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Vehicle Dynamics Control (VDC) systems require the information about system variables, which cannot be directly measured, e.g., the
wheel slip or the vehicle side-slip angle. This paper presents a new concept for the vehicle state estimation under assumption that the
vehicle is equipped with the standard VDC sensors. It is proposed to utilize an Unscented Kalman Filter (UKF) for estimation purposes,
since it is based on a numerically efficient nonlinear stochastic estimation technique. A planar two-track model is combined with the
empiric Magic Formula in order to describe the vehicle and tire behavior. Moreover, an advanced vertical tire load calculation method is
developed that additionally considers the vertical tire stiffness and increases the estimation accuracy. Experimental tests show the good
accuracy and robustness of the designed vehicle state estimation concept.

Keywords: vehicle dynamics control, state estimation, unscented Kalman filter, UKF, vertical tire forces

1 Introduction

The first series Vehicle Dynamics Control (VDC) system was introduced by Robert Bosch GmbH
in 1995 [1]. This system was designed to assist the driver during critical driving maneuvers. Thereby,
the vehicle’s skidding and spinning was prevented by means of selective braking of the individual wheels.
In the past years VDC has shown a great contribution to crash avoidance [2, 3]. In series VDC systems
the longitudinal and the lateral velocities of the vehicle as well as many other vehicle dynamics variables
cannot be measured in a cost-efficient way. For this reason, an extensive research is performed for the
estimation of the vehicle velocity, grip conditions, tire forces, and other relevant variables.
The latest publications are mainly concerned with different sensor configurations, diverse estimation

techniques, as well as with the usage of various vehicle models. The well known industrial solutions typically
rely on observers, which are based on heavily simplified dynamical vehicle models in combination with
kinematic models. Normally, an additional switching or weighting logic is used for adaptation purposes.
In this way, a model scheduling is performed depending on the tire slip conditions, see, e.g., [4–6]. In
[7] a similar approach is applied for the planar two-track vehicle model with consideration of the load
distribution and tire properties. In [8,9] an observer design based on Lyapunov’s stability theory is proposed
for the quarter vehicle model. The two-track vehicle model is utilized for various nonlinear observer design
approaches in [10,11].
The main research activities in the field of vehicle dynamics estimation concentrate on the application

of Kalman filter theory that is the most powerful tool for multi-sensor data fusion problems. The solutions
combining a linear Kalman filter design for a one mass vehicle model with the fuzzy logic technique
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2 S. Antonov et al.

have shown good performance at low computational effort [12, 13]. Several more sophisticated solutions
were developed for more detailed vehicle models, mainly based on Kalman filter or Extended Kalman
Filter (EKF) designs [14–21]. In [22] the two-track planar vehicle model is extended by a simple strategy
to account for the vertical tire force calculation, the wheel dynamics, and the nonlinear tire model. The
comparison of the introduced EKF and the high gain observer reveals that the EKF has better accuracy
and robustness properties.
The main drawbacks of the EKF are the high computational effort for the calculation of the Jacobian

matrices [22] as well as linearization errors, which force the usage of relatively small sampling times. For
overcoming this hurdle, we propose to use the Unscented Kalman Filter (UKF), see, e.g., [23, 24], for the
vehicle state estimation. The UKF induces computational costs comparable to the ones of EKF (cf. [24])
but does not require the linearization of the underlying model. The absence of the linearization error
further allows us to execute the filter with lager sampling times.
In this paper, we will consider a passenger vehicle equipped with standard VDC sensors, i.e., the steering

wheel angle, the four rotational wheel velocities, the yaw rate, and the lateral acceleration. We assume
the propulsion and the braking torques of the wheels to be known as well, since they are estimated with
acceptable accuracy in serial produced VDC systems. The planar two-track vehicle model is chosen as a
basis for the filter design. Thereby, the pitch and the roll motion of the vehicle are not explicitly considered.
This allows us to reduce the number of state variables and yields a lower computational effort. In contrast
to the works [7, 18, 22], an advanced method for the vertical tire forces calculation is developed, which
additionally accounts for the tire stiffness. The simplified empirical Magic Formula model [26, 27] is used
for describing the tire/road interaction. The discretization of the complete vehicle model is performed
by means of a truncated Lie-Taylor series. Afterwards, the performance of the augmented state UKF
implementation is evaluated by means of real vehicle tests.
The structure of this paper is as follows: Section 2 presents the mathematical vehicle model under

consideration and Section 3 describes the Unscented Kalman Filter implementation. The vehicle tests and
the achieved filter performance are discussed in Section 4. Section 5 summarizes the results and gives an
outlook on future research activities.

2 Mathematical vehicle modeling

This section presents a vehicle model, which will serve as a basis for the estimator design. The starting
point of the modeling is a planar two-track vehicle model with 3 degrees-of-freedom. The roll and the
pitch dynamics are consciously omitted in the mathematical formulation in order to reduce the size of the
state vector. For calculating the longitudinal and the lateral tire forces, a simplified version of the Magic
Formula tire model [26,27] is used. A new method for the calculation of the vertical tire loads is developed
based on quasi-stationary considerations. Finally, all presented sub-models are merged into one model for
the estimator design.

2.1 Planar vehicle model

A planar two-track vehicle model is presented in this subsection. The following modeling assumptions are
made:

• the vehicle is moving on a flat horizontal plane;

• there are neither pitch, nor roll, nor heave dynamical effects;

• the aerodynamic drag force is applied in the road plane, i.e., there is no aerodynamic lift;

• steer angles of the front left and front right wheels are known.1

1The steering wheel angle sensor belongs to the standard VDC system equipment. Therefore, the steer angles of the front wheels
can be calculated out of the known steering wheel angle and the kinematics of the steering system. The accuracy can be additionally
increased by introducing a detailed steering system model.
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Unscented Kalman Filter for Vehicle State Estimation 3

Figure 1 shows the vehicle in the inertial reference frame Oxyz and defines the moving body-fixed
reference frame Bxyz. In this paper, individual wheels are addressed by the subscripts as presented in
Table 1.

Figure 1. Planar two-track vehicle model: reference frames and acting forces.

