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Abstract 

To prevent re-replication of genomic segments, the eukaryotic cell cycle is 

divided into two non-overlapping phases. During late mitosis and G1 replication 

origins are ‘licensed’ by loading MCM2-7 double hexamers and during S phase 

licensed replication origins activate to initiate bidirectional replication forks. 

Replication forks can stall irreversibly, and if two converging forks stall with no 

intervening licensed origin - a ‘double fork stall’ (DFS) - replication cannot be 

completed by conventional means. We previously showed how the distribution of 

replication origins in yeasts promotes complete genome replication even in the 

presence of irreversible fork stalling. This analysis predicts that DFSs are rare in 

yeasts but highly likely in large mammalian genomes. Here we show that 

complementary strand synthesis in early mitosis, ultrafine anaphase bridges and 

G1-specific 53BP1 nuclear bodies provide a mechanism for resolving unreplicated 

DNA at DFSs in human cells. When origin number was experimentally altered, the 

number of these structures closely agrees with theoretical predictions of DFSs. 

53BP1 is preferentially bound to larger replicons, where the probability of DFSs is 

higher. Loss of 53BP1 caused hypersensitivity to licensing inhibition when 

replication origins are removed. These results provide a striking convergence of 

experimental and theoretical evidence that unreplicated DNA can pass through 

mitosis for resolution in the following cell cycle.  
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Significance Statement 

We provide evidence that in organisms with gigabase sized genomes, such as 

humans, one or more stretches of DNA typically remain unreplicated when cells 

enter mitosis and are segregated to daughter cells via structures called ultrafine 

anaphase bridges. 53BP1 accumulates at the subsequent DNA structures inherited 

by each daughter cell in the following G1 phase to facilitate resolution in S phase. 

We show that the abundance of these structures match theoretical predictions for 

the number of unreplicated DNA segments when the number of replication origins is 

artificially increased or decreased. We show that 53BP1 preferentially binds to 

chromosomal regions with low numbers of replication origins. This work provides a 

new perspective about how genome stability is maintained in proliferating cells.  
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\body 

Introduction 

During the eukaryotic cell cycle, the genome must be precisely duplicated with 

no sections left unreplicated and no sections replicated more than once. To prevent 

re-replication, the process is divided into two non-overlapping phases: during late 

mitosis and G1, replication origins are ‘licensed’ for subsequent use by loading 

MCM2-7 double hexamers and during S phase, DNA-bound MCM2-7 is activated to 

form processive CMG (CDC45-MCM-GINS) helicases which drive replication fork 

progression. The prohibition of origin licensing during S phase and G2 ensures that 

re-replication of DNA cannot occur. However, the inability to license new origins 

after the onset of S phase provides a challenge for the cell to fully replicate the 

genome using its finite supply of licensed origins. Replication forks can irreversibly 

stall when they encounter unusual structures on the DNA, such as DNA damage or 

tightly bound protein-DNA complexes.  

When replication initiation occurs at a licensed replication origin the MCM2-7 

double hexamer forms a pair of bidirectionally orientated CMG helicases (1-3). If 

one fork irreversibly stalls, the converging fork from a neighbouring origin can 

compensate by replicating all the DNA up to the stalled fork. However, if two 

converging forks both stall and there is no licensed origin between them - a ‘double 

fork stall’ (DFS) - new replicative machinery cannot be recruited to replicate the 

intervening DNA (4). To compensate for this potential for under-replication, origins 

are licensed redundantly, with most (typically >70%) remaining dormant but capable 

of becoming active if necessary (5-9). We previously used mathematical analysis to 

show how the distribution of replication origins in yeasts can be explained by the 
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need for complete genome replication in the presence of irreversible fork stalling (4). 

Our theory predicts that organisms with significantly larger genomes than yeast, 

such as those of mammals, will experience a much greater probability of replication 

failure genome-wide.  

In this work, we provide evidence for a post-replicative mechanism that allows 

the resolution of these unreplicated segments of DNA that involves segregation of 

template DNA strands during mitosis by the creation of ultrafine anaphase bridges 

(UFBs), and their recognition in the subsequent G1 phase by the DNA repair protein 

53BP1. We show that 53BP1 nuclear bodies correlate with the expected number of 

DFSs, both when the number of replication origins is reduced and when the number 

of replication origins is increased. We also show that 53BP1 preferentially 

associates with DNA in larger replicons as predicted by the theoretical analysis. This 

experimental work strongly supports the theoretical analysis of DFSs in organisms 

of differing genome size that we present in an accompanying paper (10). 

