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Unresolved issues with the assessment of multidecadal global

land surface temperature trends

Roger A. Pielke Sr.,1 Christopher A. Davey,2 Dev Niyogi,3,4 Souleymane Fall,4

Jesse Steinweg-Woods,3,4 Ken Hubbard,5 Xiaomao Lin,5 Ming Cai,6 Young-Kwon Lim,7

Hong Li,8 John Nielsen-Gammon,9 Kevin Gallo,10 Robert Hale,11 Rezaul Mahmood,12

Stuart Foster,12 Richard T. McNider,13 and Peter Blanken14

Received 7 November 2006; revised 5 February 2007; accepted 14 May 2007; published 29 December 2007.

[1] This paper documents various unresolved issues in using surface temperature trends
as a metric for assessing global and regional climate change. A series of examples ranging
from errors caused by temperature measurements at a monitoring station to the
undocumented biases in the regionally and globally averaged time series are provided. The
issues are poorly understood or documented and relate to micrometeorological impacts
due to warm bias in nighttime minimum temperatures, poor siting of the instrumentation,
effect of winds as well as surface atmospheric water vapor content on temperature trends,
the quantification of uncertainties in the homogenization of surface temperature data, and
the influence of land use/land cover (LULC) change on surface temperature trends.
Because of the issues presented in this paper related to the analysis of multidecadal surface
temperature we recommend that greater, more complete documentation and quantification
of these issues be required for all observation stations that are intended to be used in such
assessments. This is necessary for confidence in the actual observations of surface
temperature variability and long-term trends.

Citation: Pielke, R. A., Sr., et al. (2007), Unresolved issues with the assessment of multidecadal global land surface temperature

trends, J. Geophys. Res., 112, D24S08, doi:10.1029/2006JD008229.

1. Introduction

[2] The global average surface temperature trend is the
climate metric that has been most used to assess the human
impact on climate change [IPCC, 2001]. The data used to
assess this trend have been concluded to be robust and able
to accurately define this trend in tenths of a degree per
decade (Climate Change Science Program (CCSP) report,
Temperature Trends in the Lower Atmosphere: Steps for
Understanding and Reconciling Differences, U.S. Climate
Change Science Program, Washington, D. C., available at
http://www.climatescience.gov/Library/sap/sap1-1/public-
review-draft/sap1-1prd-all.pdf; hereinafter referred to as

CCSP report, 2006). The CCSP report concluded that with
respect to global average temperature trends,

‘‘For observations since the late 1950s, the start of the study period for
this report, the most recent versions of all available data sets show that
both the surface and troposphere have warmed, while the stratosphere
has cooled,’’

while for tropical temperatures (20�S to 20�N),

‘‘Although the majority of observational data sets show more warming
at the surface than in the troposphere, some observational data sets
show the opposite behavior. Almost all model simulations show more
warming in the troposphere than at the surface. This difference
between models and observations may arise from errors that are
common to all models, from errors in the observational data sets, or
from a combination of these factors. The second explanation is
favored, but the issue is still open.’’
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[3] A basic assumption in the CCSP report (2006),
however, is that all significant uncertainties with respect
to the surface temperature trend assessments have been
resolved. This paper demonstrates that major under- and
unrecognized issues with the quantification of the surface
temperature trends remain.

2. Definition of a Global Average Surface
Temperature

[4] The first overarching question, of course, is what is
meant by the ‘‘global average surface temperature’’? The
National Research Council (NRC) [2005, pp. 19 and 21]
report provides a definition as

‘‘According to the radiative-convective equilibrium concept, the
equation for determining global average surface temperature of the
planet is

dH=dt ¼ f � T0=l ð1Þ

where H. . .. . .is the heat content of the land-ocean-atmosphere
system. . ... Equation (1) describes the change in the heat content
where f is the radiative forcing at the tropopause, T0 is the change in
surface temperature in response to a change in heat content, and l is
the climate feedback parameter [Schneider and Dickinson, 1974], also
known as the climate sensitivity parameter, which denotes the rate at
which the climate system returns the added forcing to space as infrared
radiation or as reflected solar radiation (by changes in clouds, ice and
snow, etc.).’’

[5] Thus T is the ‘‘global average surface temperature,’’
and T 0 is a departure from that temperature in response to a
radiative forcing f. It appears in equation (1) above as a
thermodynamic proxy for the thermodynamic state of the
Earth system. As such, it must be tightly coupled to that
thermodynamic state. Specifically, changes in T must be
proportional to changes in the radiation emitted at the top of
the atmosphere. However, where is this temperature and its
change with time, T 0, diagnosed, and is it closely coupled?
[6] At its most tightly coupled, T is the radiative temper-

ature of the Earth, in the sense that a portion of the radiation
emitted at the top of the atmosphere originates at the Earth’s
surface. However, the outgoing longwave radiation is pro-
portional to T4. A 1�C increase in the polar latitudes in
the winter, for example, would have much less of an effect
on the change of longwave emission than a 1�C increase
in the tropics. The spatial distribution matters, whereas
equation (1) ignores the consequences of this assumption.
A more appropriate measure of radiatively significant sur-
face changes would be to evaluate the change of the global
average of T4.
[7] In most applications of (1), T is not a radiative

temperature, but rather the temperature at a single level of
the atmosphere, usually close to the ground. The CCSP
report (2006) presents three separate analyses of the global
surface temperature trend that use land- and ocean-based
observations to evaluate T 0. As they reported,

‘‘Over land, ‘‘near-surface’’ air temperatures are those commonly
measured about 1.5 to 2.0 m above the ground level at official weather
stations, at sites run for a variety of scientific purposes, and by
volunteer (‘‘cooperative’’) observers [e.g., Jones and Moberg, 2003].
These stations often experience relocations, changes in instrumenta-
tion and/or exposure (including changes in nearby thermally emitting
structures), effects of land-use changes (e.g., urbanization), and

changing observing practices, all of which can introduce biases into
their long-term records. These changes are often undocumented.’’

‘‘‘Near-surface’ air temperatures over the ocean (‘Marine Air
Temperatures’ or MATs) are measured by ships and buoys at various
height from 2 to more than 25 m, with poorer temporal and spatial
coverage than over land. . .. To avoid the contamination of daytime
solar heating of the ships’ surfaces that may affect the MAT, it is
generally preferred to limit these to night MAT (NMAT) readings only.
Observations of the water temperature near the ocean surface or ‘‘Sea
Surface Temperatures’’ (SSTs) are widely used and are closely tied to
MATs; ships and buoys measure SSTs within a few meters of the
surface. The scale of the spatial and temporal coherence of SST and
MAT anomalies is greater than that of near-surface air temperatures
over land; thus a lower rate of oceanic sampling, in theory, can provide
an accuracy similar to the more densely monitored land area.’’

[8] These are the measured temperatures used to calculate
T 0. Thus there is variability in the actual height of the
measurements, particularly over the oceans. Over land, most
measurements are 1.5–2.0 m according to the CCSP report
(2006). An important research question is whether temper-
atures at this level are sufficiently coupled to the radiative
and thermodynamic characteristics of the Earth system. If
not, (1) is not satisfied, and there are variations of T that
have little to do with the underlying radiative balance. With
the noise in the measure, any estimate of l is fraught with
inaccuracy.
[9] The observed average surface temperature over land

is computed by averaging daily observed maximum and
minimum temperatures. Section 3 shows that the 1.5–2-m
minimum temperature over land is an example of a quantity
that is not tightly coupled, given its strong sensitivity to the
local land surface conditions, the overlying boundary layer
thermodynamic stability, and the wind speed.

