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1. T H E  L I M I T A T I O N S  OF STRICT B A Y E S I A N I S M  

A central part of Bayesianism is the doctrine that the decision 

maker's knowledge in a given situation can be represented by a 

subjective probability measure defined over the possible states of the 

world. This measure can be used to determine the expected utility for 

the agent of the various alternatives open to him. The basic decision 

rule is then that the alternative which has the maximal expected 

utility should be chosen. 

A fundamental assumption for this strict form of Bayesianism is 

that the decision maker's knowledge can be represented by a unique 
probability measure. The adherents of this assumption have produced 

a variety of arguments in favor of it, the most famous being the 

so-called Dutch book arguments. A consequence of the assumption, 

in connection with the rule of maximizing expected utility, is that in 

two decision situations which are identical with respect to the prob- 

abilities assigned to the relevant states and the utilities of the various 

outcomes the decisions should be the same. 

It seems to us, however, that it is possible to find decision situa- 

tions which are identical in all the respects relevant to the strict 

Bayesian, but which nevertheless motivate different decisions. As an 

example to illustrate this point, consider Miss Julie who is invited to 

bet on the outcome of three different tennis matches. 1 As regards 

match A, she is very well-informed about the two players - she knows 

everything about the results of their earlier matches, she has watched 

them play several times, she is familiar with their present physical 

condition and the setting of the match, etc. Given all this information, 

Miss lulie predicts that it will be a very even match and that a mere 

chance will determine the winner. In match B, she knows nothing 

whatsoever about the relative strength of the contestants (she has not 

even heard their names before) and she has no other information that 
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is relevant for predicting the winner of the match. Match C is similar 

to match B except that Miss Julie has happened to hear that one of 

the contestants is an excellent tennis player, although she does not 

know anything about which player it is, and that the second player is 

indeed an amateur so that everybody considers the outcome of the 

match a foregone conclusion. 

If pressed to evaluate the probabilities of the various possible 

outcomes of the matches, Miss Julie would say that in all three 

matches, given the information she has, each of the players has a 50% 

chance of winning. In this situation a strict Bayesian would say that 

Miss Julie should be willing to bet at equal odds on one of the players 

winning in one of the matches if and only if she is willing to place a 

similar bet in the two other matches. It seems, however, perfectly 

rational if Miss Julie decides to bet on match A, but not on B or C, 

for the reason that a bet on match A is more reliable than a bet on the 

others. Furthermore she would be very suspicious of anyone offering 

her a bet at equal odds on match C, even if she could decide for 

herself which player to back. 
The main point of this example is to show that the amount and 

quality of information which the decision maker has concerning the 

possible states and outcomes of the decision situation in many cases 

is an important factor when making the decision. In order to describe 

this aspect of the decision situation, we will say that the information 

available concerning the possible states and outcomes of a decision 

situation has different degrees of epistemic reliability. This concept 

will be further explicated later. We believe that the epistemic reli- 

ability of a decision situation is one important factor when assessing 

the risk of the decision. In our opinion, the major drawback of strict 

Bayesianism is that it does not account for the variations of the 

epistemic reliability in different decision situations. 

The concept of epistemic reliability is useful also in other contexts 

than direct decision making. In the next section, after presenting the 

models of decision situations, we will apply this concept in a dis- 

cussion of Popper's 'paradox of ideal evidence'. 

In order to determine whether empirical support could be obtained 

for the thesis that the epistemic reliability of the decision situation 

affects the decision, Goldsmith and Sahlin [15], [16] and [17] per- 

formed a series of experiments. In one of these, test subjects were 
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first presented with descriptions of a number of events and were 

asked to estimate for each event the probability of its occurrence. 

Some events were of the well-known parlor game type, e.g. that the 

next card drawn from an ordinary deck of cards will be a spade; while 

other events were ones about which the subjects presumably had 

very limited information, e.g. that there will be a bus strike in Verona, 

Italy next week. Directly after estimating the probability of an event, 

subjects were asked to show, on a scale from 0 to 1, the perceived 

reliability of their probability estimate. The experiment was con- 

structed so that for each subject several sets of events were formed, 

such that all the events in a set had received the same probability 

estimate but the assessed reliability of the various estimates differed. 

For each set, the subject was then asked to choose between lottery 

tickets involving the same events, where a ticket was to be con- 

ceived as yielding a win of 100 SwKr if the event occurred but no 

monetary loss if it did not occur. One hypothesis that obtained 

support in this experiment was that for probabilities other than fairly 

low ones, lottery tickets involving more reliable probability estimates 

tend to be preferred. This, together with the results of similar 

experiments, suggested the reliability of probability estimates to be an 

important factor in decision making. 

The aim of the present paper is to outline a decision theory which is 

essentially Bayesian in its approach but which takes epistemic reli- 

ability of decision situations into consideration. We first present 

models of the knowledge relevant in a decision situation. One devia- 

tion from strict Bayesianism is that we use a class of probability 

measures instead of only one to represent the knowledge of an agent 

in a given decision situation. Another deviation is that we add a new 

measure which ascribes to each of these probability measures a 

degree of epistemic reliability. The first step in a decision, according 

to the decision theory to be presented here, is to select a class of 

probability measures with acceptable degrees of reliability on which a 

decision is to be based. Relative to this class, one can then, for each 

decision alternative, compute the minimal expected utility of the 

alternative. In the second step the alternative with the largest minimal 

expected utility is chosen. 2 This decision theory is then compared to 

some other generalized Bayesian decision theories, in particular 
Levi's theory as presented in [26]. 
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2. M O D E L S  O F  D E C I S I O N  S I T U A T I O N S  

Our description of a decision situation will have many components in 

common with the traditional Bayesian way of describing decision 

problems. A decision is a choice of one of the alternatives available in 

a given situation. For simplicity, we will assume that in any decision 

situation there is a finite set ~ =  {al, a2 . . . . .  an} of alternatives. 

Though the decision maker presumably has some control over the 

factors which determine the outcome of the decision, he does not, in 

general, have complete control. The uncertainty as to what the 

outcome of a chosen alternative will be is described by referring to 

different states of nature (or just states, for brevity). We will assume 

that, in any given decision situation, only a finite number of states are 

relevant to the decision. These states will be denoted st, s2 . . . . .  sin. 