 

Results 

Refinements in technology have led to a convergence of origin mapping data in 

mammalian tissue culture cells (11-13). Fig 1A shows the spacing between ~90,000 

replication origins (i.e. the replicon sizes) in HeLa cells derived from the data of 

Picard et al (13). The average inter-origin distance is ~31 kb, consistent with 

initiation events being ~100 kb apart (11, 14, 15) and ~30% of origins being 

stochastically activated in any given S phase (6-9, 16, 17). Compared to yeast, 

human cells have an irregular distribution of origins with an unexpectedly high 

number of very large replicons (10). Using a mathematical approach that we have 



 6 

previously derived and validated (4) we estimate that one or two DFSs are expected 

to occur in every HeLa cell S phase (Fig. 1B). Similar numbers were obtained when 

we performed computational analyses based on the origin mapping data from both 

HeLa and primary IMR90 cells (Fig. 1B). The predicted number of DFSs increases 

when replication origins are removed and decreases when they are added (Fig. 1B). 

Theoretical analysis indicates that the distribution of origins in human cells is 

constrained to produce, on average, only a small number of DFSs and therefore 

indicates that human cells should possess a post-replicative mechanism capable of 

resolving these spontaneous events (10). 

Since a DFS will create a large segment of unreplicated DNA, our analyses 

suggest that humans and metazoans in general with significantly larger genomes 

than yeasts have evolved mechanisms to resolve them. Unreplicated or damaged 

DNA may require topological unhooking for accurate segregation during mitosis and 

the lesions generated by this process could then be repaired in the following cell 

cycle (18, 19) (Fig. 1C). Chromatid condensation during mitosis could provide a 

processive unwinding activity to separate unreplicated DNA, leaving single-stranded 

gaps that could then be partially filled in during mitosis (20) or the following cell 

cycle. This mechanism depends on the resolution and segregation of topologically 

intertwined strands, and could require a limited amount of DNA strand cutting (19-

21). We therefore predict that this mechanism might be able to deal with only a 

small number of DFSs, as our theory predicts (10).  

Previous studies have suggested that 53BP1 recognises these aberrant 

structures in the cell cycle following under-replication. 53BP1 forms ‘nuclear bodies’ 

in G1 phase that are symmetrically distributed between sister cells, possibly 

corresponding to lesions generated by transmission of DFSs through mitosis in the 
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parent cell (18, 22). Consistent with this idea, the number of 53BP1 nuclear bodies 

increases in cells treated with replication inhibitors (23-25) (Fig. 1D and S1A-B) 

suggesting that 53BP1 can recognise structures resulting from defective DNA 

replication. As our theory predicts (10), 53BP1 nuclear bodies in normal G1 phase 

HeLa cells conform to a Poisson distribution (suggesting that they are due to 

independent stochastic events) with a mean close to the predicted number of DFSs 

(Fig. 1E and S1C-D). The number remains stable during G1 (Fig. 1F), but declines 

as cells progress through S phase, supporting the idea that they are resolved in a 

replication-dependent manner (Fig. 1G and S1E).  

In order to provide evidence for a link between DFSs and 53BP1 nuclear 

bodies, we depleted replication origins in HeLa cells using RNAi against two 

components of the origin licensing system, MCM5 and CDT1 (6) (Fig. 2A and S2A). 

We then used a 3D flow cytometry protocol, measuring DNA content, EdU 

incorporation and chromatin-bound MCM2, to determine the amount of chromatin-

bound MCM2-7 in cells entering S phase (Fig. 2B). Since origins are only licensed 

for use if they are associated with MCM2-7, the amount of DNA-bound MCM2 at the 

onset of S phase provides a measure of the number of available origins. Depletion 

of MCM5 by RNAi reduced the amount of DNA-bound MCM2 at S phase entry (Fig. 

2C). Similar results were obtained with RNAi against the licensing factor CDT1 (Fig. 

