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Unseen Noise Estimation Using Separable Deep Auto
Encoder for Speech Enhancement
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Abstract—Unseen noise estimation is a key yet challenging
step to make a speech enhancement algorithm work in adverse
environments. At worst, the only prior knowledge we know about
the encountered noise is that it is different from the involved
speech. Therefore, by subtracting the components which cannot be
adequately represented by a well defined speech model, the noises
can be estimated and removed. Given the good performance of
deep learning in signal representation, a deep auto encoder (DAE)
is employed in this work for accurately modeling the clean speech
spectrum. In the subsequent stage of speech enhancement, an
extra DAE is introduced to represent the residual part obtained
by subtracting the estimated clean speech spectrum (by using the
pre-trained DAE) from the noisy speech spectrum. By adjusting
the estimated clean speech spectrum and the unknown parameters
of the noise DAE, one can reach a stationary point to minimize
the total reconstruction error of the noisy speech spectrum. The
enhanced speech signal is thus obtained by transforming the esti-
mated clean speech spectrum back into time domain. The above
proposed technique is called separable deep auto encoder (SDAE).
Given the under-determined nature of the above optimization
problem, the clean speech reconstruction is confined in the convex
hull spanned by a pre-trained speech dictionary. New learning
algorithms are investigated to respect the non-negativity of the
parameters in the SDAE. Experimental results on TIMIT with 20
noise types at various noise levels demonstrate the superiority of
the proposed method over the conventional baselines.

Index Terms—Deep auto encoder, source separation, speech en-
hancement, unseen noise compensation.

I. INTRODUCTION

S PEECH enhancement is an important stage to improve
the perceptual quality of a noisy speech signal. The core

problem in speech enhancement is the separation of speech and
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noise, for which a commonly deployed technique is estimating
and removing the noise spectrum from the input noisy speech
spectrum. If representative noise samples are available before
conducting the enhancement, one can extract and exploit the
spectral characteristics. However, an ideal technique should
hold good performance in unseen noise conditions and not be
limited to several known noise types.

Another difficulty concerning the research of speech en-
hancement is that many types of noises are non-stationary. In
contrast to stationary noises, the spectral properties of non-sta-
tionary ones are difficult to predict and estimate, which makes
noise removal challenging. Speech enhancement with seen
noises is straightforward and will not be discussed in this paper.
For the remaining cases, the related research is discussed as
follows.

A. Stationary Noises Unseen in the Training Set

Spectral subtraction (SS) [1], [2] and minimum mean square
error (MMSE) estimators [3]–[5] were proposed for speech en-
hancement in stationary noise environments. These methods do
not require any prior knowledge about noise signals, nor any
training stage beforehand, so they can work for unseen noise
cases. Normally, these algorithms assume that the noise is sta-
tionary which is the foundation that the full noise spectrum can
be predicted by only using the non-speech intervals decided by
voice activity detection (VAD). However, the performance of
VAD largely depends on the noise level and the noise type.
It can fail in the presence of strong non-stationary noises [6].
Therefore, we will not consider these algorithms in the current
context.

B. Non-Stationary Noises Seen in the Training Set

Hidden Markov models [7] and codebooks of linear pre-
diction coefficients (LPC) [8] were introduced to model
non-stationary noises for speech enhancement. In [7], speech
and non-stationary noise were modeled by two different HMMs
whose states were coupled like in factorial HMMs [9]. In [8],
codebooks were trained from noise data as prior knowledge.
However, the methods are based on the assumption that the
training noises hold the same spectral characteristics as the
testing noises, so it will fail to cope with unseen noise types,
especially when training and testing noises behave differently.

In a recent work on deep auto encoder (DAE)[10], stereo
training data were created by artificially adding noises to clean
speech samples and training the DAE with the noisy data as
input and the clean data as output. The experiment was done

2329-9290 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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using two non-stationary noise types (car and factory) but eval-
uation was constrained to the same noise types. Hence, gener-
alization to unseen noise types was not shown.

