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Abstract

This paper reviews and advocates against the use of permute-and-predict (PaP) methods for interpreting black box functions.

Methods such as the variable importance measures proposed for random forests, partial dependence plots, and individual

conditional expectation plots remain popular because they are both model-agnostic and depend only on the pre-trained model

output, making them computationally efficient and widely available in software. However, numerous studies have found that

these tools can produce diagnostics that are highly misleading, particularly when there is strong dependence among features.

The purpose of our work here is to (i) review this growing body of literature, (ii) provide further demonstrations of these

drawbacks along with a detailed explanation as to why they occur, and (iii) advocate for alternative measures that involve

additional modeling. In particular, we describe how breaking dependencies between features in hold-out data places undue

emphasis on sparse regions of the feature space by forcing the original model to extrapolate to regions where there is little to

no data. We explore these effects across various model setups and find support for previous claims in the literature that PaP

metrics can vastly over-emphasize correlated features in both variable importance measures and partial dependence plots. As

an alternative, we discuss and recommend more direct approaches that involve measuring the change in model performance

after muting the effects of the features under investigation.

Keywords Feature importance · Partial dependence · ICE plot · Permutation · Functional ANOVA · Intelligibility ·

Interpretation

1 Introduction

Machine learning methods have proved to be enormously

successful tools for making predictions from data. However,

most of these methods produce algebraically complex mod-

els that provide little or no insight into how they arrive at

their predictions. As a consequence, many researchers have

suggested methods to “X-ray the black box” in order to pro-

vide insight into which input features are important and how
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they effect predictions; a task so precarious that others have

advocated against the practice altogether (Rudin 2019).

This paper reviews methods based on permuting feature

values or otherwise investigating the effect that changing the

values of a feature has on predictions. Our message can be

simply summarized by

When features in the training set exhibit statisti-

cal dependence, permute-and-predict methods can be

highly misleading when applied to the original model.

Permutation methods are some of the oldest, most popu-

lar, and computationally convenient means of understanding

complex learning algorithms. In this paper, we will focus

primarily on three commonly used techniques:

Variable Importance These methods are designed to pro-

vide a score for each feature based on how much difference

replacing the feature with noise makes in predictive accu-

racy. In particular, Breiman (2001) introduced the idea of
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measuring the importance of the j th feature by permuting

its values in the training data and examining the corre-

sponding drop in predictive accuracy when these new data

are used in a model built with the original training data.

Given a training set consisting of a matrix of feature values

X with rows xi giving each observation and corresponding

response vector y, let Xπ, j be a matrix achieved by ran-

domly permuting the j th column of X . Using L(yi , f (xi ))

as the loss for predicting yi from f (xi ), the importance of

the j th feature can be defined as:

VIπj =

N
∑

i=1

L(yi , f (x
π, j

i )) − L(yi , f (xi ))

so as to measure the increase in loss due to replacing xi j

with a value randomly chosen from the (marginal) distri-

bution of feature j .

Breiman (2001) designed the method specifically for use

with random forests and considered out-of-bag (OOB)

loss in which variable importance is averaged over trees,

measured with that part of the data not used to construct

the corresponding tree. For more general learners, either

training or test loss can be used. Since being introduced,

numerous variations on this idea have appeared. As one

recent notable example, Fisher et al. (2019) considered

averaging over all possible permutations and derived con-

centration bounds based on U -statistics. Nonetheless, each

of these methods utilizes the same general permute-and-

predict (PaP) structure (Fisher et al. 2019, also provide a

version based on conditional permutations); our simula-

tions employ both the VIπj and OOB importances when

examining random forests.

Partial Dependence Plots (PDPs) Friedman (2001) sug-

gested examining the effect of feature j by plotting the

average prediction as the feature is changed. Specifically,

letting X x, j be the matrix of feature values where the j th

entry of every row has been replaced with value x , we

define the partial dependence function

PD j (x) =
1

N

N
∑

i=1

f (x
x, j

i )

as the average prediction made with the j th feature

replaced with the value x . Since these are univariate func-

tions (multivariate versions can be defined naturally), they

can be readily displayed and interpreted.

Individual Conditional Expectation (ICE) Plots Gold-

stein et al. (2015) suggested a refined version of partial

dependence plots that involves simply plotting out the

functions

ICEi, j (x) = f (x
x, j
i )

that correspond to tracing out the prediction given to any

one example as the j th feature is changed. PDPs are then

exactly the average of the corresponding ICE plots, but the

latter allows an investigation in how the effect of feature

j may change for different combinations of the remaining

inputs. When N is very large, a random selection of ICE

plots can be presented as examples. Goldstein et al. (2015)

also described how these ICE plots can potentially be used

to detect the kind of extrapolation we discuss in detail in

this paper.

These techniques are attractive for a number of reasons:

they are each computationally cheap, requiring O(N ) oper-

ations, apply to the f (x) derived from any learning method,

and have no tuning parameters. These computational ben-

efits make them easily programmable and as a result, they

are widely available across a multitude of software imple-

mentations. From a statistical standpoint, they rely only on

averages and are thus generally very stable. Moreover, at a

high level, the approach has an intuitive feel that can give

practitioners a (perhaps unwarranted) sense of confidence.

For these reasons, they have been frequently adopted across

a wide variety of scientific domains and still appear to remain

the go-to tool of choice for most applied scientists utilizing

black-box models.

However, procedures like these based on the PaP struc-

ture have been shown to exhibit serious flaws, especially

when significant correlations exist between features. Strobl

et al. (2007) investigate classification and note that the impor-

tance measures based on permuted OOB error in CART

built trees are biased toward features that are correlated

with other features and/or have many categories and further

suggest that bootstrapping exaggerates these effects. Archer

and Kimes (2008) explore a similar setup and also note

improved performance when (true) signal features—those

actually related to the response—are uncorrelated with noise

features. Nicodemus et al. (2010) investigates these claims of

feature preference in a large-scale simulation study and again

find that the OOB measures overestimate the importance of

correlated predictors.

In explaining the observed behavior of variable impor-

tance measures, we need to distinguish two effects:

• The use of a permutation-based measure of importance to

summarize a known and fixed function when features are

correlated. Permutation measures ignore the correlation

between x1 and x2, treating each as being manipulatable

separately from the other in ways that may not be realis-

tic.

Given a fixed f (x) then with increasing sample size we
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can define the target of VIπj as:

VIπj ( f ) = Ey,x

[

L(y, f− j (x− j )) − L(y, f (x))
]

where

f− j (x− j ) =

∫

f (x)p j (x j )dx j

and p j (x j ) is the marginal distribution of x j . Similarly,

partial dependence has a general target of

f j (x j ) =

∫

f (x)p− j (x− j )dx− j .