S2A-B). In both cases, overall EdU incorporation was not affected (Fig. S2C). In line 

with our theoretical predictions, the number of 53BP1 nuclear bodies increased in 

proportion to the reduction in DNA-bound MCM2 (Fig. 2D and S2D-E). Similar 

results were obtained in U2OS cells treated with MCM5 RNAi (Fig S2F-G). 

Our theory also predicts that if cells have higher than normal numbers of 

licensed origins, the number of DFSs should reduce (Fig 1B). To increase DNA-
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bound MCM2-7 we used a human bronchial epithelial cell line overexpressing CDC6 

(Fig. 2E). The number of 53BP1 nuclear bodies in these hyper-licensed cells was 

reduced 30% compared to non-induced controls (Fig. 2F and S3A-B), in line with 

our model. Fig. 2G combines all our data on the number of 53BP1 nuclear bodies 

(Figs 2D, 2F and S2E) to show that there is excellent agreement between our 

theoretical predictions (Fig 1B) and the experimental data from cells with reduced or 

increased numbers of licensed origins. Fig. 2H-I show that there is also an increase 

in the frequency of 53BP1 nuclear bodies after MCM5 RNAi treatment of primary 

IMR-90 cells. This suggests a similar relationship between the amount of DNA-

bound MCM2-7 and the number of 53BP1 nuclear bodies in both normal cells (IMR-

90) and cancer cells (HeLa and U2OS). Taken together, our data provides strong 

support for the idea that failures of DNA replication caused by spontaneous DFSs 

cause the appearance of 53BP1 nuclear bodies in the subsequent G1. 

We next investigated the nature of the lesions marked by 53BP1 nuclear bodies 

in G1 cells. Our theory suggests that these structures represent single-stranded or 

partially single-stranded regions of DNA rather than double strand DNA breaks (Fig 

1C). We therefore investigated the co-localisation of 53BP1 nuclear bodies with the 

ssDNA binding protein RPA (Replication Protein A). Fig 3A-B shows that in 

untreated cells, ~7% 53BP1 nuclear bodies were associated with measurable levels 

of RPA (18), but partial depletion of MCM2-7 caused a large increase in 

colocalisation to >30%. The increase of RPA in 53BP1 nuclear bodies in cells with a 

reduced origin number might reflect the larger distance between stalled forks, and 

hence longer stretches of unreplicated DNA that bind RPA. To rule out the 

possibility that G1-specific 53BP1 nuclear bodies mark double strand breaks 

generated by synthetic reduction of licensed origins in the preceding S phase, we 
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also quantified the frequency of G1-specifc -H2AX foci in response to MCM5 RNAi 

(Fig. 3C and S4). No significant increase of G1-specifc -H2AX foci was observed 

between the control and cells depleted of MCM5 (t-test, p-value = 0.59).  

Although DFSs can occur at any region of the genome, theoretical analysis 

predicts that they are more likely in larger replicons rather than smaller ones (4). To 

test this, we performed chromatin immunoprecipitation with anti-53BP1 antibodies 

and sequenced the precipitated DNA (Fig. S5). Cell fractionation and 

immunoblotting revealed that a majority of 53BP1 (~75%) is associated with 

chromatin (Fig. S6B), while quantification of GFP-53BP1 intensity revealed that only 

~1% of 53BP1 signal originates from nuclear bodies (Fig. S6A). This means that the 

majority of DNA bound by 53BP1 is not associated with 53BP1 nuclear bodies. 

Consistent with this, the total genomic coverage from 53BP1 and IgG precipitations 

were comparable (Fig. S6C). However, the 53BP1/IgG binding ratio showed a highly 

significant correlation between replicon size and the strength of 53BP1 association 

(Fig. 3D and S5D). We then identified 1 kb regions of the genome with a high 

53BP1/IgG ratio (p-value < 10-3); replicons were defined as 53BP1+ when they 

contained one or more 53BP1-enriched regions, and 53BP1- otherwise. 53BP1+ 

replicons were on average ~3 times larger than 53BP1- replicons (Fig. 3D-E, and 

S6F). There was also a weak correlation between 53BP1 binding, chromosome 

fragile sites and late replicating DNA (Fig. S6D-E). Taken together, these analyses 

show that 53BP1 is more likely to bind to DNA in large replicons, as predicted if 

53BP1 recognises DNA structures resulting from DFSs. 