C. Non-Stationary Unseen Noises With Low-Rank Structures

To separate speech and noise in the spectral domain, non-
negative dictionary learning has been extensively studied re-
cently [11]. In this idea, one first trains two groups of nonnega-
tive bases: the speech related basis and the noise related basis.
The noisy input speech spectrum is subsequently represented by
the convex combination of both bases. Finally, the clean speech
spectrum is estimated by the linear combination of the speech
bases weighted by their coefficients.

In case of an unseen noise type, no noise dictionary can be ob-
tained beforehand. Hence, only a speech dictionary is available
and leaving the noise bases to be learned on the fly during the
enhancement as presented in [12] and [13]. Another approach
is to train a group of noise bases from some known noise types
and then to utilize the bases to unseen noise conditions, regard-
less of the possible mismatch between the training and testing
noises as reported in [14].

In the technique where noise bases are learned on the fly, the
noise spectrogram is assumed to be low rank, i.e. containing
a couple of repeated spectral structures. Since no assumption
about the stationary property is required, the method is able to
model transient noise types [12]. However, for non-stationary
noises without repeated low rank spectral structures, the method
might fail. In this paper, we take this method as a baseline to
evaluate our proposed approach.

D. Non-Stationary Unseen Noises Predictable by Hidden

Markov Models

To estimate the spectral characteristics of unseen non-sta-
tionary noises, stochastic gain HMM (SGHMM) was investi-
gated in [15] for online noise estimation by updating the auto-re-
gression HMM (ARHMM) parameters of the noise in a recur-
sive EM framework. The ARHMM was utilized to model the
linear predictive coefficients (LPC) by setting a special covari-
ance matrix for the Gaussian distribution of each HMM state.
The stochastic gain was employed to tune the energy fluctua-
tions caused by the changing of distance from the speaker to the
microphone.

To accommodate the unseen non-stationary noise power
spectrum, an adaptive HMM was proposed in [16] by designing
a functional as the observation probability density for each
HMM state. Spectral domain speech enhancement using HMM
state-dependent super-Gaussian priors was proposed in [17].
Those methods are based on the assumption that the unseen
noise spectrum is predictable by HMMs, i.e. that the dynamic
nature of the non-stationary noises can be captured by state
transitions. Our proposed method will also be compared against
this class of methods.

E. Recent Efforts on Modeling Non-Stationary Unseen Noises

Using Deep Learning

In [18], 104 noise types were utilized to synthesize training
data of noisy speech. Deep neural networks (DNNs) were

trained as a mapping function from noisy to clean speech
signals in a similar way as presented in the second paragraph of
Section I-B. The large training set encompasses many possible
combinations of speech and noise types. Hence, the learned
DNNs were expected to handle unseen noises in real-world
situations. Experimental studies were conducted and significant
improvements were observed in [18]. With sufficient training
samples of noises, the method appeared to work for many
unseen case. However, it seems impossible to make a universal
noise data set to cover all unseen noise types. Therefore, alter-
native strategies make sense besides the approaches using big
data.

