
Unscented Kalman Filter for Brain-Machine Interfaces

Zheng Li1, Joseph E. O’Doherty2, Timothy L. Hanson3, Mikhail A. Lebedev3, Craig S. Henriquez2,5,

Miguel A. L. Nicolelis2,3,4,5,6*

1Department of Computer Science, Duke University, Durham, North Carolina, United States of America, 2Department of Biomedical Engineering, Duke University,

Durham, North Carolina, United States of America, 3Department of Neurobiology, Duke University, Durham, North Carolina, United States of America, 4Department of

Psychology and Neuroscience, Duke University, Durham, North Carolina, United States of America, 5Duke Center for Neuroengineering, Duke University, Durham, North

Carolina, United States of America, 6 Edmond and Lily Safra International Institute of Neuroscience of Natal, Natal, Brazil

Abstract

Brain machine interfaces (BMIs) are devices that convert neural signals into commands to directly control artificial actuators,
such as limb prostheses. Previous real-time methods applied to decoding behavioral commands from the activity of
populations of neurons have generally relied upon linear models of neural tuning and were limited in the way they used the
abundant statistical information contained in the movement profiles of motor tasks. Here, we propose an n-th order
unscented Kalman filter which implements two key features: (1) use of a non-linear (quadratic) model of neural tuning
which describes neural activity significantly better than commonly-used linear tuning models, and (2) augmentation of the
movement state variables with a history of n-1 recent states, which improves prediction of the desired command even
before incorporating neural activity information and allows the tuning model to capture relationships between neural
activity and movement at multiple time offsets simultaneously. This new filter was tested in BMI experiments in which
rhesus monkeys used their cortical activity, recorded through chronically implanted multielectrode arrays, to directly control
computer cursors. The 10th order unscented Kalman filter outperformed the standard Kalman filter and the Wiener filter in
both off-line reconstruction of movement trajectories and real-time, closed-loop BMI operation.

Citation: Li Z, O’Doherty JE, Hanson TL, Lebedev MA, Henriquez CS, et al. (2009) Unscented Kalman Filter for Brain-Machine Interfaces. PLoS ONE 4(7): e6243.
doi:10.1371/journal.pone.0006243

Editor: Yann LeCun, New York University, United States of America

Received January 28, 2009; Accepted April 15, 2009; Published July 15, 2009

Copyright: � 2009 Li et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Funding from DARPA N66001-06-C-2019 and the Duke University Graduate School. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: nicoleli@neuro.duke.edu

Introduction

Research on brain-machine interfaces (BMI) – devices that

directly link the brain to artificial actuators [1,2,3] – has experienced

rapid development during the last decade primarily because of the

expectation that such devices may eventually cure severe body

paralysis caused by injury or neurodegenerative disease [4,5,6,7,8].

A core component of BMIs is the computational algorithm that

decodes neuronal activity into commands that drive artificial

actuators to perform movements at the operator’s will. Signal

processing and machine learning techniques have been applied to

the problem of inferring desired limb movements from neural

recordings [9]. These include the population vector method

[10,11,12,13,14,15,16], the Wiener filter [3,17,18,19,20], the

Kalman filter [21,22,23,24], the particle filter [25,26,27,28], point

process methods [29,30,31,32], artificial neural networks

[18,33,34,35], and discrete state Bayesian approaches

[18,36,37,38]. Decoding methods using linear models of the

relationship between neural activity and limb movements, such as

the Wiener filter and Kalman filter, are most commonly used in

experimental research on BMIs. These methods cannot handle

non-linear models, which describe neuronal modulations better but

require more complex algorithms such as the particle filter [39], a

non-parametric recursive Bayesian estimator. However, along with

the power of particle filters comes a heavy computational cost,

which makes this approach difficult to implement in real-time BMI

systems. The space of possible non-linear models is vast, and

selecting an appropriate model – one that offers significant

improvement over a linear model while avoiding ‘‘over-fitting’’ of

parameters [40] – is a non-trivial task. Combined with the more

difficult software engineering involved, these factors explain the

rarity of non-linear models in real-time BMI implementations.

We propose a new computational approach for BMIs, the n-th

order unscented Kalman filter (UKF), to improve the extraction of

motor commands from brain activity. Our experiments showed

that this new approach offers more accuracy compared to methods

which use linear models while remaining computationally light

enough for implemention in real-time. This filter offers three

improvements upon previous designs of BMI decoding algorithms.

First, our filter allows the use of non-linear models of neuronal

modulations to movements (neural tuning models). Our experiments

demonstrate the increased accuracy of our quadratic model versus

the previously-used linear model. Second, our filter takes

advantage of the patterns of movements performed during the

execution of tasks. For example, a prosthetic used to aid in feeding

has to perform a stereotypical pattern of movements: the

prosthetic actuator moves back and forth between the user’s

mouth and the food items placed on a tray. Our approach uses this

stereotypic pattern to improve BMI output accuracy. Third, our

filter allows the relationships between neural activity and arm

movement at multiple time offsets to be used simultaneously.

These improvements were facilitated by extending the Kalman

filter in two ways. First, the unscented Kalman filter [41], which

uses a non-stochastic simulation method to approximate non-

PLoS ONE | www.plosone.org 1 July 2009 | Volume 4 | Issue 7 | e6243

linear function evaluation on random variables, was used to allow

non-linear neural tuning models. Second, the state of our filter was

extended to keep a history (of length n) of the desired hand

movements to allow an autoregressive (AR n) movement model

and neural tuning to all n consecutive time offsets. These two

elements were combined in a system that is relatively simple,

robust, and fast enough for real-time, closed-loop BMI applica-

tions.

Our algorithm was tested both off-line and in real-time, closed-

loop experiments in which cortical recordings were obtained from

macaque monkeys (Macaca mulatta) trained to perform two

reaching tasks. In off-line comparisons, our method demonstrated

significantly better accuracy compared to the Kalman filter, the

Wiener filter, and the population vector method [10,13]. In on-

line, closed-loop BMI control, the monkeys followed targets

significantly better when using our method than when using the

Kalman or the Wiener filter.

Results

Behavioral Tasks and Cortical Recordings
We trained 2 rhesus macaques (Monkey C and Monkey G) to

perform reaching tasks that incorporated stereotypic patterns of

movements. The monkeys manipulated a hand-held joystick to

acquire visual targets with a computer cursor (Figure 1A). In the

center-out task, the cursor was moved from the screen center to

targets randomly placed at a fixed radius around the center

(Figure 1C). In the pursuit task the monkeys tracked a continuously

moving target which followed a Lissajous curve (Figure 1D).

Both monkeys were implanted with multielectrode arrays in

multiple cortical areas. Monkey C was implanted in M1, PMd,

posterior parietal cortex (PP) and supplementary motor area

(SMA) in the right hemisphere. Monkey G was implanted

bilaterally in primary motor cortex (M1), primary somatosensory

cortex (S1) and dorsal premotor cortex (PMd). Extracellular

discharges of 94 to 240 (average 142) cortical neurons were

recorded while each monkey performed the behavioral tasks.

We applied the n-th order unscented Kalman filter to the data

collected in 16 daily sessions: 6 sessions from Monkey C and 10

sessions fromMonkey G. Data used from each session ranged from 9

to 25 minutes. After evaluating filter accuracy off-line, we conducted

six on-line experiments, three with each monkey, while the monkeys

controlled the BMI using the unscented Kalman filter and

comparison methods in closed-loop operation. We treated the

neurons recorded from different cortical areas as one ensemble;

differences between individual cortical areas were not considered

here.

N-th Order Unscented Kalman Filter
Our n-th order unscented Kalman filter (UKF) combined two

extensions to the standard Kalman filter [42]: (1) the unscented

transform [41], which allowed approximate filtering under non-

linear models, and (2) the n-th order extension, which allowed

autoregressive movement models and multiple temporal-offset

neural tuning models. Figure 2 shows a comparison of the

standard Kalman filter (Figure 2A) and the n-th order unscented

Kalman filter (Figure 2B), as well as examples of a linear neural

tuning model (Figure 2C), quadratic neural tuning model

(Figure 2D), and autoregressive (AR 1 vs AR n) movement models

(Figure 2D). A side-by-side comparison of the filtering equations is

shown in Table 1.

Like the standard Kalman filter, the n-th order unscented

Kalman filter inferred the hidden state (the position and velocity of

the desired movement) from the observations (neuronal rates). The

state transition model or movement model, predicted the hidden state

at the current time step given the state at the previous n time steps.

Figure 1. Schematics of the experimental task and cortical implants. A: The cursor and the visual targets were projected to the screen
mounted 1.5 m in front of the monkey, and the monkeys moved the cursor with a hand held joystick with length 30 cm and maximum deflection
12 cm. The monkeys received fruit juice rewards when they placed the cursor inside targets. B: Microwire electrode array diagram (top) and
schematics of the placement of the arrays in the cortex of two monkeys. C: Schematics of the center-out task. After holding the cursor at the screen
center, the monkeys moved it to a peripheral target that appeared at a random angle and a fixed radius from the center D: Schematics of the pursuit
task. The monkeys tracked a continuously moving target whose trajectory was a Lissajous curve.
doi:10.1371/journal.pone.0006243.g001

Unscented Kalman Decoder

PLoS ONE | www.plosone.org 2 July 2009 | Volume 4 | Issue 7 | e6243

The observation model or neural tuning model predicted the expected

neuronal rates from the estimated desired movement via a non-

linear function. We incorporated multiple taps of the state in the

neural tuning model to relate neural activity with hand kinematics

at multiple time offsets simultaneously. We used a nonlinear

quadratic model of tuning to express neuronal rates as a function of

hand position and velocity.

Tuning Model Validation
We analyzed the predictive accuracy of the quadratic tuning

model used in our n-th order unscented Kalman filter. Firing rates

of single neurons were predicted from hand position and velocity

using the quadratic (with n= 1 and n=10 taps) and the linear

neural tuning models after the models were fit with linear

regression using the Moore-Penrose pseudoinverse. A 10-fold

cross-validation procedure was used to test predictive accuracy

from 16 recording sessions with an average of 142 neurons

recorded per session, and we report results using signal-to-noise

ratios (SNR, where the signal was the recorded binned spike count)

and correlation coefficients (CC). The n= 1 tap quadratic model

(SNR=0.0360.29 dB, CC=0.1060.09; mean6standard devia-

tion) was more predictive (P,0.001, two-sided, paired sign-test)

than the linear model (SNR=0.0160.27 dB, CC=0.0760.08).

1753 out of 2273 units (approximately 77%) were better predicted

using the quadratic model. The n= 10 tap quadratic model

(SNR=0.0560.32 dB, CC=0.1160.10) was more predictive

(P,0.001) than the n= 1 tap quadratic model (about 900 or

approximately 40% of units were better predicted).