The recent discovery that aphidicolin treated cells exhibit EdU incorporation 

during early-mitosis indicates that replication stress causes damage that is resolved 

post-replicatively by DNA repair synthesis (20). If unreplicated DNA is unwound 
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during mitosis, ssDNA will be exposed, thereby providing a template for 

complementary strand synthesis. Consistent with this idea, MCM5 RNAi caused a 

significant increase in early-mitotic EdU foci (Fig. 4A-C). This result, when combined 

with the colocalisation of 53BP1 and RPA and lack of increased -H2AX foci (Fig. 

3A), implies that the foci of EdU incorporation during early-mitosis represent sites of 

DNA synthesis of unreplicated DNA (dashed lines in Fig. 1C).  

This post-replicative mechanism may not be able to complete replication of all 

the unreplicated DNA generated by DFSs, which may be hundreds of kb in size 

(10). It has been suggested that Ultrafine Anaphase Bridges (UFBs), which contain 

single–stranded DNA, might represent a mechanism for resolving partially-replicated 

stretches of DNA (20, 26-29) (dashed lines in Fig. 1C). Consistent with this idea, we 

observed that in untreated HeLa cells, the number and distribution of UFBs closely 

matched the numbers of 53BP1 nuclear bodies. Further, the number of UFBs 

increased in line with 53BP1 nuclear bodies when MCM2-7 was partially depleted. 

This is consistent with the idea that UFBs provide a mechanism by which 

unreplicated DNA generated by DFSs is transmitted through mitosis to daughter 

cells to become ssDNA lesions coated with 53BP1 that form nuclear bodies (Fig. 

4D-F).  

Since we predict that DFSs occur frequently in normal cells, 53BP1 is likely to 

be performing a function in binding to the products of DFSs in G1 phase. 53BP1 is 

known to protect damaged DNA from undergoing homologous recombination (30), 

and could perform this function at DFSs, which may allow the structures to be 

resolved by an alternative pathway in S phase. To explore this idea further, we 

examined a possible synthetic interaction between loss of 53BP1 and an increase in 

DFSs created by partial knockdown of MCM2-7. RNAi transfected cells were treated 
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with increasing concentrations of hydroxyurea (HU) before a colony assay was 

performed. Cells partially depleted for MCM2-7 were hypersensitive to HU, due to 

their inability to utilise dormant replication origins (6-8). 53BP1-depleted cells 

showed a similar sensitivity to control cells. However cells depleted of 53BP1 

showed a highly synergistic sensitivity to HU when combined with partial knockdown 

of MCM5 (Fig. 4 G-H and S6G). This shows that although 53BP1 is not essential, it 

works together with dormant origins to protect cells from the consequences of 

replication fork failure. 

 

Discussion 

In this work we present evidence that in unperturbed cell cycles of human cells, 

unreplicated DNA is frequently present at the end of G2, is partially filled in during 

early mitosis, and is segregated during mitosis for resolution during the following cell 

cycle. Our theoretical analysis (4, 10) suggests that in organisms such as humans 

with gigabase-sized genomes, DFSs will routinely occur and create sections of 

unreplicated DNA that must be resolved by a post-replicative mechanism. The 

symmetrical distribution of 53BP1 nuclear bodies between daughter cells and their 

induction by replicative stresses means that they could mark the products of 

unreplicated DNA segregated to daughter cells. We show that when replication 

origins are deleted or added there is a strong correlation between the number of 

53BP1 nuclear bodies and our theoretical predictions of DFSs as presented in our 

accompanying paper (10). We show that 53BP1 preferentially associates with larger 

replicons, in line with our theoretical predictions of DFS distribution. We also provide 

evidence for a mechanism for the processing of the unreplicated DNA between 
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DFSs, involving complementary strand synthesis occurring in early mitosis, the 

resolution of partially replicated DNA via ultrafine anaphase bridges and their 

association with 53BP1 in G1. 

