
UNRESTRICTED GAPPING GRAMMARS* 

Fred Popowich 

Natural Language Group 
Laboratory for Computer and Communications Research 

Computing Science Department 
Simon Fraser University 

Burnaby. B.C.. CANADA V5A 1S6 

ABSTRACT 

Since the introduction of metamorphosis grammars 
(MGs) 'Colmerauer. 1978). with their associated type 0-like 
grammar rules, there has been a desire to allow more 
general rule formats in logic grammars Gaps, which refer 
to strings of unspecified symbols, were added to the MG 
rule, resulting in extraposition grammars (XGs) (Pereira, 
1981) and gapping grammars (GGs) (Dahl and Abramson, 
1984). Unrestricted gapping grammars, which provide an 
even more general rule format, possess rules of the form 
"a - > B" where a and /3 many contain any number of 
terminal nonterminal or gap symbols in any order. FIGG. 
a Flexible Implementation of Gapping Grammars, is an 
implementation of a large subset of unrestricted GGs 
which allows either bottom-up or top-down parsing of 
sentences. This system provides more built in control 
facilities than previous logic grammar implementations, 
which allows the user to restrict the applicability of the 
rules, and to create grammar rules that will be executed 
more efficiently 

1. INTRODUCTION 

Gaps have been introduced into logic grammars, 
resulting in extraposition grammars (Pereira. 1981) and 
gapping grammars (Dahl and Abramson. 1984). to express 
a more general grammar rule that can be interpreted with 
"reasonable" efficiency by a computer. The rules of these 
grammars are of the form "n/. a > B". where ni is a 
nonterminal symbol called the head, and a and B may 
contain terminal symbols, nonterminal symbols, procedure 
calls, and gap symbols. Fxtraposition grammars are able 
to provide concise descriptions for left extraposition as 
found in sentences like the mouse that the cat chased 
squeaked. However, extraposition grammar rules are more 
restrictive than those of gapping grammars, since the gaps 
referenced on the left hand side of the rule must be 

This work was supported by the Natural Sciences and 
Engineering Research Council of Canada under Operating 
Grant no. A4309, Installation Grant no. SMI-74 and 
Postgraduate Scholarship #800. 

"Gap symbols are used to reference sequences of 
unspecified symbols. 

repositioned in the same order at the end of the right 
hand side Also, the contents of multiple gaps must be 
nested (one gap totally contained within another), or non-
mtersecting. With gapping grammars, concise descriptions 
of coordination, free word order, and right extraposition 
can be obtained (Dahl. 1984). 

Unrestricted gapping grammars extend gapping 
grammars by the removal of the restriction that the left 
hand side ol all rules must start with a nonterminal 
symbol. Consequently, the unrestricted gapping grammar 
rules resemble "a — > 0". where a and B may contain 
terminals, nonterminals, gaps and procedure calls in any 
order. This type of rule facilitates easier description of 
unrestricted left movement of symbols 

Unfortunately, the use of gaps can result in less 
efficient computer processing of the rules. Consequently, 
many applications of gapping grammars have not been 
explored except from a theoretical point of view. One 
method to circumvent this "efficiency problem" is to add 
procedural control to the otherwise declarative grammar 
rules. (The cut facility of Prolog (Clocksin and Mellish. 
1981) is an example of this procedural intervention). 
FIGG. a Flexible Implementation of Gapping Grammars, is a 
programming language that incorporates procedural control 
to process many unrestricted gapping grammars with 
tolerable response time in an interactive environment. 
Using FIGG, the different forms of procedural control can 
be examined for their uses with unrestricted gapping 
grammars. 