The superior performance of the quadratic tuning model is

illustrated in the contour plots of Figure 3, which show the tuning

to position and velocity of eight representative neurons and

parameter fits using the linear and quadratic (n = 1) models. The x

and y coordinates in the plots indicate x and y positions or

velocities and the brightness of the shading indicates the predicted

firing rate (Figure 3, left two columns) and true firing rate (Figure 3,

right-most column). For clarity, the fits to velocity (Figure 3, top

four rows) and position (Figure 3, bottom four rows) are shown

separately. The right-most column of Figure 3 shows the actual

firing rate estimated on a 50 by 50 grid, which spanned plus and

minus three standard deviations of the position or velocity values

(smaller of the standard deviations for x and y) observed during the

experimental session, using Gaussian kernel smoothing, with

kernel width one standard deviation of the observed values

(smaller of the standard deviations for x and y).

Figure 2. Comparison of the standard Kalman filter with the n-th order unscented Kalman filter. A: The standard Kalman filter predicts
future position and velocity based on a linear model of neural tuning and predictions of the present position and velocity only. B: The n-th order
unscented Kalman filter predicts future position and velocity based on a quadratic model of neural tuning and n history taps of position and velocity
(AR n). C: Example of linear neural tuning model. D: Example of quadratic tuning model. E: Example AR 1 and AR n movement models.
doi:10.1371/journal.pone.0006243.g002

Unscented Kalman Decoder

PLoS ONE | www.plosone.org 3 July 2009 | Volume 4 | Issue 7 | e6243

For velocity tuning (Figure 3, top four rows), the quadratic

model captures the low-center, high-surround tuning pattern seen

in many neurons, while the linear model cannot capture this

pattern because it is restricted to fitting a plane in the (rate, x, y)

space. For position tuning (Figure 3, bottom four rows), the more

expressive quadratic model captures the tuning patterns better

than the linear model. While more sophisticated models of tuning,

such as higher-order or non-parametric models, may model neural

activity more accurately, our model is relatively simple, fast to fit

and evaluate, and grounded in previous work (see Materials and

Methods), while demonstrating significantly better predictive

accuracy than the commonly-used linear model.

Off-line reconstruction
We compared the ability of our method to reconstruct hand

movements from neural recordings with several commonly used,

real-time methods by performing 10-fold cross-validation on 16

previously recorded sessions. Parameters for the algorithms were

fitted by ridge regression, a regularized form of linear regression,

using recorded neural and behavioral (joystick position and

velocity) data. The first cross-validation fold of each session was

used to optimize ridge regression parameters and omitted from the

results. The mean off-line reconstruction accuracy of the 10th

order unscented Kalman filter (UKF), the 1st order unscented

Kalman filter, the standard Kalman filter, the 10 tap Wiener filter

fitted with ridge regression (RR), the 10 tap Wiener filter fitted

with ordinary least squares (OLS), and the population vector

method used by Taylor et al. are shown in Figure 4, grouped by

monkey [13]. The y-axis shows the signal-to-noise ratio (SNR,

where the signal was the recorded behavior) of the hand position

reconstruction and error bars indicate plus and minus one

standard error over the 9 cross-validation folds of each session

and the x and y axes (for a total of 108 observations for Monkey C

and 180 observations for Monkey G). Reconstruction accuracy for

position and velocity, measured in SNR and correlation

coefficient, for the algorithms are shown in Table 2, grouped by

behavioral task.

In terms of position estimates, the 10th order UKF with our

quadratic tuning model was consistently more accurate than the

other algorithms. The two-sided, paired sign test with 288

observations (16 sessions, 9 folds, 2 dimensions) and significance

level a~0:05 was used to evaluate significance. The 10th order

UKF produced position estimates with significantly higher SNR

than the 1st order UKF (pv0:001, mean difference 0.85 dB), the

standard Kalman filter (pv0:001, mean difference 1.25 dB), the

10 tap Wiener filter fit using ridge regression (pv0:001, mean

difference 1.11 dB), the 10 tap Wiener filter fit using ordinary least

squares (pv0:001 mean difference 1.55 dB), and Taylor’s variant

of the population vector method (pv0:001, mean difference 5.42

dB). When sessions of pursuit task and center-out task were

separately analyzed, the 10th order UKF was 1.23 dB more

accurate than the 1st order UKF in the pursuit task and 0.48 dB

more accurate in the center-out task.

The 1st order UKF produced position estimates with signifi-

cantly higher SNR than the standard Kalman filter (pv0:001,

mean difference 0.39 dB), the 10 tap Wiener filter fit using ridge

regression (pv0:001, mean difference 0.25 dB), the 10 tap Wiener

filter fit using ordinary least squares (pv0:001, mean difference

0.70 dB), and Taylor’s variant of the population vector method

(pv0:001, mean difference 4.57 dB).

For predicting velocity, the 10th order UKF produced estimates

with significantly higher SNR than the 1st order UKF (pv0:001,

mean difference 0.27 dB), the standard Kalman filter (pv0:001,

mean difference 0.36 dB), 10 tap Wiener filter fit using ridge

regression (pv0:001, mean difference 0.29 dB), the 10 tap Wiener

filter fit using ordinary least squares (pv0:001 mean difference

0.82 dB), and Taylor’s variant of the population vector method

(pv0:001, mean difference 2.60 dB).

The 1st order UKF produced velocity estimates with signifi-

cantly higher SNR than the standard Kalman filter (pv0:001,

mean difference 0.09 dB), the 10 tap Wiener filter fit using

ordinary least squares (pv0:001 mean difference 0.55 dB), and

Taylor’s variant of the population vector method (pv0:001, mean

difference 2.33 dB).

Table 1. Comparison of the equations for the standard Kalman filter and our unscented Kalman filter.

Kalman filter Unscented Kalman filter

Predict step xt’~Fxt{1 xt’~Fxt{1

Pt’~FPt{1F
T
zQ Pt’~FPt{1F

T
zQ

Update step X0~xt0

Xi~xt0z
ffi

dzkð ÞPt0
p
� �

i
i~1 . . . d

Xi~xt0{
ffi

dzkð ÞPt0
p
� �

i{d
i~dz1 . . . 2d

w0~
k

dzk
wi~

1
2 dzkð Þ i~1 . . . 2d

Zi~h(Xi) i~0 . . . 2d

zt~Hxt’ zt~
P

i~0...2d

wiZi

Pzz,t~w0(0{zt)(0{zt)
T
z(

P

i~1...2d

wi(i{Z0)(i{ 0)
T)zR

St~HPt’H
T
zR

Pxz,t~w0 X0{xt’ð Þ Z0{ztð ÞTz
P

i~1...2d

wi Xi{X0ð Þ Zi{Z0ð ÞT
� �

Kt~Pt’H
TS{1

t K~Pxz,tP
{1
zz,t

xt~xt’zKt yt{ztð Þ xt~xt’zKt yt{ztð Þ

Pt~ I{KtHð ÞPt’ Pt~Pt’{Pxz,t P{1
zz,t

� �T

PT
xz,t

doi:10.1371/journal.pone.0006243.t001

Unscented Kalman Decoder

PLoS ONE | www.plosone.org 4 July 2009 | Volume 4 | Issue 7 | e6243

Figure 3. Contour plots of parameter fits for linear and quadratic tuning models to the tuning of eight representative neurons. The
plot axes are the x- and y-axis of the hand position or velocity. Brighter intensity of shading indicates higher firing rate, in spikes/sec. The right-most
column depicts the smoothed true firing rate. The quadratic model captures the trends of neuronal modulations better than the linear model for
most neurons.
doi:10.1371/journal.pone.0006243.g003

Unscented Kalman Decoder

PLoS ONE | www.plosone.org 5 July 2009 | Volume 4 | Issue 7 | e6243

Similar results were obtained when the correlation coefficient

was used as a measure of filter performance.

On-line performance
We compared the 10th order UKF to the Kalman filter and

Wiener filter in on-line, closed-loop BMI control in six recording

sessions: three with monkey C and three with monkey G. In each

session, the monkey first performed the pursuit task using joystick

control for 6 to 10 minutes. During this time period, 5 minutes of

data was used to fit parameters for the algorithms. In each session,

all algorithms were fit on the same data. Then the monkey

performed the pursuit task using BMI control with each algorithm

in turn for 5 to 8 minutes. The evaluation order of the algorithms

was switched between sessions, however not all orderings could be

used in the three sessions for each monkey. During BMI control,

the monkey was required to hold the joystick as an indication of

active participation; time periods when the monkey did not hold

the joystick were omitted from the analysis.

Figure 4. Off-line reconstruction accuracy for 2 monkeys (C and G) for each algorithm. Accuracy is quantified as signal-to-noise ratio (SNR)
of the position reconstructions, averaged between x and y dimensions. Error bars indicate plus and minus one standard error.
doi:10.1371/journal.pone.0006243.g004

Table 2. Off-line reconstruction accuracy for the 10th order UKF, Kalman filter, Wiener filter, and population vector method.

Filter Sessions 1–8 Center-out Sessions 9–16 Pursuit Mean difference from KF

Position: SNR N CC

10th UKF 3.2460.16 N 0.7560.01 5.8460.14 N 0.8760.00 1.51 N 0.05

1st UKF 2.8260.14 N 0.7360.01 5.0560.13 N 0.8560.01 0.90 N 0.02

KF 2.2360.14 N 0.7160.01 3.8360.14 N 0.8360.01 0.00 N 0.00

WF RR 2.5860.11 N 0.6860.01 4.1960.12 N 0.7860.01 0.35 N 20.04

WF OLS 2.2960.11 N 0.6760.01 3.9760.11 N 0.7760.01 0.10 N 20.05

PV 21.3160.13 N 0.3460.01 22.2460.23 N 0.4260.01 24.81 N 20.39

Velocity: SNR N CC

10th UKF 1.1560.06 N 0.5060.01 1.4660.05 N 0.5560.01 0.11 N 0.03

1st UKF 1.1560.06 N 0.4860.01 1.4260.05 N 0.5260.01 0.09 N 0.01

KF 1.0560.06 N 0.4760.01 1.3460.05 N 0.5260.01 0.00 N 0.00

WF RR 0.6860.06 N 0.4460.01 1.1060.04 N 0.4960.01 20.31N20.03

WF OLS 0.4260.06 N 0.4260.01 0.8460.04 N 0.4760.01 20.56N20.05

PV 20.5160.08 N 0.3660.01 20.7460.13 N 0.4160.01 21.82N20.11

Each cell shows the SNR and CC mean6standard error of 144 data points. The last column shows the mean difference of each algorithm compared against the Kalman
filter, where larger numbers are better. WF RR is the 10 tap Wiener filter fitted with ridge regression. WF OLS is the 10 tap Wiener filter fitted with ordinary least squares.
Bold numbers indicate the best value in each column.
doi:10.1371/journal.pone.0006243.t002

Unscented Kalman Decoder

PLoS ONE | www.plosone.org 6 July 2009 | Volume 4 | Issue 7 | e6243

Performance was measured by comparing the position of the

target (the signal for SNR calculations) and the BMI-controlled

cursor. Table 3 shows the signal-to-noise ratio and correlation

coefficient for each algorithm in each session, with the mean taken

across the x and y-axis. Figure 5 shows example traces of the BMI-

controlled cursor and target positions in session 19. The two-sided,

paired sign-test was used to measure significance with the two axis

treated separately and significance value was set at a~0:05. In

terms of SNR, the monkeys performed significantly better when

using the 10th order UKF than when using the Kalman filter

(p,0.05, 12 observations) and 10 tap Wiener filter fitted with ridge

regression (p,0.05, 10 observations). In terms of CC, no

comparison was significantly different at the a~0:05 level.