Table 1. Abbreviations for the wheel po-

sitions

FL front left FR front right
RL rear left RR rear right

Let the vehicle have the total mass m and the moment of inertia Izz about the z-axis. The position of
the center of mass (CoM) is defined by the distances to the front axle lf , to the rear axle lr, to the left
wheels wl, and to the right wheels wr. The forces applied to the vehicle are the tire/road contact forces
F i, i ∈ {FL,FR,RL,RR} and the air resistance force F air. The equations of motion for the vehicle w.r.t.
the inertial reference frame Oxyz projected on the body-fixed reference frame Bxyz are given by

d

d t
vB,x =

1

m
(FFL,x cos δFL + FFR,x cos δFR − FFL,y sin δFL − FFR,y sin δFR + FRL,x + FRR,x − Fair,x)+ψ̇ vB,y,

(1a)

d

d t
vB,y =

1

m
(FFL,x sin δFL + FFR,x sin δFR + FFL,y cos δFL + FFR,y cos δFR + FRL,y + FRR,y)−ψ̇ vB,x, (1b)

d

d t
ψ̇ =

1

Izz
((FFL,x sin δFL + FFL,y cos δFL + FFR,x sin δFR + FFR,y cos δFR) lf − (FRL,y + FRR,y) lr+

(FFR,x cos δFR − FFR,y sin δFR + FRR,x)wr − (FFL,x cos δFL − FFL,y sin δFL + FRL,x)wl).

(1c)

The air drag force Fair,x is given by the semi-empirical law [25]

Fair,x = sign(vB,x) cw A
ρ

2
v2B,x, (2)

where cw is the aerodynamic drag coefficient, A the frontal area of the vehicle, ρ the air density, and vB,x

the longitudinal vehicle velocity.
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4 S. Antonov et al.

Figure 2. Planar two-track vehicle model: kinematic considerations.

The next step is to define the side-slip angles αi, i ∈ {FL,FR,RL,RR} of the individual wheels. For this
purpose let us consider a point K whose position w.r.t. the body-fixed reference frame Bxyz is defined
by the constant vector r = [rx ry 0]T , see Figure 2. Thus, the velocity of the point K in the body-fixed
reference frame Bxyz is given by

vK,x = vB,x − ψ̇ ry, and vK,y = vB,y + ψ̇ rx. (3)

The vehicle is usually operated without spinning about the vertical axis, i.e., the following conditions hold

|vB,x| ≫ |ψ̇ ry| ∀ |ry| ≤ max(wr, wl). (4)

Thus, equations (3) can be simplified to

vK,x ≈ vB,x, and vK,y = vB,y + ψ̇ rx. (5)

With this simplification the side-slip angles can be directly derived from Figure 2 in the following form

αFL = arctan
vFL,y
vFL,x

− δFL≈
vB,y + ψ̇ lf

vB,x

− δFL, (6a)

αFR = arctan
vFR,y

vFR,x

− δFR≈
vB,y + ψ̇ lf

vB,x

− δFR, (6b)

αRL = arctan
vRL,y

vRL,x
≈ vB,y − ψ̇ lr

vB,x

, (6c)

αRR = arctan
vRR,y

vRR,x

≈ vB,y − ψ̇ lr
vB,x

. (6d)

Note that the angles in Figure 2 are considered to be positive in the counterclockwise direction. Since the
vehicle dynamics strongly depends on the tire properties, the next subsection is devoted to the tire and
wheel dynamics modeling.
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Figure 3. Loaded wheel radius r and effective wheel
radius re.

Figure 4. Wheel forces and torques in the
wheel-fixed coordinate system Wxyz.

2.2 Tire model and wheel dynamics

At first, we will consider the tire force generation and the wheel dynamics for one wheel. Figure 3 shows
the free rolling wheel on the flat road. There always exists an instantaneous center of rotation S. The
distance between this center of rotation and the wheel axis is called the effective wheel radius re. Another
important value is the distance between the road plane and the wheel axis, also known as the loaded wheel
radius r. The wheel-fixed reference frame Wxyz and applied torques and forces are depicted in Figure 4.
The translational velocity of the wheel axis vw can build a side-slip angle α w.r.t. the wheel center plane
Wxz. The rotational velocity of the wheel about the y-axis is denoted by ω. In braking or accelerating
situations a longitudinal slip κ occurs

κ = −vw,x − ω re
vw,x

, (7)

where the longitudinal velocity of the wheel axis (i.e., the projection of vw on the x-axis of the wheel-
fixed reference frame Wxyz) is given by vw,x = ‖vw‖ cosα, with ‖·‖ denoting the Euclidian norm. The
lateral side-slip angle α and the longitudinal slip κ cause the lateral Fy and longitudinal Fx tire forces, as
well as the aligning torque Mz. These forces and the torque depend on the given tire properties and the
actual environmental conditions. In this contribution, the main physical effects are reproduced by using
Magic Formula [26, 27], which is a reliable phenomenological tire model for vehicle dynamics simulation
and analysis. For the sake of simplicity, we will neglect the aligning torque Mz, the nonlinear influence of
the vertical tire force Fz , and the minor effects due to wheel camber, conicity and ply steer.
At first, the longitudinal and the lateral tire forces Fx0 and Fy0 are calculated under the assumption

that there are only decoupled slip conditions. The coupling of the longitudinal and the lateral tire forces
by combined slip conditions is taken into account in a second step by means of the weighting functions
Gxα and Gyκ. The combined slip tire forces Fx and Fy are given by [26]

Fx = Gxα Fx0 and Fy = Gyκ Fy0. (8)

The nominal longitudinal tire/road contact force Fx0 is calculated by

Fx0 = Fz µmax sin
(

Cx arctan
(
Bx κ− Ex (Bx κ− arctan(Bx κ))

))

. (9)

Here and in the following, Ci, Bi, Ei, i ∈ {x, y, xα, yκ} denote tire model parameters.1 The variable µmax

defines the tire/road grip conditions. The nominal lateral tire/road contact force Fy0 reads as

Fy0 = Fz µmax sin
(

Cy arctan
(
By α− Ey (By α− arctan(By α))

))

. (10)

1These parameters are also referred to as Magic Formula tire parameters and are only valid for a given velocity, tire, and road surface.
Practically they are extracted from tire measurement data by means of an optimization procedure.
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6 S. Antonov et al.

The combined slip conditions are considered in (8) by means of the weighting functions Gxα and Gyκ.
These empiric bell-shaped cosine functions depend on the complementary slip conditions. A simplified
approach is used for the longitudinal force weighting function Gxα

Gxα = cos
(

Cxα arctan(Bxαα− Exα(Bxαα− arctanα))
)

. (11)

The parameters Bxα and Exα define the shape ofGxα, and the parameter Cxα determines the characteristics
of Gxα for high slip angles. For the calculation of Gyκ, an additional physical effect is taken into account.
There is a small increase in the lateral force during braking and a small decrease during acceleration. This
asymmetry of the lateral forces is considered by means of a horizontal shift SHyκ of the weighting function
Gyκ. The weighting function Gyκ is given by

Gyκ =
cos (Cyκ arctan (Byκ (κ+ SHyκ)))

cos (Cyκ arctan (ByκSHyκ))
. (12)

Typical tire characteristics due to equations (8)-(12) are depicted in Figure 5.