A recent paper has shown that when DNA replication is inhibited, the 

condensation of chromosomes during early mitosis is associated with the 

appearance of focal sites of DNA synthesis (20). Our theoretical work is based on 

the idea that, from the end of G1 through to the end of metaphase, MCM2-7 cannot 

be loaded onto DNA even if DFSs have occurred (4, 10). MCM2-7 forms the core of 

the replicative CMG helicase that unwinds DNA at the replication fork, and so the 

essential problem for completing replication at DFSs is to provide an alternative 

DNA unwinding activity. The chromosome condensation that resolves sister 

chromatids during early mitosis could provide such an alternative DNA unwinding 

activity. Once ssDNA is exposed, DNA polymerases will perform complementary 

strand synthesis to substantially fill in the gaps. Consistent with this we show that 

the frequency of foci of DNA synthesis in early mitosis is in line with our predictions 

of the number of DFSs, and increases when origin number is reduced.  

We imagine that this complementary strand synthesis, which is not driven by a 

processive helicase, might not always fully complete DNA replication, but may leave 

small gaps or lesions on the DNA. Ultrafine anaphase bridges represent a potential 

intermediate that could allow such partially unreplicated DNA segments arising from 

DFSs to be segregated to daughter cells (18-20). We show that the number of 

ultrafine anaphase bridges in untreated cells increases in line with our predictions 

when origin number is reduced.  
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Consistent with our theoretical model, we show that 53BP1 is preferentially 

bound to DNA in larger replicons, where DFSs are more likely to occur. Under 

normal circumstances, there is only a low co-localisation of RPA with 53BP1 nuclear 

bodies, but this increases markedly when origin number is reduced. We imagine 

that normally a significant proportion of the remaining unreplicated DNA can 

undergo complementary strand synthesis in early mitosis, leaving little ssDNA to 

bind RPA in the subsequent G1. However, the distance between stalled forks in 

DFSs will increase following a reduction in origin number, and this should result in 

more ssDNA remaining after progression through mitosis, as we demonstrate. We 

also show that the increase in 53BP1 nuclear bodies in G1 is not significantly 

associated with an increase of -H2AX foci after partial depletion of origins, 

suggesting that 53BP1 nuclear bodies are not simply sites of double-stranded DNA 

breaks. The 53BP1 nuclear bodies are ultimately dispersed as the DNA replicates 

during S phase, suggesting that the unusual DNA structures that they mark are not 

fully resolved until another round of replication has occurred. 

Finally, we show that 53BP1 synergises with dormant origins to protect genome 

integrity in the presence of replicative stress, as evidenced by its hypersensitivity to 

HU when the number of dormant origins was reduced. The 53BP1 gene (TP53BP1) 

is not essential, and has been associated with protecting damaged DNA from 

undergoing inappropriate homologous recombination (30). The synthetic interaction 

that we show between loss of 53BP1 and partial MCM knockdown could therefore 

be a consequence of unreplicated DNA undergoing inappropriate homologous 

recombination during S phase.  

In the accompanying paper we provide a theoretical analysis of origin 

distribution which leads to the conclusion that DFSs are almost inevitable in the 
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large genomes of human cells. The experimental work presented here provide a 

potential mechanism by which DFSs can be processed, involving partial filling-in of 

unreplicated segments during early mitosis, segregation to daughter cells via 

ultrafine anaphase bridges, their association with 53BP1 nuclear bodies during G1 

and their ultimate resolution during the next S phase. Our work therefore provides 

both experimental and theoretical evidence that structures resulting from replication 

failure can pass through mitosis for resolution in the next cell cycle.  

 

Materials and Methods  

Cell Culture 

HeLa and IMR-90 cells were obtained from the American Type Culture 

Collection (ATCC) and used at a population doubling level lower than 30 and 20 

respectively, and maintained in Dulbecco’s modified Eagle’s medium (DMEM; 

#41966, Invitrogen), supplemented with 10% FBS (#10270106, Invitrogen) and 

penicillin and streptomycin at 37˚C in 5% CO2. HBEC-Cdc6-Tet-On (Human 

Bronchial Epithelial Cells) were grown in keratinocyte serum-free medium (#17005-

075, Invitrogen) supplemented with 50 µg/ml Bovine Pituitary Extract and 5 ng/ml 

hEGF (#17005-075, Invitrogen). HBEC cell line was developed as described in (31). 