F. The Motivation of This Work

In this work, we investigate a method without any
pre-training of noise models. The only assumption about the
noise is that it is different from the involved speech. Therefore,
the noise estimation turns out to be finding the components
which cannot be adequately represented by a well defined
speech model. Given the good performance of deep learning in
signal representation, a deep auto encoder (DAE) is employed
for accurately modeling clean speech spectrum, whose config-
uration details are given in Section III-A. In the enhancement
stage, an extra DAE is introduced to represent the residual part
obtained by subtracting the estimated clean speech spectrum
(by using the pre-trained DAE) from the noisy speech spectrum,
as presented in Section II-A. By adjusting the estimated clean
speech spectrum and the unknown parameters of the noise
DAE, one can reach a stationary point to minimize the total
reconstruction error of the noisy speech spectrum. Enhanced
speech is then obtained by transforming the estimated clean
speech spectrum back into time domain. Meanwhile, the noise
and its spectrum can also be obtained as a by-product. The
above proposed technique is called separable deep auto encoder
(SDAE) since it contains two parallel parts: a pre-trained DAE
to represent signals from one source and a DAE trained on
the fly to represent signals from the other source(s). Given the
under-determined nature of the above SDAE’s optimization
problem, the clean speech reconstruction is confined in the
convex hull spanned by a pre-trained speech dictionary in
Section II-B. In [19], the authors proposed a nonnegative deep
network architecture results from unfolding the iterations and
untying the parameters of NMF. This architecture retained the
basis additivity assumption of NMF and was believed to have
more powerful representation ability than NMF. To optimize
its nonnegative parameters, the authors derived multiplicative
back propagation updating rules which can be used to preserve
nonnegativity without the need for constrained optimization.
In our proposed deep learning neural network, nonnegativity
is also expected for the basis activation coefficients of the
speech DAE and the weighting and bias parameters of the
noise DAE. Inspired by their multiplicative back propagation
in [19], we solve our problem in a conceptually similar way
but with different updating rules to optimize a different ob-
jective function. New learning algorithms are investigated to
respect the non-negativity of the parameters in SDAE in Sec-
tion II-B. Detailed configuration of the noise DAE is described
in Section III-B. Experimental results on TIMIT with 20 noise
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types at various noise levels will be reported and analyzed in
Section IV.

Compared with SS and MMSE in I-A, our method is able to
cope with both stationary and non-stationary noises. Compared
with the HMM and codebook-driven approaches in I-B, our
method does not assume the noise is known beforehand. Com-
pared with the dictionary learning methods in I-C, the noises
treated by our method are not limited to those with low-rank
spectrum structures. Compared with the HMM methods in
I-D, our method works in a frame-by-frame fashion, so no
slow changes nor first-order state transition is imposed on the
dynamic properties of non-stationary noises, which helps our
method to model transient noises with abrupt changes. Com-
pared with I-E, no pre-training of noise models is required, so
the performance does not rely on the amount of noise training
data.

II. SEPARABLE DEEP AUTO ENCODER FOR
SPEECH AND NOISE SEPARATION

A. Separable Deep Auto Encoder: A General Framework

Let denote the spectrogram of the input noisy speech, and
let , and denote the reconstructed spectrograms of noisy
speech, clean speech and noise, respectively. , and repre-
sent the spectrum of one particular frame. With the approxima-
tion that the spectra are additive, we have,

(1)

In (1), and have been represented by functions of their or-
acle counterparts and , denoted by and . Two deep
auto encoders (DAE) are utilized to represent and ,
respectively:

(2)

(3)

Without loss of generality and for simplicity, the number of
layers is chosen as 2 as an example here. is the activa-
tion function, for which a Rectified Linear Unit (ReLU) [20]
is selected in this work to ensure the nonnegativity of the re-
constructed spectrum. The mathematical definition of ReLU is

.
In the task of speech enhancement, we assume that a deep

auto encoder for modeling any clean speech is already avail-
able, whose nodes are denoted by the filled circles in Fig. 1.
That is and have been learned from some training
data of clean speech and they act as prior knowledge for the
forthcoming speech enhancement. The reader is referred to Sec-
tion III-A for the details. Hence, the unknown parameters to be
estimated are: the clean speech spectrum , the noise spectrum

, the weighting terms and the bias terms in noise
DAE. In light of the idea of spectral subtraction, the noise spec-
trum may be replaced by , where the ReLU function

is again imposed to retain the nonnegativity of the noise

Fig. 1. The architecture of the proposed separable deep auto encoder. The
neural network contains two parts: a pre-trained deep auto encoder to represent
clean speech denoted by filled circles and a DAE trained on the fly to represent
noise denoted by blank circles. The sum of the outputs of the top layers of the
two DAEs is expected to be the noisy observation, i.e. .
The bottom layers are the unknown clean speech spectrum and the estimated
noise spectrum .

spectrum. Hereby, the reconstruction formula of noise is thus
converted into a function of 1,

(4)

As illustrated in Fig. 1, the sum of the outputs of the top layers
of the speech and noise DAEs is expected to be close to the
noisy observation, i.e. . The optimization
problem thus boils down to the following configuration,

(5)

with the constraint that the entries in are all nonnegative and
smaller than their counterparts in . In (5), we have opted for a
Euclidean cost function. Given its success in source separation
on magnitude spectra [21], we have also considered Kullback-
Leibler divergence. However, so far we have not been able to
obtain superior results with this cost function.