Figure 5. Typical tire characteristics calculated by means of the simplified Magic Formula equations (8)-(12).

At this point, the longitudinal and the lateral tire forces are specified by means of the tire model. Let
us recall Figure 4 to derive the mathematical model for the wheel dynamics. In general, there are braking
and propulsion torques, Mb and Mp, acting on the wheel. They produce a total torque M = Mp − Mb

which counteracts the torque due to the longitudinal wheel force Fx. Thus, the principle of conservation
of angular wheel momentum about the x-axis yields

d

d t
ω =

1

J

(
M − Fx r

)
, (13)

where J denotes the rotational mass moment of inertia of the wheel.
Since the vertical tire force Fz is essential for the calculation of the lateral and of the longitudinal

tire forces (cf. equations (9) and (10)), a strategy for the determination of the vertical tire forces will be
developed in the next subsection.

2.3 Calculation of vertical tire forces

The following calculation of the vertical tire forces is based on quasi-stationary considerations. The un-
derlying vehicle model is depicted in Figure 6. Thereby, it is assumed that the vehicle is on an horizontal
even surface. The vehicle body is assumed to be rigid for the sake of simplicity. Tires, wheel suspensions,
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Figure 6. Vehicle model for calculation of the vertical tire forces.

and stabilizers are treated as massless linear springs. Moreover, let us assume that the front and the rear
axle are solely coupled via the rigid vehicle body. All considerations will be performed w.r.t. the vehicle
body-fixed reference frame Bxyz. The position of the center of mass is expressed in terms of the distances
to the front and rear axle, lf and lr, the distance to the origin of the body-fixed reference frame Bxyz
denoted by ho, and the distances to the left and to the right wheels, wl and wr, respectively (cf. Figure 6).
The calculation method for the vertical tire forces is based on the following considerations:

• the forces applied to the vehicle’s center of mass are treated as model inputs;

• the displacement of the vehicle body is calculated out of the torque and force equilibrium conditions
using known stiffnesses and the geometric properties;

• once the position of the vehicle body is known, the vertical tire forces are computed by means of the
spring force characteristics.

It is assumed that, if there are no forces applied to the vehicle’s center of mass, then the vehicle body
is horizontally aligned. The displacement from this reference position ξo = [0 0 0]T can be described by
rotations φx and φy about the x- and the y-axis, and by a translation dz in z-direction, i.e., ξ = [φx φy dz]

T .
For all further derivations, the rotations of the vehicle body, φx and φy, are assumed to be small, i.e.,

sinφi ≈ φi, cos φi ≈ 1, i ∈ {x, y}. (14)

The movement of the vehicle body shifts an arbitrary point p = [xp yp 0]T to a point p∗ = [x∗p y∗p z∗p]
T ,

given by the following relation

p∗ =

⎡

⎣

1 0 φy

0 1 −φx

−φy φx 1

⎤

⎦p+

⎡

⎣

0
0
dz

⎤

⎦ . (15)

Consequently, the vertical displacement z∗p reads as

z∗p = −φyxp + φxyp + dz. (16)
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According to equation (16), the relative displacements of the suspension mounting points are obtained by

⎡

⎢
⎢
⎣

zFL
zFR
zRL

zRR

⎤

⎥
⎥
⎦

︸ ︷︷ ︸

z

=

⎡

⎢
⎢
⎣

wl −lf 1
−wr −lf 1
wl lr 1

−wr lr 1

⎤

⎥
⎥
⎦

︸ ︷︷ ︸

TA

⎡

⎣

φx

φy

dz

⎤

⎦

︸ ︷︷ ︸

ξ

. (17)

The vehicle body displacement causes changes in the vertical suspension and the tire forces. Recall that
the interaction of the front and the rear suspension was assumed to take place only via the rigid vehicle
body. Therefore, if the vehicle body position is known, it suffices to investigate the front and the rear axle
independently. In Figure 7 one axle is shown for the case of the displaced vehicle body.

Figure 7. One axle of the vehicle: suspensions, tires, and stabilizer are represented as springs.

As already mentioned, the wheel suspensions, the stabilizer and the tires are considered to be linear
springs. Let us denote the corresponding stiffnesses by cc, cs, and ct. For the sake of simplicity, the
stiffnesses of the left and the right side are assumed to be equal. The distance between the two wheel
carriers is denoted by ws (cf. Figure 7). The displacements of the suspension mounting points zL and zR
as well as of the wheel carriers hL and hR are defined w.r.t. the reference position, in which the vehicle
body is horizontal and no forces are acting on the vehicle’s center of mass. The vertical tire forces FtL and
FtR are given by (considering the horizontal even road surface)

FtL = −cthL and FtR = −cthR. (18)

The suspension forces FcL and FcR yield

FcL = cc(hL − zL) and FcR = cc(hR − zR). (19)

If the vehicle rolls, the stabilizer causes the reaction forces FsL and FsR on the wheel carriers and on
the chassis. This effect is modeled by a linear spring with the stiffness cs acting between the two wheel
carriers. In this case, the stabilizer forces FsL and FsR are proportional to the relative displacement hs =
(zL−hL)− (zR−hR) of the wheel carriers (see Figure 7). The stabilizer force |Fs| = |FsL| = |FsR| becomes

Fs = cshs = cs (zL − hL − zR + hR). (20)

The pair of forces FsL and FsR induces a torque Ms acting on the stabilizer bar. There is also the reaction
torque of the same magnitude Ms that acts on the vehicle body about the x-axis and reduces the roll
angle. The corresponding absolute value is given by

Ms = −wsFs = −wscs (zL − hL − zR + hR) . (21)
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The static force equilibrium of the wheel carriers results in the two equations

−FcL + FsL + FtL = 0 and − FcR − FsR + FtR = 0. (22)

By inserting the force laws (18), (19) into (22), we get

[
cc + ct + cs −cs

−cs cc + ct + cs

]

︸ ︷︷ ︸

TU

[
hL
hR

]

=

[
cc + cs −cs
−cs cc + cs

]

︸ ︷︷ ︸

TE

[
zL
zR

]

. (23)

These relations written for the front and the rear axle result in

TUF

[
hFL
hFR

]

= TEF

[
zFL
zFR

]

and TUR

[
hRL

hRR

]

= T ER

[
zRL

zRR

]

. (24)