2- UNRESTRICTED GAPPING GRAMMARS 

Unrestricted gapping grammars. like other logic 
grammars, use logic terms as grammar symbols. A logic 
term consists of a functor, which may possess zero or 
more arguments. Each functor possesses an order, which 
corresponds to the number of arguments, and is an 
element of some finite set F. The arguments, which are 
enclosed in parenthesis and separated by commas, may be 
logic terms, or variables, H [F] is used to refer to the set 
of logic terms that can be constructed from F. In this 
paper, elements of F will be represented by words starting 
with a lower case letter, or enclosed in single quotes. 
Words which start with an upper case letter or an 
underscore ''_". will represent variables. A list, which is 



766 F. Popowich 

FIGG currently consists of a bottom-up shift-reduce 
parser and a top-down depth-first parser which can 
operate (independently) on a set of unrestricted GG rules. 
The system also provides built-in control operators which 
allow the user to create efficiently executable grammar 
rules. The top-down depth first backtrack parser 
incorporates these procedural control mechanisms in a 
parser which is based on one described in (Dahl and 
Abramson. 1984) It differs from its predecessor by 
allowing left recursion in its grammar rules, and by being 
more efficient, although not as general. Rules are still 
required to have a nonterminal as the head. The shift 
reduce parser used with FIGG is a variation of a context 
free shift reduce parser (Aho and Ullman. 1972) (Stabler, 
1983) extended to allow non-context-free rules and gaps. 
To mirror the left to right processing of the top-down 
parser, the shift reduce parser processes a sentence from 
right to left. Details about the syntax and 
implementation of FIGG can be found in (Popowich. 
forthcoming). 

The implementations of many previous logic grammars-
incorporated clumsy mechanisms for procedural control. 
Unless one resorted to arbitrary procedure calls, the only 
options available for such control were rule order, the 
introduction of marker symbols, or the cut operation. 
Increased control facilities provided in FIGG include 
control of gap processing, more sophisticated variations of 
cut. and restrictions on applicability of rules. For 
example, when the FIGG parser is processing a gap 
symbol. gap(G). it initially assumes an empty gap and 
then attempts to parse the next symbol. Through 
backtracking, the gap size is increased. However, a 
decreasing gap. gap(-.G), is initially assumed to contain 
the rest of the sentence, and is decreased in size during 
backtracking. Also, although the cut behaves as in Prolog 
during top-down parsing, it behaves differently during 
bottom-up parsing since the top-down parser operates on 
terminal symbols like the definite clause grammar 



F. Popowich 767 

parser (Pereira and Warren. 1980) — while the shift 
reduce parser works with sentential forms. For bottom-up 
processing, each rule is converted into a single Prolog 
clause that modifies a list which corresponds to a 
sentential form When the right hand side of a rule 
matches part of a sentential form, the matched region can 
be replaced by the left hand side of the rule. 
Consequently, cuts and other control mechanisms — 
that appear in the right hand of a rule affect the left to 
right matching of the rule to a sentential form. Once the 
portion of a rule to the left of a cut has matched a 
sentential form, a subsequent failure in the match 
occurring to the right of the cut cannot force the match 
to the left of the cut to be reattempted. A cut found in 
the left hand side of a rule. R. will prevent any 
subsequent rule. R1, from matching a region entirely to the 
right of the cut. That is. the application of R> to the 
sentential form resulting from the application of R must 
include at least one symbol to the left of the cut. If a 
rule. A', is entirely enclosed in a cut. {R)\, then the 
decision to apply A' to a sentential form cannot be 
revoked once the rule has been successfully applied. 

4. USE OF PROCEDURAL CONTROL 

Unrestricted gapping grammars, as implemented in 
FIGG. can be considered as a programming language, and 
can be used to provide parsers for languages, given a 
grammatical specification. Few studies have been done to 
examine the applicability of gapping grammars as a 
programming tool, since the earlier implementations were 
either inefficient or processed too small of a subset of 
these grammars. We will examine some ways to control 
the processing of unrestricted GG specifications to improve 
the efficiency of the parsing, and to restrict the language 
described. In this section, we shall use a selection of 
familiar formal languages to examine the use of the 
various control mechanisms. The use of F1GG with 
natural languages is examined in (Popowich. 1985) and 
(Popowich forthcoming). 