The above problem is under-determined and additional con-
straints should be imposed. We hereby introduce a speech dic-
tionary to do so.

B. Confining the Speech Spectrogram in the Convex Hull

Spanned by Nonnegative Speech Bases

Given the success of dictionary learning in speech enhance-
ment, we represent the speech spectrogram by the convex com-
bination of nonnegative speech bases in a speech dictionary .
The dictionary is usually learned from a large amount of clean
speech data. Hence, in (2) and (4) can be replaced by
where is the coefficient vector of the speech bases. The re-
construction formulae of speech and noise are thus converted
into the functions of ,

(6)

(7)

1For simplicity but without bringing confusion, we did not change the symbol
to represent a different function from (3).
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Therefore, the optimization problem now becomes,

(8)

with the constraint that the elements in are nonnegative. To re-
spect the nonnegativity of the involved parameters and inspired
by [19], we take the multiplicative updating rules for ,
and as follows,

(9)

(10)

(11)

where

is the reconstruction error, and and are the element-wise
multiplication and division, respectively. is the tunable ex-
ponential step-size, whose initial value is 1. Once the non-de-
creasing of the cost function is observed, will be reduced to
its half in the next iteration.

The chain rule is subsequently utilized to derive the positive
and negative parts of the gradients for (9)–(11). It is worth to
clarify that the vectors in this paper all refer to column vectors.
1) Derivation of the Updating Rules for : For the coeffi-

cients vector , we have,

(12)

(13)

Since and , we have and
. To obtain the positive and negative parts of in a

recursive way, we first introduce the layer-wise notation of the
speech DAE,

where is the layer index, and
. Similarly, for the noise part the layer-wise notation is,

where is the layer index, and
. Given the definition of and (2) and (4), the

partial derivatives of with respect to is derived as follows,

(14)

Given the above definitions of and , we can obtain the
derivatives and
where is the identity matrix and is the sign function.
By using a similar splitting trick presented in (12) and (13), the

positive and negative parts of will subsequently be obtained.
Hereby, the remaining problem is to derive the bottom-up recur-
sive rules which are given as follows,

(15)

(16)

(17)

(18)

for layer from 1 to . The middle term in the
above chain rules is the derivative of the ReLU function which
is always nonnegative. In this context, it is a diagonal matrix
whose diagonal elements are the indicator values whether
is positive or not ( is the indicator function). Hence, it has
no impact on the signs of other terms.

At the end of the above recursive steps, i.e. when reaching
the top layer of the speech DAE, we have,

(19)

(20)

To compute the second part in (14), and
can be derived in a similar way as above. However, we should
note that the above derivation process involves computing the
positive and negative parts of the ’s which are unknown
variables to be estimated, unlike the which are kept fixed.
Thanks to the nonnegativity constraints on the elements of each

, its positive part is always itself and its negative part is
zero. The nonnegativity constraints on and simplify
the multiplicative updating of at the expense that ReLU makes
no sense for the layers from 2 to in the noise DAE.
2) Derivation of the Updating Rules for the Parameters in

Noise DAE: To derive and , we first need to ob-
tain the derivatives of with respect to the noise representation
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at layer , , i.e. . It should be conducted in a
top-down recursive fashion. At the start of the recursion, the
derivatives of with respect to the top-layer units of noise are,

(21)

(22)

With similar rules as described in (15)–(18), we can obtain
and for any from to 2 by

just replacing and with and , respectively.
Noting the nonnegativity of , its negative part is always
zero. Hence, the second term of (16) and the first term of (18)
can be removed. Finally, the gradients of the reconstruction
error with respect to the noise DAE parameters are,

(23)

(24)

In the above derivations, we have utilized the fact that
and , for any integer

. Specifically, .
The negative parts and are straightfor-

wardly obtained by replacing with in (23)
and (24), respectively.