Here and subsequently, the subscripts F and R always refer to the front and the rear axle, respectively.
Considering equation (21), we obtain the stabilizer torques at the front and at the rear axle in the form

MsF = −wsFcsF (zFL − hFL − zFR + hFR) , (25a)

MsR = −wsRcsR (zRL − hRL − zRR + hRR) . (25b)

Solving the equations (24) for the displacements1 hi, i ∈ {FL,FR,RL,RR} and merging the results yields

⎡

⎢
⎢
⎣

hFL
hFR
hRL

hRR

⎤

⎥
⎥
⎦

︸ ︷︷ ︸

h

=

[
T−1

UF
T EF

0

0 T−1
UR

T ER

]

⎡

⎢
⎢
⎣

zFL
zFR
zRL

zRR

⎤

⎥
⎥
⎦

︸ ︷︷ ︸

z

. (26)

Figure 8 depicts all relevant forces and torques acting on the vehicle. The inertial forces Fx and Fy

act on the center of mass, since we are working in the vehicle-fixed reference frame. The forces generated
at the contact patches are denoted by Fk,j , where k ∈ {FL,FR,RL,RR} and j ∈ {x, y}. The braking
and propulsion torques applied to the individual wheels are addressed by Mi = Mp,i − Mb,i, where i ∈
{FL,FR,RL,RR}.
The displacement of the vehicle body is determined by the suspension forces Fci, where i ∈

{FL,FR,RL,RR}, and the stabilizer torques MsF and MsR. With the help of equations (19) and (26)
the suspension force vector fc takes the form

fc =

⎡

⎢
⎢
⎣

FcFL

FcFR

FcRL

FcRR

⎤

⎥
⎥
⎦
=

[
ccF(T

−1
UF

TEF
− I) 0

0 ccR(T
−1
UR

T ER
− I)

]

︸ ︷︷ ︸

TC

z, (27)

1Note that the matrix TU is invertible as long as ct or cc are unequal to zero.
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Figure 8. Forces and torques relevant for the vertical tire forces calculation.

where ccF and ccR are the suspension stiffnesses of the front and the rear axle, respectively. In a similar
manner, by considering (18) and (26), the vertical tire force vector f t yields

f t =

⎡

⎢
⎢
⎣

FFL,z

FFR,z

FRL,z

FRR,z

⎤

⎥
⎥
⎦
=

⎡

⎢
⎢
⎣

FtFL

FtFR

FtRL

FtRR

⎤

⎥
⎥
⎦
=

[−ctFT
−1
UF

T EF
0

0 −ctRT
−1
UR

T ER

]

︸ ︷︷ ︸

TP

z, (28)

where ctF and ctR are the tire stiffnesses of the front and the rear axle.
From (25) the total torque MsC generated by the stabilizers is given by

MsC = MsF +MsR =
[
−wsFcsF, wsFcsF, −wsRcsR, wsRcsR

]
(z − h). (29)

Substituting (26) into (29) results in

MsC =
[
−wsFcsF, wsFcsF, −wsRcsR, wsRcsR

]
(

I −
[
T−1

UF
TEF

0

0 T−1
UR

T ER

])

︸ ︷︷ ︸

tTS

z. (30)

As already mentioned before, a quasi-stationary vehicle motion is assumed for the calculation of the vertical
tire forces. Therefore, we consider the static equilibrium of the vehicle body (cf. Figure 8). The torque
balance equations about the y- and the x-axis and the force equilibrium along the z-axis are given by

−(FcFL + FcFR) lf + (FcRL + FcRR) lr + Fxho cosφy +mgho sinφy = 0 (31a)

(FcFL + FcRL)wl − (FcFR + FcRR)wr − Fyho cosφx +mgho sinφx +MsC = 0 (31b)

(FcFL + FcFR + FcRL + FcRR) cosφy −mg = 0. (31c)
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Using the fact that the angles φx and φy are small and considering equation (30), we can express (31) in
vector form

⎡

⎣

wl −wr wl −wr

−lf −lf lr lr
1 1 1 1

⎤

⎦

︸ ︷︷ ︸

TT

A

⎡

⎢
⎢
⎣

FcFL

FcFR

FcRL

FcRR

⎤

⎥
⎥
⎦

︸ ︷︷ ︸

fc

=

⎡

⎣

Fy ho
−Fx ho
mg

⎤

⎦

︸ ︷︷ ︸

f in

+

⎡

⎣

−mgho 0 0
0 −mgho 0
0 0 0

⎤

⎦

⎡

⎣

φx

φy

dz

⎤

⎦

︸ ︷︷ ︸

ξ

−

⎡

⎣

tTs
0T

0T

⎤

⎦z. (32)

Subsequent substitution of equations (27) and (17) into (32) yields

T T
ATCTA ξ = f in +

⎛

⎝

⎡

⎣

−mgho 0 0
0 −mgho 0
0 0 0

⎤

⎦−

⎡

⎣

tTs
0T

0T

⎤

⎦TA

⎞

⎠

︸ ︷︷ ︸

TK

ξ. (33)

Solving equation (33) for the vehicle body displacement ξ = [φx φy dz]
T results in1

ξ = (T T
ATCTA − TK)

−1 f in, (34)

Thus, the vertical tire forces f t can be calculated by substitution of equations (34) and (17) into (28) in
the form

⎡

⎢
⎢
⎣

FFL,z

FFR,z

FRL,z

FRR,z

⎤

⎥
⎥
⎦

︸ ︷︷ ︸

ft

= TPTA(T
T
ATCTA − TK)

−1

︸ ︷︷ ︸

TM

⎡

⎣

Fy ho
−Fx ho
mg

⎤

⎦

︸ ︷︷ ︸

f in

. (35)

It is worth mentioning that the matrix TM in equation (35) is time-invariant and can therefore be calculated
for each vehicle in advance. The proposed method has a clear physical interpretation and – in contrast to
the methods known from the literature, for example [25] – it additionally considers the stiffnesses of the
tires. This allows us to increase the accuracy of the vertical tire forces calculation. For example, calculating
(35) with parameters of a passenger vehicle and a typical vertical tire stiffness of about 0, 2 ·106 N/m yields
about 5% higher vertical tire forces in comparison to the case with rigid tires. However, if the suspension
stiffnesses are considered to be equal in the front and in the rear, and the tire stiffnesses are supposed to
be infinitely large, then the obtained results are equal to the results given in [25].

2.4 Complete vehicle model

In this subsection, all presented sub-models are merged together into a complete vehicle model. An algebraic
loop, which is caused by the vertical tire forces calculation, is explicitly eliminated in order to achieve a
continuous state space representation. Finally, the discretization of this nonlinear model for the estimator
design is discussed.