Model, parameter, and algorithm analysis
Our neural tuning model related neural activity with behavior

both prior to and after the time instant of neural activity. The

parameters past taps and future taps, in units of 100 ms, described

the time offsets prior to and after the instant of neural activity

between which tuning was modelled, respectively (see Materials

and Methods). We investigated the relationship between choices of

the number of future and past taps and reconstruction accuracy

for the n-th order UKF (Figure 2B). The ridge regression

Table 3. Comparison of behavioral performance using on-
line, closed-loop BMI driven by a 10th order UKF, a Kalman
filter, and a 10 tap Wiener filter fit using ridge regression.

Session Monkey 10th UKF KF WF RR

SNR, dB N CC

17 C 2.70 N 0.69 0.70 N 0.47 NA

18 C 2.73 N 0.72 2.42 N 0.60 21.13 N 0.54

19 C 2.51 N 0.71 0.80 N 0.53 0.07 N 0.68

20 G 22.12 N 0.10 21.49 N 0.15 23.23 N 0.07

21 G 1.58 N 0.56 1.55 N 0.57 0.77 N 0.58

22 G 3.23 N 0.71 0.39 N 0.48 20.06 N 0.47

Mean difference from KF 1.04 N 0.12 0.00 N 0.00 21.45 N 0.00

Performance was measured as signal-to-noise ratio and correlation coefficient
of the BMI-controlled cursor position to the target position. The bottom row
shows mean difference of each algorithm compared against the Kalman filter,
where larger numbers are better. Bold numbers indicate the best value in each
row.
doi:10.1371/journal.pone.0006243.t003

Figure 5. Example traces of y-position during on-line, closed-loop BMI operation in a representative experimental session (session
19, Monkey C). The dashed sinusoidal curves indicate target position.
doi:10.1371/journal.pone.0006243.g005

Unscented Kalman Decoder

PLoS ONE | www.plosone.org 7 July 2009 | Volume 4 | Issue 7 | e6243

parameter was optimized for each setting of the number of taps

using the first fold of 10 fold cross-validation, and we report the

accuracy on the remaining 9 folds. Plots of the mean position

accuracy over various choices of the number of future and past

taps for two sessions, one with center-out task (session 1) and one

with pursuit task (session 16), are shown in Figure 6A. The number

of future taps is shown on the x-axis and each setting of past taps is

depicted as a separate curve. For the pursuit task, the performance

steadily increases with the number of future taps and increases

slowly with the number of past taps. For the center-out task, the

performance was maximum when 15 future and 2 past taps were

used. A large number of future taps resulted in decreased

performance, while the number of past taps had small effects on

performance.

To test the capacity of the movement model to predict hand

trajectories, we conducted two analyses. In the first analysis, the

neural tuning model update step of the 10th order UKF was

disabled so that the filter ignored neural activity and used only the

movement model to ‘‘dead reckon.’’ In the second analysis, the

movement model was not fit to the training data but set by

assumption so that position was the discrete integral of velocity

and velocity remained constant except for noise perturbations.

The movement model noise covariance was fit to the data under

these assumptions by calculating the mean-squared-error matrix of

the residuals when using this movement model to predict next

states. Figure 6B shows example traces of reconstruction under

these two conditions on pursuit task (session 16). The true position

of the joystick is shown by the thick dashed curve. The ‘‘dead

reckoning’’ filter (dash-dotted curve) produced useless predictions

shortly after filtering began, showing that the movement model

could not reconstruct the hand trajectory alone, even though the

monkey tried to follow a deterministic Lissajous curve. The 10th

order filter with the assumed movement model (dotted curve)

produced less accurate predictions than the filter with movement

model fitted from the data. The position estimate SNR of the 10th

order assumed movement model filter was 3.8860.27 dB

Figure 6. Dependency of reconstruction accuracy on the filter parameters. A: Reconstruction accuracy quantified as signal-to-noise ratio
(SNR) versus number of future (x-axis) and past taps (curves). B: Example traces of position reconstruction with parts of filter disabled. The thick
dashed curve shows the joystick x-axis position. The solid curve shows the reconstruction using the fully-functional 10th order UKF. The dotted curve
shows the reconstruction using a 10th order UKF with the movement model assumed to be the physical equations relating position and velocity,
instead of fitted to data. The dash-dotted curve shows the 10th order UKF with the neural observations ignored.
doi:10.1371/journal.pone.0006243.g006

Unscented Kalman Decoder

PLoS ONE | www.plosone.org 8 July 2009 | Volume 4 | Issue 7 | e6243

(mean6standard error, 18 observations) for the pursuit task session

and 2.8960.44 dB in the center-out task session. For the fully-

functional 10th order UKF, the SNR was 6.2560.23 dB for the

pursuit task session and 4.0860.36 dB for the center-out task

session, showing a large benefit to using a fitted movement model,

especially for the pursuit task. The position estimate SNR of the

1st order assumed movement model filter was 1.5760.76 dB for

the pursuit task session and 0.5460.59 dB for the center-out task

session. Since the assumed movement model was not fitted to data

and the movement model noise covariances were identical, this

difference in performance between the 1st order and 10th order

assumed movement model filters must arise from the different

accuracies of the 1 tap and 10 tap quadratic neural tuning model.

The large difference in accuracy (2.30 and 2.35 dB) shows the

benefit of modeling neural tuning across multiple time offsets

simultaneously, although much of this benefit likely comes from

the autocorrelation of movements, which is also captured by data-

fitted movement models.

To quantify the extent the approximations of the unscented

Kalman filter affected performance, we performed off-line

reconstructions using standard particle filters with identical models

as the 1st and 10th order unscented Kalman filter. The particle

filters used 50,000 particles and the same parameters, initial

conditions, and test data as the unscented Kalman filters. Since we

had many sessions and cross-validation folds for comparison, only

one particle filter run was performed per session and cross-

validation fold. We used the posterior mean of the particles as the

output. For the 1st order model, the particle filter produced

significantly more accurate position reconstructions (two-sided,

paired sign-test, 288 observations, pv0:001, mean difference 0.07

dB) than the unscented Kalman filter. For the 10th order model,

the difference in performance was not significant at the

a~0:05level, with the unscented Kalman filter having a nominal

0.02 dB advantage in mean SNR. This was likely due to the large

state space (40 dimensional) associated with the 10th order

model—even the large number of particles could not represent

distributions in this state space as well as a multivariate normal

distribution, hence the UKF provided similar accuracy even with

the unscented approximation.

Figure 7 shows off-line reconstruction accuracy for a pursuit

task session when different-sized subsets of the neurons are used

(neuron dropping curves). For each setting of the number of neurons,

10 subsets of neurons were randomly selected and each algorithm

was evaluated on these subsets using 10 fold cross-validation. The

first fold was reserved for finding optimal ridge regression

parameters, and the mean accuracy on the nine remaining folds

are plotted in Figure 7. The 1st and 10th order unscented Kalman

filter reconstructs position more accurately than the Kalman filter,

Wiener filter, and population vector method even for small

numbers of neurons. The advantage of the 10th order UKF

increases with the number of neurons. The Wiener filter fitted with

ridge regression approaches the accuracy of the 1st order UKF as

the number of neurons increases. As expected, the benefit of ridge

regression for fitting the Wiener filter grows larger as the number

of neurons, and hence number of parameters, increases. Modeling

the noise covariance between neurons becomes more important as

the number of neurons increases, as can be seen by the lower

performance of a modified Kalman filter which does not model

neuron noise covariance (Kalman w/o covariance) compared to

the unmodified Kalman filter. The neural tuning model noise

covariance of the Kalman w/o covariance filter has all entries not

on the diagonal set to zero. The population vector method peaks

in performance at around 60 neurons and then decreases in

accuracy, demonstrating the sub-optimality of the parameter

fitting procedure which ignores covariance among neurons.

In terms of computational load, the MATLAB implementation

of the 10th order UKF on an Intel Pentium 4 class computer used

0.01260.005 seconds per iteration (mean6standard deviation), or

around 80 Hz on average. The 30th order UKF (15 future and 15

past taps) used 0.036060.0001 seconds per iteration, or around

28 Hz on average. Our on-line implementation in C++ using

Automatically Tuned Linear Algebra Software (ATLAS) easily

executed faster than 10 Hz, our binning frequency.

Discussion

In this study, we achieved an improvement over previous

closed-loop linear BMI decoding by implementing a more

Figure 7. Dependency of reconstruction accuracy for each algorithm on the number of neurons. The y-axis depicts the mean accuracy
among 10 random subsets of neurons used by all algorithms to make reconstructions. The curve labeled Kalman w/o covariance indicates the
reconstruction accuracy of a Kalman filter with the off-diagonal entries of the neural tuning model noise covariance set to zero.
doi:10.1371/journal.pone.0006243.g007

Unscented Kalman Decoder

PLoS ONE | www.plosone.org 9 July 2009 | Volume 4 | Issue 7 | e6243

accurate decoding algorithm, the n-th order unscented Kalman

filter (UKF). This filter modeled arm movement profiles better

because it used the history of past movement, and it described

neuronal modulations to movements better by using a quadratic

model of neuronal tuning which included tuning at multiple time

offsets. The filter performed well both in off-line reconstruction of

previously recorded data and on-line, closed-loop BMI operation.

Review of previous algorithms
Much work has been done investigating algorithmic methods

for decoding continuous control signals from extracellular neural

recordings for neuroprosthetics (for a survey see Bashashati et al.

[9]). The underlying theory stems from the pioneering work of

Georgopoulos et al. [43], which reported the cosine relationship

between firing rates of M1 neurons and the angle between arm

movement and the neurons’ preferred directions. The observation

of this relationship led to a hypothesis of neuronal encoding of

movements called the population vector model, in which

movement velocity is calculated as vector sums of single-neuron

vectors pointing in the neurons’ preferred directions and scaled by

the neurons’ firing rates [10]. Many BMI studies used this

approach to decode movement parameters from population

activity [11,12,13,14,15].

The Wiener filter, an optimal linear regression method,

improves upon the population vector approach. The Wiener filter

has been used in many studies [3,17,18,19,20,44] and remains a

staple of BMI research because of its relative simplicity and

efficacy.

As research on BMI decoding methods progressed, attention

turned to the Kalman filter [21,22,23,24,45,46], which explicitly

separates the models of how neural activity relates to produce

movements and how these movements evolve over time. The

Kalman filter, being a probabilistic method, also provides

confidence estimates.