• The effect of applying permutation methods to estimated

functions. Here, if we treat permutation importance

applied to the underlying relationship as the quantity to

be estimated, and our application of permutation impor-

tance to an estimated random forest as an estimate, we can

observe considerable bias due to measuring the random

forest at extrapolation.

The first of these is inescapable, and the appropriateness

of any particular importance summary will depend on the

application at hand; arguments such as those in Strobl et al.

(2007) can be seen as focused on this question. In contrast, we

believe the second of these is at least as important and follow

Hooker (2007) in assigning the effect to extrapolation. For

example, suppose features x1 and x2 are strongly positively

dependent, there will be no training examples which pair a

large value of x1 with a small value of x2 or vice versa. Thus,

the predictions made in the upper-left corner of (x1, x2) space

will mostly depend on the extrapolation behavior of the par-

ticular learning method employed. And as we demonstrate

in the following sections, permutation-based methods place

significant weight on exactly these predictions. As a concrete

example: an evaluation of the importance of pregnancy status

in a model that also includes gender would result in the eval-

uation of the response of pregnant men as often as pregnant

women.

Our thesis here is illustrated by considering a linear model:

f (x) = β0 +

p
∑

j=1

β j x j

where, if each covariate x j has variance 1, its permuta-

tion importance is given by β2
j , regardless of the correlation

among the features. While this is by no means the only way

to define importance for a linear model, it does correspond

to the familiar incantation of “the change in y for one unit

change in x j , keeping all else fixed” and could be construed

as justifying permute-and-predict measures. In this model,

we can also regard β2
j (or its rank among coefficients) as

the target of estimation when we initially obtain a random

forest or a neural network from data generated from this

model and then apply permutation importance to it. In our

experiments, we observe that this estimate is biased upwards

for covariates that are correlated with each other, and that

this bias increases with correlation. The alternative measures

for which we advocate imply a different notion of variable

importance in linear models, but they do not extrapolate and

do not suffer from the same discrepancy between impor-

tance applied to a known underlying model, and importance

applied to a machine learning estimate of it.

For these reasons, we argue that these methods can be mis-

leading. Consider a situation in which x1 and x2 are strongly

correlated and a backwards elimination strategy is being used

as a covariate selection procedure (e.g., Díaz-Uriarte and

De Andres 2006 built a sequence of random forests removing

the least important features at each step). Our examples pro-

vide a situation in which x1 and x2 would both be retained

ahead of features that are ranked as more important than

them in terms of the underlying linear model. Such a pro-

cedure may then result in a collection of strongly correlated

features, each of which is individually only weakly predic-

tive (in combination with the other retained features), while

more strongly predictive features are discarded.

Our argument implicitly connects variable importance to

notions of statistical inference; variable importances are an

estimate for the quantity that would have been obtained by

making the same calculation with unknown true response

function. We are, as such, interested in the statistical proper-

ties of a machine learning method, as opposed to conducting

a “model audit” in which an estimated model is considered

fixed and we merely wish to summarize its behavior. This is

similar to the distinction in Fisher et al. (2019) between model

reliance and model class reliance which provides general-

ized notion confidence interval for variable importance. That

said, we restrict our attention here to bias due to extrapola-

tion; measures of variability will also depend on the machine

learning method being used. Confidence intervals can be cal-

culated in the case of ensemble methods such as random

forests by relating them to U -statistics (e.g., Ishwaran and

Lu 2019). The notion of model class reliance in Fisher et al.

(2019) provides a highly adaptable analogue of profile confi-

dence intervals for methods based on optimization. These can

be employed with any notion of variable importance includ-

ing either the permute-and-predict methods we critique here,

or using conditional permutations. While we do not inves-

tigate these measures, here our results would advocate for

using the latter.

Our goals in this paper are to (i) review the growing body

of literature on this topic, (ii) provide an extended, more

detailed examination of the effect of these diagnostic tools

along with an explanation for this behavior when applied
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to random forests, and (iii) advocate for recently developed

importance measures that avoid extrapolation, either by gen-

erating perturbed data differently, or re-learning models. In

addition to random forests, we also examine the behavior of

neural networks where different, but similarly problematic,

behavior is observed.

While permute-and-predict measures produced biased

estimates, there are alternatives that do not involve measur-

ing the behavior of models far from their training data, and

we explore two strategies to do this. The first of these is to

generate perturbed versions of the feature of interest condi-

tionally on the vector of the remaining features, (as opposed

to independently of them), thus avoiding distorting the fea-

ture distribution; the approaches of Strobl et al. (2007) fall

within this class. A more general approach is re-learning,

which generally involves measuring the drop in model per-

formance when the effects of the features in question are

muted. The particular way in which the muting and testing

occurs varies slightly between procedures appearing in the

recent literature—Mentch and Hooker (2016, 2017) suggest

permuting said features and rebuilding the model, the leave-

out-covariates (LOCO) approach in Lei et al. (2018) simply

drops them, and the conditional randomization test in Can-

des et al. (2018) substitutes those features in question with

randomized replacements (knockoffs) sampled conditional

on the remaining features. In each case, however, rather than

extrapolate the original model, a new model is re-learned

using the data ( y, Xπ
j ) and the change in performance is

tested for statistical significance. In fact, all these strategies

result in the same population target value if we use squared

error loss, and our simulations suggest they do not exhibit the

same biases as permute-and-predict. Note that either generat-

ing conditional random variables or re-learning requires the

use of an additional model and therefore computational or

modeling effort, hence our subtitle.

We stress that these re-learning procedures, while a sub-

stantial improvement, are themselves not entirely immune

from producing surprising and potentially misleading results

even when permutations are used to construct a new model.

Very recent work has demonstrated that even though it seems

quite unintuitive to think that a permuted feature could sub-

stantially improve predictive performance, such an outcome

is possible in low signal settings (Mentch and Zhou 2020).

In light of this, we therefore see a condition-and-relearn

approach—in which we both replace the feature values

under investigation with samples generated conditional on

the remaining features and construct a new model—as essen-

tially the gold standard for evaluating feature importance. Put

simply, we argue that procedures that involve conditioning

on the remaining features (rather than simply permuting) or

rebuilding the model are both substantial improvements over

more classical “permute-and-predict” approaches, but ide-

ally procedures should do both.

This paper focuses specifically on permutation methods

and variants of it that can be applied to either the learned

model, or the learning algorithm that generated it, in the

spirit of staying within the algorithm class (Fisher et al.

