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Abstract—This paper concerns the unscented Kalman
filtering (UKF) for the nonlinear dynamic systems with
additive process and measurement noises. We find that under
some condition, the basic difference between them is that the 
augmented UKF draws sigma set only once within a filtering
recursion while the non-augmented UKF has to redraw a new
set of sigma points to incorporate the effect of additive
process noise. This difference generally favors the augmented 
UKF. The analyses are supported by a representative
example.

Index Terms—unscented transformation, unscented 
Kalman filtering, dynamic system

I. INTRODUCTION

In light of the intuition that to approximate a probability
distribution is easier than to approximate an arbitrary
nonlinear transformation, Julier and Uhlmann [1, 2]
invented the unscented transformation (UT) to make
probabilistic inference. Eliminating the cumbersome
derivation and evaluation of Jacobian/Hessian matrices,
the UT-based unscented Kalman filter (UKF) is much
easier to implement and performs better than the EKF. The
original UKF was first formulated in its augmented form
[1-4]. It is believed that for the special (but often found)
case where process and measurement noises are additive,
the computational complexity can be reduced by using the
non-augmented form, which presumably yields similar
results [4], if not the same. The non-augmented UKF has
been accepted and employed to analyze the practical
systems [5, 6]. In this paper we will show that it is not a 
quite right belief and the non-augmented UKF usage can
lead to noticeable losses in accuracy. The contents are
organized as follows. Section II shows in a rigorous way
the conditionally equivalent relationship between the
non-augmented and augmented UTs. This will facilitate
the discussions about the UKF, which is essentially a 
natural extension of the UT to recursive estimation.
Section III analyzes and compares the non-augmented and 
augmented UKFs. Section IV examines a representative
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example in the signal processing community to support our 
findings and the conclusions are drawn in Section V.

II. UNSCENTED TRANSFORMATION

Consider a one-step nonlinear transformation with
additive noise

y f x w  (1) 

where x  is an 1n  random vector with mean x̂  and 
covariance xP  and  is an  zero-mean noise
vector with covariance  that is uncorrelated with

w 1m

Q x .
The problem is to calculate the mean  and covariance

 of . Note that here either
ŷ

yP y x  or is not restricted
to be Gaussian as long as they are well characterized by
mean and covariance information. Equation (1) can be 
reformulated through the state augmentation method as 

w

a a ay f x  (2) 

where the augmented random vector is 
TTa Tx x w and

the new nonlinear transformation is defined as
TTa a a Tf x f x w f x w . The problem now is 

to calculate the mean  and covariance  of .ˆay ay
P ay

A. The Non-augmented UT
1) The random vector x is approximated by 2 1n

symmetric sigma points
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where
i

P  is the ith column of the matrix square root of

 and is the weight associated with the iP iW th sigma
point. The scalar is a scaling parameter which is 
usually set to 0 or 3 n [2, 4]. Note that if is set to 0,
the sigma points and their weights will be related to ,
the dimension of 

n
x . 3 n is selected so that the 

fourth-order moment information is mostly captured in the
true Gaussian case [2]. In general other choices of
would lead to better or worse results depending on specific
characteristics of the integrand [7].
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2) Instantiate each point through the function to yield a 
set of transformed sigma points

.i f i  (4) 

3) The mean is given by the weighted average of the
transformed points

ŷ
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4) The covariance is the weighted outer product of
the transformed points plus the noise covariance

yP

 (6) 
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B. The Augmented UT 

1) The augmented random vector ax  are approximated
by 2 n m 1 symmetric sigma points
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where the weight  and scalar are counterparts of 

 and  in (3). Note that  and
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Substituting (8) into (7) yields
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2) Instantiate each point through the new function to 
yield a set of transformed sigma points

a a a
i f i  (10) 

3) The mean is the weighted average of the
transformed points
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Substituting (9) and (10) into (11) yields
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As compared with (5), the following equation
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is satisfied if and only if 

 (14) .an n m C
That is to say, the sums  andn an m  are
identical and independent of the state dimension.

