
Unscented Kalman filter and Magnetic Angular
Rate Update (MARU) for an improved Pedestrian

Dead-Reckoning
Francisco Zampella∗, Mohammed Khider†, Patrick Robertson† and Antonio Jiménez∗
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Abstract—The Extended Kalman Filter (EKF) has been the
state of the art in Pedestrian Dead-Reckoning for foot-mounted
Inertial Measurements Units. However due to the non-linearity
in the propagation of the orientation the EKF is not the
optimal Bayesian filter. We propose the usage of the Unscented
Kalman Filter (UKF) as the integration algorithm for the inertial
measurements. The UKF improves the mean and covariance
propagation needed for the Kalman filter. Although the UKF
provides a better estimate of the orientation, with Zero velocity
UPdaTes (ZUPT) measurements, the yaw and the bias in the
gyroscope associated with it becomes unobserved and might
generate errors in the positioning. We studied the changes in
the magnetic field during the stance phase and their relationship
with the turn rates to propose three measurements using the
magnetometer signal that will be called Magnetic Angular Rate
Updates (MARUs). The first measurement uses the change in the
angle of the magnetic field in the horizontal plane to measure
the change in the yaw and provides a simple measurement for
the UKF implementation. The second measurement relates the
change in the magnetic field vector to the turn rate and provides
information on the bias of the gyroscope for an UKF. The last
measurement uses a first order approximation to generate a
linear relationship with the gyroscope bias and therefore it can be
used in an EKF. Finally we proposed a metric for the reliability
of the stance as a way to use the pre and post stance information
but adjusting the covariance of the measurements gradually from
swing to stance. These methods were tested on real and simulated
signals and they have shown improvements over the original PDR
algorithms.

Index Terms—Pedestrian Dead Reckoning, Unscented Kalman
Filter, Magnetically Aided Navigation, Soft Measurements.

I. INTRODUCTION

The recent improvements in the Micro Electro Mechanical
(MEM) technology has allowed the development of Inertial
Measurements Units (IMU) that due to thier size and weight
can be easily carried by a pedestrian. Obtaining the position
from a high grade IMU is done using an Inertial Navigation
System (INS) [1], [2]. However high grade IMUs can not be
carried by a pedestrian due to their size and weight. MEM
IMUs present amounts of bias an noise that would generate
large errors in few seconds. Many authors [3], [4], [5], [6],
[7] had used the identification of the stance phase in a foot-
mounted IMU to limit the growth of the errors. Among them
Foxlin [4] was the first to use an Extended Kalman Filter

(EKF) to estimate and subtract the errors in the navigation
states by imposing a Zero velocity UPdaTe (ZUPT) during
the stance. Another common measurement as detailed in [5],
is the assumption of a fixed orientation when the sensor is in a
still phase, allowing a Zero Angular Rate Update (ZARU) that
helps estimating the bias of the gyroscope. All these methods
are based on a first order approximation of the propagation
of a non-linear model of the states. We aim to propose a
filter that is better adapted to the non-linear problem and to
obtain information about the orientation from the magnetic
measurements even in the presence of magnetic disturbances.

The use of a first order approximation of a non linear
problem can lead to systematic errors, therefore we propose
the use of an Unscented Kalman Filter (UKF) as stated in
[8], [9]. Unlike the EKF, the UKF propagates the mean
and covariance of the estimation using several sigma points
around the estimated mean and then measures the mean and
covariance of the propagated points. Theoretically the UKF
is able to correctly estimate up to the third order term of the
Taylor Series of the mean and up to the second order term
of the Taylor series of the Covariance [10], while the EKF is
capable of estimating only the first order term.

One of the mains sources of errors in PDR is the increment
of the yaw error due to the fact that it is a non observable state.
Many authors such as in [3], [11], [12] have used the Magnetic
North measurements as direct measurements for the heading,
but we have seen that due to the position related magnetic
disturbances these measurements can generate errors in the
position. In this work we propose to use the changes in the
magnetic field during the stance to detect the turn rates of
the sensor. This method can be used even in the presence of
magnetic disturbances since they are position dependant. We
will call this method Magnetic Angular Rate Update (MARU).

One of the main subjects in PDR is the Stance detection and
many authors has proposed several detection methods [13],
[14], [15], [15], [16]. They provide binary decisions that are
usually optimized to avoid false stance detections by setting
strong thresholds at the cost of reducing the stance samples.
This reduces the amount of information that the filter receives
and in some cases (fast walk, running, etc.) might result in



not detecting the stances. In this work we propose the use of
a soft threshold and a gradual change between the stance and
swing phases as a way to implement a soft decision over the
presence of a Stance.