Briefly, immortalised HBECs were infected with PLVX-Tet-On with blasticidin 

resistance (3 µg/ml) and PLVX-TRE-Cdc6 with zeocin resistance (12.5 µg/ml). 

Clones with robust doxycycline-dependent induction (5 µg/ml) were selected.  

 

RNAi and Transfections 
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siRNA duplexes were obtained from Thermo Fisher Scientific, and the 

sequences were as follows:  

CONTROL: 5’-UAGCGACUAAACACAUCAA -3’ 

MCM5: 5’-GGAUCUGGCCAGCUUUGAU -3’ 

CDT1: SMARTPool M-003248-02 

53BP1: 5’- GAAGGACGGAGUACUAAUA-3’ 

Transfection was performed with Lipofectamine RNAiMAX (Invitrogen). 50 nM 

siRNA was mixed with the Lipofectamine in Opti-MEM medium (Invitrogen). The 

mixture was added to 50-60% confluent cells in antibiotic-free DMEM (Invitrogen). 

Cells were subjected to different times of transfection to obtain variable reductions in 

protein level. 

 

Immunoblotting and Antibodies 

Immunoblotting was performed as previously described (8). Western blotting 

was performed according to standard procedures. Extraction of the chromatin-

bound fraction was performed by treatment with CSK extraction buffer (10mM 

HEPES pH 7.4, 300 mM Sucrose, 100 mM NaCl, 3 mM MgCl2, 0.5% Triton-X-100) 

for 10 min on ice. The pellet, containing chromatin-associated proteins, was 

processed for Western blotting. The antibodies used were: MCM5 (Santa Cruz, sc-

136366), CDT1 (abCam, ab183478), Tubulin (Sigma-Aldrich, T6199), 53BP1 

(Bethyl, A300-272A), Lamin B1 (abCam, 16048), GAPDH (abCam, ab9484), CDC6 

(Millipore, 05-550). 

 

Immunofluorescence 
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Cells were seeded in 6-well plates containing glass coverslips. At the required 

times for each experiment, they were fixed with 4% formaldehyde, permeabilised 

with 0.1% Triton X-100 in TBS and blocked with 0.5% fish skin gelatin (Sigma, G-

7765) for one hour. Cells were then incubated with the relevant antibodies overnight 

at 4ºC and washed with 0.1% TBS-Tween before incubation with Alexa secondary 

antibodies (Invitrogen). Cells were incubated with DAPI (Sigma, D9542) and 

mounted using Vectashield mounting medium (Vector Laboratories, H-1000). The 

antibodies used were: 53BP1 (Novus, NB-100-904), Cyclin A (abCam, ab16726), 

BLM (Santa Cruz, sc-7790), RPA (abCam, ab2175), γ-H2AX (Cell Signalling, 

2577L) and phospho-histone H3 (Cell Signalling, 9701S). For incorporation of EdU 

during early-mitosis, asynchronous HeLa cells were incubated in 40 M EdU 

(Invitrogen) for 30 mins prior to fixation. To visualise incorporated EdU the cells 

were incubated in Click-iT EdU reaction, following the manufacturer's protocol 

(Thermo Fisher Scientific). Cells in prophase and prometaphase were identified by 

phospho-H3 antibody signal and DAPI morphology. 

 

Image acquisition and analysis 

Microscopy images were acquired using an Olympus IX70 deltavision 

deconvolution microscope. An Olympus 63x oil immersion objective was used, and 

images were captured using a CCD camera. Data from microscopy experiments 

was analysed using Volocity 3D analysis software (Perkin Elmer). The nucleus was 

outlined as the ROI, and lower intensity threshold was set to a number that indicated 

the intra-nuclear background. 

 

3D Flow Cytometry 
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Cells were incubated with 40 µM EdU (Invitrogen) for 30 mins prior to 

trypsinisation and collection. Cells were pre-extracted with CSK extraction buffer for 

10 min on ice and then fixed in 2% formaldehyde for 15 min. For MCM2 labelling, 

cells were permeabilised in ice-cold 70% ethanol for 10 min and incubated for 1 hr 

with anti-BM28 primary antibody (1:500). After staining with AlexaFluor 488-labelled 

secondary antibody (Invitrogen) cells were washed and Click-it EdU reaction was 

performed for 30 mins. Finally, cells were treated with PI solution (50 µg/ml PI, 50 

µg/ml RNaseA, 0.1% Triton-X-100) and transferred to FACS tubes for analysis. 