4) The covariance is the weighted outer product of
the transformed points
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With (14) assumed, the first term on the right side becomes
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and the second term is 
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Therefore
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In summary, the UT is configurable with the free
parameter . Except the condition that (14) is satisfied
the non-augmented UT will be different from the
augmented UT. Coincidently, the common version of the
UT selects [2, 8], which leads to equivalence of the
non-augmented and augmented UTs. In this case,

 and . For other versions, such as
the simplex UT ([2], Appendix III) and the UT that uses

([9] and [2], Section III), it will be another story. 
The discussions in the next section are made about the
common UT.

3C

3 n 3a n m

0

III. DISCUSSIONS ON UNSCENTED KALMAN FILTER

The UKF is a straightforward extension of the UT to the
recursive estimation [1, 2]. For the sake of brevity, we 
prefer to treat the UT as a “black box” rather than get
involved in details again as in Section II. 

The prediction of the resulting UKF, whether based on 
the non-augmented UT or the augmented UT, consists of
two concatenated UTs: one for the process function (the 1st

UT) directly followed by the other for the measurement
function (the 2nd UT). The 2nd UT for the measurement
function makes a difference between the non-augmented
UKF and augmented UKF. The non-augmented UKF has
to1 redraw a new set of sigma points to incorporate the
effect of additive process noise ([4], Table 7.3.2).
Specifically, readers are referred to the addition of the
noise covariance in (6). Regarding the augmented UKF,
the propagated sigma points in the 1st UT for the process
function can be reused to propagate further through the
measurement equation ([2], Step 5 of Fig. 7). By doing so,
the computation of redrawing sigma points is spared and,
more importantly, the odd-moment information is well
propagated throughout one filtering recursion. In contrast,
because it is a must to use the redrawn symmetric sigma

1  Unfortunately, the sigma points redrawing were neglected in
addressing practical systems [5, 6]. It was argued that the propagated
sigma points might be augmented with additional points derived from the 
matrix square root of the process noise covariance (see fn. 6, [4]).
Although careful examination was not presented, the arguments there
mentioned the possibility of capturing odd-moment information.

points the non-augmented UKF is unable to propagate
odd-moment information. Although the propagated sigma
points of the 1st UT do capture the odd-moment
information, the indispensable regeneration of a new sigma
set for the 2nd UT interrupts its propagation. Expectably,
the augmented UKF would be equivalent to the
non-augmented UKF if the odd-moment information was
intentionally abandoned through redrawing a new sigma
set in the 2nd UT. 

Referring back to Section II, the principle of the UT is 
to capture the first two moments of the random vector ( x

or ax ) via a set of sigma points. However, it should be
made clear that with another set of sigma points capturing
extra statistical information other than mean and 
covariance instead, the UT would yield better results. As a
matter of fact, this is a natural conclusion that can be 
readily deduced from the Monte-Carlo method [10].
Therefore, the difference in drawing sigma points between
the two UKFs generally favors the augmented UKF in that
the extra odd-order moment information is captured by the
nonlinearly transformed sigma points in the 1st UT and
propagated throughout the whole recursion. This statement
will be supported by a representative example in the next
section.

Remark: It may be possible to prove that the augmented
UKF accurately captures more statistical information than
the non-augmented UKF. Additionally for the UKFs based
on the other UTs, such as the simplex UT, the above
analyses would have been even cumbersome, if not 
impossible.

IV. EXAMPLE

Both non-augmented and augmented UKFs are applied 
to the univariate nonstationary growth model (UNGM),
which is very popular in econometrics and has been
previously used in [11-14]. This model is highly nonlinear
and is bimodal in nature. The discrete-time dynamic
system equation for this model can be written as 

1
1 2

1

2

0.5 25 8cos 1.2 1
1

, 1, ,
20

n
n n

n

n
n n

x
nx x n

x

x
y v n N

u
 (19) 

where the process noise  and measurement noise
are both Gaussian noises with zero mean and unity
variance. The reference data were generated using

nu nv

0 0.1x

and 500N . The likelihood of measurement conditioned
on the system state has bimodal nature when  and
is unimodal when

0ny

0ny . The bimodality makes this
problem more difficult to address using conventional
methods2.

