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Abstract: A method for producing nanocomposites of unsaturated polyester resins (UPR) based on
recycled polyethylene terephthalate (PET) as a matrix has been proposed. The upcycling method
involves three successive stages: (1) oligoesters synthesis, (2) simultaneous glycolysis and interchain
exchange of oligoesters with PET, (3) interaction of the obtained resins with glycol and maleic
anhydride. UPRs were characterized by FTIR spectroscopy and gel permeation chromatography.
The mechanical properties of nanocomposites obtained on the basis of these resins and titanium
dioxide have been investigated. It has been shown that 1,2-propylene glycol units, despite their lower
reactivity, significantly improve the properties of UPR. The most promising nanocomposite sample
exhibited tensile strength 112.62 MPa, elongation at break 157.94%, and Young’s modulus 29.95 MPa.
These results indicate that the proposed method made it possible to obtain nanocomposites with high
mechanical properties based on recycled PET thus allowing one to create a valuable product from
waste.

Keywords: PET; polyethylene terephthalate; oligoesters; unsaturated polyester resins; chemical
recycling; glycolysis; interchain exchange; polymer-based nanocomposites; polymer matrix enhancement

1. Introduction

Polymer nanocomposites are an intensively developing class of materials that consist
of polymer matrices and nanomaterials distributed in them. Both thermoplastic and
thermosetting polymers could be used as matrices. The nanomaterials used vary widely
in geometry, with not only three-dimensional powders, but also linear fibers, nanotubes,
and layered materials such as clay being used [1,2]. Modern nanocomposites have a wide
variety of applications, including additive technologies (3D printing) [3].

Currently, environmental impact of nanocomposites application and production [4]
and issues of sustainable polymer nanocomposites development [5] are of particular rel-
evance. It is known that only condensation polymers could be fully recycled [6], with
polyethylene terephthalate (PET) being able to be recycled even when contaminated [7].
Nanocomposites can be made based on thermoplastic polyesters with a high degree of
polycondensation, such as PET. The presence of the nanofiller in the polyethylene tereph-
thalate matrix was found to increase the glass transition temperatures and thermal stability
of the material [8].

Although thermoplastic polyethylene terephthalate can be used for nanocomposites
production directly, the utilization of thermoset post-consumer PET-based polyesters with
lower viscosity can prove to be easier and more environmentally friendly [7]. For example,
a good alternative to the use of pure recycled polyethylene terephthalate are unsaturated
polyester resins (UPRs) [9]. These are double bond containing polyesters with a low
degree of polycondensation. The main monomers used for UPRs synthesis are phthalic
or maleic anhydride, phthalic, maleic or fumaric acid, ethylene glycol, diethylene glycol
and 1,2-propylene glycol, with maleate and fumarate units containing double bonds. UPR

Polymers 2022, 14, 1602. https://doi.org/10.3390/polym14081602 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym14081602
https://doi.org/10.3390/polym14081602
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0002-2611-2217
https://orcid.org/0000-0002-6911-1636
https://orcid.org/0000-0001-8438-1952
https://orcid.org/0000-0003-0843-7082
https://doi.org/10.3390/polym14081602
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym14081602?type=check_update&version=1


Polymers 2022, 14, 1602 2 of 15

composites contain monomers with double bonds (styrene or acrylates) and accelerator,
and may contain also thickeners, fillers, reinforcing materials, mold release agents, low
profile additives [9], and other additives, such as plasticizers. To cure the resins, a radical
polymerization initiator is added.

Flame retardants and nanofillers can be distinguished among the nanomaterials in-
troduced into unsaturated polyester nanocomposites, with nanofillers being the largest
group [10–12]. The properties of the composites depend on the filler shape, size, aggregate
size, surface characteristics, and degree of dispersion. One widely used inexpensive filler
is calcium carbonate [13–15]. More expensive functional fillers are metal oxides [16], with
titanium dioxide being one of the most usable. TiO2 nanoparticles have a number of specific
properties: antimicrobial, photocatalytic, heavy metal ions sorption ability [17,18]. Filling
of UPRs with nanoparticles proved to increase their thermal, mechanical, and anti-UV
aging properties [19]. Known photocatalytic activity of titanium dioxide nanoparticles
was also confirmed for UPR-based composites [20]. The effect of ether bonds count on the
properties of the nanocomposite was studied using polyethylene glycols as an example [21].
An increase in the ether bonds content is shown to lead to the amplification of elastic prop-
erties and an increase in elongation at break. Other metal oxides used are zinc oxide [22–25]
and iron oxides [16,26,27], mainly due to lower cost [28]. Silica [29–31] and silica-titania
mixtures [32] are also widely applicable. The use of such widespread nanomaterials as
clays [33–35], nanocellulose [36], carbon nanotubes [37–39], and nanodiamonds [40] has
being investigated. It is also promising to use waste rubber [41], which is characterized by
low cost [7] and special properties due to the content of carbon black [42].