3. Difficulties With the Use of Observed
Nocturnal Warming Trends as a Measure of
Climate Trends

[10] One of the most significant features in the observed
surface data set is the asymmetric warming between max-
imum and minimum temperatures. Minimum temperatures
have risen about 50% faster than maximum temperatures in
the observed surface data set since 1950 [Vose et al., 2005].
Thus this nocturnal warming is the largest component of the
‘‘global daily average’’ increasing temperature trends that
are used as measures of global climate change and to which
models have been compared. While global climate models
have exhibited improved matches with the global daily
average, they have not in general replicated the magnitude
of the asymmetry in the surfaced observed maximum and
minimum temperatures trends [Stone and Weaver, 2003].
We show in this section that there is a positive temperature
bias in assessing a global average land surface minimum
temperature when this temperature is sampled at 2 m or so
above the surface. This warm bias has thus far been ignored
in multidecadal assessments of temperature trends.
[11] As the boundary layer cools at night under light

winds, the greatest decrease in temperature occurs near the
surface [e.g., Stull, 1988; Arya, 2001]. Unlike the daytime
boundary layer where convective turbulence tends to reduce
vertical gradients, in the nocturnal boundary layer the
cooling suppresses turbulence and enhances vertical gra-
dients. Thus the vertical variation in temperature in light
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winds can be huge with temperature changes of 6�C or more
often occurring within 25 vertical meters of the surface (see
Figure 1). This is why great care must be taken to avoid
contaminating the climate record with measurements from
sites that have changed even a meter or two in their height
of observation.
[12] During the evening transition, as the boundary layer

changes from a convective regime with a gain of sensible
heat to a thermodynamically stable regime with a loss of
sensible heat, the vertical variation in air temperature can
show a large sensitivity to wind speed. For example,
Figure 2a shows the near-surface difference in air temper-
ature (measured in shielded and ventilated housings) over a
wetland site in central Colorado during the evening transi-
tion as a function of wind speed. As the net radiation
decreased from slightly positive (75–100 W m�2) to
negative (�100 to �75 W m�2), the temperature profile
changed from a weak lapse to a strong inversion, but only
during light winds. As the wind speed increased, differences
between the two heights of temperature measurement de-
creased (a decrease in the vertical variation in temperature).
Over a vertical distance of less than 1 m the temperature at
the lower sensor (1.07 m) was more than 0.4�C greater than
at the upper sensor (1.85 m), with this difference decreasing
as the wind speed increased. In this example, nearly a 0.6�C
difference in air temperature would be reported during low
wind speed conditions depending on the chosen observation
height.
[13] In addition to the temperature bias solely due to

observation height as a result of large nocturnal temperature
gradients, the absolute air temperature is also affected by
wind speed. Using the same example as above, during the
evening transition the observed air temperature tended to
increase with wind speed until roughly 4 m s�1 and then

decreased or remained relatively constant (Figure 2b; 1.07-m
results shown, but the same result was found for the 1.85-m
observation). During typical nocturnal periods (net radiation
between �100 to �75 W m�2) the recorded minimum air
temperature varied by nearly 10�C at low wind speeds. This
observational evidence of the transition from a weak light
wind cold solution to a warm windy solution provides
support for the modeling evidence described by Pielke and
Matsui [2005].
[14] In addition to the thermodynamic stability and wind

speed, the nocturnal boundary layer is sensitive to changes
in land surface characteristics, such as heat capacity
[Carlson, 1986; McNider et al., 1995a]. Additionally, it
is also much more sensitive to external forcing such as
downward longwave radiation from greenhouse gas forc-
ing, water vapor, clouds, or aerosols than is the daytime
boundary layer [Eastman et al., 2001; Pielke and Matsui,
2005]. The main reason for this sensitivity is that the
nocturnal boundary layer is shallower than the daytime
boundary layer. Thus heating of the surface due to infrared
radiation or changes in heat capacity or conductivity of
heat from the soil is distributed through a smaller air layer.
[15] This sensitivity of minimum temperature is a func-

tion of the nocturnal boundary layer depth, which is
controlled by many parameters such as wind speed, surface
roughness, and heat capacity [Shi et al., 2005]. As shown by
Pielke and Matsui [2005], the impact of increased down-
ward longwave radiation depends on the wind speed im-
posed on the nocturnal boundary layer. The combination of
this sensitivity and the strong vertical gradients can have
major impacts on observed and modeled temperatures.
Figure 3 (originally from Pielke and Matsui [2005,
Figure 3]) shows that even a slight reduction in nighttime
cooling (by 1 W m�2) on light wind nights results in a much

Figure 1. Observed profiles of potential temperature at night for a turbulent boundary layer (+ symbols)
25 October 1999 0300 CDT and a light wind case (X symbols) 26 October 0300 CDT. Data were taken
during the CASES-99 stable boundary layer experiment [Poulos et al., 2002].
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greater increase in the 1.5- and 2.0-m air temperature than
even the temperature a few meters higher in the nighttime
boundary layer. Neither temperature is a good proxy for the
temperature of the land surface itself, nor are they tightly
coupled to the overlying atmosphere.
[16] While variation in cooling in the nocturnal boundary

layer can be large, the depth of the nocturnal boundary layer
is very small, often less than 200 m. Thus because temper-
ature changes in this shallow layer can be strongly influ-
enced by land use changes or external forcing such as
downward longwave radiation from greenhouse gases,
aerosols, thin clouds/contrails, et cetera, they are not a
robust measure of changes in the deep heat content of the
atmosphere.
[17] Perhaps more troubling in interpreting minimum

temperature trends is that the nocturnal boundary layer
has dynamic feedbacks that can amplify external forcing
or changes in surface characteristics. The Pielke and Matsui
[2005] example showed that there is a large temperature
response difference to surface forcing due primarily to the
fact that the depth of the nocturnal boundary layer is

dependent on wind speed. However, this was a static
simulation that did not include the fact that the forcing
itself can change the depth of the boundary layer by making
it less stable. In a series of papers exploring the nonlinear
dynamics of the stable boundary layer [McNider et al.,
1995a, 1995b; Shi et al., 2005; Walters et al., 2007] it was
shown that in certain parameter spaces the nocturnal bound-
ary layer can rapidly transition from a cold light wind
solution to a warm windy solution. In these parameter
spaces, even slight changes in longwave radiative forcing
or changes in surface heat capacity can cause large changes
in surface temperatures as the boundary mixing changes.
However, these temperature changes reflect changes in the
vertical distribution of heat, not in the heat content of the
deep atmosphere.
[18] In order for models to capture these transitions and

feedbacks they require high resolution with vertical spacing
of 5 m or less. Global models in general do not capture
these important transitions. In these models the 1.5–2-m
temperature is extrapolated from the lowest model layer and

Figure 2. Influence of wind speed (u) on the difference in air temperature measured at 1.85 and 1.07 m
aboveground (a) and the air temperature measured at 1.07 m aboveground (b) as a function on the
measured net radiation at a wetland site in central Colorado. Median values of air temperature are shown
at u intervals of 1 m s�1. Each line represents net radiation during the evening transition, from 100 to
�100 W m�2 in 25 W m�2 intervals. Data were measured as 20-min means, collected continuously over
the period from June 2000 through August 2005.
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thus can only marginally reproduce actual nocturnal bound-
ary layer behavior.
[19] The essence of a stable nocturnal boundary layer is to

disconnect the near surface from the outer atmosphere. Thus
the observed temperatures in a nighttime boundary layer are
highly influenced by local conditions. In fact, Runnalls and
Oke [2006] use this physical sensitivity as a measure for
detecting land use change or instrument site changes in the
temperature record.
[20] Since T 0 is constructed using the average of maxi-

mum and minimum temperatures, the inclusion of minimum
temperatures from light wind nights necessarily introduces a
bias in T 0 as contrasted with a boundary layer average value
of temperature. The use of this 1.5–2-m T 0 in equation (1)
will therefore overestimate the magnitude of the change of
heat content (the radiative forcing) of the Earth’s climate
system, when compared to a model-estimated sensitivity
using the lowest model layer temperature. As shown in
Table 1 and confirmed by the observational evidence in
Figure 2, the magnitude of the difference in the 1.5- and
2.0-m temperatures under light winds due to a 1 W m�2

forcing is on the order of 0.5 to over 1�C. This difference in
nighttime cooling can be interpreted as the bias in a trend if
the reduction in 1 W m�2 occurred over several decades.
[21] This also means that the finding by Parker [2004,

2006] that there is no difference in trends between windy and
calm nights is curious since the fundamental understanding
of stable boundary layer physics requires that trends near the
surface, for the same boundary layer warming, will be
greater on light wind nights.
[22] Given these facts about the nocturnal boundary and

their impact on the minimum temperatures in the observed
climate data set, it is suggested that minimum temperatures
measured in the surface data set are poor measures of
radiative forcing in the Earth system as represented by
equation (1). Further, because climate models have difficulty
in resolving the processes in the stable boundary layer, the

use of daily average temperatures from the models and
comparing them to the daily average from the observed data
set can lead to erroneous conclusions in terms of model
fidelity.
[23] In summary, given the lack of observational robust-

ness of minimum temperatures, the fact that the shallow
nocturnal boundary layer does not reflect the heat content of
the deeper atmosphere, and problems global models have in
replicating nocturnal boundary layers, it is suggested that
measures of large-scale climate change should only use
maximum temperature trends.

4. Photographic Documentation of Poor Sitings

[24] Major problems with the microclimate exposure of a
subset of surface Historical Climate Network (HCN) sites
have been photographed [Easterling et al., 1996; Davey and
Pielke, 2005]. The temperature instruments that are used in
the HCN are often sited close to buildings, under trees, and

Figure 3. Potential temperature increase at different levels from the experiment at �49 W m�2 to the
experiment with �50 W m�2 cooling [from Pielke and Matsui, 2005].