This paper is structured as follows. In section II, we
propose the structure of a general UKF for PDR estimation.
In section III, we establish the concept of using the change in
the magnetic field as source of information for the gyroscope
and the orientation propagation. Three methods are proposed
in this section to implement this measurement according to the
available states and sensors. In section IV, we study the step
detection and propose a method to gradually switch between
swing and stance detection, providing an indication of the
uncertainty of that measurement. In section V, we evaluate
the proposed methods with different test signals. In section VI,
conclusions and future works are summarized.

II. UNSCENTED KALMAN FILTER

Although the Extended Kalman Filter has proven to be
a good estimator in PDR, under some conditions it might
generate systematic errors due to the first order approximation
of the orientation propagation. In this section, we will propose
a new estimator; the Unscented Kalman Filter, which measures
the evolution of the different states and the influence of
the measurements using “sigma” points. The filter is usually
separated into the Unscented Transformation (UT) that esti-
mates the propagation of the states, and the filter update that
associates the measurements with the changes in the states and
correct them to minimize the covariance.

A. Propagation of the states

We will study first the evolution of the states, given mea-
surements Acc(k) = [Accx(k), Accy(k), Accz(k)]

T from the
accelerometer and Gyr(k) = [Gyrx(k), Gyry(k), Gyrz(k)]

T

from the gyroscope in each sensor axis (i = x, y, z). After
the removal of the biases (Δa and Δω respectively), we
can obtain the turn rate ωb(k) = Gyr(k) − Δω(k) and the
acceleration ab = Acc(k) −Δa, both in the sensor reference
frame (subindex b).

The measurements can be transformed to a navigation frame
(subindex n, usually North-West-Up) using the Direction Co-
sine Matrix Cnb (k), so the velocity ṙ(k) and position r(k) can
be obtained as:

ṙ(k) = ṙ(k − 1) + (Cnb (k) · ab(k)− �g) ·Δt, (1)

r(k) = r(k − 1) +
(ṙ(k) + ṙ(k − 1))

2
·Δt. (2)

The value of Cnb (k) is propagated using [1]:

Cnb (k) = Cnb (k − 1) · eΩb
nb(k)·Δt, (3)

where the skew symmetrical matrix Ωbnb(k) is:

Ωbnb(k) = [ωb(k) ×] =

⎡
⎣ 0 −ωz(k) ωy(k)

ωz(k) 0 −ωx(k)
−ωy(k) ωx(k) 0

⎤
⎦ ,
(4)

and is equivalent to the cross product with the vector ω b(k).
Equation 3 can be expressed as in [1]:

eΩ
b
nb·Δt = I +

sin(‖ωΔT ‖)
‖ω‖ Ωbnb +

(1− cos(‖ωΔT ‖))
‖ω‖2 Ωbnb

2
,

(5)
and it represents the source of the non-linearities of the
system. The state propagation is included in the function
x(k) = f(x(k − 1), u(k)), where u(k) refers to the IMU
measurements.

B. Unscented Transformation

The UKF measures the behavior of the transition with
the Unscented Transformation. It uses several symmetrical
“sigma” points around the mean of the states x̄k−1. The
“sigma” points are established as in [10]:

Xk−1,i =

⎧⎨
⎩

x̄k−1 i = 0

x̄k−1 + (
√

(n+ λ)Pk−1)i i = 1, ..., n

x̄k−1 − (
√

(n+ λ)Pk−1)i−n i = n+ 1, ..., 2n

,

(6)
where (

√
(n+ λ)Pk−1)i represents the column i of the matrix

squared root of the weighted covariance Pk−1 and it can be
obtained using the eigenvalues decomposition. We will obtain
2n + 1 sigma points, where n is the number of states and
λ = α2(n+ κ)− n is a scale factor where α and κ are used
to change the dispersion of the points.

Using a scaled squared root of the covariance, it is possible
to obtain the covariance of the propagated states through the
weighted cross correlation of the points. Each Xk−1,i point is
propagated using the function f(x(k− 1), u(k)) and the input
u(k), where they model the evolution of the states as:

Xk,i = f(Xk−1,i, u(k)) (7)

A weighted mean x̂k and covariance P̂xx are obtained from
the propagated points, as:

x̂k =

2n∑
i=0

wi ·Xk,i (8)

P̂xx =

2n∑
i=0

wi · (Xk,i − x̂k) · (Xk,i − x̂k)
T +Q (9)

where the weight wi is [9]:

wi =

⎧⎪⎨
⎪⎩

λ
n+λ i = 0, mean
λ

n+λ + (1− α2 + β) i = 0, covariance
λ

2·(n+λ) i > 0
, (10)

where β is a parameter that allows to incorporate the a priori
knowledge of the distribution of x. For a Gaussian distribution
β = 2 is optimal. The values of x̂k and P̂xx are the estimations
of the evolution of the probability distribution.