UPS can be made from PET by chemical recycling [43,44]. There are many ways
to chemically recycle polyethylene terephthalate [45–47]. Depending on the change in
molecular weight, chemical recycling can be divided into directed degradation, interchain
exchange, and solid-state polycondensation. Depending on the agent, hydrolysis, alcoholy-
sis, acidolysis, glycolysis, and esterolysis are distinguished. In addition, chemical recycling
can be carried out by various methods: heterogeneous recycling and homogeneous process-
ing in solution or melt [7]. Figure 1 shows paths for obtaining UPRs from post-consumer
polyethylene terephthalate chemical recycling products.
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Figure 1. Different paths for the unsaturated polyester resins synthesis based on the products of 

post-consumer poly(ethylene terephthalate) chemical recycling: (a) PET hydrolysis or alcoholysis, 
Figure 1. Different paths for the unsaturated polyester resins synthesis based on the products of
post-consumer poly(ethylene terephthalate) chemical recycling: (a) PET hydrolysis or alcoholysis,
where TPA—terephthalic acid, DMTP—dimethyl terephthalate; (b) PET heterogeneous glycolysis;
(c) PET homogeneous glycolysis and interchain exchange.

The first approach (Figure 1a) involves hydrolysis or alcoholysis of PET with tereph-
thalic acid or dialkyl terephthalate production, respectively, followed by the synthe-
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sis of UPRs [45–47]. The second method comprises the synthesis of a resin based on
bis(2-hydroxyethyl) terephthalate (BHET), which is a glycolysis product of polyethylene
terephthalate, as shown in Figure 1b [45–50]. The most promising method is the chemical
recycling of polyethylene terephthalate under the action of oligoesters with hydroxyl end
groups [7,51,52]. It consists of simultaneous glycolysis and interchain exchange of PET
and synthesized oligoester, followed by glycolysis and/or polycondensation with other
co-monomers, as shown in Figure 1c. Preliminary polyethylene terephthalate molecular
weight reduction under the action of oligoesters with hydroxyl end groups increases the
efficiency of chemical recycling of polyethylene terephthalate, since such oligoesters:

• Contain sufficient concentration of hydroxyl groups to prevent the formation of cyclic
oligomers and react readily;

• Are compatible with PET reaction in melt, implying co-solvent effect [7,53];
• Do not actively release low molecular weight compounds at temperatures above PET

melting point even without an autoclave.

The process under consideration can be classified as upcycling, since it allows one to
obtain value added products when blended with other materials [6].

Thus, the aim of this work is to investigate the process of unsaturated polyester resins
of various composition using the chemical recycling of polyethylene terephthalate under
the action of various oligoesters with hydroxyl groups and glycols, as well as to study the
properties of TiO2/UPR nanocomposites based on the resins obtained.

2. Materials and Methods
2.1. Materials

Post-consumer transparent PET flakes with at least 95% of the main fraction, particle
size from 5 to 10 mm were purchased from Tver Polymers Recycling Plant (Tver, Russia).
Phthalic (PA) and maleic (MA) anhydrides, ethylene glycol (EG), diethylene glycol (DEG),
and 1,2-propylene glycol (PG) were used as monomers; N,N-dimethylaniline and benzoyl
peroxide were used as accelerator and initiator, respectively; titanium dioxide nanoparticles
being colorless crystals of anatase structure with an average size of 25 nm were used as
nanofiller. These reagents were purchased from Sigma Aldrich (St. Louis, MO, USA) and
were used without further purification. Paraplex G-50 (Hallstar Industrial, Chicago, IL,
USA) was used as plasticizer.