2019). However, these are not the only ways to try to under-

stand the output of machine learning. Our explanations of the

poor behavior of permute-and-predict methods are traced to

Hooker (2007) where Breiman’s variable importance meth-

ods were examined in the context of a functional ANOVA

decomposition

f (x) = f0 + f1(x1) + · · · + f p(x p)

+
∑

i< j

fi j (xi , x j ) + · · · (1)

with the individual effects fu , for a collection of covariate

indices u defined by averaging over the remaining fea-

tures. Here, permutate-and-predict variable importance can

be equated to Sobol indices (Sobol 1993) when all the

features are independent (see Roosen 1995, for an early

exploration of these tools for interpreting machine learn-

ing functions). Hooker (2007) proposed a generalization of

this expansion to any distribution over the features, with

the purpose of avoiding extrapolation. Similar results to the

generalized functional ANOVA can be obtained by approx-

imating a black box function in terms of additive models,

described as model distillation in Tan et al. (2018b). How-

ever, implementing these ideas is not as straightforward as

the methods we discuss here.

Shapley values (Lundberg and Lee 2017) have also

become popular tools for assigning “credit” to covariates for

any quantity, including predictive performance, or individual

predictions. Some implementations of Shapley values exhibit

the same permutation structure that we critique here and can

be similarly misleading (Slack et al. 2020). Their implemen-

tation is also more complex than the methods we examine in

this paper. Finally, we focus on procedures that are applica-

ble to any machine learning method. Specific methods have

their own diagnostics such as the split-improvement meth-

ods suggested in Friedman (2001) that apply specifically to

trees. We note that these methods can also be biased toward

features with more potential split points (Strobl et al. 2007),

along with potential corrections in Zhou and Hooker (2019),

Loecher (2020), Li et al. (2019).

In the following, we introduce a simple, and understand-

able model in Sect. 2 used to illustrate the misleadingness of

variable importance measures and diagnostic plots in Sect. 3.

We provide an explanation of these results in terms of extrap-

olation behavior in Sect. 4 and suggest remedies in Sects. 5

and 6.
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2 A simple simulated example

Here we set up a simple model that will allow us to be clear

about the values that we ought to obtain from variable impor-

tance measures and which we can then contrast to those we

actually find. Specifically, we propose a linear regression

model based on 10 features (x1, . . . , x10):

yi = xi1 + xi2 + xi3 + xi4 + xi5 + 0xi6

+ 0.5xi7 + 0.8xi8 + 1.2xi9 + 1.5xi10 + ǫi (2)

where ǫi ∼ N (0, 0.12) produces process noise. The variable

importance methods we investigate here are not restricted

to regression problems. However, in this setting we are able

to relate all these diagnostic tools to the coefficients of the

regression, providing a point of comparison. Our choice of

noise variance is also deliberately small in order to make the

behavior we observe clearer.

In addition to specifying the relationship between features

and output, we need to provide a distribution for the xi j . It

is this that makes permute-and-predict methods misleading.

In our model, each of the features is marginally distributed

as uniform on [0, 1]. They are generated independently with

the exception of the first two (x1, x2) which we make corre-

lated via a Gaussian copula (Nelsen 2007) with correlation

parameter ρ. The strength of this correlation will play a large

role in how strongly variable importance and other measures

can mislead.

For a linear model such as (2) with covariates that have

the same scale, variable importance can be obtained from

the magnitude of covariates; see Gregorutti et al. (2015) and

Theorem 1 for a formal connection to the variable importance

measures in Breiman (2001). Here we will be interested in

the relative importance of x1 and x2 to the other features,

and we have chosen coefficients so that (x3, x4, x5) provide

a reference for features with the same coefficient, x6 has no

influence and x1 and x2 have a clear importance ordering

within (x7, . . . , x10).

This example serves to isolate the reasons that the

permute-and-predict methods can be misleading. We contend

that permutation-based diagnostic tools are only misleading

when one both employs flexible learning methods and has

correlated features. Neither, by themselves, are sufficient to

induce large bias, although we note that the combination is

in fact very common in practice. This necessity is illustrated

in the following theorem that investigates the diagnostics

returned by an estimated linear model.

Theorem 1 For f (x) = β̂0 +
∑p

j=1 β̂ j x j fit by least-squares

1. Eπ VIπj = 2β̂2
j

∑N
i=1

(

xi j − x̄ j

)2
where Eπ indicates the

expectation over permutations and x̄ j is the average value

of the j th feature.

2. PD j (x) = C j + β̂ j x where C j =
∑

j ′ �= j β j ′ x̄ j ′

3. I C Ei, j (x) = Ci, j + β̂ j x where Ci, j =
∑

j ′ �= j β j ′ xi j ′

The first of these results is given in Gregorutti et al. (2015)

and Fisher et al. (2019); the latter two results follow in a direct

fashion. A proofs is provided in “Appendix”.

Theorem 1 is given in terms of an estimated linear model,

but the analogous population result applies if these variable

importance measures are applied to data generated from a

linear model. Theorem 1 indicates that for linear models, per-

mutation importance methods return the squared coefficient

of the corresponding covariate, multiplied by the covariate’s

marginal sum of squares. When the covariates are standard-

ized, this results in associating variable importance with the

magnitude of the corresponding coefficient, approximately

corresponding to common interpretations in linear models.

We find that permutation importances do, in fact, recover

importance ordering reliably when linear models are used

as estimates in our simulation. That breaks down, however,

when random forests or neural networks are used to esti-

mate the underlying function, where we see considerable bias

in the ordering of importances relative to that given by the

underlying (true) generating function.

In the simulations described below, for each choice of

correlation parameter ρ and sample size N , we learn both

a random forest and a single layer neural network with 20

hidden nodes (randomForest and nnet, respectively, in

R). We then evaluated the variable importance VIπ as given

above using the training data. For random forests we also

obtained the original out-of-bag importance measures V I o
j

implemented in importance; these differ from V I π
j in

being evaluated from out-of-bag residuals for each tree and

are thus specific to bagging methods.

Additionally, we recorded the partial dependence of f on

x1 and x2 for each model as well as the ICE for 11 observa-

tions with the i th observation taken at xi1 = xi2 = (i −1)/10

and the remaining xi3, . . . , xi10 generated uniformly but kept

constant across all simulations. These values were chosen

so that the reference points were always in the bulk of the

feature distribution. We simulated each data set with asso-

ciated learned function f , feature importances and plots, 50

times and report the average over these simulations in order

to reduce variability in the results.