Eliminating algebraic loop. The inertial forces Fx and Fy are required for determining the vertical tire
forces according to (35). The considered inertial forces

Fx = −maB,x = −m(v̇B,x − ψ̇ vB,y) and Fy = −maB,y = −m(v̇B,y + ψ̇ vB,x) (36)

1Note that the matrix (TT
ATCTA − TK) is always invertible for physically consistent vehicle parameters
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can be calculated out of the two-track model (1a), (1b) as well as the tire models (6)–(12). Unfortunately,
the longitudinal and lateral tire forces depend on the vertical tire forces. This algebraic loop will be
eliminated before the state space description of the complete vehicle model is introduced. Considering
the two-track model (1a), (1b) together with the individual tire forces (6)-(12) and equation (36) for the
inertial tire forces, we can express f in in the form

f in =

⎡

⎣

Fy ho
−Fx ho
mg

⎤

⎦ =

⎡

⎣

a11 a12 a13 a14
a21 a22 a23 a24
0 0 0 0

⎤

⎦

︸ ︷︷ ︸

T sys1(·)

⎡

⎢
⎢
⎣

FFL,z

FFR,z

FRL,z

FRR,z

⎤

⎥
⎥
⎦
+

⎡

⎣

0
Fair,x

mg

⎤

⎦

︸ ︷︷ ︸

tsys2(·)

. (37)

The elements of the matrix T sys1(·) and of the vector tsys2(·) not only depend on the vehicle parameters but

also on the vehicle state variables vB,x, vB,y, ψ̇, ωk, k ∈ {FL,FR,RL,RR}, and on the steer angles δFL, δFR.
Substituting (37) into (35) and solving for the vertical tire forces f t yields

⎡

⎢
⎢
⎣

FFL,z

FFR,z

FRL,z

FRR,z

⎤

⎥
⎥
⎦

︸ ︷︷ ︸

ft

= (I − TM T sys1(·))−1 TM tsys2(·). (38)

The presented model has the beneficial property that the vertical tire forces can be explicitly calculated, if
the vehicle steer angles δFL, δFR and the vehicle states are known. This allows us to formulate an explicit
state space formulation of the complete vehicle model.

Continuous state space form. Figure 2.4 shows a block diagram of the complete vehicle model for esti-
mator design consisting of

• the tire force calculation and the wheel dynamics for each of the four wheels (6)–(13),

• the planar vehicle body dynamics (1),

• the vertical tire forces calculation (38), and

• the road grip coefficient µmax

Since the focus of this work lies on the correct state estimation under changing grip conditions, we assume
the road grip factor µmax to be an unknown but constant parameter that is identical for all tires. Thus,
an exogenous model of the form µ̇max(t) = 0 is added to the system’s equations which serve as a basis for
the Kalman filter design. At this point it is worth noting that it is not expected that the estimated value
of µmax will give an exact average value of the actual grip conditions. It rather provides an additional
degree-of-freedom for the estimator to minimize the underlying objective functional and thus to adjust the
mathematical model with given model structure to the actual measurements. In this sense, the quantitative
values of the estimated µmax need not be physically meaningful.
In summary, the complete vehicle model in the continuous state space form reads as

ẋ(t) = f̃
(

x(t),u(t)
)

, (39a)

y(t) = h̃
(

x(t),u(t)
)

, (39b)
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Wheels & Tires

(6)–(13)

Chassis

(1)–(2)

Vertical Forces

(38)

δFL,FR

Mp,i

Mb,i

Fi,z vB,x, vB,y

ψ̇

aB,y

ψ̇

ωi

Fi,{x,y}

vB,x, vB,y, ψ̇

Road surface: µ̇max(t) = 0

Figure 9. Block diagram of the complete vehicle model, where i ∈ {FL, FR, RL, RR} refers to different wheels.

with the input, state, and measurement vectors given by

u(t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

δFL(t)
δFR(t)
Mp,FL(t)
Mp,FR(t)
Mp,RL(t)
Mp,RR(t)
Mb,FL(t)
Mb,FR(t)
Mb,RL(t)
Mb,RR(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, x(t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

vB,x(t)
vB,y(t)

ψ̇(t)
ωFL(t)
ωFR(t)
ωRL(t)
ωRR(t)
µmax(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, y(t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

aB,y(t)

ψ̇(t)
ωFL(t)
ωFR(t)
ωRL(t)
ωRR(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (40)

Discrete state space form. To get the discrete form representation of the system (39), the zero-order-hold
assumption for the system input vector u(t) during the sampling time T0 is used. This allows us to apply
the Taylor-Lie series discretization approach (for more details the reader is referred to [28]) in the form

xi(k + 1) = xi(k) +

Ni∑

l=1

(Ll

f̃
xi)

∣
∣
∣
x(k),u(k)

T l
0

l !
. (41)

Thereby, k refers to the discrete time step, i = 1, . . . , 8 denotes the ith element of the state vector x, Ni

is the truncation order of the Taylor-Lie series, and Ll

f̃
xi is the lth order Lie derivative of xi along the

vector field1 f̃ . In order to reduce the computational effort, the Taylor-Lie series of order N = 1 is used
for the states vB,x, vB,y, ψ̇, and µmax. This choice corresponds to the classical forward Euler integration.
Due to the faster wheel dynamics, the order N = 2 is chosen for the states ωk, k ∈ {FL,FR,RL,RR} in
order to improve the calculation accuracy. Introducing the stochastic process noise ω and the stochastic

1Note that within one sampling interval T0 equation (39a) is an autonomous system, since u(k) is constant due to the zero-order-hold
assumption.
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measurement noise ν, we obtain the final system description for the filter design in the form

x(k + 1) = f
(

x(k),u(k)
)

+ ω(k), (42)

y(k) = h
(

x(k),u(k)
)

+ ν(k). (43)

3 Estimator design for vehicle states

The well known Kalman filter [29] uses a Gaussian approximation of the random state, measurement,
and noise variables. This allows us to completely describe the stochastic variables just by their mean
values and covariances. If we consider a linear dynamical system, then transformations of the Gaussian
random variables through the dynamic and the measurement equations will always result in Gaussian
random variables. This feature enables the calculation of the feedback Kalman gain out of the prior state
estimation and the posterior innovation. The well known solution for nonlinear systems state estimation is
the Extended Kalman Filter (EKF), which uses the linearization of the nonlinear system by means of a first
order Taylor series expansion around the latest estimate (cf. [30]). This approach enforces the calculation of
the system Jacobian matrix at every estimation step and induces linearization errors. Thus, this procedure
entails biasing of the prediction errors and a distortion of the propagated covariance information. A popular
way to keep these errors bounded is the reduction of the sampling time.
Another application of Kalman ideas to the state estimation of nonlinear systems is the Unscented