2.2. Unsaturated Polyester Resins Synthesis
2.2.1. Saturated Oligoesters

Saturated oligoesters used as agents for PET simultaneous glycolysis and interchain
exchange were synthesized as follows. Glycol was introduced into the molten phthalic
anhydride at 140 ◦C in the ratio given in Table 1. The system was kept in an inert gas
(nitrogen) flow at a constant temperature for 1.5 h with stirring at 100 rpm, followed by an
increase in temperature to 190 ◦C and stirring up to 350 rpm for 3 h. After that, the reaction
was carried out under a vacuum of 40 mbar for 3 h until the isolation of low molecular
weight compounds was completed. As a result, samples OEP-1, ODEP-1 and OPP-1 were
obtained from EG, DEG and PG, respectively.

Table 1. Molar ratios of OEP-1, ODEP-1, and OPP-1 samples synthesis reagents.

Reagents OEP-1 ODEP-1 OPP-1

PA 4 4 4
EG 5 0 0

DEG 0 5 0
PG 0 0 5

2.2.2. Simultaneous Glycolysis and Interchain Exchange of Oligoesters with PET

The process of simultaneous glycolysis and interchain exchange of PET and oligoesters
was carried out at an equimolar ratio of PET and oligoesters units. Co-melting of PET and



Polymers 2022, 14, 1602 4 of 15

oligoesters at a temperature of 275 ◦C in an atmosphere of inert gas (nitrogen) was followed
by lowering the temperature to 250 ◦C and conducting the reaction for 1.5 h with stirring at
50 rpm. As a result, samples OEPT-1, ODEEPT-1, and OPEPT-1 were obtained from OEP-1,
ODEP-1, and OPP-1, respectively.

2.2.3. Unsaturated Polyester Resins Synthesis

The synthesis of unsaturated polyester resins was carried out at a temperature of
150 ◦C under a vacuum of 40 mbar with stirring at 100 rpm for 1.5 h. The molar ratios of
monomers and oligoesters units are given in Table 2.

Table 2. Molar ratios of UPR-(1–6) samples synthesis reagents.

Reagents UPR-1 UPR-2 UPR-3 UPR-4 UPR-5 UPR-6

MA 1 1 1 1 1 1
OEPT-1 2 2 0 0 0 0

ODEEPT-1 0 0 2 2 0 0
OPEPT-1 0 0 0 0 2 2

DEG 1 0 1 0 1 0
PG 0 1 0 1 0 1

2.3. Preparation of Nanocomposites
2.3.1. Mixing UPR with Other Components

All composites were prepared from a mixture of 25 wt% styrene with 75 wt% of UPR
samples. First, unsaturated polyester resin was dissolved in styrene, followed by addition
of nanoparticles (5 wt%) and N,N-dimethylaniline accelerator taken in equimolar ratio
to the initiator added in the next step. The mixture was kept on the Ultrasonic Processor
(Cole-Parmer Instruments, Vernon Hills, IL, USA) for 2.5 h.

2.3.2. Composite Curing

Benzoyl peroxide initiator was mixed with Paraplex G-50 plasticizer in a 2:1 weight
ratio, followed by addition to UPR composite at a rate of 2 wt% of initiator relative to the
resin. The mixture was stirred for 30 s to distribute the components by volume, and then it
was immediately injected into molds. Curing took place within 24 h.

2.4. Characterization of PET and Oligoesters
2.4.1. Fourier Transform Infrared Spectroscopy (FTIR)

The chemical compositions of PET and the resulting oligoesters were confirmed by
the position of the characteristic bands in the FTIR spectra. The spectra were obtained by
means of Spectrum 65 FT-IR spectrometer (Perkin Elmer, Waltham, MA, USA).

2.4.2. Gel Permeation Chromatography (GPC)

Gel permeation chromatography (Gilson Inc., Middleton, WI, USA) with Agilent
MIXED-E column, tetrahydrofuran as the mobile phase, and refractive index detector was
used to determine the molecular weights of the component present in the analyzed samples.
Measurements were made at the temperature of 25 ◦C and the flow rate of 1.0 mL/min.
Narrowly dispersed polystyrene standards with Mp (peak molecular weight) 580; 1280;
2940; 10,110; 28,770 g/mol and polydispersity index no more than 1.12 were used for
calibration (Agilent, Santa Clara, CA, USA).

