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Abstract: Improvements in SNR (1.98 dB), Mutual Information (0.95 bit/symbol) and maximum 

transmission distance (almost 12 %) are demonstrated for dual-polarization WDM 16-QAM 

unrepeatered transmission using optical-phase-conjugation-based back-propagation at the receiver 

through power and dispersion engineering. 
Keywords: Transmission impairments and their mitigations; Optical signal processing techniques for optical 

communications; Optical transmitter and receiver subsystems. 

 INTRODUCTION 

Current optical communication systems are approaching the performance limit imposed by the inherent fiber 

nonlinearity, which currently constraints the achievable information rates and transmission distances [1]. Suppressing or 

compensating the nonlinearity has become a key requirement to increase overall system throughput and meet the future 

traffic demands. The competing techniques comprise digital and all-optical approaches. Digital methods typically 

introduce significant processing time, and are limited by the available receiver bandwidth, failing to effectively 

compensate for inter-channel nonlinearities in wavelength-division multiplexed (WDM) systems [1]. Alternatively, all-

optical schemes can tackle the nonlinear distortions instantaneously across all the channels, and have therefore been 

attracting increasing attention. Among them, optical-phase conjugation (OPC) has a strong potential to reverse the 

impairments by mid-span spectral inversion (MSSI), and it can be easily implemented by means of four wave mixing 

(FWM). Despite the evident gains [1], for effective nonlinearity mitigation by MSSI power and dispersion symmetry with 

respect to the OPC device is required. This is both impractical with regard to the OPC position and challenging in terms 

of targeted power profiles. Moreover, the approach is incompatible with unrepeatered systems where no active devices 

are placed in the link. 

In this work, we rely on the more fundamental criterion of equivalent pulse evolution on left- and right-hand sides of 

OPC instead of strictly symmetric profiles. We experimentally demonstrate nonlinearity compensation of unrepeatered 

transmission by all-optical back-propagation (OBP) at the receiver. The OBP module consists of an OPC device followed 

by a short nonlinear and dispersive medium, where the propagation closely resembles the nonlinear signal transmission. 

Efficient nonlinearity cancellation is achieved by proper dispersion engineering and nonlinear phase-shift optimization in 

the scaled-down structure. Aside from suppression of fiber nonlinearities, the scheme also provides optical dispersion 

compensation, potentially reducing the power consumption of the receiver digital signal processing (DSP) engine. The 

study is conducted for seven WDM 16-quadrature amplitude modulation (16-QAM) channels at 16 GBd. Numerical 

characterizations of ideal schemes of OPC-based OBP have previously been provided in [2,3]. However, these 

investigations have generally been based on setups challenging to implement in practical systems. A few experimental 

demonstrations have been reported for dispersion-managed links, but only focusing on optical pre-compensators at the 

transmitter side [4]. As the penalty associated with implementing OPC is higher for a high quality signal, as shown in [5], 

in this work we demonstrate significant gains by performing receiver-side compensation. 

 PRINCIPLE AND EXPERIMENTAL SETUP 

 
Fig. 1.  (a) Schematics of OBP and OPC modules at the receiver. (b) Evolution of accumulated dispersion and (c) power versus distance with OBP 

module at the receiver included. (d) Dispersion characteristics of LEAF (blue) and SSMF (red) versus wavelength with signal, pump and idler 

position indicated, and output conversion efficiency of HNLF (purple). 
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Efficient nonlinearity compensation by OBP is achieved only if the same nonlinear phase shifts ߔே௅ ൌ ,ݖሺܲߛ  occur ܮሻݐ

on both sides of the OPC for identical pulse shapes of signal and idler (conjugated copy), respectively [6]. As shown in 

Fig. 1(a), the OBP module consists of three main components: a fiber Bragg grating (FBG) for dispersion compensation, 

OPC based on a strained highly nonlinear fiber (HNLF) in a polarization insensitive scheme [7], and 10 km of standard 

single-mode fiber (SSMF). The OPC setup operates under single pump-configuration, with an external cavity laser (ECL) 

pump at 1545.32 nm and 25 dBm of pump power per polarization, resulting in an output conversion efficiency (CE) of   

-6 dB. WDM couplers facilitate coupling the pump with signal as well suppressing the pump at the OPC output. After 

conjugation, the idler (alone) is propagated through a scaled-down version of the transmission link (SSMF), which 

effectively mimics the MSSI approach, though with nonlinearity compensation in a more lumped fashion. The principle 

of operation is illustrated in Fig. 1(b)-(c), by considering power and dispersion evolutions. The signal is launched into 

210 km of a non-zero dispersion-shifted (NZDS) large-effective area fiber (LEAF), and starts accumulating dispersion 

(Fig. 1b) and nonlinear phase shift (proportional to power: Fig. 1c) as it propagates. The transmission fiber choice was 

dictated by the low dispersion coefficient and enabled optical back-propagation at the receiver in a more dispersive, but 

shorter structure, which still accurately reproduces pulse evolution throughout the link. Throughout the unrepeatered 

transmission link, dispersion accumulates linearly with distance, while the nonlinear phase shift is dominant at the 

beginning of the link and quickly becomes negligible due to the exponential power decay. For this reason, the propagation 

beyond 50 km (nonlinear length) can be considered linear. Upon reaching the receiver, a FBG (approx. -560 ps/nm) [8] 

is used to compensate for the dispersion accumulated over the last 160 km of LEAF (total length – nonlinear length), 

restoring the pulse shape at 50 km. Subsequently, the signal enters the OPC, where it is conjugated and wavelength shifted 

(Fig. 1d). Due to chirp reversal, the accumulated dispersion changes the sign. The conjugated idler then enters the SSMF 

for nonlinearity compensation. As depicted in Fig. 1(d), signal propagating through LEAF undergoes approx. 