C. Measurement Update

In the presence of any measurement (ZUPT, ZARU, etc.),
we will estimate the effect of the small changes in the states
with respect to the observations. The observation mean and
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Fig. 1. Structure of a PDR algorithm in an UKF with ZUPT.

covariance are computed evaluating the propagated “sigma”
points with the observation function h() as:

Yi = h(Xk,i). (11)

The mean value ŷ, the covariance of the observation P yy and
the covariance between the states and the measurement Pxy
are calculated as follows:

ŷ =

2n∑
i=0

wi · Yi (12)

Pyy =
2n∑
i=0

wi · (Yi − ŷ) · (Yi − ŷ)T +R (13)

Pxy =

2n∑
i=0

wi · (Xk,i − x̂k) · (Yi − ŷ)T . (14)

Finally, we can update the states with the real measurement
y as:

K = Pxy · P−1
yy (15)

x̄k = x̂k +K · (y − ŷ) (16)

Pk = P̄xx −K · Pyy ·KT . (17)

D. UKF in PDR

One of the most common states representation used in an
EKF for PDR is a 15 error states representation, where the
modeled states are the orientation errors in the navigation

frame, the bias in the gyroscope, the error in the position,
the error in the velocity and the bias in the accelerometer
(each of them in 3 dimensions). This representation is used to
generate a more linear problem and diminish the propagation
errors. However in the case of the UKF we can use the direct
navigation states: Orientation Ψ as Euler angles (Roll φ, Pitch
θ and Yaw ψ), position r and velocity ṙ and the biases of the
instrument (Δa and Δω), although any other reduced states
can be used. Hence, our state vector will be:

x(k) =
[
ΨT ΔωT rT ṙT ΔaT

]T
. (18)

The structure of the filter can be observed in the Fig. 1.
In our implementation we propagate each sigma point using
the values of the measured turn rate and acceleration and we
can estimate the mean and covariance of the states according
to the distribution of the points. Observing the signals from
the accelerometer and gyroscope, we can determine the step
phases. During the swing, we will use the estimated mean
and covariance of the UT. During a stance, we observe the
estimated states X(k) according to the desired measurements
(YZUPT,i = ṙ(k, i) for ZUPT and YZARU,i = Δω(k, i) for
ZARU) and determine the estimated mean, the covariance of
the measurements and the correlation between the changes
in the states and the changes in the measurements. Using
equations 16 and 17 we can obtain the corrected states.

For the evaluation of the UKF we used the data set 14 of
[17]. The signal was recorded from an IMU placed in the
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Fig. 2. Analysis of the height (a), orientation (b) and step length (c) errors
for the data set 14 of [17].

instep of the right foot, while doing a 5 minutes closed loop
trajectory with 3 seconds of stance before the first movement.
The ground truth was recorded with a camera motion system.
In this work we propose an evaluation criterion based on the
height error, the yaw error (the accumulation of the heading
change error Δθ) and the step length accumulated error. We
evaluated the following representations:

• 15 states: full state representation, with ZUPT and
ZARU.

• 14 states: state representation without the yaw state, with
ZUPT and ZARU.

• 12 states: state representation without the accelerometer
bias states, with ZUPT and ZARU.

• 11 states: state representation without the accelerometer
bias states nor the yaw state, with ZUPT and ZARU.

• 9 states: state representation with none of the bias states,
with ZUPT only.

• 8 states: state representation with none of the bias states
nor the yaw state, with ZUPT only.

In the figure 2, we can observe that the UKF behaves better
than the EKF in most conditions, particulary in 15 and 9 states
versions. From now and on, we will use the 15 states UKF
filter when referring to the UKF.

III. MAGNETIC ANGULAR RATE UPDATE (MARU)

Many IMUs usually have a magnetometer and accordingly,
many PDR implementations such as in [3], [11] and [18]
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Fig. 3. Change in the measured magnetic field vector due to a rotation,
represented in the sensor’s reference frame.

make use of that measurement to provide information about
the orientation. Indoors, the presence of magnetic disturbances
usually causes local errors in the yaw that due to the integra-
tion can generate high positioning errors. Today’s buildings
are usually constructed using metallic structures, and that
generates strong position dependant magnetic perturbations.