3 Simulation results

In order to ensure that scaling does not affect our results,

we report the importance rank of each feature: for each sim-

ulation we order the importance of the features from least

to greatest and record the position of the feature in this list.

That is, features deemed most important are given the high-
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est rank. This is commonly employed in screening methods

where only the most important features are retained.

Figure 1 shows the average importance rank of each of

the 10 features obtained on the training set using the mea-

sures implemented in the randomForest package. We use

2,000 observations in each of 50 simulations and give results

where x1 and x2 are related with a Gaussian copula with

either correlation ρ = 0 or 0.9. Note that in the independent

case (ρ = 0), random forests, neural networks and linear

models all agree on the ordering of the covariates, including

ties between x1–x5, which also corresponds to the results in

Theorem 1.

However, when ρ = 0.9, permutation-based methods

applied to random forests and neural networks rank x1 and

x2 as more important than (x3, x4, x5) and frequently more

important than even x9, which has a larger coefficient. How-

ever, in line with Theorem 1, linear models retained the same

importance rank between the two correlation structures, an

ordering which agrees with the known coefficients of the

response function.

In Sect. 4, we explain this observation by noting that in

permuting only 1 correlated feature, we break its relationship

with the remaining correlated features resulting in evalua-

tions of the function in regions which, by construction, have

no data nearby; see Fig. 4. This may be viewed as being

due to the very high correlation parameter employed, and

the specific sample size. In Fig. 2, we examine the joint

effect of sample size and correlation on the average rank

given to x1 and x2. This time, we modify (2) so that each

of x1 and x2 have coefficient 0.8, making them less relevant

than (x3, x4, x5), and plot their average importance rank over

ρ ∈ {0, 0.1, 0.25, 0.35, 0.5, 0.75, 0.9} and for each data set

size N ∈ (100, 200, 500, 1000, 2000, 5000). These are aver-

aged over 20 simulations to improve stability.

Here, we observe that for small N , nonzero correla-

tion makes x1 and x2 appear to be more important than

(x3, x4, x5), particularly for the out-of-bag importance mea-

sures, but that for small ρ this effect is removed at larger N .

For large ρ, the importance rank decreases with N , though

never below 5, the value indicated by Theorem 1.

Figure 3 gives the average partial dependence and ICE

plots for x1 for each of the models comparing those trained

on independent feature distributions to those with ρ = 0.9.

For random forests, we observe what appears to be less atten-

uation of the relationship due to edge effects when x1 and x2

are correlated, but note that these will still be compared to par-

tial dependence functions for features where the edge effects

are attenuated. Neural network partial dependence exhibits

greater variability when the features are correlated. This is

particularly evident in the ICE plots for neural networks

where plots in the high correlation case diverge consider-

ably from the underlying relationship. Recall that each of

these lines is an average of 50 replications, making the ICE

for any individual curve highly variable. The problematic

behavior of these plots is more apparent in Fig. 6 where a

lower-dimensional setting reduces both bias and variance.

4 Extrapolation and explanations

The patterns observed in the results above have also been

observed in, for example Toloşi and Lengauer (2011),

although the periodic reappearance of these observations

does not appear to have reduced the use of these types of

diagnostics. Furthermore, to this point, there has been rela-

tively little explanation offered as to why this sort behavior

occurs.

As noted in Theorem 1, for linear models with stan-

dardized features, permutation-based importances report the

square of the feature coefficients. Moreover, where the

features are not correlated, random forest permutation impor-

tances essentially provide the same ranking as permutation

importances applied to linear models. The over-emphasis of

correlated features is caused by random forests’ (and neural

networks’) need to extrapolate in order to generate predic-

tions at those permuted locations.

To illustrate this point, consider the model y = x1 + ǫ

so that x2 does not influence the response. We generate

ǫ ∼ N (0, 0.05) yielding a very high signal-to-noise ratio

of 100/3 and learn a random forest based on 200 points with

(x1, x2) uniformly distributed but associated through a Gaus-

sian copula with correlation 0.9. This was repeated 100 times

to stabilize the resulting estimates, and to allow us to inves-

tigate the between-simulation variability of our answers.

The left panel of Fig. 4 plots the generated (x1, x2) points,

the points used to assess permutation importance for x2 and

the contours of the learned random forest. Here we observe

two things:

1. Although the true contours are given by vertical lines, the

random forest only approximates these contours within

the convex hull of the data. Outside this, the contours

become more diagonal.

2. While the data distribution is concentrated along the diag-

onal, the points used to evaluate permutation importance

fill out the unit square.

Thus, much of the evaluation of permutation importance is

based on values of x that are far from the training data, where

random forests are (unsurprisingly) poor at mimicking the

underlying data generating function.

The middle plot of Fig. 4 overlays a shaded contour with

the splits obtained from 10 example trees selected at random

from our forests. Here we observe that at the top left and

bottom right corners, individual tree predictions are obtained

either by splits that proceed horizontally from or vertically
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Fig. 1 Average variable importance rank (lowest to highest) computed

using V I π on the training data for each feature over 10 models trained

on simulated data of size 2000. Rank is given for random forests (r), neu-

ral networks (n) and linear models (l) as well as the out-of-bag variable

importance for random forests (o). Left: when all features are generated

independently. Right: for x1 and x2 generated from a Gaussian copula

model with correlation parameter ρ = 0.9. Dashed lines indicate the

theoretical rank of the covariates

Fig. 2 Left: change in the average rank of x1 and x2 as correlation increases with n = 2000. Remaining plots (left to right): average importance for

each ρ as a function of N for random forests, neural networks, and random forests using OOB importance measures, respectively. (True) theoretical

rank should be 4

Fig. 3 Left plots: average partial dependence for 50 simulations both

correlation parameters ρ = 0 (solid lines) and ρ = 0.9 (dashed)

and standard deviation of the estimated partial dependence showing

the increase in variability in neural networks as correlation increases,

respectively. Right plots: example ICE plots for x1 for random forests

(middle-right) and neural networks (far right). Dotted lines give predic-

tions for simulations with ρ = 0, dashed for ρ = 0.9, letters indicate

pairing. Solid portions of lines give the range of x1 conditional on the

remaining features. Black lines indicate partial dependence functions;

blue the underlying relationship
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Fig. 4 Random forest extrapolation behavior and variable importance.