2.4.3. Oligoesters Synthesis Conversion

Oligoesters Synthesis Conversion is determined using the Carothers equation [54].
The degree of polycondensation was determined by Equation (1):

P =
Mn

MMav
, (1)
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where Mn is the number average molecular weight, g/mol, determined by GPC, MMav is
the unit average molecular weight, g/mol, taking into account the mole fraction.

The unbalance factor was determined by Equation (2):

q =
NX0

NY0
, (2)

where NX0 and NY0 are the amounts of glycols and diacids in the initial monomer mixture,
with NX0 ≥ NY0.

The oligoester synthesis conversion was calculated by adjusting the parameter in
Equation (3):

P =
1 + q

1 + q× (1− 2 ∝)
, (3)

where P is the degree of polycondensation determined by Equation (1), q is the unbalance
factor calculated using Equation (2), and α is the desired conversion, %.

2.4.4. Color

The color of the samples was determined using Gardner scale in accordance with
ASTM D1544 using BYK Gardner Liquid Color Standarts (BYK Additives & Instruments,
Wesel, Germany).

2.5. Characterization of UPR Cures
2.5.1. Density Measurement

Density of cured composites was determined using immersion method according to
ISO 1183-1:2019 using distilled water at 25 ◦C.

2.5.2. Test Method for Tensile Properties

Mechanical properties were determined according to ASTM D638. The cross-sectional
dimensions of the specimens were 10 × 5 mm, the stretching rate was 5 mm/min. Instron
5942 testing machine (Instron, Norwood, MA, USA) and Instron Bluehill software were
used for tensile strength (MPa), elongation at break (%), and Young’s modulus (MPa)
measurements. According to the test method, a standard error of no more than 10% of the
measured parameter is achieved with an elongation of more than 20%.

3. Results and Discussion
3.1. PET-Flakes Characterization

Figure 2 shows the FTIR spectrum of the untreated PET flakes. The main absorption
bands corresponding to the PET structure were determined at 1715 cm–1 (carbonyl, stretch-
ing), 1243 cm–1 (ester group, stretching), 1176 and 1116 cm–1 (1,4-substituted ring) [7,55].
The correlation coefficient with the known spectrum of polyethylene terephthalate was
99.3%, which confirms that the sample represents a partially crystalline PET [55].
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3.2. Oligoesters Characterization
3.2.1. OEP-1, ODEP-1, and OPP-1 Properties

Figure 3 shows photographs of the oligoester agents obtained by glycolysis and
interchain exchange. All saturated resins are transparent, so their color can be assessed on
the Gardner scale (Table 3). OEP-1 and OPP-1 samples are brittle solids at room temperature
(Figure 3a,c), while ODEP-2 is a viscous, sticky resin (Figure 3b).
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Table 3. Characteristics of OEP-1, ODEP-1, and OPP-1 samples: number average (Mn) and weight
average (Mw) molecular weights, polydispersity index (PDI), conversion, and color.

Sample Mn, g/mol Mw, g/mol PDI Conversion, % Color

OEP-1 684 1100 1.61 97.65 3
ODEP-1 835 1368 1.64 97.04 1
OPP-1 667 1096 1.64 95.96 1

The FTIR spectra of the obtained saturated polyester resins are shown in Figure 4.
All samples exhibit bands at 1715 cm–1 (carbonyl, stretching) and 1243 cm–1 (ester group,
stretching). The FTIR spectrum of the ODEP-1 sample contains bands corresponding to the
ether bond of diethylene glycol: 1270 cm–1 (C-O-C, assym. stretching), 939 cm–1 (C-O-C,
sym. stretching). The bands characterizing the CH3-group overlap with other ones, so they
cannot be marked. The ratios of the bands corresponding to the hydroxyl (3350 cm–1) and
ester (1715 cm–1) groups are the same for all three samples.
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GPC curves for OEP-1, ODEP-1, and OPP-1 samples are shown in Figure 5.
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The GPC curve of sample OEP-1 has a peak (257 g/mol) with a shoulder (195 g/mol)
corresponding to phthalic acid ethylene glycol diester and monoester. The adjacent strong
peak (337 g/mol) seems to correspond to phthalic acid diethylene glycol diester, which is
known to form in polycondensation processes with ethylene glycol [7]. Other peaks (504,
727, 945, and 1198 g/mol) correspond to oligomers.