We propose to use the change in the magnetic filed to
provide a measurement of the turn rates of the sensor. This
will allow us to use any magnetic field that is constant with
time, which can be assumed during the stance phase in a
foot-mounted IMU. If we rotate an IMU while the magnetic
field is constant in the navigation frame, we will observe a
rotation of the measured magnetic field as it can be seen
in the Fig. 3. In the figure Bb(k) and Bb(k − 1) represent
the actual and previous measured magnetic field, ω(k) the
turn rate of the sensor and ΔBb(k) the resulting change in
the measured magnetic field. We will call this measurement
Magnetic Angular Rate Update (MARU).

We plan to use this measurement as information to limit
the drift in the yaw, provide a better attitude propagation
and a better Gyroscope bias estimation. Due to the non-
linearities present in the attitude propagation and measurement
relationships, we can use the UKF, but in the case of a EKF,
a first order approximation is needed.

In this work we establish three strategies to use the magnetic
field changes as information for the turn rates:

A. Change in the magnetic heading: This approach asso-
ciates the change in the magnetic heading (the magnetic
field in the horizontal plane) with the change in the
estimated yaw and therefore with the turn rate in the
vertical axis.

B. Magnetic rotation: Using an UKF, it is possible to
directly associate the turn rates and the magnetic field



changes in a three dimensional space and therefore obtain
information on the attitude change and the turn rates.

C. Magnetic rotation first order approximation: A linear
approximation can be used in an EKF, to implement the
relationship of the magnetic rotation with the Gyroscope
biases as a measurement.

The use of any of these methods will depend on the desired
processing effort and the states implemented. The presence of
changing magnetic fields (moving metal objects, motors, etc.)
might alter the measurements and therefore, it is necessary to
establish a threshold as a way to minimize this effect. This
threshold will be discussed for each of the three cases next.

A. Change in the magnetic heading

A first approach to take advantage of the magnetic field
changes is the use of the magnetic heading. The use of ZUPT
measurements provide information about the roll an pitch but
the yaw ψ remains unobserved. During a stance the changes
of the magnetically detected yaw must be correlated with the
changes in the INS orientation, therefore we will use that
information to decrease the error in the yaw.

We propose the use of the change in the angle in the
horizontal plane from the magnetic field to the X axis of
the sensor frame (IMU heading) during the stance as a
measurement of the change in the yaw as observed in the
Figure 4. Transforming the magnetic field measurements from
the sensor frame to a horizontal plane (correcting the roll φ
and pitch θ, subindex n′) as:

Bn′(k) = Rθ · Rφ · Bb(k), (19)

where:

Rθ =

⎡
⎣ cos θ(k) 0 sin θ(k)

0 1 0
− sin θ(k) 0 cos θ(k)

⎤
⎦ , (20)

Rφ =

⎡
⎣ 1 0 0

0 cosφ(k) − sinφ(k)
0 sinφ(k) cosφ(k)

⎤
⎦ . (21)

we can obtain the magnetic yaw as:

ψm(k) = − arctan (Bn′(k)y, Bn′(k)x)−Md. (22)

The observation function Y () and the measurement value
y() for the UKF will be:

Δψm(k) = Ψm(k)−Ψm(k − 1) (23)

y(k) = arctan (Bn′(k − 1)y, Bn′(k − 1)x)

− arctan (Bn′(k)y, Bn′(k)x) (24)

Y (k) = ψ(k)− ψ(k − 1). (25)

For the estimation of the observation on each point we must
use the previous and the propagated yaw value, ψ(k − 1)
and ψ(k) respectively, corresponding to the evaluated “sigma”
point. The difference between them will be related to the
change in the magnetic heading. This is implemented using
an UKF. The general structure of the implemented UKF can
be observed in Figure 1.
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Fig. 4. Change in the magnetic heading due to the turn rates observed in
Bn′ in the modified navigation frame (estimated horizontal plane).

For the detection of the MARU with the change in the
magnetic heading we must assume that the IMU is in a stance
phase, where we assumed a limit γa for the norm of the
measured acceleration (Acc) and a limit γω for the norm of the
measured turn rate (Gyr). The change in the yaw must not be
over the maximal change permitted with that value, therefore
the limit γψ for the norm of the change of the heading must
be:

γψ = γω ·Δt. (26)

Adding this to the stance assumption, the condition Tmh to
use the MARU measurement with the change in the magnetic
heading becomes:

Tmh(Acc,Gyr,Δψm) = (‖Acc‖ < γa)&(‖Gyr‖ < γω)

&(‖Δψm(k)‖ < γψ). (27)

B. Magnetic rotation

Observing the rotation of the magnetic field due to an turn
rate can provide more information about the turn rates, therefor
we will study the change of the measured magnetic field in
the sensor frame

The change in the measured magnetic field ΔBb(k) is:

ΔBb(k) = Bb(k)−Bb(k − 1). (28)

Transforming the measurements from the sensor frame to the
navigation frame using Bb(k) = Cnb (k)