Non-linear models of neural tuning provide a better description

of neuronal modulations related to motor parameters, but are

more computationally demanding to use. The switching Kalman

filter, in which several Kalman filters operate in parallel using

different parameters, was a non-linear method shown to be

superior to the Kalman filter for BMI decoding by Wu et al. [23].

Another non-linear approach, called the particle filter, sequential

Monte-Carlo, or condensation, is a recursive Bayesian estimator

based on non-parametric representations of probability distribu-

tions and stochastic simulation [39]. Several studies have

investigated the particle filter for BMI decoding with a variety of

non-linear models for neural tuning: Gao et al. [26,27], Brockwell

et al. [25], Shoham et al. [28]. However, due to the heavy

computational burden, online closed-loop BMI using the particle

filter has not been reported.

Another class of decoding methods work directly from

individual neuron spikes instead of instantaneous firing rate

estimates. In this approach, spike trains are modeled as discrete

events or point processes and decoding can operate at millisecond

time scales. The point process analog of the Kalman filter, using a

Gaussian representation for uncertainty in state estimates and an

inhomogenous Poisson model of spiking, was derived by Eden et

al. (2004a, 2004b) and called the stochastic state point process filter

(SSPPF) [29,30]. Barbieri et al. estimated the location of a foraging

rat using recordings from CA1 hippocampal neurons and the

SSPPF [47]. Truccolo et al. (2005, 2008) analyzed and compared

the ability of the SSPPF to estimate several behavioral variables in

simulations, monkeys, and humans [31,32]. Wang et al. (2006)

showed that preserving a non-parametric posterior distribution for

estimated hand movements using a point process particle filter

improves decoding accuracy versus the SSPPF in simulation [48].

Brockwell et al. (2007) used a Markov chain Monte-Carlo

procedure for fitting point process filter parameters [49]. However,

there has been no implementation of an online, closed-loop BMI

which uses a point process filter.

To improve decoding of simple reaching movements, tuning to

the goal coordinates of reach trajectories has been used to

augment tuning to movement. Kemere et al. (2004) included both

movement tuning and target position tuning in a maximum-

likelihood filter [50]. Srinivasan et al. (2005, 2006) incorporated

the estimated target position of a reaching movement in both the

Kalman and point process filter frameworks [51,52]. Later,

Srinivasan et al. (2007) combined tuning to target position, point

process inputs, and continuous-value inputs to allow neural spikes

and other neural measurements such as local field potentials

(LFPs), electrocorticography (ECoG), electroencephalography

(EEG), and electromyography (EMG) to be used in a single

Bayesian filter [38]. Mulliken et al. (2008) included the target

location in the state of a Kalman filter for prediction from

posterior parietal cortex [53].

Other techniques have been investigated for decoding of

continuous hand movements. Isaacs et al. (2000) used principle

components analysis and the nearest-neighbor algorithm [54]. Kim

et al. (2003) proposed a competitive mixture of linear filters [55,56].

Sanchez et al. (2002, 2003, and 2004) and Hatsopoulos et al. (2004)

proposed various artificial neural-network based approaches

[18,33,34,35,57]. Shpigelman et al. (2003, 2004, and 2005) used

support vector regression and a custom-built kernel called the

spikernel [58,59,60]. Fisher and Black (2006) proposed an auto-

regressive moving average (ARMA) approach [61], and Shpigelman

et al. (2008) demonstrated the kernel autoregressive moving average

(KARMA) method with the spikernel in closed-loop BMI [62]. In

addition to decoding continuous hand movements, a variety of

techniques have been employed for decoding discretized action

choices, for example, in the studies of Hatsopoulos et al. [18],

Musallam et al. [36], and Santhanam et al. [37].

While there is a large variety of algorithms available for

decoding desired movement from neural signals, only our

approach and the KARMA algorithm of Shpigelman et al. [62]

have incorporated non-linear models of neural tuning in closed-

loop BMI.

Quadratic tuning model
In this study, we explored whether a quadratic model of neural

tuning can improve BMI decoding accuracy. Our analysis showed

that our quadratic model of neural tuning was significantly more

predictive of neuron firing rate than a linear model. We then

implemented an unscented Kalman filter which used this

quadratic model to infer desired hand movements. The increased

spike count prediction accuracy (0.02 dB) and off-line reconstruc-

tion accuracy of the (1st order) UKF versus the standard Kalman

filter (0.39 dB) and 10 tap Wiener filter (0.25 dB) demonstrates the

benefits of our quadratic model. By using the unscented transform,

we were able to implement a non-linear filter without resorting to

computationally expensive particle filtering techniques.

Movement history
Our decoding method was further enhanced by incorporating a

short history of hand kinematics into the hand movement model.

We implemented an n-th order UKF which used the hand

movement in the n previous time steps to predict hand movements

in the next time step. Adding a short history to the state space had

the additional benefit of modeling neural tuning across multiple

time offsets simultaneously. When using n~10 taps, the 10th

Unscented Kalman Decoder

PLoS ONE | www.plosone.org 10 July 2009 | Volume 4 | Issue 7 | e6243

order UKF produced more accurate reconstruction than the 1st

order UKF (0.85 dB improvement), demonstrating the value of

incorporating a short history in the state space.

We explored the optimal history length, or number of taps, for

the UKF. Our results suggest that the number of taps for best

performance depends on the behavioral task. For the pursuit task,

accuracy increased with the number of future taps and plateaued

at n = 15 or slightly later, and accuracy increased slowly with the

number of past taps. For the center-out task, a small number of

future taps resulted in the highest accuracy, while the number of

past taps had small effects. The improvement of the 10th order

UKF versus the 1st order UKF was greater for the pursuit task

(mean 1.23 dB) than for the center-out task (mean 0.48 dB).

Based on these results, we conjecture that the richer movement

model of the 10th order UKF was able to capture the hand

movement patterns produced during the performance of the

pursuit task better than those generated during execution of the

center-out task. This is likely because hand movements for the

center-out task are autocorrelated over shorter time spans than

hand movements for the pursuit task. Hand movements during

center-out reaches were brief and unrelated between reaches,

while during the pursuit task the hand moved relatively smoothly.

The n taps of our movement model can be viewed as extra

smoothing, hence the pursuit task, with smoother movement

trajectories, benefits more than the center-out task. Our analysis

showed that the movement model of the 10th order UKF made

large contributions to the accuracy of the filter (6.25 vs 3.88 dB in

pursuit task), yet this movement model was unable to provide

accurate estimates by itself, without the aid of the neural

recordings (dead reckoning, Figure 6B).

In previous studies on the Kalman filter, one lingering question

was how to set the best time offset in the model between hand

movements and neural activity [22]. Wu et al. (2006) searched for

the best time offset using a greedy stochastic search mechanism

[24]. Our n-th order implementation allowed multiple time offsets

to be used simultaneously. The ridge regression regularization

used during parameter fitting automatically chooses the best time

offset(s) by suppressing the weight coefficients of less useful time

offsets. By using regularization, we have essentially replaced the

combinatorial search for the best time offset for each neuron with

a continuous optimization problem, at the cost of increased bias.

We indirectly gauged the benefit of modeling tuning relationships

across multiple time offsets by comparing the 1st and 10th order

unscented Kalman filters with movement models assumed to be

the physical equations relating position and velocity, instead of

fitted to training data. The large difference in accuracy (around

2.3 dB) showed the benefit of modeling tuning relationships across

multiple time offsets, though much of this improvement is also

captured by data-fitted movement models.

Advantages of the n-th order unscented Kalman filter
The 10-th order and 1st order UKF both produced significantly

more accurate reconstructions than the standard Kalman filter,

Wiener filter, and the population vector method [10,13]. In

online, closed-loop BMI operation, the 10th order UKF allowed

the monkey to perform a pursuit task significantly better than both

the Kalman filter (mean improvement 1.04 dB) and Wiener filter

(mean improvement 2.49 dB). While the SNR values reported in

this study may seem low compared to filter performance in other

domains, the large inherent noise in neural activity (compare 0.05

dB mean predictive accuracy per neuron with the accuracy of

sensors from other domains) make the BMI decoding problem

challenging.

These results demonstrate the advantage of the non-linear

model of neural tuning to arm movements at multiple time offsets

and the advantage of leveraging patterns of movement. We have

demonstrated one computational approach that can achieve these

improvements without resorting to a computationally heavy

particle filter, the filter design typically used for non-linear

observation models. One may argue that the heavy cost of

particle filters is not a significant obstacle due to the rapid

improvement of computing power, for example, in personal

desktop computers. However, an ideal BMI-driven prosthetic

device will need to be highly mobile, placing strict limits on power

consumption and weight, thus limiting computational power.

While modern portable personal computers may be fast enough to

host particle filters, they also consume dozens of watts of power

and only manage a few hours on a typical battery pack. Thus, an

accurate yet computationally efficient filtering algorithm is

desirable for a compact BMI-driven prosthetic device.

When compared to the commonly-used Wiener filter, our

approach has several advantages. When the parameters of the

Wiener filter are fitted using least squares, the noise of the neurons

is assumed to be independent and of the same variance. These

assumptions are violated by real neural populations [24]. The

UKF explicitly models the noise of neurons in a full covariance

matrix, allowing different variances among neurons and excess

covariance among neurons not due to the desired output variable

[24] to be modeled. The Wiener filter typically requires more

parameters to be fitted than the UKF, leading to increased

training data requirements and increased risk of overfitting.

However, overfitting can be mitigated with regularization

techniques such as ridge regression or sophisticated Bayesian

regression techniques such as Variational Bayesian Least Squares

[63]. In contrast to the Wiener filter, the UKF is a Bayesian

technique which explicitly models the uncertainty of hand

kinematics estimation, giving users access to measures of

confidence in kinematic estimates. Furthermore, the UKF

explicitly separates the neural tuning model and the movement

model. Besides theoretical elegance, this separation allows

parameter fitting schemes which can make better use of training

data. For example, the model for neural tuning may be estimated

from data obtained while the user is performing several different

tasks, while individual movement models are estimated for each

task. Attempting this with a Wiener filter will confound the

autocorrelations from hand movements with the cross-correlation

between hand movements and neural activity.

Compared to the point process based methods, our approach

offers less temporal resolution. However, the increased temporal

resolution offered by point process methods comes at higher

computational cost. The normally-distributed noise assumption

inherant in all Kalman filters is likely violated by some neurons

with such low firing rates that their spike counts per bin are very

low. This is one of several approximations made for computational

convenience in the Kalman filter approach and a main reason for

the development of point process methods. However, point

process methods assume all neurons are well discriminated single

units, an assumption which is difficult to verify and which forces

multiunits to be discarded. To model covariance of the noise

among neurons, point process methods must model neuron

interactions, which further increase their computational cost or

approximation, while neuron noise covariance is included in the

basic Kalman filter. For real-time operation on mobile devices,

approximations and assumptions of convenience will likely be

made by any approach, and the best algorithm will be the one

which has the most appropriate tradeoff between accuracy and

computational speed.

