melanoma LBL-007 + toriparimab
(anti-PD-1) Recruiting

FS118 NCT03440437 1 Advanced/metastatic
Solid or

hematologic
malignancy

FS118 Recruiting

RO7247669 NCT04140500 1 Advanced/metastatic Solid tumours RO7247669 Recruiting

EMB-02 NCT04618393 1, 2 Advanced/metastatic Solid tumours EMB-02 Recruiting

TIGIT
Tiragolumab

(MTIG7192A/
RG-6058)

NCT02794571 1 Locally advanced
or metastatic Solid tumours

Tiragolumab
± atezolizumab
± chemotherapy

Recruiting

Vibostolimab
(MK-7684) NCT02964013 1 Advanced/metastatic Solid tumours

Vibostolimab ±
pembrolizumab ±

pemetrexed/carboplatin:
carboplatin + cisplatin

+ etoposide

Active, not
recruiting

NCT04305054 1, 2 First line Melanoma

Pembrolizumab
± vibostolimab or

quavonlimab (MK-1308)
± lenvatinib

Recruiting

NCT04305041 1, 2 Stage IV Melanoma
Pembrolizumab ±

guavonlimab +
vibostolimab or lenvatinib

Recruiting

NCT04303169 1, 2 Stage III Melanoma
Pembrolizumab ±

vibostolimab or V937
(oncolytic virus)

Recruiting

OMP-313M32 NCT03119428 1 Locally advanced
or metastatic Solid tumours OMP-313M32 ± nivolumab Terminated

BMS-986207 NCT02913313 1, 2 Advanced/metastatic Solid tumours BMS-986207 ± nivolumab
± ipilimumab Recruiting

NCT04570839 1, 2 Advanced/metastatic Solid tumours BMS-986207 + nivolumab +
COM701 (anti-PVRIG Ab) Recruiting

Domvanalimab
(AB-154) NCT03628677 1 Advanced/metastatic Solid tumours

Dombvanalimab +
zimberelimab

(AB122, anti-PD-1)

Active, not
recruiting

ASP8374 NCT03945253 1 Advanced/metastatic Solid tumours ASP8374 Completed

NCT03260322 1 Advanced/metastatic Solid tumours ASP8374 ± pembrolizumab Completed

IBI939 NCT04353830 1 Advanced/metastatic Solid tumours IBI939 ± sintilimab
(anti-PD-1) Recruiting

Ociperlimab
(BGB-A1217) NCT04047862 1 Advanced/metastatic Solid tumours

Ociperlimab + tislelizumab
(anti-PD-1) ±
chemotherapy

Recruiting

COM902 NCT04354246 1 Advanced/metastatic Solid tumours COM902 ± COM701
(anti-PVRIG Ab) Recruiting
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Table 1. Cont.

Target Drug Clinical Trial ID Phase Settings Tumour Types Treatment Arms Status

M6223 NCT04457778 1 Advanced/metastatic Solid tumours
M6223 ± bintrafusp alfa
(M7824, bispecific TGF-β

and PD-L1 Ab)
Recruiting

TIM-3 Sym023 NCT03489343 1 Advanced/metastatic Solid tumours
or lymphomas Sym023 Completed

LY3321367 NCT03099109 1 Advanced/metastatic Solid tumours LY3300054 (anti-PD-L1)
+ LY3321367

Active, not
recruiting

NCT02791334 1 Advanced/metastatic Solid tumours

LY3300054 (anti-PD-L1) ±
LY3321367 or abemaciclib

or ramucirumab
or merestinib

Active, not
recruiting

Cobolimab
(TSR-022) NCT02817633 1 Advanced/metastatic Solid tumours

Cobolimab ± nivolumab or
TSR-042 (anti-PD-1) ±

TSR-033 or chemotherapy
Recruiting

NCT03307785 1 Advanced/metastatic Solid tumours
Dostarlimab (TSR-042,
anti-PD-1) ± TSR-022

+ chemotherapy

Active, not
recruiting

NCT04139902 2 Ncoadjuvant Melanoma Cobolimab ± dostarlimab
(TSR-042, anti-PD-1) Recruiting

Sabatolimab
(MBG453) NCT02608268 1, 2 Advanced/metastatic Solid tumours Sabatolimab ± PDR001

vs. chemotherapy
Active, not
recruiting

INCAGN02390 NCT03652077 1 Advanced/metastatic Solid tumours INCAGN02390 Completed

BMS-986258 NCT03446040 1, 2 Advanced/metastatic Solid tumours BMS-986258 + nivolumab
or rHuPH20

Active, not
recruiting

SHR-1702 NCT03871855 1 Advanced/metastatic Solid tumours SHR-1702 ± camrelizumab
(anti-PD-1) Unknown