Table 1. Potential Temperature Increase at Different Levels From

the Experiment With �49 W m�2 Cooling to the Experiment With

�50 W m�2 Coolinga

Z, m

Wind Speed, m/s

10 9 8 7 6 5 4 3 2 1

10 0.28 0.30 0.33 0.36 0.40 0.45 0.52 0.63 0.81 1.20
9 0.28 0.30 0.33 0.36 0.40 0.45 0.53 0.64 0.83 1.24
8 0.28 0.30 0.33 0.36 0.40 0.46 0.53 0.65 0.85 1.28
7 0.28 0.31 0.33 0.37 0.41 0.46 0.54 0.66 0.86 1.32
6 0.28 0.31 0.33 0.37 0.41 0.47 0.55 0.67 0.88 1.37
5 0.29 0.31 0.34 0.37 0.41 0.47 0.55 0.68 0.89 1.41
4 0.29 0.31 0.34 0.37 0.42 0.48 0.56 0.69 0.91 1.46
3 0.29 0.31 0.34 0.38 0.42 0.48 0.57 0.70 0.93 1.50
2 0.29 0.31 0.34 0.38 0.42 0.49 0.57 0.71 0.95 1.55
1 0.29 0.32 0.35 0.38 0.43 0.49 0.58 0.72 0.97 1.60
0 0.29 0.32 0.35 0.38 0.43 0.50 0.59 0.73 0.98 1.66
aFrom Pielke and Matsui [2005].
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near other local influences on the microclimate. These
microclimate influences also change over time. Figure 4a
shows an example of good site exposure (for Crawfords-
ville, Indiana). Figure 4b, however, shows the relative
departure of the Crawfordsville surface temperature with
respect to its climate division. As shown by C. Holder et al.
(How consistent are surface air temperature data for climate
change studies?, Climate Research, in review, 2007), this
difference can be used as another measure of the micro-
meteorological (station scale) versus regional (division
average) climate changes. As seen in Figure 4b, there are
many documented station changes, each of which can alter
the temperature data trends.

[25] The integrity of climatological observations is often
compromised by poor environmental exposure of instru-
ments. Examples of poor exposure are provided by three
U.S. HCN (USHCN) sites in Kentucky (see figures for
Greensburg [153430] (Figure 5), Leitchfield_2_N [154703]
(Figure 6), and Hopkinsville [153994] (Figure 7)). In each
case, a combination of anthropogenic (e.g., asphalt and
concrete surfaces, buildings) and natural features (e.g., trees
and shrubs, slopes) of the microscale environment creates
forcings that are not representative of the larger mesoscale
environment.
[26] Undesired exposure and ‘‘urban bias’’ is not limited

to large urban areas; it may occur also in rural sites,

Figure 4. (a) U.S. Historical Climate Network (USHCN) station exposure at Crawfordsville, Indiana.
(b) Temperature departure from climate division (deg C). The white markers indicate documented change
in the station metadata.
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predominantly agricultural locations, and in small urban
areas. Mahmood et al. [2006a] completed comparisons of
temperatures involving geographically proximate stations
and found that undesired exposure of instruments to their
microenvironments resulted in biased measurement of
temperature. While research in urban micrometeorology
[Arnfield, 2003] recognizes the impacts of diverse surfaces
on energy budgets, energy exchanges, and small-scale
advection in urban settings, these biases also occur else-
where. Many rural and small town stations, for example,
have microscale exposures that are similar to those often
associated with urban areas. As a result of poor exposure, a
difference in average monthly minimum (maximum) tem-
peratures of 3.8�C (1.6�C) was found between a pair of
stations separated by a distance of 40 km (37 km) and
located at similar elevations.
[27] The influence of exposure on temperature may also

not be homogeneous over seasons. In one set of compar-
isons the presence of a vegetation canopy reduced warm
season maximum temperature by more than 2.0�C at a
USHCN site in Leitchfield, Kentucky, relative to a nearby
Cooperative Observer Program (COOP) site with an open
exposure. The canopy had a similar, but smaller, effect on
minimum temperature. A seasonally variable bias may also
be anticipated from an asphalt surface, where the surface
contributes to higher maximum and minimum temperatures
during the warm season and has the opposite effect during
the cool season.
[28] Aside from seasonality, examination of comparative

temperature variations at paired stations can reveal complex
temporal patterns that are not stationary and are difficult to
explain, especially when spatial metadata is insufficient. For
example, annual growth of a nearby tree or bush can
gradually alter the microclimate of a station and influence
long-term temperature records. Eventually, vegetation may
be trimmed, causing an abrupt shift in the time series.
Likewise, an asphalt street or parking lot may gradually

fade from black to gray and then later be resealed or
repaved. Alternatively, a new building may appear in the
vicinity of the temperature sensor producing a direct radi-
ative forcing on temperature or an indirect forcing associ-
ated with a change in microscale circulation. Unfortunately,
such continuous and discrete changes in the microenviron-
ment of a station often go undocumented in National
Weather Service station history forms. As a result, patterns
of annual variability can include step changes and trend
reversals that occur with no documented explanation.
Therefore one of the critical deficiencies in many bias
correction functions is the assumption of stationarity of bias
over a period of time.
[29] Peterson [2006] concluded that any biases associated

with the poor siting in eastern Colorado, when adjusted, did
not affect estimates of regional temperature trends. However,
in a response to the Peterson article, Pielke et al. [2007]
pointed out several issues which Peterson did not adequatelyFigure 5. USHCN station exposure at Greensburg,

Kentucky. From Mahmood et al. [2006a]. Copyright Royal
Meteorological Society. Reproduced with permission.
Permission is granted by John Wiley and Sons Ltd on
behalf of RMETS.

Figure 6. USHCN station exposure at Leitchfield_2_N,
Kentucky. From Mahmood et al. [2006a]. Copyright Royal
Meteorological Society. Reproduced with permission.
Permission is granted by John Wiley and Sons Ltd on
behalf of RMETS.
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investigate, including often undocumented station
changes, ignored uncertainties in the adjustments, and
land use/land cover change issues associated with climate
station adjustments.
[30] The errors in HCN sites, however, are not simply

restricted to the example locations taken in the studies of
Davey and Pielke [2005] and Peterson [2006], i.e., eastern
Colorado; rather they are representative of a more general,
broader problem with the HCN sites as illustrated earlier in
this section. The lack of photographic documentation of the
HCN sites is a remarkable omission, since the HCN
network is used as part of the global analysis of surface
temperature trends, such as reported in the CCSP report
(2006).

5. Influence of Trends in Surface Air Water
Vapor Content on Temperature Trends

[31] Near-surface air temperature trends are also signifi-
cantly influenced by trends in surface air absolute humidity
over the same time period since even with the same amount
of heat within the near-surface air, the heat would be
distributed differently between sensible and latent heat of
the air. This issue has not been investigated in the assess-
ment of multidecadal surface air temperature trends.
[32] As shown by Pielke et al. [2004], the heat content of

surface air is given by

H ¼ Cp T þ L q ð2Þ

where H is the heat in Joules, Cp is the heat capacity of air at
constant temperature, T is the air temperature, L is the latent
heat of vaporization, and q is the specific humidity. With no
change in H, this equation can be rewritten as

DT ¼ � L=Cp

� �

Dq ð3Þ

[33] As shown by Pielke [2001], a 1�C change in dew
point temperature from 23�C to 24�C at 1000 mb caused by
evaporation (which changes q from 18 to 19 g kg�1), for

example, produces a �2.5�C decline in DT. In other words,
with the temperatures used here the air temperature would
have to increase by 2.5�C to produce the same change in H
as a 1�C increase in dew point temperature. This effective
temperature that corresponds to the moist enthalpy content
of the surface air can be referred to as TE.
[34] Thus if a surface measuring site (e.g., an HCN site)

undergoes a local reduction in tree cover such that as a
result q decreases, then even if the value of H were
unchanged, there will be an increase in surface air temper-
ature. The introduction of irrigation around the site, in
contrast, will result in higher values of q, but a reduction
of the surface air temperature. In both cases an analysis of
land surface temperature trends based on such sites would
be introducing a nonspatially representative trend into the
data.
[35] Davey et al. [2006] examined whether there are long-

term trends in the surface air absolute humidity for a variety
of landscape types (see Figure 8), and found significant
variations as a function of type. Moreover, only if the trends
in surface air absolute humidity were zero would the use of
surface air temperature be an accurate measure of the trends
in surface air heat over this time period. The diagnosed
trends over the period of the study were up to 0.2 g kg�1 per
decade and more, which corresponds, using equation (3), to
tenths to single digits of a degree C in equivalent surface air
temperature trend.
[36] Ignoring concurrent trends in surface air absolute

humidity therefore introduces a bias in the analysis of
surface air temperature trends. A recent paper [Rogers et
al., 2007] further confirmed the need to include both trends
in temperature and absolute humidity in order to describe
observed temperature trends. They found for a site in Ohio,
for example, that the highest moist enthalpy (TE) occurred
during the summer of 1995 when both temperature and
absolute humidity were very high, while the hot summers of
1930–1936 had relatively low or negative anomalies of
absolute humidity, and thus lower moist enthalpy (TE).
[37] The surface Bowen ratio is also a measure of the

impact on the surface temperature with more sensible heat
flux (i.e., larger Bowen ratio) leading to higher temperatures
with the same heat content. Figure 9 illustrates that different
wind speeds have a substantial effect on the Bowen ratio.
This results in another confounding effect on the interpre-
tation of long-term trends in near-surface temperatures, if
there is also a long-term trend in winds. As seen in Figure 9,
near-calm winds have a very different behavior from the
other two, yet the light wind differs by nearly the same
amount as the medium and heavy wind profiles. The surface
winds also are of considerable importance in how quickly
temperatures will fall later in the day and the resultant
minimum temperature achieved overnight.