The result or outcome of choosing the alternative ai, if the true 

state of nature is sj. will be denoted oij. An important factor when 

making a decision is that of the values the decision maker attaches to 

outcomes. We will make the standard assumption that this valuation 

can be represented by a utility measure u. 3 The utility of the outcome 

o~j will be denoted u~j. It is assumed that all information on how the 

decision maker values the outcomes is summarized by the utility 

measure. 
A final factor in describing a decision situation is that of the beliefs 

the decision maker has concerning which of the possible states of 

nature is the true state. Within strict Bayesianism it is assumed that 

these beliefs can be represented by a single probability measure 

defined over the states of nature. This assumption is very strong since 

it amounts to the agent having complete information in the sense that 

he is certain of the probabilities of the possible states of nature. The 

assumption is unrealistic, since it is almost only in mathematical 

games with coins and dice that the agent has such complete in- 

formation, while in most cases of practical interest the agent has only 

partial information about the states of nature. 

In the strict form of Bayesianism which is advocated by de 

Finetti [10] and Savage [35] among others, it is assumed that the 

agent's subjective probability of a state of nature can be determined 

by his inclination to accept bets concerning the state. 4 The so-called 

Dutch book theorem states that if it is not possible to construct a bet 

where the agent will lose money independently of which state turns 
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out to be the actual one, then the agent's degrees of beliefs satisfy 

Kolmogoroff 's axioms, i.e., there is a unique probability measure that 

describes these degrees of belief. 

However,  a presupposition of this theorem is that the agent be 

willing to take either side of a bet, i.e., if the agent is not willing to bet 

on the state sj at odds of a:b, then he should be willing to bet on 

not-sj at odds of b : a. But this assumption makes too heavy demands 

on people's willingness to make bets. One is often not willing to 

accept either of the two bets. 5 In our opinion, this is explained by the 

fact that the estimated probability of the different states of nature are 

unreliable and one is not willing to take the risk connected with this 

uncertainty. 6 This criticism is directed against the assumptions behind 

the Dutch book theorem, but similar criticism can be constructed 

against other arguments in favor of the assumption of representing 

beliefs by a unique probability measure. 

In this paper we will relax this assumption and, as a first step in the 

description of the beliefs which  are relevant in a decision situation, 

we instead assume that the beliefs about the states of nature can be 

represented by a set P of probability measures. The intended inter- 

pretation of the set ~ is that it consists of all epistemically possible 

probability measures over the states of nature, where we conceive of a 

probability measure as epistemically possible if it does not contradict 

the decision maker's knowledge in the given decision si tuation] In this 

way, we associate with each state s~ a set of probability values P(sj), 

where P E ~. The values may be called the epistemically possible 

probabilities of the state sj. For simplicity, we will assume that the 

probabilities of the outcomes oij are independent of which alternative is 

chosen, so that P(oii) = P(sj), for all P ~ ~ and all alternatives ai. Since 

this assumption can be relaxed, the decision theory to be presented can 

be extended to the more general case. 8 

The idea of re.presenting a state of belief by a class of probability 

measures is not new but has been suggested by various authors. 9 It 

has been most extensively discussed by Levi in [26] and [27], but, as 

will be seen in the sequel, he does not use the class of probability 
measures in the same way as we do. 

Levi also assumes that the set of probability measures is convex, 

i.e., that ff P and P '  are two measures in the set, then the measure 

a • P + (1 - a ) .  P '  is also in the set, for any a between 0 and 1.1° The 

motivation for this assumption is that if P and P '  both are possible 
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probability distributions over the states, then any mixture of these 

distributions is also possible. We will discuss the requirement of 

convexity in section 5. 

If ~ is assumed to be convex, then the set of epistemically possible 

probabilities associated with a state sj by the elements of ~ will form 

an interval from the lowest probability assigned to s i to the highest. 

Some authors have taken such intervals as basic when describing 

beliefs about the states of nature - to each state is assigned a prob- 

ability interval and this assignment is governed by some consistency 

restrictions. 11 The representation by a convex set of probability 

measures is, however, more general, since from such a set one can 

always compute a unique set of associated intervals, but starting from 

an assignment of consistent probability intervals, there will in general 

be a large number of convex sets of probability measures that will 

generate the intervals, lz 

We believe that not all of an agent's beliefs about the states of 

nature relevant to a decision situation can be captured by a set ~ of 

probability measures. As a second element in describing the beliefs 

relevant to a decision situation, we introduce a (real-valued) measure 

p of the epistemic reliability of the probability measures in ~. Even if 

several probability distributions are epistemically possible, some dis- 

tributions are more reliable - they are backed up by more information 

than other distributions. 

The measure p is intended to represent these different degrees of 

reliability. In the introductory examples, Miss Julie ascribes a much 

greater epistemic reliability to the probability distribution where each 

player has an equal chance of winning in match A where she knows a 

lot about the players than in match /3 where she knows nothing 

relevant about the players. In match C, where she knows that one 

player is superior to the other, but not which, the epistemically most 

reliable distributions are the two distributions where one player is 

certain to win. Since there are only two relevant states of nature in 

these examples, viz. the first player wins (st) and the second player 

wins (sO, a probability distribution can be described simply by the 

probability of one of the states. We can then illustrate the epistemic 

reliability of the various distributions in the three matches by 

diagrams as in Figure 1. 

Even if examples such as these illustrate the use of the measure p, 

its properties should be specified in greater detail. Technically, the 
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0 0.5 1 P ( s  1) 0 0.5 1 P ( s  1) 0 0.5 1P(s  1) 

Motch A Match  B Match  C 

Fig. 1. 

only property of p that will be needed in this paper is that the 

probability distributions in ~ can be ordered with respect to their 

degrees of epistemic reliability. However, it seems natural to pos- 

tulate that O has an upper bound, representing the case when the 

agent has complete information about a probability distribution, and a 

lower bound, representing the case when the agent has no information 

at all about these distributions. However, we will not attempt a full 

description of the properties of the measure 0, since we believe that 

this can be done only in a more comprehensive decision theory in 

which the relations between different decision situations are 
exploited] 3 

A fundamental feature of the epistemic reliability of the probability 

distributions possible in a decision situation, as we conceive of the 

measure, is that the less relevant information the agent has about the 

states of nature, the less epistemic reliability will be ascribed to the 

distributions in ~. Where little information is available, therefore, all 

distributions will, consequently, have about the same degree of epis- 

temic reliability. Conversely, in a decision situation where the agent is 

well-informed about the possible states of nature, some distributions 

will tend to have a considerably higher degree of epistemic reliability 
than others. 