Unscented Kalman Decoder

PLoS ONE | www.plosone.org 11 July 2009 | Volume 4 | Issue 7 | e6243

The switching Kalman filter proposed by Wu et al. [23] is the

algorithm most similar to our UKF in design. The switching

Kalman filter can be thought of as using a piecewise-linear model,

where the pieces are combined in a weighted manner. The space

of piecewise-linear functions is clearly more expressive than the

space of quadratic functions, but the number of pieces required to

approximate quadratic tuning functions for each neuron over

many input dimensions (position, velocity, history taps) is very

large. Wu et al. reported an approximately 8.9% reduction in

mean squared error versus the standard Kalman filter, corre-

sponding to about 0.37 dB improvement. In comparison, our 1st

order UKF outperforms the standard Kalman filter by about 0.39

dB and the 10th order UKF outperforms the standard Kalman

filter by about 1.25 dB.

The kernel autoregressive moving average (KARMA) algorithm

proposed by Shpigelman et al. [62] is the algorithm most similar to

our algorithm in capability. Shpigelman et al. used a kernel

transform custom-built for neural tuning, called the spikernel, as

the kernel for the KARMA algorithm. This kernel allows non-

linear, non-parametric tuning models to be used for decoding. The

KARMA algorithm, the kernel-trick extension of the well-known

ARMA algorithm, also employs an autoregressive movement

model to improve predictions. Like our approach, the approach by

Shpigelman et al. has achieved real-time, closed-loop BMI

operation with a non-linear and pattern-exploiting method. Unlike

our approach, the KARMA algorithm is not Bayesian and does

not directly produce confidence estimates of its output.

Future clinical applications
Our n-th order unscented Kalman filter is particularly suited for

use in cortically driven prosthetic devices because of its relatively

high accuracy and unique features. Our algorithm takes advantage

of a non-linear model of neural tuning in a computationally

inexpensive implementation that is well suited for mobile, low-

power prosthetic systems. Furthermore, our algorithm takes

advantage of patterns of movement, abundantly found in typical

tasks such as feeding, that a prosthetic may be engaged to do.

Since this new approach is Bayesian, it allows the computation of

the certitude of decoded movements. Thus, decoded movements

with low probaility can be suppressed, and undesired movements

caused by decoding errors or unexpected neural activity can be

detected and prevented. The separation of the neural tuning and

movement models also allows training data to be used more

efficiently, making the prosthetic easier to calibrate.

The unscented Kalman filter can be applied to learn neural

tuning model parameters or adapt to time-varying neural tuning

and time-varying patterns of movement through a technique

called dual Kalman filtering for joint parameter and hidden state

estimation [64]. Using this approach, a person with paralysis can

be trained to use a BMI-driven cortical prosthetic. The user first

observes example movements performed by a technician or

computer algorithm. Neural activity recorded from the patient’s

brain and the example movements are then used to compute a first

estimate of the neural tuning model. Next, the user assumes the

control of the BMI. Then, the UKF would simultaneously decode

neural activity and improve the estimates of the neural tuning

model parameters. As neural tuning changes over time due to

learning, the UKF would modifiy the neural tuning model to

exploit these changes. Unlike the co-adaptive framework of Taylor

et al. (2002), the UKF would compute in a probabilistically

optimal fashion, without requiring knowledge of what the user is

doing, and would update models in the background without

explicit recalibration, making the system more user friendly.

The UKF can also compensate for degradation of neural

recordings as this can be described as changes in the neural tuning

model. Furthermore, models of movement can be improved over

time to best predict movements produced during execution of

particular tasks. These models can also be learned over time to

handle novel tasks. Our future work will pursue these approaches

toward the development of user-friendly, computationally efficient,

and accurate algorithms for BMIs.

Materials and Methods

Neuronal recordings
All surgical and experimental procedures conformed to the

National Research Council’s Guide for the Care and Use of

Laboratory Animals (1996) and were approved by the Duke

University Animal Care and Use Committee. Cortical recordings

were collected from 2 rhesus monkeys (Macaca mulatta) performing

reaching tasks by moving a computer cursor using a hand-held

joystick and by controlling the cursor directly through their

cortical activity decoded by a BMI (Figure 1). Monkey C (which

performed the task with its left hand) was implanted with four 32-

microwire arrays in M1, PMd, PP and supplementary motor area

(SMA) in the right hemisphere. Monkey G (which performed the

task with its right hand) was implanted with six microelectrode

arrays (32 microwires in each) in primary motor cortex (M1),

primary somatosensory cortex (S1) and dorsal premotor cortex

(PMd) of both hemispheres. Within each array, electrodes were

grouped into 16 pairs. The separation between adjacent pairs was

1 mm. Each pair consisted of two microwires placed tightly

together with one electrode 300 micron longer than the other. The

longer electrode in each pair was equal or larger in diameter.

Monkey C was implanted with stainless steel and tungsten

electrodes of 46 and 51 micron diameter in areas SMA and M1

and tungsten electrodes of 51 micron diameter in areas PMd and

PP. Monkey G was implanted with stainless steel electrodes of 40

and 63 micron diameter (Figure 1B).

The sites with the best quality of neuronal signals were selected.

Data from Monkey C were recorded from left PMd (9 daily

recording sessions), left SMA (9 sessions), left M1 (9 sessions), and

right PP (1 session). Data from Monkey G were recorded from left

PMd (13 sessions), left M1 (13 sessions), left S1 (8 sessions), and

right PMd (7 sessions). Extracellular neural signals were amplified,

digitized, and high-pass filtered using Multichannel Acquisition

Processors (Plexon, Inc.). Neuronal action potentials were

discriminated by thresholding and sorted on-line through

waveform templates set by the experimenter using Plexon spike-

sorting software or using templates produced by custom-built spike

sorting software [65]. This custom spike sorting software clusters

waveforms by their three largest principle components using a

modified expectation-maximization algorithm and removes spuri-

ous clusters by thresholding on various criteria [65]. Single and

multi-units were not treated differently for prediction purposes.

Behavioral Tasks
During the experimental sessions, each monkey sat in a primate

chair. Their heads were unrestrained, and the recording system

was connected to the implants using light flexible wires. A two

degree of freedom (left-right and forward-backwards) analog

joystick was mounted vertically at the monkey’s waist level. The

joystick was 30 cm in length and had a maximum deflection of

12 cm. The monkeys were trained to manipulate the joystick with

their hands. Monkey C performed with the left hand, and Monkey

G performed with the right hand. An electrical resistance-based

touch sensor on the joystick handle measured whether the monkey

Unscented Kalman Decoder

PLoS ONE | www.plosone.org 12 July 2009 | Volume 4 | Issue 7 | e6243

was holding the joystick. An LCD projector projected visual

images on a screen mounted 1.5 m in front of the monkeys

(Figure 1A). Using the joystick, monkeys moved a round cursor,

defined by a ring 1.6 cm in diameter. Forward, backward,

rightward, and leftward movements of the joystick translated to

the upward, downward, rightward, and leftward movements of the

cursor, respectively. The joystick to cursor gain varied between 3.2

and 6.4, depending on session (i.e. a 1 cm movement of the

joystick translated into a 3.2 to 6.4 cm movement of the cursor).

Targets were defined by rings 16 to 20.8 cm in diameter on the

screen. The median speeds at which monkeys moved the joystick

were approximately 3.5 to 5.5 cm/s, depending on the session.

Each behavioral task required placing the computer cursor over

the target using the joystick. The monkeys performed two tasks: (1)

center-out and (2) pursuit. The center-out task (Figure 1C) used

stationary targets that occurred at randomly chosen points on a

fixed-radius ring around the center of the screen. The monkey had

to hold the cursor at the center target at the screen center. After

the center target disappeared and a peripheral target appeared,

the monkey had to move the cursor to the peripheral target and

keep inside the target until it received a fruit-juice reward. The

inter-trial interval that followed a successful trial was 500 ms. The

intertrial interval after an error trial was 700 to 1000 ms. Hold

times varied per session from 350 to 1050 ms. The trials in which

the monkey failed to put the cursor over the target or failed to

fulfill the hold requirement were not rewarded. After a trial was

finished, the center target appeared again to start the next trial. In

our analysis, data collected during the center-out task were treated

as a continuous stream and not segmented by trial or movement

onset.

The pursuit task (Figure 1D) used a moving target which

followed a Lissajous curve:

x~Asin avtzdð Þ ð1aÞ

y~Bsin bvtð Þ ð1bÞ

where x and y are the x- and y-axis coordinates and t is time in

milliseconds. We used parameter values a~3, b~4,

v[0:15,f 0:20g Hz, d~0:5p, and A~B~22:4cm (in joystick

scale). The temporal frequency was different for the x- and y-axes,

making the two coordinates uncorrelated. The monkey had to

keep the cursor within the moving target to receive periodic juice

rewards.

Data preprocessing
For all algorithms, spike counts were calculated in 100 ms

nonoverlapping bins to estimate the instantaneous firing rate.

Joystick position was recorded at 1 KHz and down-sampled to

10 Hz to match the binning rate. Velocity was calculated from

position by two-point digital differentiation. Position and velocity

data were centered at their means. Spike counts were centered at

their means for the Kalman-based filters. Data recorded while the

monkey did not hold the joystick were disregarded. Off-line

analysis was conducted using MATLAB (Mathworks, Inc). Real-

time filters were implemented in a custom built BMI system

running on a workstation with an Intel Xeon 2.2Ghz processor.

Computational Model
Our n-th order unscented Kalman filter (UKF) can be described

as a modification of the Kalman filter [42], a commonly-used

Bayesian recursive estimation method for a specific class of hidden

Markov models (HMMs) with continuous states and observations,

normally distributed uncertainty, normally distributed noise, and

linear transition and observation models (for more details. An

introduction to the Kalman filter can be found in the Supporting

Information section (Materials S1). The n-th order unscented

Kalman filter combines two extensions: (1) the unscented Kalman

filter [41], which allows arbitrary non-linear models to be used in

Kalman filtering, (2) the n-th order extension, which allows more

expressive autoregressive order n (AR n) movement models and

neural tuning models. Figure 2 provides a comparison of the

hidden Markov models for the Kalman filter (Figure 2A) and the

n-th order unscented Kalman filter (Figure 2B). An example of a

linear neural tuning model is shown in Figure 2C, and an example

of a quadratic neural tuning model is shown in Figure 2D.

Figure 2D depicts example autoregressive (AR 1 vs AR n)

movement models (Figure 2D).

In the hidden Markov model for BMI decoding using the n-th

order unscented Kalman filter (Figure 2B), the hidden state is the

position and velocity of the desired hand movement, described by

the variable x. The state transition model or movement model, a

linear function f , predicts the hidden state at the current time step

t given the state at the previous n time steps:

xt~f xt{1,xt{2,:::xt{nð Þzwt{1 ð2Þ

where wt{1 is normal, i.i.d. noise, called the movement model noise,

which describes the uncertainty arising from approximations made

in the model and intrinsic randomness in the movement process.

This movement model is an autoregressive process of order n (AR

n), as compared to the AR 1 movement models of the Kalman

filters previously used for BMI decoding (Figure 2D) [21,22,23,24].