Kalman Filter (UKF), discussed in [23,24]. The UKF also approximates the statistic properties of the ran-
dom variables up to the second order. In contrast to EKF, not the mean value and covariance but a minimal
set of carefully chosen weighted sample points, the so-called sigma points, are used for the approximation.
These points are explicitly propagated through the nonlinear system equations and yield some nonlinear
stochastic description of the random variables. These variables are approximated afterwards by Gaussian
random variables, what enables the usage of the standard equations for the Kalman gain calculation. In
this way, the UKF achieves higher accuracy in comparison to the EKF by requiring comparable compu-
tational effort [24]. In the following, some essential UKF results after [23, 24] are reformulated yielding a
numerical efficient esimator algotithm.
Let us consider the nonlinear time-discrete dynamical system (42), (43) with state x ∈ Rn, input u ∈ Rp,

measurement output y ∈ Rm, process noise w ∈ Rn and measurement noise ν ∈ Rm. The random variables
w and ν are assumed to be white Gaussian uncorrelated noises having the following properties

E[w(k)] = 0 and E[w(k)w(l)T ] = Q δkl , ∀k, l ≥ 0, (44)

E[ν(k)] = 0 and E[v(k)v(l)T ] = R δkl , ∀ k, l ≥ 0, (45)

E[w(k)v(l)T ] = 0, ∀ k, l ≥ 0, (46)

where Q ∈ Rn×n and R ∈ Rm×m are positive definite matrices and δkl is the Kronecker delta, i.e., δkl = 1
for k = l and δkl = 0 otherwise. The initial mean value of x and the initial covariance matrix P x of the
estimation error e = x− x̂ are given by

x̂0 = E[x0] and P x0
= E[(x0 − x̂0) (x0 − x̂0)

T ] . (47)

An integer scaling factor κ is introduced as a tuning parameter for the calculation of the sigma points.
For instance, the choice L+ κ = 3 with L = 2n+m is recommended in [23], if the state vector as well as
the process and measurement noise can be assumed to be Gaussian. Let us introduce the non-augmented
UKF with reduced computational costs by defining L = n + m. The weighting factors for 2n + 2m + 1
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sigma points are then given by

w0 =
κ

L+ κ
and wi =

1

2(L+ κ)
for i = 1, . . . , 2L . (48)

The scalar factor η, which defines the spread of the sigma points around the mean value, is defined in the
form

η =
√
L+ κ. (49)

Note that the already discussed choice L+ κ = 3 yields a spread η that is independent of L [23]. Further-
more, let us define the matrices χw ∈ Rn×2n+1 and γv ∈ Rm×2m in the form

χw =
[

0, η
√

Q, −η
√

Q
]

and γv =
[

η
√
R, −η

√
R
]

, (50)

with
√· referring to the matrix square root factorization of the corresponding matrix argument. An efficient

way for calculating the square root factorization is given by the Cholesky decomposition.
The following calculations are performed in each sampling interval after the one-short initialization

according to (47). The state vectors given by sigma points are arranged in a matrix1 χx(k|k) ∈ Rn×2n+1

χx(k|k) =
[

x̂(k|k), x̂(k|k) + η
√

P x(k|k), x̂(k|k) − η
√

P x(k|k)
]

(51)

where the expression x̂(k|k) ± η
√

P x(k|k) means that the vector x̂(k|k) is added (subtracted) to each

column of the matrix square root factorization of the covariance matrix
√

P x(k|k). In a further step, these
sigma point vectors are propagated through the nonlinear dynamical system (42) yielding

χx
i (k + 1|k) = f

(

χx
i (k|k),u(k)

)

+ χw
i , (52)

where χx
i (k|k) and χw

i , i = 0, . . . , 2n are the column vectors of the matrices χx(k|k) and χw, respectively.
An extended state sigma points vector χ(k+1|k) ∈ Rn×2L+1 is defined to be used later in the update step

χ(k + 1|k) = [χx
i (k + 1|k), 0 ] . (53)

The stochastic properties of the random state variables are approximated up to the second order by

x̂(k + 1|k) =
2n∑

i=0

wiχ
x
i (k + 1|k), (54)

P x(k + 1|k) =
2n∑

i=0

wi

(

χx
i (k + 1|k)− x̂(k + 1|k)

) (

χx
i (k + 1|k)− x̂(k + 1|k)

)T

. (55)

Based on these results, the output sigma points are predicted

γ
y
i (k + 1|k) = h

(

χx
i (k + 1|k), u(k + 1)

)

, i = 0, . . . , 2n, (56)

1Here and subsequently, the notation x(a|b) relates to the stochastic properties of a given random variable at the discrete time step
a, in which only the measurements of the discrete time steps from 0 to b are incorporated.
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The extended output sigma points vector γ(k+1|k) ∈ Rm×2L+1 takes the measurement noise into account

γ(k + 1|k) = [γy(k + 1|k), γy
0(k + 1|k) + γv ] . (57)

The predicted stochastic properties of the output vector, cf. (43), are approximated up to the second order
in the form

ŷ(k + 1|k) =
2L∑

i=0

wi γi(k + 1|k), (58)

P y(k + 1|k) =
2L∑

i=0

wi

(

γi(k + 1|k)− ŷ(k + 1|k)
)(

γi(k + 1|k)− ŷ(k + 1|k)
)T

. (59)

Finally, the Kalman gain matrix is calculated and an estimation update is performed by considering the
new measurements y(k + 1)

P xy(k + 1|k) =
2L∑

i=0

wi

(

χi(k + 1|k)− x̂(k + 1|k)
)(

γi(k + 1|k)− ŷ(k + 1|k)
)T

, (60)

K(k + 1) = P xy(k + 1|k)P y(k + 1|k)−1, (61)

x̂(k + 1|k + 1) = x̂(k + 1|k) +K(k + 1)
(

y(k + 1)− ŷ(k + 1|k)
)

, (62)

P x(k + 1|k + 1) = P x(k + 1|k) −K(k + 1)P y(k + 1|k)K(k + 1)T . (63)