T ·Bn(k), we obtain:

ΔBb(k) = Cnb (k)
T ·Bn(k)−Cnb (k− 1)T ·Bn(k− 1). (29)

The Direction Cosine Matrix Cn
b (k) can be rewritten as its

propagation from the previous value (eq. 3), therefore the



relationship will be:

ΔBb(k) = (Cnb (k − 1) · eΩb
nb(k)·Δt)T · Bn(k)

−Cnb (k − 1)T · Bn(k − 1)

= e−Ωb
nb(k)·Δt · Cnb (k − 1)T ·Bn(k)

−Cnb (k − 1)T · Bn(k − 1). (30)

The magnetic field in the navigation frame during the
moment k can be written as Bn(k) = Bn(k − 1) + εB,
where εB is the change in the magnetic disturbance. Therefore,
equation 30 can be rewritten as:

ΔBb(k) = e−Ωb
nb(k)·Δt · Cnb (k − 1)T · (Bn(k − 1) + εB)

−Cnb (k − 1)T · Bn(k − 1)

= (e−Ωb
nb(k)·Δt − I) · Cnb (k − 1)T ·Bn(k − 1)

+e−Ωb
nb(k)·Δt · Cnb (k − 1)T · εB. (31)

Using the fact that Cnb (k − 1)T · Bn(k − 1) = Bb(k − 1)

and e−Ωb
nb(k)·Δt ·Cnb (k − 1)T = (Cnb (k − 1) · eΩb

nb(k)·Δt)T =
Cnb (k)

T , the change in the sensor magnetic field will be:

ΔBb(k) = (e−Ωb
nb(k)·Δt−I) ·Bb(k−1)+Cnb (k)

T ·εB. (32)

This equation relates the change in the measured magnetic
field ΔBb(k) with the turn rates ω(k) (implicit in Ωbnb(k)).

If the foot is on a stance phase, any position dependant
perturbation will be constant and we can assume that εB will
be caused only by the random noise of the Magnetometer.
We propose the use of the UKF represented in Figure 1 and
the expression from equation 5 for e−Ωb

nb(k)·Δt, discarding
εB to propagate the attitude and estimate the Gyroscope bias.
Combining equation 5 and equation 32 results in:

ΔBb(k) =

(
(1− cos(‖ω(k)ΔT ‖))

‖ω(k)‖2 Ωbnb(k)
2

− sin(‖ω(k)ΔT ‖)
‖ω(k)‖ Ωbnb(k)

)
· Bb(k − 1)

(33)

where ω(k) represents the turn rate after eliminating the bias,
ω(k) = Gyr(k) − Δω(k). The measurement y(k) and the
observation function Y (k) = h(k) are:

y(k) = Bb(k)−Bb(k − 1) (34)

Y (k) =

(
(1− cos(‖ω(k)ΔT ‖))

‖ω(k)‖2 Ωbnb(k)
2

− sin(‖ω(k)ΔT ‖)
‖ω(k)‖ Ωbnb(k)

)
· Bb(k − 1).

(35)

As a way to avoid the changes in the magnetic disturbances
we propose to limit the norm of the change in the magnetic
field ‖ΔBb‖ to the arc formed by the vector Bb when the turn
rate is perpendicular to it. Using the threshold γω for the turn
rate during the time interval Δt, the limit γB for the change
in the magnetic field will be:

γB = γω ·Δt ·Bb(k − 1). (36)
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Fig. 5. Change in the measured magnetic field vector Bb due to a rotation,
represented in the sensor’s reference frame. In red the first order approximation
of the increment.

Adding this to the stance assumption, the condition Tmr to
use the MARU measurement with magnetic rotations will be:

Tmr(Acc,Gyr,ΔBb(k))k = (‖Acc‖ < γa)&(‖Gyr‖ < γω)

&(‖ΔBb(k)‖ < γB). (37)

C. Magnetic rotation first order approximation

Although the UKF offers a better behavior for non-linear
systems it might be necessary to implement an EKF. In this
case we are going to propose a linearized form of equation 32.
The first order approximation of e−Ωb

nb(k)·Δt is:

e−Ωb
nb(k)·Δt = I − Ωbnb(k) ·Δt

= I − [ω(k)Δt ×]. (38)

This correspond to the red vector in the figure 5, a linear
approximation of the movement of the vector B b according to
the turn rate. Inserting this approximation in equation 32 we
obtain:

ΔBb(k) = −[ω(k)Δt ×] ·Bb(k − 1) +Cnb (k)
T · εB. (39)

Adding the effect of the bias in the Gyroscope (ω(k) =
Gyr(k)−Δω(k)) to the previous equation results in:

ΔBb(k) = −[(Gyr(k) −Δω(k))Δt ×] ·Bb(k − 1)

+Cnb (k)
T · εB

= −[Gyr(k)Δt ×] · Bb(k − 1) + Cnb (k)
T · εB.