Left: contours from the average of 100 random forests trained on data

given by ‘*’ with response given by x1 + ǫ, dots give the locations

at which the forests are queried when calculating permutation-based

variable importance. Middle: The boundaries between leaves for 10

example trees in the forest: when the forest is extrapolating the trees

are local averages based either on x1 or x2. Right: an illustration of

potential nearest neighbors of a query point used to determine variable

importance

from the data distribution at the adjacent corners. Thus, as

discussed, each tree will predict a local average from one of

the two corners.

The right-hand plot of Fig. 4 makes this reasoning more

explicit, in which the permuted value xπ
i1 moves the query

from the original data in the bottom left, to x
π in the bottom

right of the plot where there are very few observations. In

tree-based methods, predictions from each tree at x take the

form:

f̂ (x) =

N
∑

i=1

wi yi where wi =

{

1/|L(x)|, if x ∈ L(x)

0 otherwise

(3)

where L(x) denotes the set of observations falling in the same

leaf as x . The collection of response values yi for which the

corresponding weight wi can be nonzero is a subset of all

training observations and such observations are referred to

as the potential nearest neighbors (pNN) of x .

For correlated features, the potential nearest neighbors

of x
π include those whose values are far from the original

x in both coordinates; indeed this happens with substantial

frequency among the trees in our forest. In these trees, the

permuted prediction f̂ (xπ ) is likely to be far from the origi-

nal prediction f̂ (x), causing a large perceived importance of

the feature x1 even when it is irrelevant. By contrast, when

the observations are more uniformly distributed over the fea-

ture space, the pNN’s of x
π will be localized around it, and

will have very similar values of x2 to the original point x

making f (x
π ) a reasonable comparison to f (x).

In fact, almost any of the data points in the right-most plot

of Fig. 4 are pNNs of x
π . This can be seen by examining

the set of rectangles that reach both the data distribution and

the bottom-right corner of the plot. Moving along one edge

or other, however, the geometry of forming a rectangle that

encompasses both a small number of data points and the

prediction restricts potential nearest neighbors to be those

with larger values of both x1 and x2 (or smaller values for

points above the diagonal).

In Fig. 4, this argument explains the shift in contours

away from the observed data and an increase in the impor-

tance measure for x2. However, it is not sufficient to explain

the joint increase in importance for both x1 and x2 when

they have symmetric effects in the simulations in Sect. 2. To

explain this effect, we also observe that the concentration

of observations along the diagonal increases the overall sig-

nal jointly attributed to them, increasing the number of splits

given to at least one of these two covariates.

In contrast to random forests, our characterization of neu-

ral network extrapolation is simply in terms of increased

variability. When fitting high-dimensional polynomials, the

phenomenon of observing large oscillations outside the range

of the data is termed Gibbs effects and we suspect that a sim-

ilar phenomenon occurs here. Figure 5 presents a contour

plot of the average of 100 20-hidden-node neural networks

trained on the same data as above along with the standard

deviation between these models. Here, the lack of reliability

in permutation importance and in partial dependence plots

can be explained by the large increase in variance as we

move away from the data distribution, allowing fluctuations

in predictions to increase apparent variable importance.

Figure 6 plots the average PD and ICE functions for each

of random forests and neural networks in the same manner

as Fig. 3. Here, the effect of extrapolation is made even more

evident. ICE plots reflect the underlying relationship reason-

ably well in regions that are supported by the data, but can

be very different outside of that. In the case of neural net-
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Fig. 5 Left: contour plot of the average of 100 neural networks trained on correlated data with response x1 + ǫ. Example data is given by ‘*’ with

dots indicating the points used to evaluate variable importance. Right: the standard deviation between the 100 neural networks

Fig. 6 Example ICE plots for models trained on data generated from y = x1 + ǫ. Left pair: neural network. Right pair: random forest. Thick black

lines give partial dependence, thin blue lines indicate the theoretical model

works, these exhibit greater variability; in random forests,

extrapolation-induced inflation of importance measures is a

larger source of concern, suggesting more significance for x2

than we would expect.

5 Variable importance alternatives

As has been noted, these effects of correlation on variable

importance have been observed in various forms by several

authors in recent years. Fortunately, there have also been

several alternatives proposed, generally in line with one of

two ideas:

1. Permuting (or otherwise generating) new values of feature

j based on its distribution conditional on the remaining

features. This general idea seems to have first been sug-

gested in Strobl et al. (2008) but similar schemes have

since appeared in numerous other works including Tuv

et al. (2009), where the authors utilize tree ensembles

to generate predictively non-redundant feature sets, and

Wu et al. (2007) where the original dataset is augmented

with pseudovariables in order to help tune the size and

complexity of linear models. More recently, Barber et al.

(2015) and Candes et al. (2018) developed the “knockoff”

framework whereby original features are either swapped

out for randomized replacements to test their importance

via conditional randomization tests or the feature space

is augmented with null copies of the original features

after which a knockoff filter is applied to eliminate non-

important features.

Fisher et al. (2019) similarly examines model class

reliance using conditional permutations. The notion of

model class reliance examines how widely an importance

measure can vary while maintaining close-to-optimal pre-

dictive accuracy. Although we do not examine these

methods here, the results we present suggest that this con-

ditional version should be preferred.

2. Removing feature j from the data and examining the drop

in accuracy when a new model is learned without it. This
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leave-one-covariate-out (LOCO) framework is well stud-

ied within classical statistical methods (e.g., Lehmann and

Romano 2006) and suggested more generally in Lei et al.

(2018) in the context of conformal inference.

These methods can also be combined. Mentch and Hooker

(2016) examined the change in prediction between two ran-

dom forests, one trained on the original data, the other trained

on data in which feature j was permuted. Here the permu-

tation served simply to make the feature irrelevant to the

prediction, and the resulting models were both evaluated

within the bulk of the training distribution. As the authors

note, the choice to permute, rather than drop, a feature was

made in order to maintain the same complexity in the fit-

ting procedure and thus make the two predictions statistically

comparable.

In fact, these methods all produce similar variable impor-

tance scores. In our simulation in Sect. 2, we also computed

the following variable importance measures that combine

these ideas:

Conditional Variable Importance measured by creating

X c, j in which xi j is simulated conditional on the remain-

ing features x
c, j
i j ∼ xi j |xi,− j and measuring

VIC
j =

N
∑

i=1

L(yi , f (x
c, j
i )) − L(yi , f (xi ))

We note that for the Gaussian copula model used here, the

distribution of (xi j |xi,− j ) can be explicitly computed. Note

that the idea of conditional permutation importance for ran-

dom forests proposed in Strobl et al. (2008) falls into this

category, as does the notion of conditional model reliance

in Fisher et al. (2019) as described above. In Strobl et al.