The GPC curve for the diethylene glycol-containing ODEP-1 sample has a peak
(268 g/mol) with a shoulder (315 g/mol) corresponding to phthalic acid diethylene glycol
monoester and diester, and peaks of oligomers (474, 667, 882, and 1089 g/mol).

The OPP-1 sample curve exhibits the peak of phthalic acid 1,2-propylene glycol
monoester (236 g/mol) with a shoulder of diester (263 g/mol) as well as peaks of oligomers
(426, 594, 765, and 933 g/mol).

Peak molecular weights for OEP-1, ODEP-1, and OPP-1 samples differ from the
calculated for corresponding monomers and oligomers ones, since polystyrene standards
were used. The GPC curves were used to determine the molecular weight characteristics,
followed by the conversion calculation (Table 3).

The GPC curves and calculated conversions of more than 95% for all resins confirm
the formation of oligomers, which is expected in the polycondensation of a mixture of
monomers with an unbalance factor of 0.8. The color of the samples is in line with theoretical
expectations, since the end groups of ethylene glycol (in sample OEP-1) easily lead to the
formation of known chromophores, both polyenaldehydes and polyenes [56].

3.2.2. OEPT-1, ODEEPT-1, and OPEPT-1 Properties

Photos of PET-based saturated polyester resins obtained by the reaction of PET and
OEP-1, ODEP-1, and OPP-1 oligoesters are shown in Figure 6. The resulting samples are
transparent solids.

FTIR spectra of terephthalate-containing resins are shown in Figure 7. FTIR spectra for
PET-based saturated polyester resins exhibit peaks at 1176 and 1116 cm–1 (1,4-substituted
ring), same as in polyethylene terephthalate spectra [7,55].
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Figure 8 represents the GPC curves. The GPC curves of all three samples are flat
peaks corresponding to higher oligomers, with only weak peaks of monomers, dimers and
trimers being distinguishable. The peak molecular weight was 3769 g/mol for OEPT-1
sample, 3184 g/mol for ODEEPT-1, and 4031 g/mol for OPEPT-1.

The end groups of polyethylene terephthalate were not taken into account during the
conversion calculation, since even post-consumer polyethylene terephthalate has a much
higher molecular weight than oligoesters (number average molecular weight of about
26,000 g/mol [57]). Characteristics and conversion of samples are shown in Table 4.

Table 4. Characteristics of OEPT-1, ODEEPT-1, and OPEPT-1 samples: number average (Mn) and
weight average (Mw) molecular weights, polydispersity index (PDI), conversion, and color.

Sample Mn, g/mol Mw, g/mol PDI Conversion, % Color

OEPT-1 1519 3053 2.01 96.81 9
ODEEPT-1 1786 2594 1.45 97.01 5
OPEPT-1 1600 3272 2.04 96.86 4

In contrast to the polycondensation of OEP-1, ODEP-1 and OPP-1 oligoesters, where
the reaction with unbound 1,2-propylene glycol reaches a noticeably lower conversion,
the conversion in this process turned out to be practically independent of the chemical
composition of the oligomer at an equal concentration of terminal hydroxyl groups (within
0.2% range). All samples acquired a more intense color, which is in line with expectations
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for the second heat treatment cycle. Both the absence of the dependence of the conversion
on the composition and the more intense coloration are obviously related to the higher
temperature of the described process. Differences in the colors of the samples correspond
to the assumption made in Section 3.2.1.

Polymers 2022, 13, x FOR PEER REVIEW 9 of 17 
 

 

 

Figure 7. FTIR spectra of OEPT-1, ODEEPT-1, and OPEPT-1 samples. 

Figure 8 represents the GPC curves. The GPC curves of all three samples are flat 

peaks corresponding to higher oligomers, with only weak peaks of monomers, dimers 

and trimers being distinguishable. The peak molecular weight was 3769 g/mol for OEPT-

1 sample, 3184 g/mol for ODEEPT-1, and 4031 g/mol for OPEPT-1. 

 

Figure 8. GPC curves of OEPT-1, ODEEPT-1, and OPEPT-1 samples. 