Note that the standard unscented Kalman filter allows non-linear

movement models, but we did not design a non-linear movement

model and instead focused on a non-linear observation model,

described next.

The observation model relates the observations to the state via a

non-linear function h:

yt~h xtzk,xtzk{1,:::xtzk{nz1ð Þzvt ð3Þ

where yt are the observations (100 ms binned spike counts) at time t

and vt is normal, i.i.d. noise, called the observation model noise, which

describes the uncertainty in the neural tuning model and the intrinsic

randomness of the neurons. The observation model predicts the

expected neural activity for a given hand movement state. Following

neurophysiological convention, we call it the neural tuning model.

We incorporate multiple taps of both position and velocity in

the neural tuning model to relate neural activity with hand

kinematics at multiple time offsets simultaneously, avoiding the

need to search for a best time offset [22,24]. Note that the neural

tuning model captures relationships between neural activity at

time t and movements from tzk{nz1 up to time tzk, meaning

that during decoding, desired movement in the future is predicted.

We call the number k the number of future taps and n{k the

number of past taps. In practice, the predictions into the future are

usually inaccurate, but as they pass through the time-tap structure

of the filter, they are improved by incorporating information from

more neural observations. In all experiments, we used the state tap

xt corresponding to the current observations yt as the filter output,

i.e. we did not use lagged estimates or future predictions.

Unscented Kalman Decoder

PLoS ONE | www.plosone.org 13 July 2009 | Volume 4 | Issue 7 | e6243

Quadratic Neural Tuning Model
Many models have been proposed to describe the relationship

between neural activity and arm movement, notably the cosine

tuning model [43], tuning to speed [31,66,67], and tuning to the

distance of reach [68,69]. We used a more general model which

we call the quadratic model of tuning that combined several features

used in the previously proposed models: tuning to position,

velocity, distance, and speed. In Cartesian coordinates, the model

is:

y tð Þ~b1posx tð Þzb2posy tð Þzb3

ffi

posx tð Þ2zposy tð Þ2
q

zb4velx tð Þzb5vely tð Þzb6

ffi

velx tð Þ2zvely tð Þ2
q

ð4Þ

where y tð Þ is the mean-subtracted single-neuron firing rate at time

t, posx tð Þ and posy tð Þ are the x and y coordinates of the cursor at

time t, velx tð Þ and vely tð Þ are the x and y velocities of the cursor,

and b1, . . . b6 are scalar parameters, one set per neuron. Note that

this equation describes the quadratic neural tuning model for the

1st order UKF. For higher values of n, additional terms for the

other time offsets are added. For example, the 2nd order UKF with

1 future tap and 1 past tap has a set of terms duplicated with time

tz1. In general, our quadratic model has 6n scalar parameters per

neuron.

This quadratic model worked well for our experimental task in

which the movements were performed by a joystick where the zero

position corresponded to the center of the video screen. We chose

not to include higher derivative terms, such as acceleration and

jerk, because they did not contribute substantially to decoding

accuracy.

Implementation
We implemented the n-th order UKF in Matlab and C++ using

the equations presented by Julier et al. [41] with one exception: we

used a linear movement model, which meant the first step was the

same as that in the standard Kalman filter [42].

The variables in the algorithm are as follows. The vector xt of

length 4n contained the means of the history of state variables at

time t:

xt~

posx tzkð Þ

posy tzkð Þ

velx tzkð Þ

vely tzkð Þ

posx tzk{1ð Þ

posy tzk{1ð Þ

velx tzk{1ð Þ

vely tzk{1ð Þ

.

.

.

posx(tzk{nz1)

posy(tzk{nz1)

velx(tzk{nz1)

vely(tzk{nz1)

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

ð5Þ

The 4n by 4nmatrix Ptwas the state variable covariance matrix.

The vector yt of length N was the observed binned spike counts at

time t, where N is the number of neurons.

An iteration of the filter began with the prediction step, in which

the state at the previous time step was used to predict the state at

the current time step:

xt’~Fxt{1 ð6Þ

Pt’~FPt{1F
T
zQ ð7Þ

where xt’and Pt’ were the mean and covariance of the predicted

state, xt{1and Pt{1 were the mean and covariance of the previous

state, matrix F implemented the linear movement model, and Q

was the covariance of the movement model noise. F and Q are

square 4n by 4n matrices. Details on how these and other

parameter matrices were fitted are described in the next section.

Besides predicting position and velocity from previous values, the

matrix F implemented the propagation of taps through time.

Next, the update step corrected the prediction from the

prediction step using the observations in a Bayesian way. In the

Kalman filter, the neural tuning model is linear and the update

step can be implemented in a series of matrix equations (Table 1)

[42], because linear models allow straightforward, closed-form

computation of the posterior distribution of the state estimate

given the observation. However, analytical calculation of the

posterior distribution is, in general, only possible under this linear

model assumption [70]. For arbitrary non-linear observation

models, computing the posterior distribution poses an intractable

integration problem [70]. The unscented Kalman filter gives an

approximate solution using the unscented transform — a method

for approximating the mean and covariance of normally

distributed random variables after they have passed through a

non-linear function [41]. This transform uses a fixed set of

algorithmically selected simulation points, called sigma points. The

sigma points completely capture the first and second moments of

the distribution [70]. Geometrically speaking, the sigma points are

located at the mean and along the eigenvectors of the covariance

matrix, if the orthgonal matrix square root is used in their

calculation [41], though we used the Cholesky decomposition for

the matrix square root. 2dz1 sigma points are required, where

d~4n is the dimension of the state space. The set of sigma points

is calculated from the state mean and covariance and evaluated

through the non-linear observation function. The mean and

covariance of the result are then calculated by taking the weighted

mean and weighted covariance of the sigma points (for a detailed

review see [70]). This approximation scheme computes precisely

the effect on the mean and covariance of a normal distribution by

the third order and below terms of the Taylor expansion of the

non-linear function, while presence of fourth order or higher terms

in the Taylor expansion introduce error [70]. Since we use a

quadratic observation function, the mean and covariance of our

predicted observations are calculated precisely by the unscented

transform. However, the non-linear observation function makes

the distribution of the predicted observation no longer normal,

while the unscented Kalman filtering paradigm assumes normality

and discards the higher order moments, introducing approxima-

tion error. Compared to the extended Kalman filter (EKF) [42], a

well-known non-linear filtering technique, the unscented Kalman

filter has better approximation accuracy for the same asymptotic

computational cost [70].

In the general unscented Kalman filter, the sigma points are

generated from xt{1 and Pt{1 and evaluated in the non-linear

state transition and observation functions. In our implementation,

Unscented Kalman Decoder

PLoS ONE | www.plosone.org 14 July 2009 | Volume 4 | Issue 7 | e6243

only the neural tuning model was non-linear, so sigma points were

generated from xt’ and Pt’. The sigma points X0 . . .X2d were set

as:

X0~xt0 ð8aÞ

X~xt0z
ffi

dzkð ÞPt0

p

� �

i
i~1 . . . d ð8bÞ

X~xt0{
ffi

dzkð ÞPt0

p

� �

i{d
i~dz1 . . . 2d ð8cÞ

where the subscript outside the parentheses indicate the row taken

from the matrix inside the parentheses. The square root is the

matrix square root. For robustness, this computation was

performed using the Cholesky decomposition. k is a parameter

which specifies how heavily the center sigma point is weighted

compared to the other sigma points. Adjusting this parameter can

improve the approximation of higher order moments [70]. We

used the conventional value of k~1 for normal distributions.

Next, the sigma points were evaluated in the quadratic neural

tuning function h:

Zi~h(Xi) i~0 . . . 2d ð9Þ

where Z0 . . .Z2ddenote the sigma points after observation

function evaluation. These function evaluations were implemented

as 2dz1separate matrix multiplications of the form:

z1 tð Þ

z2 tð Þ

z3 tð Þ

.

.

.

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

~

b1,1 b1,2 b1,3 b1,4 b1,5 b1,6

b2,1 b2,2 b2,3 b2,4 b2,5 b2,6

b3,1 b3,2 b3,3 b3,4 b3,5 b3,6

.

.

.

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

posx tð Þ

posy tð Þ
ffi

posx tð Þ2zposy tð Þ2
q

velx tð Þ

vely tð Þ
ffi

velx tð Þ2zvely tð Þ2
q

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

ð10Þ

where zj tð Þ is the predicted (mean-subtracted) spike count for

neuron j at time t, the vector on the left hand side is one post-

function sigma point Zi, and the right-most vector is one pre-

function sigma point Xi with augmented terms. The bolded

augmented terms are added to each of the sigma points using the

sigma points’ own values for position and velocity. Note equation

10 shows the multiplication for the 1st order UKF. For higher n,

there are more columns of model parameters in the parameter

matrix and more rows in the vector Xi corresponding to the

history taps. The N by 6n matrix in the center of equation 10

containing the neural tuning model parameters, b1,1, . . . bN,6n, for

all N neurons is called matrix B, which has a similar function to

matrix H of for the Kalman filter.

The mean and covariance of the predicted neural firing rates

were found using weighted mean and weighted covariance:

zt~
X

i~0...2d

wiZi ð11Þ

Pzz,t~w0 Z0{ztð Þ Z0{ztð ÞT

z

X

i~1...2d

wi Zi{Z0ð Þ Zi{Z0ð ÞT
" #

zR
ð12Þ

where Ris the covariance matrix of the tuning model noise. The

weights were:

w0~
k

dzk
ð13aÞ

wi~
1

2 dzkð Þ
i~1 . . . 2d ð13bÞ

Then, the Kalman gain was calculated:

K~Pxz,tP
{1
zz,t ð14Þ

where the state-observation cross-covariance Pxz,t, was:

Pxz,t~w0(X0{xt’)(Z0{zt)
T

z

X

i~1...2d

wi(Xi{X0)(Zi{Z0)
T ð15Þ

The Kalman gain was used to correct the state estimate using

the discrepancy between the predicted and actual (mean-

subtracted) spike counts:

xt~xt’zKt yt{ztð Þ ð16Þ

Finally, the state covariance was updated:

Pt~Pt’{Pxz,t P{1
zz,t

� �T

PT
xz,t ð17Þ

Equations 6 through 17 implement one iteration of the

algorithm. A side-by-side comparison of the equations for the

Kalman filter and the n-th order unscented Kalman filter are

shown in Table 1.

In off-line reconstructions, the initial values of x0 were set by

taking the means of the state variables in the training data, and the

initial values of P0 were set by taking the covariance of the state

variables in the training data. When n was larger than 1, the

means and covariances for the initial values were duplicated for

each tap, so that the initial covariance matrix had a block-diagonal

form with n blocks. In on-line BMI, the initial values of x0 were set

as the joystick position and velocity at that time and initially the

values of P0 were set to the identity matrix corresponding to

variance of 1 cm for position and 10 cm/sec for velocity.