(2008), the authors generate X c, j for each tree by permuting

X j within cells of a partition generated based on all cutting

points related to X− j in that tree.

Dropped Variable Importance obtained by the increase in

training error when learning a model f − j (x) from the data

y, X− j that does not include the j th feature

VID
j =

N
∑

i=1

L(yi , f (x)i ) − L(yi , f − j (xi )).

This is equivalent to the LOCO methods explored in Lei et al.

(2018).

Permute-and-Relearn Importance obtained by permuting

the features and learning f π, j from ( y, Xπ, j ) giving

VIπ L
j =

N
∑

i=1

L(yi , f (xi )) − L(yi , f π, j (xi )).

This was the approach taken in Mentch and Hooker (2016)

in which distributional results for random forests were used

to assess the statistical significance of f (x) − f π, j (x).

Condition-and-Relearn Importance in which a new model

f c, j (x) is learned from the data ( y, X c, j ) and we measure

VIC L
j =

N
∑

i=1

L(yi , f (xi )) − L(yi , f c, j (xi ))

These measures all necessarily entail additional computa-

tional costs: requiring training a new model, and/or estimat-

ing, and simulating from, the distribution of (xi j |xi,− j ). In

our simulation, this distribution can be computed analyti-

cally, but that will rarely if ever be the case in practice.

Using these measures changes the estimand of variable

importance. In the case of least-squares loss, these do all

target the same quantity:

Theorem 2 Let x
∗
j be obtained by replacing x j with x∗

j where

x∗
j ⊥ y|x− j and f (x) = E(y|x). Then, the minimum least

squares predictor of y from x
∗ is

f− j (x∗) =

∫

f (x)p(x j |x− j )dx j

and the corresponding variable importances for this f are

given by

VIC
j = VID

j = VIπ L
j = VIC L

j = Ey,x( f (x) − f− j (x− j ))
2.

Note that outside of squared error, the predictor minimiz-

ing loss when predicting from x
∗ may no longer be f− j (x− j )

and thus, the variable importance definitions may differ.

As we can see in Fig. 7, these measures also all agree

(to within Monte Carlo variability) on the ordering of

covariate importance across all models. Unlike the permute-

and-repredict measures, they reduce the importance of x1 and

x2 when these become more correlated. For LOCO methods,

this can be explained intuitively by x1 being able to account

for the some of the signal coming from x2. For conditional

importance measures, it is associated with the distribution

(x2|x1) having a much smaller variance than the marginal

distribution of x2 (see, for example, the points in Fig. 5).

This is, in fact, what we should expect. For estimated linear

models, Theorem 3 states that these all have approximately

the same expectation:

Theorem 3 Let f (x) = β̂0 +
∑p

j=1 β̂ j x j be a model fit via

least-squares with linear dependence between features so

that E(xi j |x− j ) = γ0 j +xi,− jγ j . Let δi j = xi j −γ̂0−x− jγ j

be the least-squares residuals to predict xi j . Then,
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Fig. 7 Average rank of feature importance computed by various mea-

sures for random forests (left), neural networks (middle) and linear

models (right) based on 10 simulated data sets of size 200. Features

were generated independently (top) and with x1 and x2 generated from

a Gaussian copula with correlation parameter ρ = 0.9 (bottom)

2VID
j = Eπ VIπ L

j = E
x

c, j
i j

VIC L
j = 2β2

j

N
∑

i=1

δ2
i j + o(1)

E
x

c, j
i j

VIC
j = 2β2

j

N
∑

i=1

var(xi j |x− j ).

Here the addition of o(1) comes from estimating coef-

ficients with a random covariate matrix when permuting a

feature; when the importances are normalized by N , this

becomes o(1/N ) and is generally small.

All of these methods exhibit the compensation effect,

reducing the importance of correlated features relative to

their coefficients. Theorem 3 also suggests a way to cor-

rect for this effect by dividing by the appropriate quantity,

if desired. However, these results are only exact for linear

models and the most reliable diagnostic that we know of for

this is to examine the effect of jointly removing or permut-

ing pairs of features, and then re-learning. An extension of

Theorem 1 yields a joint importance of
∑N

i=1(β1(xi1 − x̄1)+

β1(xi2 − x̄2))
2, which is not recoverable from any of univari-

ate importance measures discussed in this paper.

A further set of approaches to variable importance use the

behavior of f (x) close to values of x in the data. Saliency

(Simonyan et al. 2013) obtains derivatives with respect to x,

while LIME (Ribeiro et al. 2016) approximates this with a

LASSO method localized to the point of interest by a kernel;

Shapley values can also be used for individual predictions

(Lundberg and Lee 2017). By querying the value of f (x)

close to the features of interest, these should not suffer from

extrapolation; although see Slack et al. (2020) for an example

of distorting both SHAP and LIME by modifying f (x) when

x is not in the feature distribution. However, local explana-

tions do not generally provide the same global-level picture of

behavior that permutation methods purport to. For example,

if f (x) essentially encodes a threshold with a transition point

that is not close to observed data, we will see low saliency at

all observed points, even though there may be a large range

of predictions. Thus, while these kinds of localized expla-

nations may help provide insights into the features affecting

particular predictions, they lack the ability to offer an overall

summary of a feature’s contribution to the model.
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5.1 Ordering versus testing: a further word of
caution

As discussed throughout this paper, while the permute-and-

repredict measures of variable importance can be highly

misleading in the presence of correlated features, several

alternative measures such as the four mentioned above can

alleviate these biases by refitting the models under investiga-

tion, leading to importance orderings that are more intuitive,

stable, and consistent. We caution here, however, that while

such measures can correct improper variable importance

orderings, they may not be sufficient to employ variable

importances within hypothesis tests.

Formal hypothesis tests for variable importance in random

forests were first proposed in Mentch and Hooker (2016)

and an alternative nonparametric test with potential to oper-

ate in big-data settings was recently proposed in Coleman

et al. (2019). A similar model-agnostic variant was recently

proposed in Williamson et al. (2020) Rather than assign a par-

ticular measure of variable importance, these tests assume

that such a measure already exists and evaluate whether a

given feature or collection of features is significantly more

important than could be expected by random chance. More

formally, these tests partition the features into two sets x1

and x2 and consider a null hypothesis that can be written

generically as:

H0 : Error [RF(x1, x2)] = Error
[

RF(x1, x
∗
2)

]

and evaluated on an external test set. Here, RF(x1, x2)

denotes a random forest constructed on the original fea-

tures (x1, x2) and RF(x1, x
∗
2) denotes a random forest

constructed on the same original features x1, but where x2 is

either dropped or replaced by a non-important, randomized

substitute such as a permutation or a new sample conditional

on x1. Note that these correspond exactly to the importance

measures described in the preceding subsection.