4 Simulation and experimental studies

First tests of the proposed vehicle state estimation approach were carried out in Matlab/Simulink. In
this context, a detailed vehicle model, comprising sub-models for the engine, the powertrain, the hydraulic
braking system, the VDC system, the chassis, and the tires, was used to simulate a test vehicle. This
model is a development of Robert Bosch GmbH and shows performance comparable to state-of-the-art
models available on the market, e.g. CarSim, veDYNA, or CarMaker. The UKF and the classical EKF
were implemented as two separate S-Functions allowing for a direct comparison of the estimation results.
Thereby, both algorithms were identically parameterized and the sampling time was varied from 5 ms to
40 ms. Noteworthy, there was almost no difference in the estimation performance for sampling times up
to 5 ms. A significant difference, however, became apparent with increasing sampling times, see Figure 10.
The main reason for this behavior is due to the model linearization in EKF, which entails non-negligible
linearization errors at lower vehicle velocities due to (6)–(7), (9)–(10). Thus, extensive simulation studies
have shown that the UKF clearly outperforms the EKF in case of larger sampling times.
The performance and robustness of the UKF were tested by means of simulations with varying parame-

ters and different driving situations. The overall results can be qualified as very good. The only parameter
which noticeably affects the estimation error was the effective tire radius re.
Due to the excellent simulation results it was decided to implement the estimation concept in a Conven-

tional BMW 5 Series test vehicle, see Figure 11. The vehicle was additionally equipped with the ADMA1

measurement unit that allows to precisely capture the longitudinal and lateral vehicle velocities. Different
driving maneuvers were performed for testing the estimator performance. The most challenging ones will
be presented and discussed in the following.
Figure 12 shows the estimation results for a longitudinal maneuver consisting of acceleration on dry

asphalt and ABS braking on a µ-split track. Such µ-split test tracks are very common in the automotive

1Automotive Dynamic Motion Analyzer (ADMA) is a GPS/INS measurement equipment developed by GeneSys GmbH.
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Figure 10. Estimation results for the longitudinal vehicle velocity vB,x in a braking maneuver: Extended Kalman Filter (EKF) and
Unscented Kalman Filter (UKF) are identically parameterized for a sampling time of 40 ms.

Figure 11. Conventional BMW 5 Series serves as the test vehicle for the proposed UKF state estimation concept.

industry. They are designed to provide different contact surfaces for left and right vehicle tires. One track
surface is commonly covered by dry asphalt and the other by polished ice. The upper plot depicts the four
wheel torques Mi, i ∈ {FL,FR,RL,RR} distinguished by means of different line styles. The middle plot
presents the measured and the estimated longitudinal velocities, vB,x and v̂B,x, as well as the circumferential
velocities re ωi, i ∈ FL,FR,RL,RR of the individual wheels. The higher slippage of the front right wheel
can be explained by the reduced grip conditions on the right vehicle side. The bottom plot shows the
internal variable µmax, which is adapted by the algorithm in order to provide correct estimation results.
In summary, the UKF yields reliable and precise estimates v̂B,x of the longitudinal vehicle velocity vB,x

during the whole maneuver.
Figure 13 depicts the second longitudinal maneuver. It starts with acceleration on dry asphalt and

finishes with braking on a surface with areas consisting of dry asphalt and ice. The selection and the
layout of the presented signals are equal to the previous figure. Particularly remarkable is the outstanding
estimation performance in situations with changing road conditions, e.g., at 20.5 s and 31.5 s. The quick
switching from acceleration to braking at 29.7 s is handled properly as well. A detailed view of this
maneuver is shown in Figure 14. By considering the bottom plot it becomes apparent that the internal
variable µmax has relatively slow dynamics and therefore only provides rough information about the actual
grip conditions. However, this is not really a drawback since we are primarily interested in an accurate
and robust estimation of the longitudinal and lateral vehicle velocities.
For lateral dynamics tests the Increasing Sine Steer (ISS) maneuver was chosen. It is realized by means of

a steering machine so that the steering angle follows a predefined sine function with increasing amplitude.
Figure 15 shows the estimation results for the ISS maneuver performed on dry asphalt. The average
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Figure 12. Estimation results for a longitudinal maneuver. Acceleration on dry asphalt is followed by ABS braking on µ-split surface.

Figure 13. Estimation results for a longitudinal maneuver. Acceleration on dry asphalt followed by braking on a surface with areas
consisting of dry asphalt and ice.
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Figure 14. Detailed view of the longitudinal maneuver from Figure 13. This part of the maneuver depicts ABS braking on a surface
with changing friction coefficients.

steer angle of the front wheels is denoted by δf = (δFL + δFR)/2. The aggressive steering input at 100
km/h brought the vehicle close to it’s physical limits. This is why the vehicle dynamics control system
triggered active braking interventions as can be seen in the time evolutions of the wheel torques Mi, i ∈
{FL,FR,RL,RR} in the upper right plot of Figure 15. The estimation results for the longitudinal and the
lateral velocities, v̂B,x and v̂B,y, are very good despite this challenging dynamical testing maneuver.
To give some insight into the robustness properties of the developed concept, the ISS maneuver was

additionally performed under strongly varying conditions. Figure 16 depicts the estimation results for an
ISS maneuver where the vehicle has summer tires at the front axle and winter tires at the rear axle. This
combination massively changes the vehicle behavior towards strong oversteering and provokes exceptional
driving situations. The vehicle only remained controllable at modest velocities supported by very strong
braking interventions of the vehicle dynamics control. Figure 17 shows another interesting experiment.
Here, the ISS maneuver is performed on an ice track with low grip conditions resulting in extreme driving
dynamics. During both test maneuvers, the handling dynamics of the vehicle has changed dramatically, so
that the default parametrization of the vehicle model was far from the reality. Nevertheless, the estimates
of the longitudinal and the lateral velocities, v̂B,x and v̂B,y, perfectly match the real time evolutions vB,x

and vB,y.

5 Conclusion

In this contribution, a new approach for the accurate vehicle state estimation based on a detailed vehicle
model and an Unscented Kalman Filter (UKF) was presented. The mathematical model relies on a planar
two-track model extended by an advanced vertical tire force calculation and a simplified version of the
empirical Magic Formula. For the UKF design the time discretization of the nonlinear mathematical model
was performed by means of a Lie-Taylor series approach. The classical augmented UKF realization was
reformulated for the case of the additive process and measurement noises providing beneficial reduction
of computational costs. The performance and robustness of the developed vehicle state estimator were
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Figure 15. Estimation results for an increasing sine steer maneuver performed on dry asphalt.