III. MODEL TRAINING AND TUNING

A. Clean Speech Magnitude Spectrogram Reconstruction

In this section, we present how a DAE was trained for clean
speech reconstruction on 500 utterances randomly selected from
the TIMIT dataset. In our work, the magnitude spectrum was ex-
tracted for each frame and was chosen as the input features to

the neural network. ReLU was chosen as the activation func-
tion to maintain the nonnegativity of the spectrum but without
compressing the amplitudes of the spectra. The objective func-
tion was to minimize the Euclidean distance between the input
spectrum and its reconstruction using DAE.

A 512-point FFT was firstly conducted for each windowed
frame to result in a 257 dimensional spectrum vector. For
all the 500 utterances, this yielded around 200k vectors for
training. Subsequently, layer-wise unsupervised pre-training
was deployed in a greedy way to construct the deep archi-
tecture. 1000 hidden units were learned by training an auto
encoder with the structure . To make the rep-
resentation deep, the 1000 hidden units were further encoded
by 200 hidden units by training a second auto encoder with
the structure . Finally, by unfolding and
stacking the two auto encoders, we obtained a 5-layer DAE
with size , i.e. by replacing
the 1000 hidden units in the middle layer of the first network
(with structure ) with the whole second
network (with structure ). After the above
pre-training, supervised fine tuning with back propagation was
conducted to refine the parameters.

The optimization strategy in the above pre-training and fine
tuning was stochastic gradient descent where each batch con-
tained 1000 frames and the number of iterations was set 1000.
No sparsity penalty was imposed to the cost function. A de-
creasing learning rate was adopted to ensure the convergence
where the learning rate was reduced to its half once the cost
value was observed increasing. The initial learning rate was 0.1.
The momentum was chosen as 0.1. To avoid numerical over-
flow, the gradients were normalized to hold the unity norm,
e.g.

(25)

B. Noise modeling

1) Network Configuration and Initialization: For noise mod-
eling, we configured a 3-layer DAE with size
where is the number of hidden units. As presented in Sec-
tion II-A, the noise DAE was learned per utterance. Hence, the
number of parameters might be determined by the length of the
utterance and by the amounts of variations of the noise spectro-
gram. Generally, for long utterances with strong noises, more
units should be introduced. Parameter sensitivity of the number
of units will be illustrated in the figures of Section IV-E, IV-F
and IV-H.

The noise DAE interacts with the speech DAE model in two
aspects: one is sharing the same cost function at the top layer
and the other is acquiring its inputs by subtracting the speech
spectrums from the noisy inputs at the bottom layer, i.e. .
These two aspects provide the foundation of joint training of the
parameters of speech and noise.

The initial values of the entries in and were all set to
1 which has no scaling impact on the subsequent multiplicative
updates as presented in (10) and (11).
2) Large Margin Constraints: Given the speech and noise re-

constructions, and (i.e. and in their
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Fig. 2. The flowchart of the proposed method. The method contains two parts: the “offline training” and the “online enhancement”. In the “offline training” part,
given a collection of clean speech spectrum , a nonnegative dictionary was first learned by using NMF. A deep auto encoder was trained to reconstruct

from itself. In the “online enhancement” stage, we first extract the spectrogram of the noisy utterance, then construct and train a separable DAE to estimate the
clean speech spectrum as well as the noise spectrum. Finally, clean speech signal is reconstructed by using the estimated spectrum for clean speech and the phase
from the noisy input.

multi-layer representations, respectively), a regularization term
was added to the original cost function,

(26)

The above equation tends to increase the dissimilarity between
the two sources by suppressing signals from other sources in
the current source prediction [22]. Therefore, the above regular-
ization term makes the learning problem discriminative. In our
experiments, a small would work while a big one hindered
the convergence of the proposed algorithm. This is because the
concave part can make the gradient small close to a maximum.
On the other hand, without using the regularization, the perfor-
mance deteriorated a bit. In this paper, was set as 0.1. The
parameter sensitivity regarding this parameter will be discussed
in Section IV-H.