RO7121661 NCT03708328 1 Advanced/metastatic Solid tumours RO7121661 Active, not
recruiting

B7-H3 Enoblituzumab
(MGA271) NCT01391143 1 Advanced/metastatic Solid tumours Enoblituzumab (MGA271) Completed

NCT02381314 1 Advanced/metastatic Solid tumours Enoblituzumab +
ipilimumab Completed

NCT02475213 1 Advanced/metastatic Solid tumours

Enoblituzumab +
pembrolizumab or

retifanlimab
(MGA012, anti-PD-1)

Completed

DS-7300a NCT04145622 1, 2 Advanced/metastatic Solid tumours DS-7300a Recruiting

Orlotamab
(MGD009) NCT02628535 1 Advanced/metastatic solid tumours Orlotamab (MGD009) Terminated

NCT03406949 1 Advanced/metastatic Solid tumours Orlotamab + retifanlimab
(MGA012, anti-PD-1) Completed

4SCAR-276 NCT04432649 1 Advanced/metastatic Solid tumours 4SCAR-276 Recruiting

VISTA JNJ-61610588 NCT02671955 1 Advanced/metastatic Solid tumours JNJ-61610588 Terminated

CI-8993 NCT04475523 1 Advanced/metastatic Solid tumours CI-8993 Recruiting

CA-170 NCT02812875 1 Advanced/metastatic Solid tumours
or lymphomas CA-170 Completed

ICOS Feladilimab NCT03693612 2 Advanced/metastatic Solid tumours

Feladilimab +
tremelimumab
(anti-CTLA-4)

vs. chemotherapy

Completed

JTX-2011 NCT02904226 1, 2 Advanced/metastatic Solid tumours
JTX-2011 ± pembrolizumab

or nivolumab
or ipilimumab

Completed

KY1044 NCT03829501 1, 2 Advanced/metastatic Solid tumours KY1044 ± atezolizumab Recruiting
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Table 1. Cont.

Target Drug Clinical Trial ID Phase Settings Tumour Types Treatment Arms Status

BTLA INBRX-106 NCT04198766 1 Locally advanced
or metastatic Solid tumours INBRX-106 ±

pembrolizumab Recruiting

Cudarolimab
(IBI101) NCT03758001 1 Advanced/metastatic Solid tumours Cudarcenab ± sintilimab

(anti-PD-1)
Active, not
recruiting

PF-04518600 NCT02315066 1 Advanced/metastatic Solid tumours
PF-04518600 ± utomilumab

(PF-05082566, agonist
anti-TNFRSF9 Ab)

Completed

TAB004 (JS004) NCT04137900 1 Advanced/metastatic Solid tumours
or lymphomas

TAB004 ± toripalimab
(anti-PD-1) Recruiting

NCT04278859 1 Advanced/metastatic Solid tumours TAB004 (JS004) Unknown

The genotypic and phenotypic variability posed by inter- and intra-tumoral hetero-
geneity has shown promising potential in biological research, but several challenges remain
in its integration into personalised drug design and clinical decision making. Firstly, a
single tumour biopsy is a static and partial representation of the overall heterogeneity in
a patient. Temporal analyses of multiple biopsies throughout the course of disease and
treatment are required for the accurate depiction of spatial and temporal heterogeneity.
Till date, repeated biopsies during and after treatment for disease progression have been
incorporated into clinical trials [97,98]. Furthermore, the detection of tumour mutations in
circulating tumour DNA has demonstrated feasibility and predictive values, which may
be adapted as early diagnostic or relapse monitoring tools [99]. More research studies
using non-targeted single-cell sequencing methods are also required to expand the un-
derstanding of rare patterns of heterogeneity and therapy resistance, and to guide novel
drug development. Large scale collaborative efforts such as the Human Tumour Atlas
Network [100] and the Human BioMolecular Atlas Program [101] are working towards
combined databases of highly-multiplexed tissue imaging and single-cell omics data, to
offer comprehensive cellular information in the context of cancer. The integration of spatial,
single-cell and phenotypic datasets will empower a deeper understanding of heterogeneity
at genomic, transcriptomic, proteomic and spatial organisation levels.

6. Conclusions

Heterogeneity of the tumour and microenvironment complexity are the main con-
tributors to different treatment responses and clinical outcomes. The single-cell approach
has contributed to the study of tumour heterogeneity and drug resistance arising from
the TME. The advancement in single cell and spatial multi-omics platforms, as well as
the integrated analysis of these large-scale datasets, are offering unprecedented powers to
identify the intrinsic, extrinsic and interactive processes driving the development of tumour
heterogeneity. The identification of the key and rare subpopulations of cells and molecular
processes will aid in improving diagnosis and novel drug development for cancer patients.
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