6. Uncertainties in the Homogenization of Surface
Temperature Data

[38] Most surface climate monitoring stations have un-
dergone changes in location or changes in the immediate
microclimate which alter the relationship between that
station’s observations and the unknown, actual climate of
the surrounding area. The time-dependent nature of these
changes can cause climate trends estimated from such

Figure 7. USHCN station exposure at Hopkinsville,
Kentucky.
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stations to deviate from the actual climate trends. This issue
was identified as a concern by Willmot et al. [1991]. As
shown in this section, major uncertainties still remain with
the quantification of the homogenization of multidecadal
surface temperature trends.
[39] In response to this problem, three approaches are

possible: (1) discard all stations with known or suspected
siting or microclimate changes before estimating climate
trends; (2) attempt to correct, on a station-by-station basis,
errors caused by changes in location or microclimate; and
(3) attempt to quantify the bias and uncertainty caused by
the inclusion of contaminated stations in the climate trend
estimates. These three approaches are not mutually exclu-
sive, and item (3) should be done in any case because some
contaminated stations are likely to sneak through no matter
how careful the screening.
[40] A variety of adjustments has been used to ‘‘homog-

enize’’ surface temperature data [Peterson and Easterling,
1994; Easterling and Peterson, 1995; Pielke et al., 2002;
Hansen et al., 1999, 2001; Brohan et al., 2006]. This
includes adjustments made due to the time of observation
[Vose et al., 2003; Karl et al., 1986], a change of instrument
[Quayle et al., 1991], a change in location [Karl and
Williams, 1987], and a change in urbanization [Karl et al.,
1989; Imhoff et al., 1997].
[41] Here we first consider adjustments associated with

changes in a station’s location or environment. We address
the relative merits of (1) versus (2) as homogeneity correc-
tions are currently practiced, specifically in the context of
estimating long-term climate variations.
[42] Changes in location or microclimate can be sudden

or gradual. Sudden changes are caused by station moves,
instrument changes, or sudden changes in the immediate

surroundings. Gradual changes are caused by instrument
calibration drifts or slow changes to the immediate micro-
climate. Sometimes, sudden and gradual changes are closely
linked, and corrections for one should not be made without
corrections for the other. Hansen et al. [2001] present the
hypothetical example of a station subject to urbanization
that is then moved back to a rural location. Another example
would be a station around which trees grew and were finally
cut down. In both cases, correcting for one type of change
without the other makes the climate record less reliable.
[43] Adjustments for sudden changes may be based on

documented station moves or undocumented change points
in a station record. The relocation correction algorithm

Figure 8. Annually averaged q trends for 1982–1997, as a function of land cover class, for surface
observation sites in the eastern United States. Error bars indicate standard errors. All individual trends are
considered and are weighted equally [from Davey et al., 2006].

Figure 9. Impact of wind speed on diurnal variation of
Bowen ratio plotted in local standard time. Variability in
available sensible heat flux will affect the surface
temperatures as a function of winds.
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applied to the original USHCN data set uses documented
station moves and estimates a correction on the basis of
differences with neighboring stations before and after the
station move [Karl and Williams, 1987]. A similar approach
was followed in the development of the global HCN data set
[Peterson and Vose, 1997] and in the data set of Jones
[1994]. DeGaetano [2006] and Pielke et al. [2007] note that
this correction algorithm has the side effect of replacing any
underlying true climate trend at a particular site with the
climate trend from surrounding stations for the data segment
over which the correction is computed. An example of this
effect is shown in Figure 10. While this may well be the best
objective hypothetical climate record available for the
corrected station, it is not useful for estimating regional
trends, as one wishes to accumulate as many reliable but
independent data points as possible.
[44] These relocation adjustments were not designed to

preserve the underlying climate trends. In contrast, Lu et al.
[2005] utilize a statistical technique that simultaneously
finds the best fit parameters for sudden changes and long-
term trends. Their method does not use neighboring data at
all, but instead essentially finds the correction at times of
known station moves that maximizes the fit of the climate
record to a linear trend. Unlike the Karl and Williams
[1987] method, this technique will fully retain the climate
trend if the data record consists only of sudden changes

superimposed on a steady trend. However, slow climate
variations, such as the cooling observed in most data sets
between 1940 and 1970, can cause the Lu et al. technique to
infer sudden changes where none exist. Suppose that a long-
term climate record is homogeneous except for a station
move in 1955 that in reality had no discernable impact on
the station’s climate record. The optimal fit to a linear trend
over the past century is obtained by imposing a positive
jump in the temperature record at 1955 so that the period
1940–1970 shows warming of a similar magnitude as the
adjoining periods (Figure 11).
[45] Corrections for urbanization utilize a variety of

approaches for determining the magnitude of the urban
adjustment. Karl et al. [1989] compute the urbanization
adjustment by regressing data from the entire network
against urban population. Given a random distribution of
urbanized stations, this approach probably does not intro-
duce a bias in the climate change estimate for the network as
a whole, but regional trends will be biased by regional
differences in the effect of urbanization. Hansen et al.
[2001] compute linear fits to the differences between
urbanized stations and neighboring stations and apply the
resulting time-varying corrections to the urbanized station
data. This approach in principle can account for any source
of gradual microclimate change, although it is only applied
to stations where urbanization is presumed to be present.
The Hansen et al. [2001] correction is similar in effect to the
homogeneity corrections applied to other data sets, in that it
replaces the climate trend at a particular station with the
climate trend observed at neighboring stations.
[46] The imposition of the climate trends from neighbor-

ing stations onto the climate record of stations subject to
location or microclimate changes, as can happen with

Figure 10. Example of alteration of temperature trend
(degrees C) caused by station relocation correction
employed in USHCN data. Local trend: the true local
temperature trend at a particular location. Local record: the
temperature record at that location, including a temporary
station move that caused a jump in the annual average
temperature. Comparison stations: the average temperature
trend at surrounding stations. Adjusted record: the tempera-
ture record after the station relocation correction is applied.
Linear (adjusted record): the best fit linear regression line to
the adjusted temperature record. The temperature trend in
the adjusted record agrees closely with the trend at the
comparison stations but departs substantially from the true
temperature trend.

Figure 11. Example of alteration of temperature trend (in
degrees C) caused by the station inhomogeneity correction
of Lu et al. [2005]. A station history with a reliable record is
assumed to have a change point associated with a station
move in 1955. Although the station’s data does not indicate
a discontinuity at 1955, the inhomogeneity correction
enforces a jump that causes the station data record to agree
as closely as possible to a linear trend over the period of
record.
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discontinuity corrections or urbanization corrections, should
not alter the estimated regional or global trends. However,
because the data are not independent, the accuracy of such
estimates will be lower than expected. Furthermore, because
the ‘‘corrected’’ data incorporates a weighted average of
trends from neighboring stations, the variability of the
climate trend measurements will be underestimated. These
two effects, taken together, imply that existing estimates of
the accuracy of global and regional climate change meas-
urements based on surface data, such as Folland et al.
[2001], while essential, are likely to underestimate the true
uncertainty. The artificially suppressed station-to-station
variability in long-term climate variations in the USHCN
data may be one reason why Vose and Menne [2004], using
USHCN data, estimated far fewer stations were needed to
monitor climate change than did Janis et al. [2004], who
used a more complete and less homogenized source of
climate data. The Jones [1994] data set includes homoge-
neity corrections based on some stations with previous
homogeneity corrections, further suppressing the indepen-
dence of the data.
[47] Homogenization of the climate record also requires