3.5 ps/nm/km of dispersion, which increases to over 17 ps/nm/km for the corresponding idler in SSMF. Dispersion in 

SSMF accumulates much faster in distance, and 10 km of propagation in SSMF corresponds to the first 50 km of LEAF, 

thus allowing to scale down the OBP compensation medium. As a result of the scaling, the nonlinear phase accumulation 

must be proportionately increased to keep up with rapidly changing pulse shapes. This can be controlled by adjusting the 

launched power into SSMF accordingly. Ultimately, with power into the SSMF optimized for a given launch power into 

the LEAF, the left- and right hand sides of the OPC are approximately equivalent in terms of dispersive and nonlinear 

pulse evolution. Blue and red shading in Fig. 1(b) and (c) denote similar nonlinearity at close to identical pulse shapes for 

LEAF and SSMF, respectively, which will be compensated for to a large degree. On top of that, complete all-optical 

dispersion compensation is achieved. 

 

 
Fig. 2.  Experimental setup for the transmission measurements with OPC-based optical back-propagation at the receiver side. 

The experimental setup is sketched in Fig. 2. At the transmitter site, seven ECLs on a 25-GHz grid at 1540 nm are 

modulated by two IQ modulators (one for even and one for odd channels) with 16-QAM data at 16 GBd. All channels 

are coupled together and polarization multiplexing is emulated. At the transmitter output the signals are amplified, 

amplified spontaneous emission (ASE) noise is suppressed with an optical bandpass filter (OBPF), and they are injected 

directly into the unrepeatered transmission link. At the end of the transmission, the signal is pre-amplified, optically back-

propagated and received with a coherent receiver followed by offline digital signal processing, including equalization and 

carrier phase recovery. The performance is then evaluated on a per-channel basis in terms of effective received signal-to-

noise ratio (SNR) and mutual information (MI). MI is predicted based on Monte Carlo estimation and the effective 

received SNR is estimated directly from the transmitted ݔ௞ 	 and received ݕ௞ QAM symbols after all DSP blocks according 

to: ܴܵܰ௘௙௙ ൌ ॱ௞ሾ|ݔ௞|ଶሿ/ॱ௞ሾ|ݕ௞ െ  .௞|ଶሿ as in [9]ݔ

 EXPERIMENTAL RESULTS 

The performance after transmission is evaluated in terms of MI and SNR as functions of total signal launched power 

into the LEAF, and the cases with and without OBP are compared. For the OBP scenario, the input signal power into the 

OPC loop is kept at approx. 10 dBm, whereas the idler power injected into the SSMF compensation fiber is adjusted for 

each launch power. At the optimum launch power with OBP, the input to the SMF is approx. 19.5 dBm, i.e. 5 dB higher 
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than in the LEAF. In the linear region, where the signal is greatly dominated by ASE noise after transmission, the OBP 

module introduces negligible degradation, as shown in Fig. 3(a)-(b). However, compared to the benchmark of 210-km 

transmission with no OBP, the optimum launch power shifts by approx. 2 dB and, more importantly, 1.8 dB of SNR 

improvement is achieved for the central channel, corresponding to 0.85 bit/2D-symbol of MI gain. Considering a shorter 

link of 188 km without OBP, similar performance as for 210-km with OBP is obtained, yielding almost 12 % of reach 

extension. The performance improvement is consistent across all seven WDM channels with a mean SNR gain of 1.98 dB 

and mean MI improvement of 0.95 bit/2D-symbol, as shown in Fig. 3(c). Constellation diagrams in Fig. 3(d) at the 

optimum launch powers with and without OBP further outline the improved signal quality. 

 

 
Fig. 3. Effective receiver SNR (a) and estimated MI (b) for the central channel without (blue) and with (purple) OBP for 210 km of straight 

transmission, and 188-km transmission without OBP (red). c) MI per channel without (blue) and with (purple) OBP. d) Corresponding constellation 

diagrams (X polarization only) at optimum launched power for the central channel.  

 CONCLUSIONS 

We experimentally demonstrate a receiver-side all-optical back propagation scheme for efficient nonlinearity 

compensation for unrepeatered transmission. The OBP module consists of three main components: FBG for dispersion 

matching, polarization-insensitive OPC for chirp reversal, and short spool of SSMF for nonlinearity cancellation. The 

study shows average per channel improvement of 1.98 dB (SNR) and 0.95 bit/2D-symbol (MI). Equivalently, 

implementing the OBP allows for almost 12 % of reach extension without performance degradation. The principle 

demonstrated here can be applied also to Raman-amplified systems with the OBP adjusted to match the corresponding 

nonlinear regions, or transmission in SSMF links, given that a highly dispersive medium is available for the OBP. 
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