Unscented Kalman Decoder

PLoS ONE | www.plosone.org 15 July 2009 | Volume 4 | Issue 7 | e6243

Parameter Fitting
We fitted the parameter matrices F and B to training data using

regularized linear regression and estimated the matrices Q and R

from the regression residuals. We chose a form of Tikhonov

regularization called ridge regression because of its simplicity and

low computational cost.

To fit F, we first composed the 4 by T matrix X of the training

data position and velocities, where T is the number of data points

(i.e. the time length of the training data). We then constructed a 4n

by T matrix Xlagged , where column i of Xlagged was the vertical

concatenation of columns i{1,i{2,:::i{n of matrix X. To avoid

the missing data problem when filling the first n columns of Xlagged ,

the first n columns of Xlagged and X were omitted when fitting F.

Then, we fitted the intermediary matrix Fpart using ridge

regression:

Fpart~XXT
lagged XlaggedX

T
laggedzlF I

� �

{1

ð18Þ

where lF was the ridge regression parameter. The selection of

ridge regression parameters is discussed in the next section. Fpart

was then augmented with entries which propagated the history

taps to make F:

F~

Fpart 4|4nð Þ

I 4 n{1ð Þ|4 n{1ð Þð Þ 0 4 n{1ð Þ|4ð Þ

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

4n|4nð Þ

ð19Þ

where I is the identity matrix and 0 is the zero matrix. Subscripts

indicate matrix sizes.

An alternative method for setting the movement model is to use

the equations describing motion, e.g. position is the integral of

veloctiy over time. However, this method does not capture the

patterns in the movements generated by the BMI user as well as

movement models fit from kinematic data. In practice, our fits to F

are similar to the matrix implementing the motion equations

except for modest perturbations.

The movement model noise covariance matrix Q was estimated

by first computing Qpart:

Qpart~
EFE

T
F

T{nð Þ{4n
ð20Þ

where EF is the 4 by T{n residual matrix from fitting Fpart, and

the division is executed per element. We then augmented Qpart to

construct Q:

Q~

Qpart 4|4ð Þ 0 4|4 n{1ð Þð Þ

0 4 n{1ð Þ|4nð Þ

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

4n|4nð Þ

ð21Þ

To fit B, we first constructed the N by T matrix Y of mean-

subtracted binned spike counts from the training data, with the

spike counts from all neurons at one time step in each column. We

then constructed the 6n by T matrix Xaug, where column i of Xaug

was the vertical concatenation of columns i,i{1,:::i{nz1 of

matrix X with the bolded quadratic terms in equation 10 inserted

appropriately. To implement the k future taps, Y must be shifted

back in time by k steps. This was done by removing the last k

columns of Y and the first k columns of Xaug. Subsequently, to

avoid the missing data problem when filling the first n{1 columns

of Xaug, the first n{k{1 columns of Xaug and Y were removed.

We then fitted B using ridge regression:

B~YXT
aug XaugX

T
augzlBI

� �

{1

ð22Þ

where lB was the ridge regression parameter.

The N by N neural tuning model noise covariance matrix R was

estimated using:

R~
EBE

T
B

T{nz1ð Þ{6n
ð23Þ

where EB is the N by T{nz1 residual matrix from fitting B, and

the division is executed per element.

Algorithm Evaluation
The n-th order unscented Kalman filter and several comparison

methods were evaluated off-line using data collected in experi-

ments in which monkeys moved a computer cursor using the

joystick. The n-th order UKF used n~10 taps, with five future

taps and fivepast taps. The UKF with n~1 past taps was tested to

evaluate the benefit of n~10 taps. A standard Kalman filter was

evaluated to determine the benefit of the quadratic tuning model.

For comparison against algorithms commonly used for a closed-

loop BMI, a Wiener filter with 10 taps and the population vector

method used by Taylor et al. [13] were evaluated.

For off-line reconstructions, cross-validation was conducted. In

this procedure, a portion of the data for each session was held-out

for testing and the rest was used to fit parameters. Performance of

the algorithms was evaluated on the held-out portion to avoid

fitting models and making predictions on the same data. The data

for each session were divided into 10 equal-sized portions (or folds)

and the testing procedure was repeated on each held-out portion

in turn. Both the movement and neural tuning models were fit for

each cross-validation fold. In this study we did not address the

question of how to design a general movement model, instead we

leave this for future work.

For off-line reconstructions, ridge regression parameters for every

algorithm fitted using ridge regression were chosen by optimizing

for highest position reconstruction accuracy on the first cross

validation fold of each session, i.e. fitting and predicting was

performed repeatedly for different choices of l (for the UKF, lF and

lB were sought independently) on the first cross validation fold. This

first fold was omitted when aggregating performance metrics. For

on-line experiments, ridge regression parameters were set to

lF~lB~15for the 10th order UKF, lF~lB~lH~1 for the 1st

order UKF and Kalman filter, and l~225 for the Wiener filter.

These values were picked using previous experience. Wiener filter

parameters were also fit with ordinary least squares (OLS) without

ridge regression to demonstrate the benefit of regularization.

The Kalman filter used for comparison had the same state

variables as the 1st order UKF, and its models were fitted in a

Unscented Kalman Decoder

PLoS ONE | www.plosone.org 16 July 2009 | Volume 4 | Issue 7 | e6243

similar way as the 1st order UKF, less the quadratic terms for the

observation model matrix (see Supplementary Materials).

For the population-vector method, the neuronal weights were fit

via ordinary least squares without regularization. The original

formulation of the population vector method predicted velocity

and did not predict position directly. To make position

predictions, we substituted the Cartesian position coordinates for

the velocity components. We implemented the Taylor et al. [13]

version of the population vector method with one slight

modification: the baseline firing rate (mean) and normalization

constant (standard deviation) of neurons were fit once from

training data, instead of updated during filtering using a sliding

window of spiking history.

To quantify filter performance, we compared algorithm

estimated trajectories to joystick trajectories (in off-line recon-

structions) and to target trajectories (in closed-loop BMI). We

computed two metrics: the signal-to-noise ratio (SNR) and the

correlation coefficient (CC). SNR was calculated as:

SNRdB~10| log10
var

mse

� �

ð24Þ

where var is the sample variance of the desired values (joystick or

target) and mse is the mean squared error of the predicted values

from the desired values. Position, velocity, and the x and y axes

were evaluated separately. The signal-to-noise ratio can be viewed

as the inverse of the normalized mean squared error, where the

normalization factor quantifies the power of the desired signal.

SNR is widely used in engineering and has been previously used to

measure BMI decoding performance [34,44]. The SNR is unitless

and comparable across experimental setups, unlike the mean

squared error, which is usually incomparable between studies due

to differences in movement magnitudes. In this respect the SNR is

similar to the CC. However, the SNR is not translation and scale

invariant, unlike the CC. This is an advantage because translation

and scale invariance imply that the CC may leave undetected

certain unwanted filtering results. For example, a predicted hand

trajectory that is incorrect by a large but constant displacement

has the same CC as a trajectory without the erroneous

displacement, since only deviations from the mean are analyzed

by the CC. As indicated by its name, CC is a measure of

correlation, but we are interested in measuring accuracy.

Furthermore, as the CC saturates at 1, its scale is compressed as

it approaches 1, making it more difficult to grasp intuitively and

making similar increments at lower values of CC and higher values

of CC incomparable. Short of benchmark datasets, we believe the

SNR measure best facilitates direct comparison between algo-

rithms developed by different authors.

To aggregate results for each session, mean SNR and CC

among the cross-validation folds and between the x- and y-axis

predictions were computed. Standard error of the mean was

calculated for each session with 18 observations (9 folds62 axes).

To test for significant effects, we treated each cross-validation fold

and each axis as a condition for paired, two-sided sign tests. We

used an a~0:05 significance level.

Supporting Information

Materials S1

Found at: doi:10.1371/journal.pone.0006243.s001 (0.26 MB

DOC)

Acknowledgments

We thank Dragan Dimitrov for conducting the surgery, Gary Lehew for

engineering the experimental setup, Nathan Fitzsimmons for his helpful

comments, Benjamin Grant for his automatic sorting software, Laura

Oliveira, Weiying Drake, Susan Halkiotis, Ian Peikon, and Aaron Sandler

for outstanding technical assistance.

Author Contributions

Conceived and designed the experiments: ZL JEO MAL MALN.

Performed the experiments: JEO TH. Analyzed the data: ZL. Wrote the

paper: ZL JEO TH MAL CH MALN.

References

1. Chapin JK, Moxon KA, Markowitz RS, Nicolelis MA (1999) Real-time control
of a robot arm using simultaneously recorded neurons in the motor cortex. Nat
Neurosci 2: 664–670.

2. Nicolelis MA (2001) Actions from thoughts. Nature 409: 403–407.

3. Wessberg J, Stambaugh CR, Kralik JD, Beck PD, Laubach M, et al. (2000)
Real-time prediction of hand trajectory by ensembles of cortical neurons in
primates. Nature 408: 361–365.

4. Donoghue JP, Nurmikko A, Black M, Hochberg LR (2007) Assistive technology
and robotic control using motor cortex ensemble-based neural interface systems
in humans with tetraplegia. J Physiol 579: 603–611.

5. Lebedev MA, Nicolelis MA (2006) Brain-machine interfaces: past, present and
future. Trends Neurosci 29: 536–546.

6. Nicolelis MA (2003) Brain-machine interfaces to restore motor function and
probe neural circuits. Nat Rev Neurosci 4: 417–422.

7. Patil PG, Carmena JM, Nicolelis MA, Turner DA (2004) Ensemble recordings
of human subcortical neurons as a source of motor control signals for a brain-
machine interface. Neurosurgery 55: 27–35. discussion 35–28.

8. Schwartz AB, Cui XT, Weber DJ, Moran DW (2006) Brain-controlled
interfaces: movement restoration with neural prosthetics. Neuron 52: 205–220.

9. Bashashati A, Fatourechi M, Ward RK, Birch GE (2007) A survey of signal
processing algorithms in brain-computer interfaces based on electrical brain
signals. J Neural Eng 4: R32–57.

10. Georgopoulos AP, Schwartz AB, Kettner RE (1986) Neuronal population
coding of movement direction. Science 233: 1416–1419.

11. Kennedy PR, Bakay RA (1998) Restoration of neural output from a paralyzed
patient by a direct brain connection. Neuroreport 9: 1707–1711.

12. Kennedy PR, Bakay RA, Moore MM, Adams K, Goldwaithe J (2000) Direct
control of a computer from the human central nervous system. IEEE Trans
Rehabil Eng 8: 198–202.

13. Taylor DM, Tillery SI, Schwartz AB (2002) Direct cortical control of 3D
neuroprosthetic devices. Science 296: 1829–1832.

14. Wahnoun R, He J, Helms Tillery SI (2006) Selection and parameterization of
cortical neurons for neuroprosthetic control. J Neural Eng 3: 162–171.

15. Wahnoun R, Helms Tillery SI, He J (2004) Neuron selection and visual training
for population vector based cortical control. pp 4607–4610.

16. Velliste M, Perel S, Spalding MC, Whitford AS, Schwartz AB (2008) Cortical
control of a prosthetic arm for self-feeding. Nature 453: 1098–1101.