adjustments for changes in instrumentation. Considerable
efforts to homogenize land surface temperature data have
included, for example, an adjustment for nonclimatic influ-
ences on the air sampled by surface thermometers [Peterson
et al., 1998a, 1998b]. Although it is likely that ‘‘the random
component of such errors tends to average out in large area
averages and in calculations of temperature change over
long periods’’ [Hansen et al., 1999], one issue is whether or
not the changes of instrumentation through history are
randomly distributed on a spatial and temporal basis. One
major concern is that the instruments used in observing
surface temperature were upgraded generation by genera-
tion and region by region. In many cases the exposure of
instruments and station sites are changed from year to year
and from site to site.
[48] Early attention to this problem came from the former

president of the Royal Meteorological Society, Edward
Mawley [Mawley, 1897] and former chief of the Climato-
logical Division of the U.S. Weather Bureau, P. C. Day
[Flora, 1920]. Mawley concluded on the basis of his 5-year
study that uniform instrument type and instrument exposure
were required not only for one nation but also throughout
the world after he identified air temperature biases among
six different temperature exposures.
[49] Flora’s [1920] results indicated that the mean daily

range of temperatures (maximum minus minimum) in
‘‘Sun’’ shelters located in an open area were 3.6 to 4.4�F
greater than for those located in the ‘‘shade’’ (located in the
shade of trees but collocated within 150 feet of the ‘‘Sun’’
shelters and with free circulation of air) [see Flora, 1920,
Figures 10 and 11] in the summertime when the trees were
in full leaf and 0.8 to 1.8�F in the wintertime when the trees
were bare. These findings were the result of analyzing over
2 years of continuous side-by-side measurements. The
instruments used in these two experiments are very similar
to the instruments used today, that is, the Cotton Region
Shelter (CRS) along with liquid-in-glass maximum and
minimum thermometers.
[50] About 100 years later, Gallo [2005], Davey and

Pielke [2005], and Hubbard and Lin [2006] examined

similar issues and expressed similar concerns for the land
surface temperatures used in assessing climate change. The
Global Historical Climatology Network (GHCN) is a wide-
ly used monthly mean surface temperature data set, and it
includes about 1200 USHCN stations, which are mostly
rural, and about 370 U.S. first-order stations, which are
mostly airport stations in the United States and U.S.
territories in the Pacific Ocean [Hansen et al., 1999].
[51] The most significant change in surface temperature

instrumentation in the USHCN took place in the middle and
late 1980s when the standard CRS was replaced with the
Maximum-Minimum Temperature systems (MMTS) (these
stations represent over 60% of all USHCN stations). On the
other hand, the most common temperature instrument
changes at the U.S. first-order stations in the last century
occurred with the successive usage of the CRS, the HY-06x
hygrothermometer in the early 1960s, the HY-08x hygro-
thermometer in the mid-1980s, and the HO-1088 Automat-
ed Surface Observing System (ASOS) hygrothermometer in
the mid-1990s (these stations will hereafter be referred to as
ASOS stations). Among the ASOS stations, use was made
of three different HY-06x series and two different HY-08x
series which were deployed in sequence. Homogeneity
adjustments do not fully address the effects of these two
instrument series in the long-term time series of tempera-
ture. The GHCN includes the instrument change adjust-
ments of CRS versus MMTS on the basis of the statistical
results [Quayle et al., 1991]. No instrument change adjust-
ments other than the MMTS adjustment were directly
conducted in the GHCN and USHCN.
[52] In order to investigate the land surface temperature

uncertainties associated with the instrument changes, two
subsets of the USHCN monthly maximum and minimum
temperature data were collected for a comparison of MMTS
versus CRS and of ASOS versus CRS. For the MMTS
comparison our selection of both CRS and MMTS stations
was limited to those that had no station moves, no instru-
ment height changes, and no instrument changes except for
the MMTS during the period of 1970 to 2003. The data we
used were from the USHCN data set that had been adjusted
for time of observation (TOB) bias. The MMTS stations
were also confined to stations that had a length of monthly
time series on each side of the MMTS transition of more
than 171 months.
[53] We found 163 CRS and 116 MMTS stations from the

1221 U.S. HCN stations that met our criteria. Figure 12
shows average difference between the MMTS and CRS
stations. These values were detected using the 342 contin-
uous monthly observations, in which the MMTS was
installed in month 1. The method was the same as Quayle
et al. [1991] with an anomaly correlation coefficient weight-
ed average for interpolating surrounding CRS stations. The
weighting method stems from the standard normal homo-
geneity test (SNHT) [Peterson et al., 1998a]. The most
probable discontinuity in the series was identified in this
study as a change point if the instrument change to MMTS
was coincident as confirmed by the metadata. Using this
criterion, the number of stations identified as inhomoge-
neous were 34 for maximum temperature and 24 for
minimum temperature. On the other hand, the numbers of
stations identified as homogenous were 27 for maximum
and 24 for minimum temperature series.
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[54] The step changes due to the instrument changeover
in Figure 12 are quite different in magnitude from the two
constants �0.38 and +0.28�C universally applied in the
GHCN or USHCN data sets, and they vary considerably.
Exact agreement is not expected because only stations with
significant change points are included here. The result
suggests that some MMTS stations could have more than
1�C offsets in the inhomogeneous maximum temperatures
but not necessarily in the minimum temperatures at the
same stations. The reverse was found for the inhomoge-
neous minimum stations. Some MMTS stations did not
show any detected discontinuities due to the MMTS
changeover.
[55] For the ASOS stations, there are no instrument

change adjustments in the GHCN data set although previous
studies found that the original HO-083 hygrothermometers
showed a significant warming bias up to 1 to 2�C in
monthly mean temperatures [Gall et al., 1992; Jones and
Young, 1995] due to an extra heating source inside the
hygrothermometer and an insufficient aspiration rate.
Figures 13 and 14 illustrate the paired station difference

between the ASOS and CRS stations for raw and fully
adjusted data in the monthly USHCN. The differences take
on their own temporal pattern from paired station to paired
station and from maximum to minimum temperature.
[56] The current adjustments made in USHCN did result

in relatively small discontinuities in some segments; how-
ever, discontinuities clearly remain when there was a
transition of instruments even in the fully adjusted differ-
ence series for both pair stations, not only by visual
examination but also by the SNHT statistical method. The
warming biases identified by Gall et al. [1992] and Jones
and Young [1995] for the original HO-083 were not found at
the Lafayette ASOS station and at the Winnemucca station
(Figure 14).
[57] Similarly to the MMTS changeover [Hubbard and

Lin, 2006], this result suggests that although the instrument
change may be indicative of the position of discontinuity,
the magnitude probably depends on both the instrument
transition itself and the micrometeorologically significant
changes associated with coincident site moves, which in
some cases enhance the bias and sometimes cancel the bias

Figure 12. Average difference (Maximum-Minimum Temperature systems (MMTS)–Cotton Region
Shelter (CRS)) of 34 maximum temperature time series and 24 minimum temperatures series. (left)
Maximum temperature difference. (right) Minimum temperature difference. (top) Inhomogeneous
maximum temperature stations (a and b). (bottom) Stations with inhomogeneous minimum temperatures
(c and d).

D24S08 PIELKE ET AL.: UNRESOLVED TEMPERATURE TRENDS ISSUES

12 of 26

D24S08



depending on the specific microclimate variations in the
vicinity of the ASOS station.
[58] There are therefore significant uncertainties intro-

duced from each step of the homogenization adjustment.
These likely vary geographically.
[59] Another recent paper on the issue of problems with

data homogenization is that of Runnalls and Oke [2006].
They concluded that

‘‘Gradual changes in the immediate environment over time, such as
vegetation growth, or encroachment by built features such as paths,
roads, runways, fences, parking lots, and buildings into the vicinity of
the instrument site typically lead to trends in the cooling ratio series.
Distinct régime transitions can be caused by seemingly minor instru-
ment relocations (such as from one side of the airport to another, or
even within the same instrument enclosure) or due to vegetation
clearance. This contradicts the view that only substantial station
moves, involving significant changes in elevation and/or exposure
are detectable in temperature data.’’

[60] In another paper, Changnon and Kunkel [2006]
examined discontinuities in the weather records for Urbana,
Illinois; a site with exceptional metadata and concurrent
records when important changes occurred. They identified a
cooling of 0.17�C caused by a nonstandard height shelter of
3 m from 1898 to 1948, a gradual warming of 0.9�C as the
University of Illinois campus grew around the site from

1900 to 1983, an immediate 0.8�C cooling when the site
moved 2.2 km to a more rural setting in 1984, and a 0.3�C
cooling in a shift to MMTS in 1988. In this case the
magnitude of the discontinuities could be accurately deter-
mined from concurrent observations rather than from nearby
stations. The experience at the Urbana site reflects the kind
of subtle changes described by Runnalls and Oke [2006]
and underscores the challenge of making adjustments to a
gradually changing site.