Samples were acquired using a BD FACSCanto and the results analysed using 

FlowJo software. 

 

ChIP-Sequencing 

Cells were crosslinked for 30 min using 1.5 mM ethylene glycol-bis(succinimidyl 

succinate) followed by 10 min with 1% formaldehyde. Reactions were stopped with 

2 M glycine and cells were resuspended in CSK buffer for 10 min. Cells were 

treated with 5 µl Micrococcal Nuclease (2000 U/µl) for 10 min at 37˚C, neutralised 

with 2x RIPA (100 mM Tris-HCl pH 7.4, 300 mM NaCl, 2% IGE-Pal CA-630, 0.5% 

Na deoxycholate, 1 mM EDTA) and incubated on ice for 10 min. Samples were then 

pre-cleared with Protein A Dynabeads for 1 hr at 4˚C and then incubated with 7 µg 

anti-53BP1 antibody (Bethyl, A300-272A) rotating overnight at 4˚C. DNA was eluted 

(1% SDS, 0.1M NaHCO3, 0.1% Tween-20) and used for library preparation using the 

NEBNext ChIP-seq kit and sequenced on an Illumina HiSeq 2500 by the Edinburgh 

Genomics. The raw sequence data was assessed, aligned and combined using R 

version 3.2.2, Rsubread version 1.20.2 and samtools version 1.2. Aligned reads 

were analysed using a script based on R version 3.2.2 and Rsamtools 1.22. The 
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quality assessment and a detailed description of the analysis pipeline are available 

in the Supplementary text. Files containing the aligned reads are available at the 

European Nucleotide Archive (Accession number: PRJEB12222) and the R script 

used for the analysis is available as a supplementary file.  

 

Mathematical and computational analysis  

The mean number of DFS was computed with the formula: 

log(2)
𝑁𝑔

𝑁𝑠

−   ∑ log (1 + log(2)
𝑁𝑖

𝑁𝑠

)𝐾
𝑖=1   

where 𝑁𝑔 indicates the genome size, 𝑁𝑆 indicates the median stalling distance, and 

the 𝑁𝑖(𝑖 = 1. . 𝑘)  indicate the length of the 𝐾  replicons. Replication origin (RO) 

depletion and augmentation experiments were performed by randomly removing or 

increasing the number of ROs. More details on the mathematical model used are 

described in (4) and (10) and an extended summary of the approach used is 

available in the Supplementary Methods. 

 

Clonogenic Assay 

Cells were transfected in 10 cm dishes and replated into 6-well dishes before 

treatment. Hydroxyurea was added to cells for 48 hr before medium was replaced 

with fresh growth medium. After 10 days, cells were washed, fixed and stained with 

Crystal Violet. The number of colonies >1 mm were recorded. For each genotype, 

cell viability of untreated cells was defined as 100%. 
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Figure Legends 

 

Figure 1. Potential mechanism for resolution of DFSs 

A) Distribution of replicon sizes in HeLa cells, based on data from (13). The red bar 

represents the average replicon size of ~31 kb. B) Mean number of DFSs predicted 

using a mathematical model (4), and a computational model that uses origin data 

from HeLa and IMR-90 (13) when origins are added or depleted randomly. C) Model 

for segregation of unreplicated DNA to daughter cells for resolution in the next cell 

cycle. D) 53BP1 nuclear bodies in untreated and aphidicolin-treated cells. E) 

Frequency of G1-specific 53BP1 nuclear bodies (n=100, 3 replicates). 2 test for a 

fitted Poisson, p-value=0.771. F) Frequency of G1-specific 53BP1 nuclear bodies at 

the times indicated after nocodazole treatment and mitotic shake-off (n=150, 3 

replicates, error bars=SEM). 2 test, p-value=0.924. G) Frequency of 53BP1 nuclear 

bodies at different stages of the replication timing programme, as defined by 

O'Keefe et. al. (32) (n=150, 3 replicates, error bars=SEM). 2 test, p-value = 

4.998x10-4.  