A problem which strongly supports our thesis that the measure of 

epistemic reliability is a necessary ingredient in the description of a 

decision situation is Popper's paradox of ideal evidence. Popper asks 

us to consider the following example ([31], pp. 407-408): 

Let  z be a certain penny, and let a be the s tatement  ' the n th  (as yet  unobserved) toss of 

z will yield heads' .  Within the subjective theory,  it may be assumed that the absolute 

(or prior) probability of the s tatement  a is equal to 1/2, that is to say, 

(1) P ( a )  = 1/2 
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Now let e be some statistical evidence; that is to say, a statistical report, based upon 

the observation of thousands or perhaps millions of tosses of  z; and let this evidence e 

be ideally favourable to the hypothesis that  z is strictly symmetrical . . . .  We  then have  

no other option concerning P(a, e) than to assume that 

(2) P(a, e) = 1/2 

This means that the probability of tossing heads remains unchanged in the light of  the 

evidence e; for we now have  

(3) P(a) = P(a, e). 

But, according to the subjective theory, (3) means that  e is, on the whole (absolutely) 

irrelevant information with respect to a. 

Now this is a little startling; for it means, more explicitly, that our so-called 'degree of  

rational belie[' in the hypothesis, a, ought to be completely unaffected by the ac- 

cumulated evidential knowledge, e; that  the absence of any statistical evidence 

concerning z justifies precisely the same 'degree of rational belief' as the weighty 

evidence of millions of observations which, prima facie, support or confirm or 

strengthen our belief. 

The 'subjective theory' which Popper is referring to in this example is 

what we have here called strict Bayesianism. 

Now, with the aid of the models of decision situations presented 

above, we can describe Popper's example in the following way. There 

is a set ~ of possible probability measures concerning the states of 

nature described by a and not-a. If one is forced to state the 

probability of a, before the evidence e is obtained, the most reliable 

answer seems to be 112. The degree of epistemic reliability of this 

estimate is, however, low, and there are many other answers which 

seem almost as reliable. After the evidence e is obtained, the most 

reasonable probability assessment concerning a is still 1]2, but now 

the distribution associated with this answer has a much higher degree 

of epistemic reliability than before, and the other distributions in 

have correspondingly lower degrees of reliability. It should be noted 

that this distinction between the two cases cannot be formulated with 

the aid of the set ~ only, but the measure p of epistemic reliability is 

also necessary. 14 

We will conclude this section by briefly mentioning some related 

attempts to extend models of belief by some measure of 'reliability'. ts 

An interesting concept was introduced by Keynes in [25], p. 71: 

As the relevant evidence at our disposal increases, the magnitude of the probability of  

the argument may either decrease or increase, according as the new knowledge 

strengthens the unfavourable or favourable evidence; but something seems to have 
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increased in either case - we have  a more substant ial  basis upon  which  to rest  our 

conclusion.  I express  this by saying that  an access ion  of new evidence increases  the 

weight of an  argument .  New evidence will somet imes  decrease  the probability of an 

argument ,  but  it will a lways increase its "weight" .  

Here Keynes writes about the probability of an argument, while we 

are concerned with probability distributions over states of nature. 

Even if the intuitions behind Keynes's 'weight of evidence' and our 

'epistemic reliability' are related, it is difficult to say how far this 

parallel can be drawn. 

In [4], pp. 554-555, Carnap discusses 'the problem of the reliability 

of a value of degree of confirmation' which obviously is the same as 

Keynes's problem. Carnap remarks that Keynes's concept of 'the 

weight of evidence' was forestalled by Peirce who mentioned it in 

[30], p. 421, in the following way: 

, . .  to express  the  proper state of belief, not  one number  but  two are requisite,  the first 

depending on the inferred probability, the second on the amoun t  of knowledge on 

which  that  probability is based.  

The models of the agent's beliefs about the states of nature in a 

decision situation which have been presented here contain the two 

components ~ and 0, i.e., the set of epistemically possible probability 

distributions, and the measure of epistemic reliability. These two 

components can be seen as an explication of the two numbers 
required by Peirce. ~6 

3. A D E C I S I O N  T H E O R Y  

The models of decision situations which were outlined in the previous 

section will be used now as a basis for a theory of decision. This 

theory can be seen as a generalization of the Bayesian rule of 

maximizing expected utility. 

A decision, i.e. a choice of one of the alternatives in a decision 

situation, will be arrived at in two steps. The first step consists in 

restricting the set ~ to a set of probability measures with a 'satis- 

factory' degree of epistemic reliability. The intuition here is that in a 

given decision situation certain probability distributions over the 

states of nature, albeit epistemically possible, are not considered as 

serious possibilities. For example, people do not usually check 

whether there is too little brake fluid in the.car or whether the wheels 
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are loose before starting to drive, although, for all they know, such 

events are not impossible, and they realize that if any such event 

occurred they would be in danger. 

Now examples of this kind seems to show that what the agent does 

is to disregard certain states of nature rather than probability dis- 

tributions over such states. But if a certain state of nature is not 

considered as a serious possibility, then this means that all probability 

distributions which assign this state a positive probability are left out 

of consideration. And there may be cases when some probability 

distributions are left out of account even if all relevant states of 

nature are considered to be serious possibilities. So, restricting the set 

is a more general way of modelling the process than restricting the 

set of states. 

Deciding to consider some distributions in ~ as not being serious 

possibilities means that one takes a risk. The less inclined one is to 

take risks, the greater the number of distributions in ~ will be that are 

taken into account when making the decision. 

A fundamental question is how the agent determines which prob- 

ability distributions in 8 ~ are 'satisfactorily reliable' and which are 

not. In our view, the answer is that the measure p of epistemic 

reliability should be used when selecting the appropriate subset ~]po 

of ~. The agent selects a desired level po of  epistemic reliability and 

only those probability distributions in ~ which pass this p-level are 

included in ~[Po, but not the others. 17 ~9/po can be regarded as the set 

of probability distributions that the agent takes into consideration in 

making the decision. An obvious requirement on the chosen level of 

reliability is, of course, that there be some distribution in ~ which 

passes the level. 