17. Carmena JM, Lebedev MA, Crist RE, O’Doherty JE, Santucci DM, et al. (2003)
Learning to control a brain-machine interface for reaching and grasping by
primates. PLoS Biol 1: E42.

18. Hatsopoulos N, Joshi J, O’Leary JG (2004) Decoding continuous and discrete
motor behaviors using motor and premotor cortical ensembles. J Neurophysiol
92: 1165–1174.

19. Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, et al. (2006)
Neuronal ensemble control of prosthetic devices by a human with tetraplegia.
Nature 442: 164–171.

20. Serruya MD, Hatsopoulos NG, Paninski L, Fellows MR, Donoghue JP (2002)
Instant neural control of a movement signal. Nature 416: 141–142.

21. Black MJ, Serruya M, Bienenstock E, Gao Y, Wu W, et al. Connecting brains
with machines:the neural control of 2D cursor movement. 2003 March 20–22
Capri Island, Italy, pp 580–583.

22. Wu W, Black MJ, Gao Y, Bienenstock E, Serruya M, et al. (2003) Neural
Deocoding of Cursor Motion using a Kalman Filter. Advances in Neural
Information Processing Systems 15. Cambridge, MA: MIT Press.

23. Wu W, Black MJ, Mumford D, Gao Y, Bienenstock E, et al. (2004) Modeling
and decoding motor cortical activity using a switching Kalman filter. IEEE
Trans Biomed Eng 51: 933–942.

24. Wu W, Gao Y, Bienenstock E, Donoghue JP, Black MJ (2006) Bayesian
population decoding of motor cortical activity using a Kalman filter. Neural
Comput 18: 80–118.

25. Brockwell AE, Rojas AL, Kass RE (2004) Recursive bayesian decoding of motor
cortical signals by particle filtering. J Neurophysiol 91: 1899–1907.

Unscented Kalman Decoder

PLoS ONE | www.plosone.org 17 July 2009 | Volume 4 | Issue 7 | e6243

26. Gao Y, Black M, Bienenstock E, Wu W, Donoghue J (2003) A quantitative
comparison of linear and non-linear models of motor cortical activity for the
encoding and decoding of arm motions. Capri Island, Italy. pp 189–192.

27. Gao YBM, Bienenstock E, Shoham S, Donoghue JP (2002) Probabilistic
Inference of Hand Motion from Neural Activity in Motor Cortex. Advances in
Neural Information Processing Systems 14. Cambridge, MA: MIT Press.

28. Shoham S, Paninski LM, Fellows MR, Hatsopoulos NG, Donoghue JP, et al.
(2005) Statistical encoding model for a primary motor cortical brain-machine
interface. IEEE Trans Biomed Eng 52: 1312–1322.

29. Eden U, Truccolo W, Fellows M, Donoghue J, Brown E (2004) Reconstruction
of hand movement trajectories from a dynamic ensemble of spiking motor
cortical neurons. Conf Proc IEEE Eng Med Biol Soc 6: 4017–4020.

30. Eden UT, Frank LM, Barbieri R, Solo V, Brown EN (2004) Dynamic analysis of
neural encoding by point process adaptive filtering. Neural Comput 16:
971–998.

31. Truccolo W, Eden UT, Fellows MR, Donoghue JP, Brown EN (2005) A point
process framework for relating neural spiking activity to spiking history, neural
ensemble, and extrinsic covariate effects. J Neurophysiol 93: 1074–1089.

32. Truccolo W, Friehs GM, Donoghue JP, Hochberg LR (2008) Primary motor
cortex tuning to intended movement kinematics in humans with tetraplegia.
J Neurosci 28: 1163–1178.

33. Sanchez JC, Erdogmus D, Rao YN, Kim SP, Nicolelis MA, et al. (2003)
Interpreting neural activity through linear and nonlinear models for brain
machine interfaces. pp 2160–2163.

34. Sanchez JC, Kim SP, Erdogmus D, Rao YN, Principe JC, et al. (2002) Input-
output mapping performance of linear and nonlinear models for estimating hand
trajectories from cortical neuronal firing patterns. pp 139–148.

35. Sanchez JC, Principe JC, Carmena JM, Lebedev MA, Nicolelis MA (2004)
Simultaneus prediction of four kinematic variables for a brain-machine interface
using a single recurrent neural network. Conf Proc IEEE Eng Med Biol Soc 7:
5321–5324.

36. Musallam S, Corneil BD, Greger B, Scherberger H, Andersen RA (2004)
Cognitive control signals for neural prosthetics. Science 305: 258–262.

37. Santhanam G, Ryu SI, Yu BM, Afshar A, Shenoy KV (2006) A high-
performance brain-computer interface. Nature 442: 195–198.

38. Srinivasan L, Eden UT, Mitter SK, Brown EN (2007) General-purpose filter
design for neural prosthetic devices. J Neurophysiol 98: 2456–2475.

39. Doucet A, de Freitas N, Gordon N (2001) Sequential Monte Carlo Methods in
Practice: Springer.

40. Babyak MA (2004) What you see may not be what you get: a brief, nontechnical
introduction to overfitting in regression-type models. Psychosom Med 66:
411–421.

41. Julier SJ, Uhlmann JK, Durrant-Whyte HF (1995) A new approach for filtering
nonlinear systems.

42. Haykin S (1996) Adaptive filter theory. Upper Saddle River, NJ: Prentice Hall.
43. Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT (1982) On the relations

between the direction of two-dimensional arm movements and cell discharge in
primate motor cortex. J Neurosci 2: 1527–1537.

44. Kim SP, Sanchez JC, Rao YN, Erdogmus D, Carmena JM, et al. (2006) A
comparison of optimal MIMO linear and nonlinear models for brain-machine
interfaces. J Neural Engineering 3: 145–161.

45. Li Z, O’Doherty JE, Hanson TL, Lebedev MA, Henriquez CS, et al. (2007) N-th
order Kalman filter improves the performance of a brain machine interface for
reaching. San Diego.

46. Wu W, Shaikhouni A, Donoghue JP, Black MJ (2004) Closed-loop neural
control of cursor motion using a Kalman filter. Conf Proc IEEE Eng Med Biol
Soc 6: 4126–4129.

47. Barbieri R, Frank LM, Nguyen DP, Quirk MC, Solo V, et al. (2004) A Bayesian
decoding algorithm for analysis of information encoding in neural ensembles.
Conf Proc IEEE Eng Med Biol Soc 6: 4483–4486.

48. Wang Y, Paiva ARC, Principe JC (2006) A Monte Carlo Sequential Estimation
for Point Process Optimum Filtering. pp 2250–2255.

49. Brockwell A, Kass R, Schwartz A (2007) Statistical signal processing and the

motor cortex. pp 881–898.

50. Kemere C, Shenoy KV, Meng TH (2004) Model-based neural decoding of

reaching movements: a maximum likelihood approach. IEEE Trans Biomed

Eng 51: 925–932.

51. Srinivasan L, Eden U, Willsky A, ENB (2005) Goal-directed state equation for

tracking reaching movements using neural signals. pp 352–355.

52. Srinivasan L, Eden UT, Willsky AS, Brown EN (2006) A state-space analysis for

reconstruction of goal-directed movements using neural signals. Neural Comput

18: 2465–2494.

53. Mulliken GH, Musallam S, Andersen RA (2008) Decoding trajectories from

posterior parietal cortex ensembles. J Neurosci 28: 12913–12926.

54. Isaacs RE, Weber DJ, Schwartz AB (2000) Work toward real-time control of a

cortical neural prothesis. IEEE Trans Rehabil Eng 8: 196–198.

55. Kim SP, Sanchez JC, Erdogmus D, Rao YN, Wessberg J, et al. (2003) Divide-

and-conquer approach for brain machine interfaces: nonlinear mixture of

competitive linear models. Neural Netw 16: 865–871.

56. Kim SP, Sanchez JP, Erdogmus D, Rao YN, Principe JC, et al. (2003) Modeling

the relation from motor cortical neuronal firing to hand movements using

competitive linear filters and a MLP. pp 66–70.

57. Sanchez JC, Erdogmus D, Rao YN, Principe JC, Nicolelis MA, et al. (2003)

Learning the contributions of the motor, premotor, and posterior parietal

cortices for hand trajectory reconstruction in a brain machine interface. pp 59–

62.

58. Shpigelman L, Singer Y, Paz R, Vaadia E (2003) Spikernels: Embedding spiking

neurons in inner product spaces. Advances in Neural Information Processing

Systems 15. Cambridge, MA: MIT Press.

59. Shpigelman L, Singer Y, Paz R, Vaadia E (2005) Spikernels: predicting arm

movements by embedding population spike rate patterns in inner-product

spaces. Neural Comput 17: 671–690.

60. Shpigelman LCK, Paz R, Vaadia E, Singer Y (2004) A temporal kernel-based

model for tracking hand movements from neural activities. Advances in Neural

Information Processing Systems 17. Cambridge, MA: MIT Press.

61. Fisher J, Black M (2005) Motor cortical decoding using an autoregressive moving

average model. Conf Proc IEEE Eng Med Biol Soc 2: 2130–2133.

62. Shpigelman L, Lalazar H, Shahar M, Vaadia E (2008) Learning a Novel

Visuomotor Task and Performing Four-Dimensional Movements in a Closed

Loop Brain-Machine Interface Using an Adaptive Dynamic Kernel Based

Algorithm. Salt Lake City, Utah.

63. Ting J-A, D’Souza A, Yamamoto K, Yoshioka T, Hoffman D, et al. (2005)

Predicting EMG data from M1 neurons with Variational Bayesian Least

Squares. Advances in Neural Information Processing Systems 18. Cambridge,

MA: MIT Press.

64. Wan EA, van der Merwe R, Nelson AT (2000) Dual estimation and the

Unscented Transform. Advances in Neural Information Processing Systems 12.

Cambridge, MA: MIT Press.

65. Grant BD, Li Z, Hanson TL, O’Doherty JE, Lebedev MA, et al. (2007)

Automated spike sorting of multiunit data for brain-machine interface

applications. San Diego.

66. Ashe J, Georgopoulos AP (1994) Movement parameters and neural activity in

motor cortex and area 5. Cereb Cortex 4: 590–600.

67. Moran DW, Schwartz AB (1999) Motor cortical representation of speed and

direction during reaching. J Neurophysiol 82: 2676–2692.

68. Fu QG, Flament D, Coltz JD, Ebner TJ (1995) Temporal encoding of

movement kinematics in the discharge of primate primary motor and premotor

neurons. J Neurophysiol 73: 836–854.

69. Turner RS, Anderson ME (1997) Pallidal discharge related to the kinematics of

reaching movements in two dimensions. J Neurophysiol 77: 1051–1074.

70. van der Merwe R (2004) Sigma-point kalman filters for probabilistic inference in

dynamic state-space models: Oregon Health and Science University.

Unscented Kalman Decoder

PLoS ONE | www.plosone.org 18 July 2009 | Volume 4 | Issue 7 | e6243