2  Admittedly, the UKF’s performance for this example may be 
unsatisfactory since a Gaussian approximation is implicitly made to the

4053



The initial conditions were . The
performance of the two UKFs was compared using the
mean squared error (MSE) defined by

0 0ˆ 0, 1x P

2

1

1 ˆMSE .
N

i i
i

x x
N

(20)

A large number of computer runs were carried out. The
state estimates for the first 50 points in an exemplar run 
are shown in Fig. 1. The bimodality is so influential that
both UKFs go in the opposite direction when 2 20nx  is 
small. This behavior is often observed in all runs. Figure 1
indicates that the augmented UKF has a better estimation
than the non-augmented UKF does. In Fig. 2-3, the errors
and estimated 3  confidence intervals are plotted for the
non-augmented UKF and the augmented UKF,
respectively. It is shown that the augmented UKF performs
noticeably better, i.e., more accurate and more consistent.
As discussed above, the superiorities of the augmented
UKF are mainly owed to its capability in capturing and
propagating odd-moment information throughout one
filtering recursion. The augmented UKF with an
unnecessary sigma set regeneration inserted was also
simulated and yielded, as expected, the same results as the
non-augmented UKF. Figure 4 plots the MSEs for 50
random runs. The non-augmented UKF’s MSE is nearly
one times larger than that of the augmented UKF. The
mean and standard variance of MSEs are plotted in Fig. 5,
which shows that the standard variance is also evidently
smaller for the augmented UKF.

The computation time of the non-augmented UKF is
half of that cost by the augmented UKF in our simulation.
One of the main computational disadvantages of the
augmented UKF is that there are more sigma points that 
have to be propagated through the nonlinear process and 
measurement equations. Referring to (3) and (9), however,
the arithmetic operations for the last extra  sigma
points in (9) can be efficiently reduced using the results of
the first sigma point

2m

0
a . On the other hand, for the

dynamic system with uncorrelated process and
measurement noises, in the above example for instance,
the computation complexity can be further lowered by
calculating low-dimensional matrix square roots instead.
Equipped with the optimized implementation, the
augmented UKF promises to yield better performance with
comparable computational expense. 

V. CONCLUSIONS

In this paper, we have analyzed and compared two 
alternative versions of UT-based filters for the nonlinear
dynamic system with additive noises: the non-augmented
UKF and the augmented UKF. In a rigorous manner, we
proved that the non-augmented UT is equivalent to the

posterior distribution. But it did not hinder the comparison of two
versions of UKFs hereafter.

augmented counterpart only if  is satisfied.
We pointed out that the basic difference between the 
augmented and non-augmented UKFs is that the former
draws sigma points only once in a recursion while the
latter has to redraw a new set of sigma points to
incorporate the effect of additive process noise. This
difference generally favors the augmented UKF in that the
odd-order moment information is captured by the
propagated sigma points and well propagated within one
recursion. On the other hand, if a new (but unnecessary)
set of sigma points were redrawn in the augmented UKF, it
would be equivalent to and yield exactly the same results
as the non-augmented UKF. The simulation results of a
representative example agree well with our conclusions.
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Figure. 4. Performance comparison of the 
non-augmented and augmented UKF filters. The
MSEs across 50 random runs.

Figure. 1. True states and estimates: non-augmented
UKF vs. augmented UKF.

Figure. 2. Estimation errors and 3  confidence
intervals for the non-augmented UKF.

Figure. 5. Performance comparison of the
non-augmented and augmented UKF filters. The
mean and standard variance of MSEs. 

Figure. 3. Estimation errors and 3  confidence
intervals for the augmented UKF. 
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