The end groups of polyethylene terephthalate were not taken into account during the 

conversion calculation, since even post-consumer polyethylene terephthalate has a much 

higher molecular weight than oligoesters (number average molecular weight of about 

26,000 g/mol [57]). Characteristics and conversion of samples are shown in Table 4. 

  

Figure 8. GPC curves of OEPT-1, ODEEPT-1, and OPEPT-1 samples.

3.2.3. Unsaturated Polyester Resins Properties

Photos of the resulting unsaturated polyester resins are shown in Figure 9. Samples
treated with diethylene glycol appeared to be opaque sticky and highly viscous resins
(Figure 9a,c,e), while the remaining samples persisted to be transparent (Figure 9b,d,f).
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IR spectra of UPRs are shown in Figure 10. The spectra of all samples show an elevated
region of 2300–3700 cm−1, which corresponds to the hydroxyl end groups. The IR spectra
of UPR-2, UPR-4, and UPR-6 resins show a band at 1780 cm−1 (anhydride, stretching)
corresponding to maleic anhydride.
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Figure 10. FTIR spectra of UPR-1, UPR-2, UPR-3, UPR-4, UPR-5, and UPR-6 samples.

The GPC curves of the obtained UPRs are shown in Figure 11. In addition to the
main peaks of oligomers, all curves contain weak peaks in the range 147–167 g/mol,
corresponding to maleic acid ethylene, diethylene or 1,2-propylene glycol monoester,
respectively. Peak molecular weights for UPR-1, UPR-2, UPR-3, UPR-4, UPR-5, and UPR-6
samples are 780, 753, 694, 794, 590, and 620, respectively.
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Figure 11. GPC curves of UPR-1, UPR-2, UPR-3, UPR-4, UPR-5, and UPR-6 samples.

The conversion cannot be calculated, because the reactions of glycolysis of OEPT-1,
ODEEPT-1, and OPEPT-1 oligoesters and polycondensation of diethylene or 1,2-propylene
glycols and maleic anhydride occur simultaneously in this process. Molecular weight
characteristics of samples of UPRs are shown in Table 5.
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Table 5. Characteristics of UPR-1, UPR-2, UPR-3, UPR-4, UPR-5, and UPR-6 samples: number average
(Mn) and weight average (Mw) molecular weights, polydispersity index (PDI) and color.

Sample Mn, g/mol Mw, g/mol PDI Color

UPR-1 446 657 1.47 Cloudy
UPR-2 416 640 1.54 10
UPR-3 410 574 1.40 Cloudy
UPR-4 492 692 1.41 7
UPR-5 354 490 1.38 Cloudy
UPR-6 381 517 1.36 4

Unbound 1,2-propylene glycol is less active in the reaction than diethylene glycol, as
evidenced by the transparency of samples UPR-2, UPR-4, and UPR-6, and by the presence
of peaks corresponding to maleic anhydride in the FTIR spectra of these samples. Lower
molecular weights of samples UPR-4 and UPR-6 compared to UPR-3 and UPR-5 were
also observed. The same dependencies were observed for the polycondensation reaction
(Section 3.2.1).

3.3. Nanocomposites Properties

The first step in the preparation of unsaturated polyester resin nanocomposite is the
dissolution of UPR in styrene. Samples UPR-1, UPR-3, and UPR-5 dissolved readily, while
sample UPR-2 was completely insoluble. Samples UPR-4 and UPR-6 formed physical gels
when dissolved in styrene, with UPR-4 remaining in gel form even when excess styrene
was added. Since UPR-4 and UPR-5 have the same composition of monomer mixtures, it
can be concluded that the molecular weight has a significant effect on the properties of the
unsaturated polyester resin. It should be noted that the molecular weight of the product in
the process under study depended on whether the monomers were used in unbound form
or as an oligomer at different stages.

The appearance of cured UPRs with or without titanium dioxide is shown in Figure 12.
The UPR-3 sample is highly heterogeneous, as evidenced by the yellow inclusions (Figure 12b).
Density and mechanical properties are shown in Table 6, stress-strain curves of UPR samples
are given in Supplementary Materials (Figure S1).
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Table 6. Density and mechanical properties of UPR samples.