Which 'desired level of epistemic reliability' the agent will choose 

depends on how large the risks are he is willing to take, The more risk 

aversive the agent is, the lower the chosen level of epistemic reli- 

ability will be. It is important to note that two agents in identical 

epistemic situations, here identified by a set ~ and a measure p, may 

indeed choose different values of p0 depending on their different risk 

taking tendencies. This is the reason why it is assumed that p yields 

an ordering of ~ and not merely a dichotomy. 

If the agent is willing to take a maximal risk as regards which 

probability distribution to consider as 'satisfactory' it may happen 

that there will be only one distribution which passes the desired level 
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of reliability. After such a choice his relevant information about the 

states of nature will be of the same type as for the strict Bayesian, i.e. 

a unique probability measure, but this situation will arise for quite 

different reasons. TM 

The second step in the decision procedure starts with the restricted 

set ~Jpo of probability distributions. For each alternative a~ and each 

probability distribution P in PlOp the expected utility elk is computed 

in the ordinary way. The minimal expected utility of an alternative ai, 

relative to a set ~lpo, is then determined, this being defined as the 

lowest of these expected utilities elk. Finally the decision is made 
according to the following r u l e :  19 

The maximin criterion for expected utilities (MMEU): The alternative 

with the largest minimal expected utility ought to be chosen. 

In order to illustrate how this decision procedure works, we will 

return to the introductory examples. For simplicity, let us, for all 

three tennis matches, denote by s~ the event that the first player to 

serve wins the match, and by s2 the event that the other player wins. 

Now assume that Miss Julie is offered the following bet for each of 

the three matches: She wins 305 if s~ occurs and loses 205 if s2 

occurs. For each match, she must choose between the alternative a~ 

of accepting the bet and the alternative a2 of declining it. Let us 

furthermore assume that Miss Julie's utilities are mirrored by the 

monetary values of the outcomes. 

In match A, where Miss Julie is very well informed about the 

players, she considers that the only probability distribution that she 

needs to take into consideration is the distribution P~, where Pt(st)= 
P~(s2) = 0.5. She is willing to take the (small) risk of letting N/P0 

consist of this distribution only. The only, and hence minimal, expec- 

ted utility to compute is then 0.5 • 30 + 0.5 • (-20) for at and 0.5 • 0 + 

0.5 • 0 for a2. Hence, according to MMEU, she should accept the bet 
in match A. 

In match /3, where she has no relevant information at all, the 

epistemic reliability of the epistemically possible distributions is more 

evenly spread out. Consequently, Miss Julie is not so willing to leave 

distributions out of account when forming the subset ~[P0 as in the 

previous case. For simplicity, let us assume that ~[Po = {Pt, P2, P3}, 

where Pt is as before, P2 is defined by P2(s~) = 0.25 and Pz(sz) = 0.75, 

and P3 is defined by Pa(s~)= 0.75 and P3(s2)= 0.25. The expected 
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utilities for the alternative a~ of accepting the bet, determined by 

these three distributions, are 5, -7.5 and 17.5 respectively; while the 

expected utilities for the alternative a2 of not accepting the bet are 0 

in all three cases. Since the minimal expected utility of al is less than 

that of az, the MMEU criterion demands that az be the chosen 

alternative, i.e. Miss Julie should decline the bet offered. 

In match C, it is reasonable to assume that ~/po contains some 

probability distribution which assigns s~ a very high probability and 

some distribution which assigns it a very low probability. A similar 

analysis as above then shows that Miss Julie should not accept the bet 

in this case either. 

This example can be heuristically illustrated as in Figure 2. In this 

figure the broken horizontal line indicates the desired level of epis- 

temic reliability. 

To give a further illustration of the decision theory, it should be 

noted that the hypothesis from the Goldsmith-Sahlin experiments, 

mentioned in the introduction, is well explained by the MMEU 

criterion. When an agent is asked to choose between tickets in two 

lotteries which are estimated to have the same primary probability of 

winning, he should choose the ticket from the lottery with the 

epistemically most reliable probability estimate, since this alternative 

will have the highest minimal expected utility. 2° Still other ap- 

plications of the decision theory will be presented in the next two 

sections. 

A limiting case of information about the states of nature in a 

decision situation is to have no information at all. In the decision 

models presented here, this would mean that all probability dis- 

tributions over the states are epistemically possible and that they 

have equal epistemic reliability. In such a case, the minimal expected 

0 0 .5  1 P ( s  1 ) 0 0 .5  1 P ( s  1) 0 0 .5  1 P ( s  1) 

Match A M o t c h  B M a t c h  C 

Fig. 2. 
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utility of an alternative is obtained from the distribution which assigns 

the probability 1 to the worst outcome of the alternative. This is, 

however, just another way of formulating the classical maximin rule, 

which has been applied in what traditionally has been called 'decision 

making under uncertainty' (a more appropriate name would be 

'decision making under ignorance'). Hence, the classical maximin 

turns out to be a special case of the MMEU criterion. 

At the other extreme, having full information about the states of 

nature implies that only one probability distribution is epistemically 

possible} ~ In this case the MMEU criterion collapses into the 

ordinary rule within strict Bayesianism, i.e. the rule of maximizing 

expected utility, which has been applied to what traditionally, but 

somewhat misleadingly, has been called 'decision making under risk'. 

The decision theory which has been presented here thus covers the 

area between the traditional theories of 'decision making under un- 

certainty' and 'decision making under risk' and it has these theories as 

limiting cases. 

4. R E L A T I O N  TO E A R L I E R  T H E O R I E S  

Several authors have proposed decision theories which are based on 

more general ways of representing the decision maker's beliefs about 

the states than what is allowed by strict Bayesianism. The most 

detailed among these is Levi's theory ([261 and [27]), which will be 

discussed in a separate section. In this section we will compare the 

present theory with some earlier statistical decision theories. 

In [38], Wald formulates a theory of 'statistical decision functions' 

where he considers a set [1 of probability measures and a 'risk' 

function. He says that 'the class f~ is to be regarded as a datum of the 

decision problem' (p. 1). He also notes that the class II will generally 

vary with the decision problem at hand and that in most cases 'will be 

a proper subset of the class of all possible distribution functions' (p. 

1). In the examples, II is often taken to be a parametric family of 

known functional form. A risk function is a function which deter- 

mines the 'cost' of a wrong decision. Such a function can be seen as 

an inverted utility function restricted to negative outcomes. On this 

interpretation it is easier to compare Wald's theory to the present 
decision theory. 