7. Degree of Independence of Land Surface
Global Surface Temperature Analyses

[61] The raw surface temperature data from which all of
the different global surface temperature trend analyses are
derived are essentially the same. The best estimate that has
been reported is that 90–95% of the raw data in each of the
analyses is the same (P. Jones, personal communication,
2003). That the analyses produce similar trends should
therefore come as no surprise. Indeed, this overlapping of
raw data between different analyses of multidecadal surface
temperature trends is an issue which has not received
adequate scrutiny with respect to the value added of more
than one analysis.

Figure 13. Time series of pair station difference of monthly mean maximum (Tx) and minimum (Tn)
temperatures between the Automated Surface Observing System (ASOS) and CRS stations from 1950 to
2003 in Lafayette station with a 26-km separation and �5-m elevation difference from the CRS station in
Louisiana. Vertical lines indicate dates of instrument changes for HY-06x (yellow), HY-08x (cyan), and
HO-1088 (red). Horizontal lines represent the averages (solid green) and trends (solid red) in each
specific instrument segment. The numbers in boxes are values of segment average (top in green, �C) and
segment trends (bottom in red, �C/century).
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[62] Surface station density is an important factor in the
monitoring of surface temperature trends [Janis et al.,
2004], as it relates directly to the independence of the
aforementioned surface temperature trend analyses. In par-
ticular, the robustness of these separate trend analyses
decreases as station density decreases as evaluated on a
global 5 degree by 5 degree grid (C. A. Davey and R. A.
Pielke Sr., Comparing station density and reported temper-
ature trends for land surface sites, submitted to Climatic
Change, 2007; hereinafter referred to as Davey and Pielke,
submitted manuscript, 2007). The highest station densities
are found over the contiguous United States, Europe, and
portions of East Asia [Vose and Menne, 2004; Davey and
Pielke, submitted manuscript, 2007]. Tropical regions, how-
ever, have sparser surface station coverage, so the robust-
ness of warming estimates in these regions is relatively
small until further surface temperature data can be obtained.
Inadequate sampling of tropical land areas might be a
significant factor in the CCSP report (2006) finding that
‘‘the majority of observational data sets show more warm-
ing at the surface than in the troposphere. . .’’ while ‘‘all
model simulations show more warming in the troposphere
than at the surface.’’
[63] Additionally, the northern and southern polar

regions, where some of the largest warming trends are
projected to occur, have some of the lowest station densities
(Figure 15). This sparse sampling reduces the robustness of
the temperature trend analyses for these regions. In large
portions of the polar regions, there are no surface stations

providing independent verification of modeled temperature
trends.
[64] The degree of robustness among the available sur-

face temperature trend analyses also varies as a function of
continent, as indicated by continental variations in station
density (Figure 16). For example, although trend analyses
are likely robust in portions of North America and Europe
(Figures 16a and 16c) because of higher station densities,
robustness could be questioned in portions of Africa and
Asia, where significant portions of these regions have little
or no surface station coverage.

8. Relationship Between In Situ Surface
Temperature Observations and the Diagnosis of
Surface Temperature Trends From Reanalyses

[65] An independent methodology can be used to further
assess the ability of in situ surface air temperature trend data
to robustly assess spatially representative multidecadal
surface temperature trends. Kalnay and Cai [2003] (here-
after referred to as KC) introduced an alternative approach,
namely, ‘‘observation-minus-reanalysis’’ (OMR) method, to
estimate the impact of urbanization and land use. The
rationale for this approach is that a reanalysis (a statistical
combination of a 6-h forecast and observations), such as the
NCEP-NCAR reanalysis [Kalnay et al., 1996], is not
sensitive to surface observations over land. In the compu-
tation of land surface energy transfers the model would

Figure 14. The same as Figure 12 but for Winnemucca station with a 27-km separation and �28-m
elevation difference from the CRS station in Nevada.
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Figure 15. Summary histograms of 1979–2004 surface temperature trends for latitude bands of
(a) >50N, (b) 20–50N, (c) 20N–20S, (d) 20–50S, and (e) >50S. Dark gray bars are for grid cells
averaging less than one surface station for 1979–2004, black bars are for grid cells averaging between
one and two surface stations for 1979–2004, and light gray bars are for grid cells averaging over two
surface stations for 1979–2004. The number of grid cells with no stations is indicated for each panel.
From Davey and Pielke, submitted manuscript (2007).

D24S08 PIELKE ET AL.: UNRESOLVED TEMPERATURE TRENDS ISSUES

15 of 26

D24S08



Figure 16. Summary histograms of 1979–2004 surface temperature trends for (a) North America,
(b) South America, (c) Europe, (d) Africa, (e) Asia, and (f) Australia/Oceania. Dark gray bars are for grid
cells averaging less than one surface station for 1979–2004, black bars are for grid cells averaging
between one and two surface stations for 1979–2004, and light gray bars are for grid cells averaging over
two surface stations for 1979–2004. The number of grid cells with no stations is indicated for each panel.
From Davey and Pielke, submitted manuscript (2007).
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‘‘forget’’ very rapidly surface temperature observations,
which are not explicitly used in reanalysis data assimilations.
[66] The reanalysis, combined with its model parameter-

izations of surface processes, creates its own estimate of
surface fields from the upper air observations. Furthermore,
because of the role of horizontal advection and information
propagation by the global 6-h forecast used as a first guess
in the assimilation of observations, the surface parameters in
a reanalysis have less dependence on local characteristics
than the actual surface observations. As a result, the
reanalysis is not able to include surface urbanization or
land use effects even though it should show climate change
effects to the extent that they affect the observations above
the surface [Kistler et al., 2001]. Moreover, Cai and Kalnay
[2005] showed that a reanalysis made with a frozen model
(as in the case of the NCEP/NCAR reanalysis) can still
detect an anthropogenic trend present in observations as-
similated by the reanalysis system essentially at its full
value provided abundant observations are used by the data
assimilation system. It follows that it would be possible to
attribute the differences between monthly or annually aver-
aged surface temperatures derived from observations and
from reanalysis primarily to urbanization/land use changes
[Kalnay et al., 2006], and other local land cover effects,
although a portion of differences might also be due to errors
in interpolating reanalysis data to instrument height, partic-
ularly in the stable nocturnal boundary layer.
[67] Following KC, Lim et al. [2005] compared the

surface temperature trends in two reanalyses, NCEP/NCAR

(NNR) and ERA40, with observed extracted from the
Global Historical Climatology Network (GHCN) [Peterson
and Vose, 1997] and Climatic Research Unit (CRU) [Jones
and Moberg, 2003]. Key results found by Lim et al. [2005,
2007] are
[68] 1. Surface temperature anomalies averaged over the

Northern Hemisphere (NH) derived from three reanalyses
(ERA40, NNR, and NNR II (R2)) and two observations
show a gradual warming trend both for reanalyses and
observations (Figure 17). It is also evident that the obser-
vations exhibit a larger warming trend compared to rean-
alyses (Figure 17a). As a result, OMRs show a positive
trend (Figure 17b), with a larger trend using NNR or R2
than ERA40. The smaller difference between the ERA40
and the observations than that between the NNR and
observations arises from the fact that the ERA40 includes
the radiative effect of increasing CO2 and also indirectly
assimilates surface air temperatures, by using them to
initialize the soil temperature and moisture, whereas NNR
does not (therefore ERA40 does not permit an independent
assessment of the surface temperature trends).
[69] 2. Scatterplot of the decadal OMR trends at each grid

with the annual mean Normalized Difference Vegetation
Index (NDVI) [Bounoua et al., 1999] show that the decadal
OMR trend (Figures 18c and 18e), respectively, is inversely
proportional to the NDVI (r = �0.32, r = �0.67), demon-
strating that the strong (weak) surface temperature increase
response to the surface barrenness (greenness) is adequately
represented by OMR [Lim et al., 2007]. The reason for the