 

Figure 2. Origin number and the frequency of 53BP1 nuclear bodies. 

A) Immunoblot of total and chromatin-bound MCM5 in HeLa cells after MCM5 RNAi. 

B) 3D FACS of HeLa cells labelled with EdU (left) and MCM2 (right). Red=G1 

phase: EdU negative and G1 DNA content. Blue=early S phase: incorporation of 

EdU without significant increase in total DNA content. Orange=late S phase: EdU 

positive cells with >G1 DNA content. Green=G2 phase: EdU negative and G2 DNA 

content. C) FACS of chromatin associated MCM2 signal in early S phase HeLa cells 

with indicated periods of MCM5 RNAi. D) Frequency of G1-specific 53BP1 nuclear 
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bodies (y-axis values) after MCM5 knockdown versus relative number of replication 

origins quantified by 3D FACS of DNA-bound MCM2 (x-axis values). Each point 

represents the mean of 100 cells. E, F) CDC6-inducible HBEC cells. Immunoblot of 

CDC6 and tubulin in whole cell lysates (E, top) and MCM5 and Lamin B1 in 

chromatin samples (E, bottom). Frequency distribution of 53BP1 nuclear bodies in 

HBEC cells (F) (n=100, 3 replicates). 2 tests for fitted Poissons, p-values>0.87. The 

two conditions are significantly different (Wilcoxon rank sum test, p-value=2.843x10-

6). G) Compilation of the predicted number of DFSs using the mathematical model 

and the computer simulation (from Fig 1B) and the mean number of 53BP1 nuclear 

bodies in vivo (from Fig 2D, 2F and S2E). H) Frequency of G1-specific 53BP1 

nuclear bodies in control and MCM5 RNAi treated IMR-90 cells (n=150, 3 replicates, 

error bars=SEM). t-test, p-value=1.79x10-4. I) Immunoblot to show the depletion of 

MCM5 after RNAi. Quantification of band intensity is indicated below the blot. 

 

Figure 3. 53BP1 is enriched at genomic loci that correspond to large replicons. 

A) Representative image of the colocalisation between G1-speciic 53BP1 nuclear 

bodies and RPA foci. B) Percentage of total cellular 53BP1 nuclear bodies that 

colocalise with RPA after treatment with control or MCM5 RNAi (n=100, 3 replicates, 

error bars=SEM). t-test, p-value=3.01x10-3. C) Mean frequency of G1-specific -

H2AX foci in HeLa cells after MCM5 RNAi (n=150, 3 replicates, error bars=SEM). t-

test, p-value=0.585. D) Plot of the average 53BP1/IgG signal ratio per kilobase 

against replicon size. A strong and significant correlation is observed (Spearman 

ρ=0.91, p-value<10-15). E) Distribution of the size of 53BP1+ and 53BP1- replicons. 

t-test, p-value<10-15. F) Frequency distribution of 53BP1+ and 53BP1- replicons 

across different replicon sizes. 2 test, p-value<10-15. 
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Figure 4. MCM5 RNAi effects on mitosis.  

A) Representative image of early-mitotic HeLa cell with foci of EdU incorporation. B) 

Quantification of foci of EdU incorporation during prophase and prometaphase HeLa 

cells after MCM5 RNAi (n=100, 3 replicates, error bars=SEM). t-test, p-

value=3.43x10-8. C) Immunoblot to show depletion of MCM5 after MCM5 RNAi. 

Quantification of band intensity is indicated below the blot. D) Representative image 

of UFBs stained with BLM in an anaphase HeLa cell. E) Frequency of UFBs after 48 

hr treatment with MCM5 RNAi (n=75, 3 replicates, error bars=SEM). t-test, p-

value=0.0473. F) Frequency distribution of UFBs (n=100 cells, 4 replicates). 2 tests 

for Poissons, p-values>0.85. A significant difference was observed. Wilcoxon rank 

sum test, p-value=5.095x10-3) G) Immunoblot showing the knockdown of MCM5 

and 53BP1 by RNAi in HeLa cells. H) Clonogenic assay after treatment, as seen in 

G), with increasing HU (3 replicates, error bars=SEM). 

 