+[Δω(k)Δt ×] · Bb(k − 1) (40)

Reordering the equation to represent a linear relationship
between the measurement and Δω(k) leads to:

ΔBb(k) + [Gyr(k)Δt ×] · Bb(k − 1) =

[−Bb(k − 1)Δt ×] ·Δω(k) + Cnb (k)
T · εB. (41)



The measurement m(k) and the observation matrix H(k) (for
a 15 states EKF) becomes;

m(k) = ΔBb(k) + [Gyr(k)Δt ×] ·Bb(k − 1) (42)

H(k) = [03x3 [−Bb(k − 1)Δt ×] 03x9] . (43)

It is possible to detect the measurement using the same
threshold established in equation 36 and 37. This observation
matrix is the same as the one obtained in [12] and [19] but the
generality of the method, the detection and the implementation
differ.

D. MARU evaluation

For the evaluation of the MARU method we used the syn-
thetic noiseless IMU signals proposed in [16] adding magnetic
dipoles patterns to account for the magnetic perturbations of
a normal building. We observed that magnetically aided PDR
methods (using the magnetometer as a compass), as the one
proposed in [11], tend to accumulate errors in the position after
each turn. However, using the MARU measurements provided
a more accurate reconstruction of the position.

Using the noiseless signals we propose to do a Monte Carlo
evaluation of the MARU measurement, adding noise patterns
to the accelerometer, gyroscope and magnetometer to generate
100 different simulations. We will base our evaluation on 2
error figures, the root mean squared position error e r(t):

er(t) =

√√√√ 1

N
·
N∑
i=1

∑
n=x,y,z

(rn,i(t)− rn(t))2 (44)

and the root mean squared yaw error eψ(t):

eψ(t) =

√√√√ 1

N
·
N∑
i=1

(ψi(t)− ψ(t))2. (45)

The evolution of the root mean squared errors can be
observed in figure 6 for different filter approaches, where we
can see that the MARU is able to obtain information about the
gyroscope bias during the stance phases and therefore is able
to lower the error trends. In the first seconds of the experiment
we can observe a higher error of the yaw. This is due to the
fact that we are adding noise from the new measurements,
but after 100 seconds the error decreases. The method that
reduces the error the most is the magnetic rotation for the
UKF (UKF MARU2, magenta line in figure 6) due to the fact
that it obtains more information about the biases during the
stances. We also have observed that if a ZARU establishes a
value for the biases in the gyroscope, then the MARU effect
is minimal and it is observed only after several minutes.

IV. SOFT MEASUREMENTS

We have observed that during a normal walk, the IMU
presents slow movements phases before and after the stance.
This slow movement detections can be confused with the
zero velocity phase, and must be handled. Usually, the step
detection algorithms discard this sub phases to avoid adding
errors in the ZUPT correction. However, this reduces the
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Fig. 6. Evolution of the root mean squared errors in the position (a) and
yaw (b) versus time. MARU1 refers to the change in the magnetic heading
and MARU2 refers to the magnetic rotation. EKF MARU uses the linear
approximation of the magnetic rotation.

amount of information that can be used for corrections and
in some cases like running, the stances might not be detected.
It would be beneficial to make the detection of the change
between the swing and the stance phases not abrupt since
it will allow the use of more measurements. Therefore we
propose to establish a wider stance window with transitions
at the beginning and the end to account for the pre and post
stance phases.

A. Veracity of the stance

In the Fig. 7 we can observe 2 step detection algorithms with
respect to the IMU signals (the gyroscope and stance detection
signals was amplified for an easier view): the first (magenta
line in Fig. 7) is the retarded step detection proposed in [16]
and the second (black line in Fig. 7) uses only thresholds for
the magnitude of the acceleration and turn rates. The last one
provides more samples as information, but the information
might not be as good as in the first case. It is clear that the
veracity of the zero velocity assumption is zero before the pre
stance, and it starts to grow until it reaches its maximal at the
center of the stance phase. Then it starts to decrease until the
end of the post stance phase.