The intuition behind these tests is that if the features in x2

are important, then they should make a meaningful contri-

bution to the predictive accuracy of the model beyond what

can be obtained by using x1 alone. In that case, we should

expect that Error
[

RF(x1, x
∗
2)

]

> Error [RF(x1, x2)] and

we can thus reject H0 and conclude that x2 is of significant

importance.

In recent work, however, Mentch and Zhou (2020) showed

that the manner in which x
∗
2 is altered can have a substantial

impact on the performance of the aforementioned hypothe-

sis tests. In particular, the authors demonstrate that there are

settings in which the “Permute-and-Relearn” approach can

identify x2 as predictively significant, even when those fea-

tures are completely independent of the response, conditional

on x1.

As a demonstration of this, consider again the same linear

regression model

yi = xi1 + xi2 + xi3 + xi4 + xi5 + 0xi6

+ 0.5xi7 + 0.8xi8 + 1.2xi9 + 1.5xi10 + ǫi

utilized in previous sections, but where observations are sam-

pled independently from N (0, �) where the (i, j)th entry of

� is of the form ρ|i− j | so as to induce correlation among

these features. The additional error ǫi ∼ N (0, σ 2) and σ is

chosen to produce a desired signal-to-noise ratio (SNR) in

the dataset. Now suppose that in addition to these 10 orig-

inal features, we also consider including q additional noise

features. Each of these noise features is sampled from a stan-

dard normal and then correlated with one of the original 10

features—selected uniformly at random—at a strength of 0.7

so that conditional on those original 10 features, the q addi-

tional features are independent of the response y. We then

carry out the testing procedure prescribed in Williamson et al.

(2020) on both bagging and random forests, treating x2 as

the set containing the q additional noise features at varying

SNRs and sizes of q.

We consider 3 different types of randomized substitutes

x
⋆
2. The first is a random permutation of the original x2, cor-

responding directly to the “Permute-and-Relearn” approach.

Since we know the true joint feature distribution in this sim-

ulation, random samples of x2 from the true conditional

distribution can be obtained and used as the second type

of random substitutes x
⋆
2. On the other hand, in practice,

this conditional distribution needs to be estimated. Thus, as

our third form of substitution we utilize the Model-X (MX)

knockoff framework proposed by Candes et al. (2018) to

generate x
⋆
2. In particular, we sample second-order multi-

variate Gaussian knockoff variables using the approximate

semidefinite program construction (Candes et al. 2018) as

implemented in the R package knockoff. The entire pro-

cedure is repeated 100 times for each setting combination and

each time we record whether the null hypothesis above was

rejected. Averaging across the 100 trials gives the propor-

tion of times we reject H0 and conclude that the q additional

noise features are significantly important. Results are shown

in Fig. 8.

Importantly, note that because the q additional noise

features are conditionally independent of the response, intu-

itively, we should expect this test to reject only about 5% of

the time when α = 0.05, as it is here. It is immediately obvi-

ous from the left plot in Fig. 8, however, that in many settings,

especially as increasingly many noise features are added, the

rejection rates of the “Permute-and-Relearn” approach lie

well above that nominal level. The heart of the issue here

is that by permuting those q features in x2, we are break-

ing not only their relationship to the response, but also their

relationship to (i.e., correlation with) other features. Also
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Fig. 8 Empirical rejection probabilities when testing the null hypothesis that q additional noise features are predictively significant. Left: replace-

ments using random permutations; middle: replacements using MX knockoffs; right: replacements from the true conditional distribution

note, importantly, that this is not an issue arising from this

particular test or set of hypotheses—any test of conditional

independence evaluated by comparing model performance

when a subset of features are dropped or permuted will suf-

fer the same issue. On the other hand, with random substitutes

drawn from the true conditional distribution (right-most plot

in Fig. 8), the false rejection rates lie very near the pre-

specified nominal level of 0.05. The middle plot in Fig. 8

suggests MX knockoffs are able to adequately account for

this correlation structure as here too we see rejections hap-

pening about 5% of the time.

Thus, in keeping with the overall theme of our work, this

demonstrates that even though relearning after permuting

solves many of the initial issues discussed above, relearn-

ing alone does not fully resolve the issues associated with

permutation-based variable importance. We also stress that

the alternative importance measures discussed above that

specifically try to generate randomized replacement feature

copies that preserve the between-feature relationship do not

appear to suffer from such testing difficulties. For a much

more extended discussion on this topic, we refer the reader

to Mentch and Zhou (2020).

5.2 Real world data: bike sharing

To illustrate the real-world impact of the difference among

these importance measures, Fig. 9 presents the importance

rankings of features in the hourly bike share data reported in

Fanaee-T and Gama (2013) as stored on the UCI repository.

Here we predicted the log number of rentals each hour from

14 features using the randomForest package in R. We

report the importance rank (ordered from least to most) of

each feature as calculated by the default out-of-bag permu-

tation measure, and as calculated by VIπ L
j —permuting the

j th feature, but then learning a new model before assessing

the change in accuracy. VIπ L
j was chosen because it required

only re-using the current learning method and maintained the

dimension of the feature space.

Fig. 9 A real-world comparison of OOB variable importance ranks (x-

axis) with those obtained by permute-and-re-learn importance (y-axis)

using random forests on the bikeshare data

Here we observe that while many of the features exhibit

comparable ranks, there are some notable disagreements,

temp, in particular, appearing important in OOB measures,

but quite unimportant otherwise. A screening tool based on

OOB importance might have selected this rather than yr to

include in candidate features, possibly harming subsequent

analysis.

6 Partial dependence alternatives

While restricting to the data distribution creates a number of

ways to redesign feature importance measures as illustrated

in Sect. 5, this is less straightforward for plots of effects. We

now discuss briefly some alternatives that avoid extrapola-

tion.
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ICE plots can be restricted to a range of values consistent

with the data distribution. In Fig. 3, we have indicated regions

with high data density by making the ICE plot lines solid

over this portion of x1. This device provides local informa-

tion, but also serves to demonstrate the extent of dependence

of x1 on other covariates. However, we note here that we

need some means of determining an appropriate range of

values for each x1. Originally, Goldstein et al. (2015) sug-

gested labeling all observations on ICE plots, although this

does not indicate the range over which the ICE plot is based

on values near observed data. In Fig. 3, we have obtained

this from 2-standard deviations within the Gaussian copula

used to generate the data. However, lacking this information,

obtaining these bounds requires us to estimate a conditional

distribution.