Wald suggests two alternative decision rules. The first is the tradi- 
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tional Bayesian method when an 'a priori' probability measure in l~ 

can be selected, or, as Wald puts it, when 'it exists and is known to 

the experimenter' (p. 16). The second case is when the entire set t2 is 

employed to determine the decision. Wald suggests that in such cases 

one should 'minimize the maximum risk'. In our terminology, using 

utility functions instead of risk functions, this is the same as maxi- 

mizing the minimal expected utility with respect to the set IL 

If Wald's theory is interpreted as above, the difference between his 

and our theory is mainly of epistemological character. Since Wald 

does not say anything about how ~ is to be determined it is difficult to 

tell whether it corresponds to our set ~ of epistemically possible 

probability functions or to the set ~]po of 'reliable' functions. In 

particular, he does not introduce any factor corresponding to the 

measure p of epistemic reliability, nor does he associate the choice of 

iq with any form of risk taking. 

Hurwicz [22] apparently interprets Wald's set 1) as corresponding 

to our set ~9. He notes that sometimes some of the distributions in l) 

are more 'likely' than others (p. 343). For example, assume that f~ 

consists of all normal distributions with mean zero and standard 

deviation tr. In a particular decision situation evidence at hand may 

support the assumption that or is considerably small. It thus seems 

reasonable to select a proper subset O0 of I) which is restricted to 

those distributions with standard deviation less than or equal to some 

value or0. 

Hurwicz assumes that such a subset ~0 ~-~t=~°~ in his terminology) of f~ 

can be selected in any decision situation. He then suggests a 'general- 

ized Bayes-minimax porinciple' which amounts to using f~0 as the 

base when maximizing the minimal expected utility (minimizing the 

maximal risk). Obviously, the set Oo corresponds closely to our set 

~/P0. The main difference between Hurwicz' theory and the present 

one is that he does not give any account of how the set 120 is to be 

determined. In particular he, as Wald, does not introduce any factor 

corresponding to the measure p. 
In [21], Hodges and Lehmann suggest an alternative to Wald's 

minimax solution which they call a 'restricted Bayes solution'. It is of 

interest here since it is adopted by Ellsberg [8] as a solution to his 

'paradox'. Let us start by considering Ellsberg's problem. 22 

Ellsberg ([8], pp. 653-654) asks us to consider the following 

decision problem. Imagine an urn known to contain 30 red balls and 
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60 black and yellow balls, the latter in unknown proportion. One ball 

is to be drawn at random from the urn. In the first situation you are 

asked to choose between two alternatives a~ and av If you choose a~ 

you will receive $100 if a red ball is drawn and nothing if a black or 

yellow ball is drawn. If you choose a2 you will receive $100 if a black 

ball is drawn, otherwise nothing. In the second situation you are 

asked to choose, under the same circumstances, between the two 

alternatives a3 and a4. If you choose a3 you will receive $100 if a red 

or a yellow ball is drawn, otherwise nothing and if you choose a4 you 

will receive $100 if a black or yellow ball is drawn, otherwise 

nothing. This decision problem is shown in the following decision 

matrix. 

Red Black Yellow 

aa[-'~-~ $100 $0 $0 

a2 $0 $100 $0 

a3 $100 $0 $100 
$0 $100 $100 

The most frequent pattern of response to these two decision 

situations is that al is preferred to a2 and a4 is preferred to a3. As 

Ellsberg notes, this preference pattern violates Savage's 'sure thing 

principle' (postulate P2 in [35]), which requires that the preference 

ordering between al and a2 be the same as the ordering between a3 

and  an. 

When applying the present decision theory to this problem, the 

main step is to determine the set ~/po. The set ~ should be the same 

in the two decision situations, since they do not differ with respect to 

the information about the states. Now, unless the decision maker 

believes that he is being cheated about the content of the urn, 9 is 

most naturally taken as the class of distributions (1/3, x, 213- x), 

where x varies from 0 to 2/3. 

If the decision maker chooses a low po, ~/po will contain most of 

the distributions in this class. For simplicity, let us for the moment 

assume that ~[Po = ~9. With this choice, the minimal expected utilities 
of the alternatives are 113-u($100), 1-u($0), 1/3. u($100) and 

2•3. u($100), for al, a2, a3 and an, rospectively. Assuming that 

1/3. u($100) is greater than u($0), the MMEU criterion requires that a~ 
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be preferred to a2 and a4 to a3, which accords with Ellsberg's findings. 

Intuitively, a2 and a3 involve greater 'epistemic risks' than a~ and a4 - 

thus a: and a3 are avoided by most subjects. This feature is well captured 

by the present decision theory. 

If the decision maker is willing to take an epistemic risk and 

chooses a higher p0, fewer distributions will be included in ~/Po. If the 

decision maker has no further information about the distribution of 

black and yellow balls, then, because of symmetry, it is likely that he 

judges the distribution (1[3, 1[3, 1[3) as being the highest in the p- 

ordering. If this is the only distribution included in ~/Po, he should be 

indifferent between a~ and a2 and between a3 and a4 according to the 

MMEU criterion. In this case Savage's sure thing principle is not 
violated. 23 

In order to explain the 'paradox' that decision makers do not act 

according to Savage's sure thing principle, Ellsberg ([8], p. 661) first 

introduces for a decision maker in a given situation a set y0 of 

probability distributions 

that still seem "reasonable", reflecting judgements that he "might almost as well" have 

made, or that his information - perceived as scanty, unreliable, a m b i g u o u s  - does not 

permit him confidently to rule out. 

Ellsberg also considers a particular probability distribution y0, the 

"estimated" probability distribution, which can be viewed as the 

distribution a strict Bayesian decision maker would have adopted in 

the decision situation. Ellsberg also ascribes to y0 a degree p, (e for 

Ellsberg) of the decision maker's 'confidence' in the estimate. 

The decision rule suggested by Ellsberg, which is the restricted 

Bayesian solution developed by Hodges and Lehmann, can now be 

described as follows: Compute for each action at the expected utility 
according to the distribution y0 and the minimal expected utility 

relative to the set yo. Associate with each action an index 

based on a weighed average of these two factors, where pe is the 

weight ascribed to the first factor and 1 - pe is the weight ascribed to 
the latter factor. Finally, choose that act with the highest index. 