We propose the generation of a veracity signal measuring
the amount of step detections passed in an evaluation window
with the size of the stance zone; a higher the amount of
detections in the vicinity of the sample will imply a higher
veracity of the detection. This will require the signal to be
post processed, but we can still obtain good results using
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Fig. 7. Acceleration, turn rate (amplified) and results of2 stance detection
methods used during normal walk (a), walk and detention (b) and fast
walk/running (c), data obtained from data set 15 of [17].

a delay of N samples and therefore an evaluation window
of 2N + 1 samples. We can measure the number of stance
detections in the window l(k) using (T (Acc,Gyr)k = 1 in
stance and T (Acc,Gyr)k = 0 in swing):

l(k) =

N∑
j=−N

T (Acc,Gyr)k+j . (46)

Our new window will have N ′ samples so 2N ′+1 = l(k).
A rising (beginning of the stance) and falling (last samples of
the stance) slope can be obtained with:

Ts(Acc,Gyr)k = max

⎛
⎝ N ′∑
j=−N ′

(2 · T (Acc,Gyr)k+j − 1), 0

⎞
⎠ ,

(47)
In the cases of more swing detections than stance detections
Ts(Acc,Gyr)k will be 0. An example of a step detection
threshold that is used to generate the signal “Stancem” in the
Fig. 7 is:

T (Acc,Gyr)k = (‖(‖Acck‖ − 9.8)‖ < γa)&(‖Gyrk‖ < γω).
(48)

The veracity signal can be observed in the light blue line of
the figure 8. This signal is able to provide step detections even
when the pedestrian is running, but indicates that the most
important information for zero velocity updates or ZARU,
MARU, etc. is available in the center of the stance. The points
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with a high veracity are points in which it is certain that the
stance condition is true and therefore in the case of the ZUPT
the velocity is closer to zero and in the case of the MARU the
the magnetic field in the navigation frame is more constant. On
the opposite case if the veracity is low the stance condition is
not as certain and the previous conditions are not that strong.

The covariance of the estimated zero velocity or zero change
of the magnetic field in the navigation frame, are referred in the
covariance of the measurement (R in equation 13), therefore
the value of R must be related with the veracity. To associate
the veracity with the covariance of the measurement, we tried
several functions (lineal, inverse, exponential, etc.) and the best
results for the resulting covariance of the measurement R(k)
were obtained with:

R(k) = 10
Ts,max−Ts(Acc,Gyr)k

ms·Ts,max · R0, (49)

where Ts,max is the maximal value of Ts(Acc,Gyr)k , ms

represents an attenuation factor for low veracities and R0

is the covariance of the measurement when the veracity is
maximum. In figure 8 we can observe in black a proposed
exponential attenuation function to apply to the covariance of
a measurement. The same conditions of figure 7 were used to
generate figure 8.



B. Evaluation of the soft measurements

For the evaluation of the soft measurements we used the data
set 16 of [17]. The data was recorded from an IMU placed in
the instep of the right foot, while doing a 5 minutes closed
loop running/walking trajectory without a long stance before
the first movement. The ground truth was recorded with a
camera motion system and we tested the EKF and the UKF
(with their respective versions of MARU) with and without
the soft measurements.

From figure 9, we can see that the soft measurements
applied in the covariances of the ZUPT and MARU, de-
creased the errors in most cases. This is because it uses more
measurement samples per step and therefore it obtains more
information. In this example the best results are obtained using
the UKF with MARU1 (change in the magnetic heading) and
soft measurements.
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Fig. 9. Analysis of the height (a), orientation (b) and step length (c) errors
for the data set 16 of [17] with several algorithms, with and without soft
decisions. MARU1 refers to the change in the magnetic heading and MARU2
refers to the magnetic rotation. EKF MARU uses the linear approximation of
the magnetic rotation

V. PERFORMANCE ANALYSIS

For the evaluation of the introduced approaches we propose
2 trajectories, both are recorder using the MTx IMU from
XSens mounted in the instep of the right foot. The first experi-
ment is recorded walking in the first floor of an office building.
The floor is covered with carpet and the user is standing 9
seconds before starting the movement, in order to generate a
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Fig. 10. Several estimated trajectories for a PDR reconstruction of a walk
in the first floor of an office building. MARU uses the magnetic rotation
approach.

ZARU measurement and estimate the gyroscope biases. The
trajectory starts in a rectangular corridor, walking East, then it
follows the corridor of the building counterclockwise, entering
in some of the offices and ending in the South East office. The
experiment lasted 5 minutes.

In figure 10, we can see the estimation of the trajectories
obtained after using several PDR methods. We can observe
that the UKF reduces the errors in the estimation of the
orientation compared to the EKF. Adding the MARU does
not affect significantly the estimation because of the initial
ZARU. The UKF with MARU (using magnetic rotation) and
soft measurements provides the best estimate of the position.
We assume that it is due to the soft measurements of the ZUPT
which improves the behavior of the zero velocity update in the
carpet and provides more information to the MARU.