Figure 6 suggests modifying partial dependence plots to

average only the solid parts of each ICE line. This could be

strongly misleading—attributing changes due to x2 rather to

x1. Hooker (2007) provides a re-interpretation of permutation

diagnostics in terms of the functional ANOVA decomposi-

tion (1). In this framework, equivalents of partial dependence

functions can be obtained by finding functions f1(x1) and

f−1(x−1) to minimize

∫

( f (x) − f1(x1) − f−1(x−1))
2 p(x)dx

in which p(x) approximates the feature distribution and

f−1(x−1) is an unknown function of all features except x1.

Hooker (2007) minimized a quasi-Monte Carlo approxima-

tion to this integral, but required an estimate of p(x), which

will likely not be accurate in high dimensions. Chastaing

et al. (2012) modified the estimation technique to include

smoothing methods. Similar structures were used in Mentch

and Hooker (2017) to test for feature interactions.

A key problem for these methods is the need to jointly

estimate f1(x1) and the high-dimensional f−1(x−1), requir-

ing specialized learning methods. Lou et al. (2013) and Tan

et al. (2018b) instead fit a generalized additive model (Wood

2006) that includes only one-dimensional functions in the

right hand side of (1). These can be fit to the data directly or

may be used to examine the values of f (x) as a model distil-

lation method. In Fig. 3, our linear model fits explicitly fall

within this class and provide a coherent, extrapolation-free,

representation of the underlying function.

7 Conclusions

While naïve permutation-based methods can be appealing,

we have shown with some quite simple examples that they

can give misleading results. We also identify the extrapola-

tion behavior by flexible models as a significant source of

error in these diagnostics. The precise biases that permute-

and-predict methods produce will depend on the learning

method employed as well as the specifics of the dependence

of the features and the response function; see Bénard et al.

(2021) for approaches to this analysis.

Alternative methods for summaries of feature importance

all require further computational effort. VIπ L
j still employs

permutations, but learns a new model after permuting the

features; Mentch and Hooker (2016) found that by maintain-

ing the feature dimension, this made for a better statistical

comparison than dropping a feature and re-learning as we

have done in VID
j . As demonstrated in earlier sections, an

even better approach is to condition-and-relearn so that the

randomized features used to replace those under investiga-

tion maintain at least approximate dependencies between the

remaining features. Recent work by Berrett et al. (2020)

presents something of a hybrid approach between these

that still utilizes permuted replacement features, but where

those permutations are sampled in a non-uniform fashion

informed by the conditional distribution. Methods that avoid

re-learning the response can be based on conditional per-

mutation or simulation, but in general that still requires a

model for xi j |xi,− j ; see Liu and Zheng (2018) for recent

developments. Alternative measures of importance include

generalizations of Sobol indices (Hooker 2007) and Shap-

ley values (Owen 2014; Lundberg and Lee 2017), although

the calculation of these, if not undertaken carefully, can be

subject to the same extrapolation bias that we identify here.

Beyond assigning importance scores, the use of permute-

and-predict methods in PD and ICE plots are concerning for

the same reasons. Alternatives to these are more challenging.

Local explanation methods such as LIME and saliency maps

avoid extrapolation, but do not provide a global representa-

tion of the learned model over the whole range of feature

values; a threshold function being a case in point. We also

note that the counterfactual explanation methods explored in

Wachter et al. (2017) may pose similar extrapolation prob-

lems, but have not explored this here.

As an alternative visual diagnostic, the additive models

explored in Tan et al. (2018b) produce effective graphical dis-

plays. Tan et al. (2018a) found that these better represented

the over-all behavior of the function than methods based on

combining local explanations. However, specialized meth-

ods are still required to employ the diagnostics suggested in

Hooker (2007).
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A Proofs of results

Proof of Theorem 1: We observe Eπ x
π, j

i j = x̄ j and write

VIπj =

N
∑

i=1

( f (xi ) − f (x
π, j
i ))2

+2(yi − f (xi ))( f (xi ) − f (x
π, j
i )).

Examining the second term, when f (xi ) = xiβ stan-

dard results give that
∑N

i=1(yi − xi β̂)xi = 0 further

Eπ

∑N
i=1(yi − xi β̂)x

π, j
i j =

∑N
i=1(yi − xi β̂)x̄ j = 0. Adding

and subtracting x̄ j , the first term can be simplified to

Eπ β̂2
j

N
∑

i=1

(xi j − x
π, j

i j )2 = 2β̂2
j

N
∑

i=1

(xi j − x̄ j )
2

yielding the first result. The remaining identities are the result

of direct calculation. ⊓⊔

Proof of Theorem 2: We begin by observing that

argmin
m

Ey|x∗(y − m)2 = argmin
m

Ey|x− j
(y − m)2

= Ey|x− j
y

= Ex j |x− j
Ey|x y

= f− j (x− j ).

This is the quantity we estimate directly in VIC
j . Observing

that x
π, j
j , x

c, j
j and, in the case of VID

j replacing x j with any

constant, all satisfy x∗
j ⊥ y|x− j , yields the result.

Proof of Theorem 3: Observe that for any invertible matrix A,

regressing on X A is equivalent to regressing on X .

For simplicity, we will assume that the feature matrix X

includes a column of 1’s to allow for an intercept. Writing

X β̂ = X− j (β̂
− j

+ γ̂ j β̂ j ) + β jδ j , we have

f − j (x) = x(X− jT X− j )−1 X− jT (X− j (β̂
− j

+ γ̂ j β̂ j )

+ β jδ j + e)

= x
− j (β̂

− j
+ γ̂ j β̂ j )

where e = y − X β̂ are orthogonal to X− j , as is δ j . Then

writing

VID
j =

N
∑

i=1

(xi (β̂ − β̂
− j

))2 + 2(yi − xi β̂)xi (β̂ − β̂
− j

)

we see the second term is zero by standard results and we

obtain the result by substitution.

The result for VIπ L
j can be shown by first centering the

xi j after which Eπ

∑N
i=1 x

π, j
i j yi = Eπ

∑N
i=1 x

π j
i j xi tk = 0.

Hence, Eπ f π, j (x) = f − j (x) + op(1/N ) and the result

follows from that for VID
j .

The result for VIC L
j is obtained by the same calculation,

after subtracting γ0 j + xi,− jγ j from x
c, j

i j .

The result for VIC
j follows from the calculations in the

proof of Theorem 1 after observing that E(xi j − x
c, j

i j )2 =

2var(xi j |x− j ).
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