Figure 17. Time series (3-year running mean) of (a) land surface temperature anomalies (�C) derived
from Climatic Research Unit (CRU), Global Historical Climatology Network (GHCN), ERA40, NCEP/
NCAR (NNR), and R2 and (b) the observation-minus-reanalysis (OMRs). Anomaly values are obtained
by removing the 30-year mean from 1961 to 1990, and they are further adjusted to have zero mean over
the last 10 years (1993–2002).
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Figure 18. Scatter diagram between the Normalized Difference Vegetation Index (NDVI) and the
decadal surface temperature trend of (a) GHCN, (b) ERA40, (c) GHCN – ERA40, (d) NNR, and (e) GHCN
– NNR over (0�–360�E)� (20�S–50�N) region. Data have been spatially smoothed to remove the extreme
outliers. Abscissa denotes the NDVI, whereas the ordinate denotes the decadal trend. Here r is the
correlation coefficient of all the data points.
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clearer response for GHCN – NNR is the absence of
surface information in the NNR data assimilation procedure.
However, decadal trends in GHCN observation (Figure 18a)
show no significant relationship with the NDVI (r = �0.07),
presumably because they reflect all climate change signals.
[70] The trend in NNR (Figure 18d) is significantly

proportional to the vegetation index (r = 0.56), indicating
that it is missing the relationship of a strong (weak) surface
temperature increase response to barrenness (greenness)
with low (high) vegetation index [Xue and Shukla, 1993;
Dai et al., 2004; Hales et al., 2004]. This lack of repro-
duction of surface climate change signal is also present to a
lesser extent in ERA40 (r = 0.17) (Figure 18b).
[71] 3. The decadal OMR trends (Figure 19b) [Lim et al.,

2005] as a function of land type, as obtained from Moderate
Resolution Imaging Spectroradiometer (MODIS) [Friedl et
al., 2002], and the trend values summarized in Table 2 [Lim
et al., 2005] show that the order of magnitude in warming
trends is barren area (�0.3�C/decade) > big urban area
(0.2 	 0.25�C/decade) > small urban area 
 agricultural

area 
 mixed forest (	0.2�C/decade) > broadleaf forest
(<0.1�C/decade). OMR trends reproduce the conclusion of
previous modeling works that the barren or urban surface
with limited soil moisture exerts a strong surface temperature
increase response because of a weaker evaporative cooling
process [Hales et al., 2004; National Research Council

Figure 19. (a) Land cover map derived from Moderate Resolution Imaging Spectroradiometer
(MODIS). Grid boxes in which the dominant land cover type out of 16 types covers less than 40% are
colored black and not used in the analysis presented in Figure 19b. (b) Mean OMR trend of ‘‘GHCN-
minus-NNR’’ (red) and ‘‘GHCN-minus-ERA40’’ (blue) per decade (�C/decade) over the Northern
Hemisphere as a function of land types. The major land types are 1: evergreen needle-leaf forest, 2:
evergreen broadleaf forest, 3: deciduous needle-leaf forest, 4: deciduous broadleaf forest, 5: mixed forest,
6: closed shrubland, 7: open shrubland, 8: woody savannah, 9: savannah, 10: grass, 11: wetland, 12:
agricultural land, 13: urban, 14: natural vegetation mosaic, 15: snow, and 16: barren or sparsely
vegetated. Urban, wetland, closed shrub land, and natural vegetation mosaic are absent in both panels
because none of these four categories has the largest percentage coverage in any of the 5� � 5� grid
boxes. Solid squares represent the mean OMR trends, and vertical lines represent the error bars at 95%
significance level. The OMR trend per decade is obtained by taking the average of two decadal mean
difference (1990s–1980s and 1970s–1960s).

Table 2. Decadal OMR Trends (GHCN – NNR, CRU – NNR)

Averaged Over Five Land Cover Categoriesa

Land Cover
Category

GHCN – NNR,
�K/decade

CRU – NNR,
�K/decade

Barren area 0.33 0.34
Big urban area 0.24 0.21
Small urban area 0.19 0.19
Agricultural area 0.18 0.20
Broadleaf forest area 0.03 0.02

aFrom Lim et al., 2005. OMR: observation-minus-reanalysis; GHCN:
Global Historical Climatology Network; NNR: NCEP/NCAR; CRU:
Climatic Research Unit (CRU).
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(NRC), 2005] whereas the highly vegetated areas such as
low-latitudinal broadleaf forest do not because of the high
soil moisture and strong transpiration/evaporative cooling.
[72] Consequently, the overall results strongly support that

the OMR does reflect the impact of different land cover
types on surface climate change. As a result, the OMR
approach facilitates isolating the impact of independent land
cover types on long-term surface temperature trends by
removing the large-scale temperature change signal as
recorded in the reanalysis from the surface observation.
[73] The North American Regional Reanalysis (NARR)

(http://www.emc.ncep.noaa.gov/mmb/rreanl/) [Mesinger et
al., 2004] can be used to further assess the spatial repre-
sentativeness of the observed surface temperature data.
There is evidence that the surface data has large local
influences, as reported at http://wwwt.emc.ncep.noaa.gov/
mmb/rreanl/narr.ppt#296,15 in slide 15 where their reanal-
ysis deteriorated significantly when 2-m air temperatures
were assimilated (F. Mesinger, personal communication,
2004). One explanation for this deterioration is that the
2-m temperatures are not spatially representative.
[74] This can be seen in the example of 1979–2004

trends in the 2-m NARR surface temperatures over the
United States (Figure 20a). The trends possess regional
variations but do not include known local-scale variations
or strong gradients that occur in small areas, especially in
the western United States (Figure 20a), such as documented

by Pielke et al. [2002, 2007]. The spatial changes obtained
by computing the differences over 2 decades (Figure 21a)
show the same patterns. As expected, the 700-mb and
500-mb trend distribution depict more uniform patterns
(Figures 20b, 20c, 21b, and 21c). In addition, while an increas-
ing trend is observed for all three levels, the 2-m anomalies
exhibit a lower trend during the last decade, as expressed by the
1979–1990 and the 1991–2004 trends (Figure 22).
[75] The NARR data set appears to be coherent, with

increasing temperature trends observed at all levels, but the
trends in the 2-m surface temperature exhibit greater spatial
variability and larger amplitudes compared to the 700 mb
and 500 mb temperatures (Figures 20a, 20b, and 20c and
Table 3). In addition, some prominent features of the 2-m
trends, such as the lowest values over Colorado and
Montana and the strong gradient over central California,
are also found at the 700 mb level. The spatially averaged
temperature anomalies at all three levels (Figures 22–24)
are characterized by generally well-correlated interannual
fluctuations. The intermediate 700 mb level is well-corre-
lated with both 2 m (correlation coefficient: 0.82) and
500 mb (0.89).
[76] To examine the variation of the linear trends over

time and their consistency, linear trends for the 10-year
running windows are computed for all levels (Figure 25). At

Figure 20. The 1979–2003 North American Regional
Reanalysis (NARR) temperature trends over the United
States at (a) 2 m; (b) 700 mb; and (c) 500 mb.

Figure 21. 1979–2004 changes in NARR temperatures.
Spatial patterns of change are obtained computing differ-
ences between 1979–1990 and 1991–2004 at (a) 2 m; (b)
700 mb; and (c) 500 mb.
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the 2-m level it appears clearly that the large negative trends
of the early 1990s account for the low value of the 1991–
2004 trend mentioned earlier (Figure 22). At the 700 mb
level the trends for the 10-year running average windows are
much less variable on a decadal timescale. Regarding the
partial trends, there is still a clear contrast between the
relatively low values of the first decade and the peak of
the late 1990s (up to 0.86�C), which illustrates that the 1991–
2004 period has a value more than 3 times higher than that of
the previous period. The 500 mb level exhibits similar
patterns. Overall, Figure 25 not only illustrates the variation
of the different linear trends over time but highlights the
correlation of anomalies at different levels. The 2-m temper-
atures do have larger temporal variations in the earlier part of
the record.
[77] To evaluate the influence of the June 1991 to June

1993 Pinatubo volcanic eruption, this time period is re-
moved from the time series. The cooling trend that has been
observed during this period has been explained by the
release of a huge amount of sulfur dioxide in the atmosphere
[Parker et al., 1996]. The removal of this time period results
in higher trend values (Table 4), especially at the 2-m level
(a 16.18% increase for the overall period and a 57%
increase during the 1993–2004 period). This confirms the
robustness of the NARR data set, which was able to capture
the cooling trend at all three levels, as shown by the related
negative anomalies in Figures 22–24.
[78] The comparison between HCN surface temperature

observations and the NARR 2-m temperature across the
continental United States is a recommended next step in this
analysis and will be reported in a subsequent study.