The second experiment consists of a closed loop trajectory
in a different office building. The user is standing 10 seconds
before starting the movement in order to generate a ZARU
measurement and estimate the gyroscope biases. The trajectory
starts entering the building and follows a counterclockwise
path passing through some of the offices. After the first round
in the building, the subject exits the building and follows a
rectangular path in the parking lot. Finally the first round is
repeated and the user ends in the same starting point. The
trajectory lasted 10 minutes.

In figure 11, we can see the estimation of the trajectories
after using several PDR methods. We can observe that the UKF
reduces the errors associated with the loss of the heading. The
introduction of the MARU measurements generate an initial
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Fig. 11. Several estimated trajectories for a PDR reconstruction of a walk
in the A building of the Centre for Automation and Robotics. MARU refers
to the change in the magnetic heading.

loss of the heading, mainly due to the introduction of the
magnetometer errors. However, after some time the orientation
is maintained in a better way, although the initial errors is still
present. If the trajectory lasted longer we would see a constant
error in this case. By adding the soft measurements, we are
able to estimate the errors in the system faster, and correctly
propagate the orientation.

We can observe that the UKF provides better results than the
EKF, however with the UKF we observed higher estimation
times. As a way to measure the computational load required
for using the proposed methods, we compared the algorithms
execution times using MATLAB implementations in a 3.2 GHz
Pentium 4, 4 GB RAM PC using Windows XP. We avoided
running other programs during the test. We used the following
3 datasets with 100 Hz sampling rate:

• Data set 14 of [17]: a 280.61 seconds walking scenario.
• Data set 17, recorded using the technique proposed in

[17]: a 657.04 seconds walking/running scenario.
• Synthetic signal: a 981.60 seconds simulation of walking

in a closed path.
In table I, we list the computation times and the percentage

of the signal time required for the methods implemented in
this work. It is clear that even if the UKF provides a more
accurate estimations, it needs more computation time than
other methods. This is mainly due to the multiple propagations
needed to measure the evolution of the “sigma” points. This
disadvantage however might be compensated by the advances
in parallel computing that have taken place. The usage of
MARU or soft measurements only represent around 10 %
additional computing load.

Used Data set 14 Data set 17 Synthetic
filter time % time % time %
EKF 13.49 4.81 32.12 4.88 47.55 4.84

EKF MARU 14.07 5.01 35.35 5.38 50.06 5.10
EKF MARU s 16.48 5.87 38.36 5.84 59.16 6.03

UKF 121.45 43.29 304.54 46.35 445.83 45.41
UKF MARU 144.31 51.43 337.13 51.31 486.94 49.61

UKF MARU s 141.13 50.29 321.57 48.94 474.08 48.30

TABLE I
COMPUTING TIME (IN SECONDS) AND THEIR RESPECTIVE % OF THE

SIGNAL TIME FOR DIFFERENT ESTIMATION METHODS FOR 3 TEST

SIGNALS. MARU REFERS TO THE MAGNETIC ROTATION AND “S” TO THE
USE OF SOFT MEASUREMENTS IN ZUPT AND MARU.

VI. CONCLUSIONS

We have presented a new implementation of Pedestrian
Dead-Reckoning using the Unscented Kalman Filter instead
of the widely used Extended Kalman Filter. The new filter
adapts better to the non-linearities of the orientation propa-
gation which allows for better estimations of the position and
orientation at the cost of increasing the computation time. The
UKF filter also allows the usage of non-linear measurements
without the need of linear approximations as in the EKF.

We also presented three turn rate biases estimation methods
based on the measured changes in the magnetic field during
the stance. These methods improve the estimation, especially
when there is no initial long stance phase. Those methods
can be used indoors even in the presence of strong position
dependant perturbations due to the fact that they use the points
where the magnetic perturbations are constant.

Finally, we presented a method to treat the changes between
the detections of the stance and the swing, gradually allowing
the covariance of the measurements to be adapted according
to the veracity of the stance detection. This method also
allows the detection of different walking speeds and adapts
the covariance of the measurement accordingly.

The previous methods improves the basic PDR algorithm
and allow high level fusion algorithms to work better.

Future works may include the usage of quaternion angles
in the angle propagation to avoid gimbal lock and other
representation problems. It is also possible to change the
states to be modeled to generate a orientation estimator based
on the UKF. It is important to study a better perturbation
change detector for the MARU measurements, because is the
main source of error in that measurement. If the perturbations
are detected they can be used as references for the position.
The veracity-covariance function proposed in this work was
obtained based on the results but a statistical analysis of the
velocity and magnetic change can be used to obtain a better
relationship. It is clear that a Dead-Reckoning will always have
an increasing error and therefore global measurements or map
matching must be used to limit those errors.
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