Resin Sample Nanofiller Content, wt% Density, g/mm3 Tensile Strength, MPa Elongation at Break, % Young’s Modulus, MPa

UPR-1
0 1.22 3.61 27.14 0.62
5 1.26 3.69 32.89 0.83

UPR-2
0 Insoluble in styrene
5

UPR-3
0 1.24 34.32 21.68 7.33
5 1.28 9.85 33.66 1.99

UPR-4
0 Forms a physical gel
5

UPR-5
0 1.26 51.86 127.06 9.65
5 1.29 112.62 157.94 29.95

UPR-6
0 Forms a physical gel
5

The density of all samples is approximately the same, however, it slightly increases
with an increase in the content of diethylene glycol and 1,2-propylene glycol units. The ad-
dition of 5 wt% titanium dioxide also increases the density of the nanocomposite.

Tensile strength for samples without titanium dioxide increases in the series
UPR-1 < UPR-3 < UPR-5. Nanocomposites based on UPR-1 and UPR-5 exhibit increase in
tensile strength (by 2.2 and 117.2 %, respectively), however UPR-3 based sample does not
follow the same pattern (71.3% decrease). This may be due to its heterogeneity, the influence
of titanium dioxide [16], or the content of ether bonds [21]. The Young’s modulus follows
the same pattern (increased by 33.9 and 210.4 % for UPR-1 and UPR-5, respectively). UPR-5
samples, especially TiO2-containing one, have outstanding strength properties, surpassing
the studied analogues [16,21].

The elongation at break increases with the addition of titanium dioxide (by 21.2, 55.3,
and 24.3 % for UPR-1, UPR-3, and UPR-5, respectively). Achieved values are approximately
the same for samples UPR-1 and UPR-3, with sample UPR-3 without TiO2 having slightly
less elongation than UPR-1. This can be caused both by the inhomogeneity of the samples
and by the influence of ether bonds, which are known to reduce elongation at break
above a certain concentration [21]. The elongation at break for the UPR-5 sample increases
dramatically compared to the other ones. It is almost 5 times greater than that of the UPR-1
and UPR-3 composites, and more than 7 times as compared to UPR-3 without the addition
of titanium dioxide.

4. Conclusions

A method for the preparation of unsaturated polyester resins based on recycled
polyethylene terephthalate has been studied. It includes successive stages of oligoesters
synthesis, their simultaneous glycolysis and interchain exchange with PET, simultane-
ous glycolysis of the resulting PET-based oligoesters, and polycondensation with maleic
anhydride. In the first and third processes, which were carried out in the temperature
range of 140–190 ◦C, the reactivity of 1,2-propylene glycol turned out to be the lowest,
yielding the 95.96% conversion during the synthesis of the oligoester, higher molecular
weights, and resulting in the presence of bands corresponding to maleic anhydride in the
spectrum after glycolysis. However, in the case of combined glycolysis and interchain
exchange, which occur in the temperature range of 250–275 ◦C, the conversion turned out
to be practically uninfluenced by oligoester composition. The Gardner color value for the
samples containing the highest proportion of 1,2-propylene glycol was the lowest.

TiO2-based nanocomposites utilizing resin samples that do not contain additional units
of ethylene glycol to those present in the original polyethylene terephthalate surpassed the
samples produced from ethylene glycol-containing oligoether. The Tensile strength and
Young’s modulus differ by more than an order of magnitude. The elongation at break in-
creased significantly for samples containing 1,2-propylene glycol. The addition of titanium
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dioxide nanoparticles in most cases increases the mechanical properties and density, with
the most significant increase occurring for the 1,2-propylene glycol-containing sample.

Thus, the most rational way to obtain resins utilizing post-consumer polyethylene
terephthalate as a matrix for nanocomposites is based on combined glycolysis and in-
terchain exchange of a 1,2-propylene glycol-containing oligomer with PET, followed by
glycolysis with diethylene glycol and polycondensation with maleic anhydride. We assume
that this chemical recycling process has lower moisture requirements than thermome-
chanical recycling. The obvious disadvantages include a large number of stages. As in
other polycondensation processes, the high purity of the feedstock is important for the
synthesis of oligoesters at the first stage. There are also temperature limitations due to
degradation processes. Presumably, the temperature should not exceed 280 ◦C. The ratios
of PET, oligomers, glycols and anhydride at all stages, as well as the temperature conditions
of the process, are worth further investigation in order to be implemented in the industry.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/polym14081602/s1, Figure S1: Stress-strain curves of UPR samples.
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