9. Influence of Land Use/Land Cover Change
on Surface Temperature Trends

[79] With the exception of urban effects the influence of
land use/land cover (LULC) change on surface temperature
trends has been largely overlooked in multidecadal assess-
ments. The influence of local landscape on surface temper-
ature observations can be significant even without

landscape change. As shown, for example, by Hanamean
et al. [2003], variations in the amount of transpiring
vegetation through the growing season can affect the
observed minimum and maximum temperatures. Hanamean
et al. found that the percent of variance in surface temper-
ature explained by variations in the amount of transpiring
vegetation increased by a mean of 6% for the maxima and
8% for the minima over the period March–October when
the amount of green vegetation was quantitatively included
in the analysis.
[80] Christy et al. [2006], in an extensive and detailed

analysis, showed that temperature trends in California
varied significantly by region evidently due to land use
changes. Comparison of trends between the central valley,
which underwent major land use change, and those in the
foothills and Sierras, with less land use change, showed
marked differences. Central valley temperatures had signif-
icant nocturnal warming and daytime cooling over the
period of record. The conclusion is that as a result of
increases in irrigated land, daytime temperatures are sup-
pressed due to evaporative cooling, and nighttime temper-
atures are warmed in part due to increased heat capacity
from water in soils and vegetation. Mahmood et al. [2006b]
also found similar results for irrigated and nonirrigated areas
of the northern Great Plains.
[81] This issue is examined further using the U.S. Climate

Normals of temperature and precipitation [National Climatic
Data Center (NCDC), 2002] data. This is the data set of
climatological values of temperature and precipitation for
the most recent 30-year interval (presently, 1971–2000). In

Figure 22. 1979–2004 anomalies of spatially averaged NARR monthly temperatures (level: 2 m) over
the United States.

Table 3. 1979–2003 NARR Temperature Trends Over the United

States: Value Range and National Averagea

Level
Trend Value

Range
National Average,
United States

Temperature at 2 m �0.244–1.284 0.554
Temperature at 700 mb 0.127–0.582 0.445
Temperature at 500 mb 0.163–0.399 0.301

aNARR: North American Regional Reanalysis. Units are �C/10 years.
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addition to defining ‘‘normal’’ (meaning ‘‘average’’ [Pielke
and Waage, 1987]) temperatures for stations included in the
data set, the temperature data are critical to the development
of several derivative data sets, including frost/freeze proba-
bilities and heating and cooling degree days.
[82] Hale et al. [2006] examined temperature trends at the

normals stations before and after periods of dominant
LULC change. The analysis included temperature data for
stations near sample blocks in which LULC has been
determined for five dates during the period 1973 to 2000
as part of a study of LULC trends (USGS Land Cover
Trends Project) within the conterminous United States
[Loveland et al., 2002]. The normals temperature data set
includes several adjustments ‘‘made to the data before the
normals were calculated’’ [NCDC, 2002]. These adjust-
ments include those for time of observation biases [Karl
et al., 1986] and quality control [Peterson et al., 1998a].
Additionally, temperature inhomogeneities in the data aris-
ing from changes in station location or instrumentation have

been addressed based on methods described by Peterson
and Easterling [1994] and Easterling and Peterson [1995].
[83] Eight additional ecoregions have been analyzed

beyond the original 23 (out of 84 ecoregions within the
conterminous United States) of the Hale et al. [2006]
analysis. With these additional eight ecoregions an addi-
tional 76 normals stations were analyzed that intersected
Trends Project LULC analysis blocks. The results from the
additional eight ecoregions and 76 normals stations (Table 5)
are very similar to the previous results reported by Hale et
al. [2006].
[84] Temperature trends were primarily insignificant prior

to the period during which the greatest single type of LULC
change occurred around normals stations. Additionally,
those trends that were significant were generally divided
equally between warming and cooling trends (Table 5).
However, after periods of dominant LULC change, signif-
icant trends in minimum, maximum, or mean temperature
were far more common, and 90% or more of these signif-
icant trends were warming trends.

Figure 23. Same as Figure 22 except for level: 700 mb.

Figure 24. Same as Figure 22 except for level: 500 mb.
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[85] The average temperature trend for the stations with
significant trends in mean temperatures prior to dominant
land cover change was 0.08�C/decade, while the trend after
the dominant change in land cover was 1.58�C/decade
(Figure 26). These results are similar to those observed by
Hale et al. [2006] and affirm the possibility that nearby
changes in LULC may be influencing the temperature
trends observed at normals temperature stations.
[86] The impact of land surface changes on the daytime

maximum temperatures was further diagnosed by develop-
ing sensitivity experiments with a coupled land surface
boundary layer model. These experiments included the
impact of change in the vegetation cover and density as
well as the impact of drought or soil moisture availability at
the monitoring site. The model was tested for sites over 10
soil textures (Clay Loam: CL; Loam: Lm; Loamy Sand: LS;
Sand: Sd; Sandy Clay: SC; Sandy Clay Loam: SCL; Sandy
Loam: SL; Silty Clay: SIC; Silty Clay Loam: SICL; and
Silty Loam: SIL). For each of the sites/soil textures,
vegetation cover, Leaf Area Index (LAI), and soil moisture

were systematically varied. Vegetation cover varied as 10%,
40%, 80%, and 100%. The LAI was varied from 0.5, 2, 4,
and 6. The soil moisture availability was varied from 10%,
33%, 67%, and 90% of field capacity (which depended on
soil texture). The results from these 120 model runs are
summarized in Figures 27a–27c. Model results further
confirm that the maximum daytime temperature is highly
sensitive to the soil texture, the availability of soil moisture,
and the vegetation cover or density. Depending on the soil
texture, the air temperature can vary by 2–3�C for each of
the variables. With increasing vegetation the emissivity of
the landscape as well as the albedo and soil moisture
availability changes and further leads to modified daytime
temperatures.

10. Discussion and Conclusions

[87] This paper has identified a range of issues with the
use of the existing land surface temperature data to assess
multidecadal trends in surface air temperature. Since the
analyses from such data are so important in national and
international assessments of climate change (e.g., see CCSP
report (2006) and National Research Council (NRC)
[2005]), the issues that we discuss in this paper need to
be evaluated in depth.
[88] These issues, which are either not recognized at all in

the assessments or are understated, include the identification

Figure 25. Trends of 10-year running windows for the NARR temperature anomalies.

Table 4. Temperature Anomaly Trends: Comparison Between the

Full 1979–2004 Period and the 1979–2004 Minus the June 1991

to June 1993 Volcanic Episode (Pinatubo Cooling)a

Level Period
Full Period
�C/10 years

Pina
�C/10 years Change, %

Overall 0.204 0.237 16.18
2 m 1979–1990/1991 0.408 0.484 18.63

1991/1993–2004 0.228 0.360 57.89
Overall 0.312 0.348 11.54

700 mb 1979–1990/1991 0.132 0.192 45.45
1991/1993–2004 0.480 0.602 25.42
Overall 0.192 0.216 12.50

500 mb 1979–1990/1991 0.192 0.252 31.25
1991/1993–2004 0.312 0.372 19.23

aThe volcanic episode has also been removed from the partial trends. Full
period refers to the whole study period: 1979–2003, and its subperiod
values refer to 1970–1990 and 1991–2004. Pinatubo refers to the whole
period minus the Pinatubo volcanic episode, and its subperiod values refer
to January 1979 to May 1991 and July 1993 to December 2004. In all cases
the removal of the volcanic episode results in a positive change (higher
trend values).

Table 5. Comparison of Temperature Trend Results for Those

Stations Included by Hale et al. [2006] With an Additional Eight

Ecoregions and 76 Additional Normals Stations Included in the

Analysisa

Trend Prior to LULC
Change

Trend After LULC
Change

Neg Pos Neg Pos

Min 32 33 2 110
Max 9 12 8 98
Mean 11 20 3 110

aThe number of stations with significant trends (positive or negative),
prior to or after land use/land cover (LULC) changes, are indicated.
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of a warm bias in nighttime minimum temperatures, poor
siting of the instrumentation to measure temperatures, the
influence of trends in surface air water vapor content on
temperature trends, the quantification of uncertainties in the
homogenization of surface temperature data, and the influ-
ence of land use/land cover change on surface temperature
trends. The degree of independence of the different analyses
(e.g., GISS; NCDC; and the UK Met Office) also needs to
be quantified. The evaluation of the relationship between in
situ surface temperature observations and the diagnosis of
surface temperature trends from reanalyses will also permit
a quantitative evaluation of the accuracy of the surface
temperature trends in diagnosing the lower tropospheric
temperature trends.
[89] A major conclusion is that, as a climate metric to

diagnose climate system heat changes (i.e., ‘‘global warm-
ing’’), the surface temperature trend, especially if it includes
the trend in nighttime temperature, is not the most suitable
climate metric. As reported by Pielke [2003], the assessment
of climate heat system changes should be performed using
the more robust metric of ocean heat content changes
rather than surface temperature trends. If temperature
trends are to be retained in order to estimate large-scale
climate system heat changes (including a global average),

Figure 26. Frequency distribution of normals stations and
temperature trends for those stations with significant mean
temperature trends before (hashed bars) and after (solid
bars) dominant land cover changes.

Figure 27. Results from the 120 model runs described in the text for the effect of Leaf Area Index (LAI)
and different soil types on temperature.
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the maximum temperature is a more appropriate metric
than using the mean daily average temperature. This paper
presents reasons why the surface temperature is inadequate
to determine changes in the heat content of the Earth’s
climate system.
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