768 F. Popowich 

bottom up parser is slower by a constant multiple of 
three However, its slowness is offset by the fact that it 
can process many more grammars than its top-down 
counterpart. An unrestricted gapping grammar can be 
used by the bottom-up parser as long as it does not result 
in bottom-up cycles. For example, any grammar containing 
the rule "nt --> €*. can not be used by this parser. 
Further development on this Prolog parser may improve 
its efficiency. 

Thus, the results illustrate that the introduction of 
some limited procedural control can be done simply with 
very beneficial results. Without its introduction, the 
processing time may be intolerable in some cases, it will 
not always be possible though, to introduce simple 
restrictions on gaps and parsing. The effect of a control 
mechanism is also very dependent on the grammar itself. 
As illustrated in the examples, the same operator — the 
cut — can result in more efficient parsing, or can restrict 
the language described by the grammar. The 
determination of which control to use. and how to use it. 
is the responsibility of the person who contructs the 
grammar. Obviously, more study of procedural control is 
required. 

5. SUMMARY 

REFERENCES 

Aho, A.V. and Ullman. J.D. The Theory of Parsing, 
Translation and Compiling. Englewood Cliffs. 
N.J Prentice Hall Inc.. 1972. 

Clocksin. W.I. and Mellish. C.S. Programming in Prolog. 
Berlin-1 leidelberg-New York:Springer-Verlag, 1981. 

Colmerauer. A. Metamorphosis Grammars. In L. Bole 
(Ed). Natural Language Communication with 
Computers, Springer Verlag. Berlin. 1978. 

Dahl, V. More On Gapping Grammars. Proceedings of 
the International Conference on Fifth Generation 
Computer Systems. Institute for New Generation 
Computer Technology. Tokyo, 1984. 

Dahl. V. and Abramson. 11 On Gapping Grammars. 
Proceedings of the Second International Joint Conference 
on Logic. University of Uppsala. Sweden. 1984. 

Joshi, A.K Factoring Recursion and Dependencies: An 
Aspect of Tree Adjoining Grammars (TAGs) and a 
Comparison of Some Formal Properties of TAGs, 
GPSGs, PLGs and LPGs. pages 7-15. Proceedings of 
the 21th Annual Meeting of the Association for 
Computational Linguistics. June. 1983. 

Pereira. F.C.N. Extra position Grammars. Ajnerican 
Journal of Computational Linguistics. 1981. 7(4). 
243-256. 

Pereira. F.C.N.(ed). C-Prolog User's Manual. Technical 
Report. SKI International. Menlo Park. California, 1984. 

Pereira. F.C.N, and Warren. D.H.D. Definite Clause 
Grammars for Language Analysis. Artificial 
Intelligence. 1980. 13. 231-278. 

Popowich. P. Unrestricted Gapping Grammars for ID/LP 
Grammars. Proceedings of Theoretical Approaches to 
Natural Language Understanding. Dalhousie University. 
Halifax Canada. 1985 

Popowich. P. Effective Implementation and Application 
of Unrestricted Gapping Grammars. Master's thesis. 
Department of Computing Science. Simon Fraser 
University, forthcoming. 

Stabler, E.P. (Jr) Deterministic and Bottom-Up Parsing 
in Prolog, pages 383-386. Proceedings of the American 
Association for Artificial Intelligence, August, 1983. 

Unrestricted gapping grammars provide more concise 
grammatical descriptions than previous logic grammar 
formalisms for many languages due to the more general 
rule formal allowed. However, with such a general rule 
formal, caution must be taken to insure that the grammar 
is restricted, by some form of control, to describe the 
required language Control facilities provided in F1GG 
permit refined control mechanisms while maintaining a 
high degree of descriptiveness in the grammar rules. 
These control facilities can be used either to restrict the 
language described by the grammar, or to obtain more 
efficient parsing The parsers of FIGG have successfully 
combined processing efficiency along with a large subset of 
unrestricted gapping grammars to produce a programming 
environment to study grammars and their languages. 

ACKNOWLEDGEMENTS 

I would like to thank Nick Cercone and the referees 
for their comments and suggestions. Facilities for this 
research were provided by the laboratory for Computer 
and Communications Research. 