Figure 16. Estimation results for an increasing sine steer maneuver performed on dry asphalt. Summer tires are mounted at the front
axle and winter tires at the rear axle, respectively.
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Figure 17. Estimation results for an increasing sine steer maneuver performed on an ice track.

extensively tested in numerous simulation studies and in a conventional BMW 5 Series test vehicle. To
sum it up, the UKF outperforms the standard Extended Kalman Filter (EKF) approach in particular in
case of larger sampling times, mainly due to the inherent incorporation of the system’s nonlinearities in the
design process. Thus, the UKF turns out to constitute a good compromise between accuracy, robustness
and computational costs. Future research will deal with the consideration of the road slope and the road
banking in the vehicle estimator design.

Acknowledgment

We want to thank Daniel Heyes for the fruitful discussions and the work he has performed during his
internship for the vertical tire force calculation method. We also appreciate the valuable contribution of our
alumni internship student Matthias Feld to the Matlab implementations and tests of the discussed Kalman
filter variants. A special thanks goes to Peter Ziegler and Stefan Otterbein from Corporate Research of
Robert Bosch GmbH for performing vehicle tests as well as for sharing their outstanding expertise.

References

[1] van Zanten, A., Erhardt, R., and Pfaff, G., FDR — Die Fahrdynamikregelung von Bosch, ATZ Automobiltechnische Zeitschrift,
vol. 96, no. 11, pp. 674–689, 1994.

[2] Lie, A., Tingvall, C., Krafft, M., and Kullgren, A., The Effectiveness of ESC (Electronic Stability Control) in Reducing Real
Life Crashes and Injuries, Proc. of the Int. Techn. Conf. on the Enhanced Safety of Vehicles (ESV), no. 05-0135, June 2005,
Washington D.C., USA.

[3] Farmer, C.M., Effects of Electronic Stability Control: An Update, Insurance Institute for Highway Safety, May 2006, Arlington, USA.
[4] Fukada, Y., Slip-Angle Estimation for Vehicle Stability Control, Vehicle System Dynamics, vol. 32, no. 4–5, pp. 375–388, 1999.
[5] Hac, A., and Melinda, D.S., Estimation of Vehicle Side Slip Angle and Yaw Rate, SAE Technical Paper Series, no. 2000-01-0696,

2000.
[6] Huang, P., Smakman, H., and Guldner, J., Design of a Vehicle State Observer for Vehicle Dynamics Control Systems, Proc. of the

Int. Symp. on Advanced Vehicle Control (AVEC), pp. 449–452, August 2000, Ann Arbor, Michigan, USA.
[7] Shim, T., and Margolis, D., Model-Based Road Friction Estimation, Vehicle System Dynamics, vol. 41, no. 4, pp. 249–276, 2004.
[8] Canudas-de-Wit, C., and Horowitz, R., Observers for Tire/Road Contact Friction using only Angular Velocity Information, Proc. of

the IEEE Conf. on Decision & Control, pp. 3932–3937, December 1999, Phoenix, Arizona, USA.

Post-print version of the article: S. Antonov, A. Fehn, and A. Kugi, “Unscented Kalman filter for vehicle state estimation”, Vehicle System

Dynamics, vol. 49, pp. 1497–1520, 2011. doi: 10.1080/00423114.2010.527994

The content of this post-print version is identical to the published paper but without the publisher’s final layout or copy editing.

http://dx.doi.org/10.1080/00423114.2010.527994


22 S. Antonov et al.

[9] Canudas-de-Wit, C., Petersen, M.L., and Shiriaev, A., A new Nonlinear Observer for Tire/Road Distributed Contact Friction,
Proc. of the IEEE Conf. on Decision & Control, pp. 2246–2251, December 2003, Maui, Hawaii, USA.

[10] Hiemer, M., von Vietinghoff, A., Kiencke, U., and Matsunaga, T., Determination of the Vehicle Body Side Slip Angle with Non-Linear
Observer Strategies, SAE Technical Paper Series, no. 2005-01-0400, 2005.

[11] Imsland, L., Johansen, T.A., Fossen, T.I., Kalkkuhl, J.C., and Suissa, A., Vehicle Velocity Estimation using Modular Nonlinear
Observers, Proc. of the IEEE Conf. on Decision & Control, pp. 6728–6733, December 2005, Seville, Spain.

[12] Kobayashi, K., Cheok, K.C., and Watanabe, K., Estimation of Absolute Vehicle Speed using Fuzzy Logic Rule-Based Kalman Filter,
Proc. of the American Control Conf., pp. 3086–3090, June 1995, Seattle, Washington, USA.

[13] Daiß, and A., Kiencke, U., Estimation of Vehicle Speed: Fuzzy-Estimation in Comparison with Kalman-Filtering, Proc. of the IEEE
Conf. on Control Application, pp. 281–284, September 1995, Albany, New York, USA.

[14] Ray, L.R., Nonlinear State and Tire Force Estimation for Advanced Vehicle Control, IEEE Trans. on Control Systems Technology,
vol. 3, no. 1, pp. 117–124, 1995.

[15] Best, M.C., and Gordon T.J., Real-Time State Estimation of Vehicle Handling Dynamics Using an Adaptive Kalman Filter. Proc. of
the Int. Symp. on Advanced Vehicle Control (AVEC), pp. 183–188, September 1998, Nagoya, Japan.

[16] Venhovens P.J.Th., and Naab, K., Vehicle Dynamics Estimation Using Kalman Filters, Vehicle System Dynamics, vol. 32, no.??
pp. 171–184, 1999.

[17] Samadi., B., Kazemi, R., Nikraversh, K.Y., and Mansour, K., Real-Time Estimation of Vehicle State and Tire-Road Friction Forces,
Proc. of the American Control Conf., pp. 3318–3323, June 2001, Arlington, Virginia, USA.

[18] Satria, M., and Best, M.C., Comparison between Kalman Filter and Robust Filter for Vehicle Handling Dynamics State Estimation,
SAE Technical Paper Series, no. 2005-01-11850, 2005.

[19] Zuurbier, J., and Bremmer, P., State Estimation for Integrated Vehicle Dynamics Control, Proc. of the Int. Symp. on Advanced
Vehicle Control (AVEC), pp. 183–188, September 2002, Hiroshima, Japan.

[20] von Vietinghoff, A., Feist, A., and Hiemer, M., Extended Kalman-Bucy Filter Design for Improved Lateral Vehicle Dynamics
Description, Reports on Industrial Information Technology, vol. 8, pp. 37–46, Shaker Verlag, Aachen, 2005.

[21] Wenzel, T.A., Burnham, K.J., Blundell, M.V., and Williams, R.A., Dual Extended Kalman Filter for Vehicle State and Parameter
Estimation, Vehicle System Dynamics, vol. 44, no. 2, pp. 153–171, 2006.
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