When comparing this decision theory with the theory presented in 

this paper, one notes that there are differences both of epistemologi- 

cal and formal character. Firstly, since Ellsberg, like his predecessors, 

does not say anything about how the set yO is to be determined, and 

it is therefore difficult to say whether it corresponds to our set ~lPo. 
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Secondly, even if we identify y0 with ~/P0, EUsberg exploits the 

degree p~ of 'confidence', which is defined for only one distribution 

y0, in a way that differs considerably from our use of the measure p, 

which is assumed to be defined for all distributions in ~. In 

particular we need not assume that p gives a numerical value, only that 

it orders the distributions in @. Thirdly, since the decision rules are 

different, the theories will recommend different decisions in many 

situations. The most important disagreement here is that we reject the 

need of an estimated distribution y0. We believe that once the set ~/p0 

has been selected, the distribution with the highest degree of reli- 

ability (corresponding to EUsberg's y0) does not play any outstanding 

role in the decision making. 

This difference between the two theories is in principle testable, 

assuming that p~ is not always close to zero. The experiment per- 

formed by Becker and Brownson [2] is relevant here. They offered 

subjects ambiguous bets differing in the range of probabilities pos- 

sible but of equal expected value and found that subjects were willing 

to pay money for obtaining bets with narrower ranges of probability. 

This finding seems to highlight the importance of a measure of 

reliability. But they did not, however, obtain support for Ellsberg's 

hypothesis that the distribution yO is relevant for the decision making~ 

5. A C O M P A R I S O N  W I T H  L E V I ' S  T H E O R Y  

In this section we compare our theory with Levi's theory which is 

presented in [26] and elaborated on in [27]. Levi starts out from a 

description of the decision maker X's  information at the time t about 

the states of nature. This information is contained in a convex set Bx, t 

of probability distributions. The distributions in Bx, t are, according to 

Levi, the 'permissible' distributions. As to the meaning of "per- 

missible", he offers only indirect clarification by indicating the con- 

nections between permissibility and rational choice. In order to com- 

pare the theories, we will here assume that the set Bx, t corresponds to 
the set @/P0 (or its convex hull) as presented in section 3. 24 

Levi also generalizes the traditional way of representing the utilities 

of the outcomes by introducing a class G of 'permissible' utility 

measures, such that not all of these measures need be linear trans- 
formations of one another. 

An alternative ai is said to be E - a d m i s s i b l e  if and only if there is 



378 PETER GARDENFORS AND NILS-ERiC SAHLIN 

some probability distribution P in Bx, t and some utility function u in 

G such that the expected utility of al relative to P and u is maximal 

among all the available alternatives. A first requirement on the alter- 

native to be chosen in a given decision situation is then that it should 

be E-admissible. 

The second step in Levi's decision procedure concerns the oppor- 

tunity to defer decision between two or more E-admissible alter- 

natives. He argues that a rational agent should "keep his options 

open" whenever possible. An alternative is said to be P-admissible if 

it is E-admissible and it is 'best' with respect to E-admissible option 

preservation. Levi does not, however, explicate what he means by 

'best' here, and we will ignore the effects of this requirement here, 

since we have not imposed any structure on the set of alternatives. 25 

Let us say that a P-admissible alternative ai is security optimal 

relative to a utility function u if and only if the minimum u-value 

assigned to some possible outcome oii of ai is at least as great as the 

minimal u-value assigned to any other P-admissible alternative. Levi 

then, finally, calls an alternative S-admissible if it is P-admissible and 

security optimal relative to some utility function in G. 

Levi states (in [27], p. 412) that he "cannot think of additional 

criteria for admissibility which seem adequate" so he, tentatively, 

assumes that all S-admissible alternatives are 'admissible' for the final 

choice, which then, supposedly, is determined by some random 

device. 
In order to illustrate the differences between the decision theory 

presented in the previous section and Levi's theory, we will consider 

the following example which contains two states and three alter- 

natives: 

SI S2 ,1 
l al -10 12 

a~ 11 -9 
aa 0 0 

In this matrix the numbers denote the utilities of the outcomes. 

Assume that the set ~/po, which here is identified with Levi's set Bx, t, 

consists of the two probability distributions P, defined by P(sl) = 0.4 

and P(s2)=0.6, and P' ,  defined by P ' (s l )=0.6 and P'(s2)=0.4, 

together with all convex combinations of P and P'. 
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The minimal expected utility of a~ is -1.2 and the minimal expected 

utility of a2 is -1.0. The minimal expected utility of a3 is of course 0, 

so MMEU requires that a3 be chosen. 

In contrast to this, only a~ and a2 are E-admissible. P-admissibility 

has no effect here, but a2 is security optimal relative to the utility 

measure given in the matrix, so a2 is the only S-admissible alternative. 

Thus, according to Levi's theory, a2 should be chosen. 

When the uncertainty about the states of nature in this decision 

situation, represented by ~/P0, is considered, we believe that a3 is 

intuitively the best alternative. Against this it may be argued that 

using a maximin principle is unnecessarily risk aversive. It should be 

remembered, however, that when restricting ~ to ~/P0 the agent is 

already taking a risk and his choice of ~/p0 indicates that he is not 

willing to take any further epistemic risks. On the other hand, Levi's 

requirement of E-admissibility has the consequence that, in many 

cases, the choices made by his theory seem unrealistically optimistic. 

A strange feature of Levi's theory is that if the previous decision 

situation is restricted to a choice between a2 and a3, then his theory 

recommends choosing a3 instead of a2! In their chapter on individual 

decision making under uncertainty, Luce and Raiffa ([29], pp. 288- 

290) introduces the condition of independence of irrelevant alter- 
natives which in its simplest form demands that if an alternative is 

not optimal in a decision situation it cannot be made optimal by 

adding new alternatives to the situation. The example presented here 

shows that Levi's theory does not satisfy this condition since in the 

decision situation where a2 and a3 are the only available alternatives 

and where a3 is optimal according to Levi's theory, a2 can be made 
optimal by adding al. 26 It is easy to show, however, that the MMEU 

criterion which has been presented here satisfies the condition of 
independence of irrelevant alternatives. 27 

Levi's theory also seems to have problems in explaining some of 

the experimental results considered in this paper. If Levi's theory is 

applied to Ellsberg's two decision situations as presented earlier, it 

gives the result that both alternatives in the two situations are 

S-admissible, and hence that a~ is equally good as a2 and a3 is equally 

good as a4. This contrasts with Ellsberg's findings which are in 

accordance with the recommendations of the present theory. Similar 
considerations apply to the experiments presented in Becker and 
Brownson [2]. 
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Decision theories of the kind presented in this paper are based on 

several idealizations and they will unavoidably be exposed to some 

refractory empirical material. We believe, however, that the con- 

siderations of this section show that the decision theory presented in 

section 3 is a more realistic theory than Levi's. 

6. C O N C L U S I O N  

The starting-point of this paper is that in many decision situation the 

assumption, made in the strict form of Bayesianism, that the beliefs 

of an agent can be represented by a single probability distribution is 

unrealistic. We have here presented models of belief which contain 

firstly, a class of probability distributions, and, secondly, a measure of 

the epistemic reliability of these probability distributions. Several 

authors before us have suggested that a class of probability dis- 

tributions should be exploited when describing the beliefs of the 

agent. A main thesis of this paper is that this is not sufficient, but an 

assessment of the information on which the class of probability 

distributions is based is also necessary. We have here tried to capture 

this assessment by the measure p of epistemic reliability. With the aid 

of this measure we can account for one form of risk taking in decision 

situations. 

On the basis of the models of the beliefs which are relevant in a 

decision situation we have formulated a decision theory. We have 

argued that this theory has more desirable properties and is better 

supported than other decision theories which also generalize the 

traditional Bayesian theory. 
The MMEU criterion, which has been suggested here as the main 

rule of the decision theory, is generally applicable to decision situa- 

tions where the possible outcomes are non-negative from the point of 

view of the decision maker. However, there are situations where the 

MMEU criterion seems to be too cautious. For example, the 

'reflection effect' and the 'isolation effect' suggested by Kahneman 
and Tversky [24] cannot be explained directly with the decision theory 

of this paper. We believe that in order to cover these phenomena a more 

general and comprehensive decision theory is needed which includes 

references to the decision maker's 'levels of aspiration'. A special case 

of the effects of levels of aspiration would be the 'shifts of reference 
point' discussed by Kahneman and Tversky. Introducing 'levels of 
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a s p i r a t i o n '  m e a n s  t h a t  t h e  p a r t  o f  t r a d i t i o n a l  B a y e s i a n  t h e o r y  w h i c h  

r e f e r s  to  u t i l i t i e s  h a s  t o  b e  c o n s i d e r a b l y  e x t e n d e d  a n d  m o d i f i e d .  

L u n d  U n i v e r s i t y ,  S w e d e n  

N O T E S  

*The order of the authors' names is based only upon age and (or?) wisdom. The authors 

wish to thank Robert Goldsmith, S6ren Halld6n, Bengt Hansson and Isaac Levi for helpful 

criticism and comments. 

This example was chosen in order to simplify the exposition. We believe, however, 

that similar examples can be found within many areas of decision making, e.g. medical 

diagnosis and portfolio selection. 

2 This decision rule is a generalization of the rule suggested by G~irdenfors in [13], p. 

169. 

3 This measure is assumed to be unique up to a positive linear transformation. In [26] 

and [27], Levi has generalized another dimension of the traditional Bayesian decision 

theory by allowing sets of utility functions which are not linear transformations of each 

other. We believe that this generalization is beneficiary in some contexts, but we will 

not discuss it further in the present paper. Cf. note 20. 

4 It is interesting to note that de Finetti in [10], p. 62, note (a), has recognized some 

problem in such an operational definition as a way of representing the agent's beliefs. 

s The central axiom is the so-called coherence criterion which assumes that if the agent 

is willing to bet on state si at the least odds of a : b, then he should be willing to bet on 

not-sj at odds of b : a. The first of these betting ratios will thus be equal to one minus 

the second betting ratio, i.e. al(a + b) = 1 - b/(a + b). Smith [37], among others, points 

out that this assumption need not be satisfied. An agent may very well be willing to bet 

on least odds of a : b for sj, but at the same time bet on least odds of c : d against s~, 

where a/(a + b) ¢ 1 - c/(c + d), which contradicts the coherence criterion. 

6 This aspect of risk taking will be further discussed in the next section. 

7 In the present paper we do not aim at an elaborate analysis of the concept of 

knowledge, but we take this as a primitive notion. 

8 In this paper we use a decision theory similar to Savage's [35]. We thus deliberately 

exclude problems connected with conditional probabilities and probabilities of con- 

ditionals. One reason for this is that it is rather straightforward to generalize a decision 

theory based on such probabilities in the same way as we have generalized Savage's 

theory. The second reason is that Luce and Krantz [28] have shown that in decision 

situations with only finitely many states and outcomes it is possible to translate a 

decision situation containing conditional probabilities into a Savage type situation (and 

vice versa). For a discussion of this result, cf. Jeffrey [23]. As is easily seen, this result 
also holds for sets ~ of probability measures. 

9 See, e.g., Dempster [5], Good [18], Smith [36] and [37]. 

10 Levi [27], p. 402, requires that the set of 'permissible' probability measures be convex. 

The interpretation of 'permissible' is discussed in section 4. In this connection it is 

interesting to note that Savage [35], p. 58, note (+ ) ,  mentions that "one tempting 
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representation of the unsure is to replace the person's single probability measure P by a set 

of such measures, especially a convex set". 

11 See, e.g., Dempster [5], Edman [6], EkeliSf [71, Giirdenfors [13], Good [181, Halld6n 

[19], Smith [361, and [37]. 
t2 We say that a set of probability intervals associated with the states of a decision 

situation is consistent if and only if, for any state s~ and for any number x within the 

interval associated with si, there is a combination of numbers, which lie within the 

intervals associated with the remaining states, such that the sum of x and these 

numbers equal 1. Levi [261, p. 416-417, gives an example which shows that there may 

be two decision situations with the same alternatives, states and outcomes, but with 

different sets of 'permissible' probability measures, which give different decisions when 

his decision theory is used, although the intervals that can be associated with the states are 

identical. 

t3 An interesting possibility is to take p to be a second order probability measure, i.e, to 

let 0 be a probability measure defined over the set ~ of epistemically possible 

probability measures. If ~ is finite there seem to be no problems connected with such a 

measure. But if ~ is taken to be a convex set of probability measures and we at the 

same time want all measures in ~ to have a non-zero second order probability, we run 

into problems. However, nothing that we have said excludes the possibility of taking p 

to be a non-standard probability measure. For a discussion of such measures see 

Bernstein and Wattenberg [31. 

14 We can compare this example with the difference between match A and match B in 

the introductory example. The reliability measure connected with match A which is 

depicted in Figure l, can be seen as corresponding to the reliability measure after the 

evidence e has been obtained, and the measure connected with match B as cor- 

responding to the reliability measure before e is obtained. Ideas similar to those 

presented here have been discussed by Bar-Hillel [1] and Rosenkrantz [321. 

t~ Models of belief similar to ours have been presented in terms of fuzzy set theory by [39] 

and [111. However, we will not consider this theory in the present paper. 

16 In the quotation above it is obvious that Popper uses the 4raditional definition of 

relevance, i.e., e is relevant to a if and only if P(a) ~ P(a, e). We believe that this 

definition is too narrow. Instead we propose the definition that e is relevant to a iff 

P(a)  ~ P(a,  e) or the evidence e changes the degree of epistemic reliability of P. 

Keynes is also dissatisfied with the traditional definition of 'relevance'. He wants to 

treat 'weight of evidence' and 'relevance' as correlative terms so that "to say that a new 

piece of evidence is 'relevant'  is the same thing as to say that it increases the 'weight' 

of the argument" ([25], p. 72). For a proof that Keynes's definition of 'relevance' leads 

to a trivialization result, and for a discussion of some general requirements on a 

definition of 'relevance' the reader is referred to G~denfors  [12], 

17 The 'desired level of epistemic reliability' can be interpreted in terms of levels of 

aspiration so that the p0 chosen by the decision maker is his level of aspiration as 

regards epistemic reliability. 
1~ We have mentioned that an agent is taking a risk by not taking all epistemically 

possible measures under consideration. 'Risk' is a notion of great complexity and the 

literature is flooded with papers trying to capture all aspects of risk in one measure. 

However, we do not believe that this is possible and we will give a brief explanation 
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why. Let us, as an example, return to Miss Julie. It seems reasonable that she perceives 

a greater risk in betting on match B (and an even greater one in match C) than in match 

A. She may very welt, if forced to do so, estimate that each player has a 50% chance of 

winning in both match A and B, but still regard match B as riskier. This is due to the 

fact that her state of knowledge is very different in the two decision situations and it 

shows that the degree of epistemic reliability is an important factor when determining 

the risk involved in a decision situation. This aspect of risk taking has not been 

considered in the traditional theories of risk. 
This dimension of risk taking is represented in our theory by the selection of a subset 

~ip0 of ~. An agent who takes all epistemically possible measures into consideration 

takes no 'epistemic' risk at all. If it is assumed that p is a second order probability 

distribution (cf. note 13 and [33]), we suggest the following measure of the epistemic 

risk R taken by an agent in a decision situation: 

R(~/p~) = 1 - p(~]po)/p(~9), 

where p(~)  is equal to Y~Pe~p(P) and similar for p(~/p0). As is easily seen, Miss Julie 

will take a rather great epistemie risk if she acts as a strict Bayesian in match B. But 

whether she will do so or not is dependent on her risk preferences. 

For a criticism of the traditional risk concept and for a discussion of other solutions 

see Sahlin [34] and Hansson [20]. 

~9 Cf. Ghrdenfors [13], p. 169. 

The results of the majority of subjects of the Goldsmith-Sahlin experiments support 

the thesis that the degree of epistemic reliability of the probability estimates is an 

important factor when choosing lottery tickets, but, it should be admitted that not all of 

these results can be explained by the MMEU criterion. The main reason for this is, in 

our opinion, that the agent's values are not completely described by a utility measure. 

In this paper we have concentrated on the epistemic aspects of decision making and 

used the traditional way, i.e. utility measures, to represent the values of the decision 

maker. We believe that this part of the traditional Bayesian decision theory should be 

modified as well, perhaps by including a 'level of aspiration', but such an extension lies 

beyond the scope of this paper. 
2, Such a distribution may, in many cases, assign the probability 1 to one of the states, 

but we do not assume that it always will. We interpret 'full information' in a pragmatic 

way, meaning something like 'having as much information as is practically possible', so, 

even if the world is deterministic, having full information does not entail that one 

knows which is the true state of nature. 

z2 Fellner [9] considers problems similar to Ellsberg's paradox. 

~ However, if the agent has some information that he judges relevant for the 

distribution of the black and yellow balls, then the epistemic reliability of the dis- 

tributions in ~ may be quite different. He may, for example, believe that the 

distributions in ~[p0 cluster around e.g. (1/3, 1/2, 1/6). Then the MMEU criterion will 

recommend that a2 be preferred to al and that a4 be preferred to a3. This recom- 

mendation does not conflict with Savage's sure-thing principle either (cf. [14]). 

24 It should be noted that even if ~,  the set of all epistemically possible probability 

measures, is convex, the set ~/p0 selected with the aid of the desired level of epistemic 

reliability need not be convex. For example, in the representation of the epistemic 
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reliability connected with match C as depicted in Figure 2, the corresponding set ~/p0 

will consist of two disconnected intervals at the end points 0 and 1. If Levi's Bx,t is 

identified with ~9/p0, this example shows that his requirement of convexity is not always 
realistic. 

25 Further information on the notion of P-admissibility is to be found in Ch. 6 of Levi 
[27]. 

26 Levi discusses this problem in [27], pp. 208-210. 

27 It is also easy to see that according to Levi's theory there may be a change in the set 

of optimal alternatives if two (or more) states are conjoined. This is the case if it is 

assumed that if si and sj are the two states to be conjoined, then, for any probability 

measure, P, the probability of the conjoined state is equal to P(&) + P(si) and the utility of 

the outcome in the new state, if alternative ak is chosen, is equal to (P(si)'uu + 

P (s~). u~i)/(P(&) + P (s~)). Such a contraction of the decision problem is reasonable, if, for 
example, it is realized that the partitioning adopted initially was unnecessarily refined. It is 

easy to verify that the set of alternatives which are optimal according to MMEU is not 
altered by such a conjoining of states. 

Levi discusses these matters on pp. 161-162 in [27]. He notes that one can obtain 

different classes of S-admissible alternatives by using different partitions of the states, 

but he contends that the adoption of a method for fixing security levels in determining 
S-admissibility is a moral or political value judgement distinct from a principle of 

rational choice. We do not have any such problems, since we do not obtain different 
results when conjoining states as above. 
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