The positive and negative part of the gradient of with
respect to and are as follows,

(27)

(28)

(29)

(30)

3) Dropout of the Noise Units to Retain Sparsity: A method
called “dropout” was proposed in [23] to improve the gener-
alization capability of deep neural networks to avoid over fit-
ting. In this technique, dropout randomly omits a certain per-
centage of the units in the input and each hidden layer during
each presentation of every training sample. In this paper, we
implemented this idea to noise modeling to retain sparsity. For
each frame, only a small portion (say ) among the total units
were activated. To choose the active units, we first sorted the
weights of all the units in a decreasing order, then selected the
top activated ones. The sensitivity of the model’s performance
with respect to will be reported later in Section IV-H.

C. An Overview

The overall flowchart is given in Fig. 2. It contains two parts:
the “offline training” and the “online enhancement”. In the “of-
fline training” part, given a collection of clean speech spectrum

, a nonnegative dictionary was first learned by using NMF.
A deep auto encoder was trained to reconstruct from it-
self as presented in Section III-A.

In the “online enhancement” state, we first extract the spec-
trogram of the noisy utterance, then construct and train a sepa-
rable DAE to estimate the clean speech spectrum as well as the
noise spectrum. The algorithm is summarized in Algorithm 1.
Finally, clean speech signal is reconstructed by using the esti-
mated spectrum for clean speech and the phase from the noisy
input.
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IV. EXPERIMENTS AND RESULTS

A. Preparation of the Dataset

The proposed algorithms were evaluated with 100 noisy
speech examples from male and female speakers, which were
synthesized by adding clean speech to a variety of noise signals
at different SNRs. Clean speech examples were chosen from the
TIMIT dataset randomly (without overlapping speakers with
the training utterances in Section III-A). For the noise samples,
seventeen types of noise from the Noizeus-92 dataset, babble,
birds, casino, cicadas, computerkeyboard, eatingchips, f16,

factory1, factory2, frogs, jungle, machineguns, motorcycles,

ocean, pink, white, and volvo, were considered. Three more
non-stationary noise types were included: formula1, freeway
and phone which were from the “Formula One” file2in [24],
the “Highway traffic” file in [25] and the “phone ringing.wav”
file in [26], respectively. In total, twenty types of noise were
evaluated. The signals were mixed at 4 different signal-to-noise
ratios (SNRs) from to 10 dB spaced by 5 dB. All files were
resampled to 8 kHz sampling rate. To calculate the spectro-
grams we used a window length of 64 ms (512 points) and a
frame shift of 8 ms (64 points).

B. Evaluation Metrics

Three metrics were computed to evaluate the performance
of the speech enhancement algorithms. The first criterion was
the PESQ score which measures the subjective speech quality
[27]. The second metric was the signal-to-distortion ratio (SDR)
value of the enhanced speech calculated by BSS-EVAL [28] to
show the impacts on noise separation and suppression of the
algorithms. An ideal algorithm should suppress noises without
bringing too much distortion to the enhanced speech. The third
one was the segmental SNR (segSNR) of the enhanced speech
measured by the composite_se package from [27]. For all met-
rics, a larger score indicates better performance.

C. Baselines

The improved versions of SS and MMSE (log-MMSE) in
[29] were taken as baseline algorithms. Besides these, we com-
pared our method with the nonnegative dictionary learning ap-
proach using nonnegative matrix factorization (NMF) defined
as below,

(31)

(32)

(33)

where KLD is the extended Kullback-Leibler divergence per-
forming as the cost function [21], is the same speech dic-
tionary as mentioned in Section II-B, is the noise dictio-
nary to be learned from the noisy speech spectrogram , and

and are the coefficient matrix of the speech bases and
the noise bases, respectively. The number of speech bases, i.e.
the number of columns in , was taken as 2000 for both the

2The sound was from the engine of a racing car.

Algorithm 1 The learning algorithm of SDAE

Input:
Output:

1: , ,initialize , and
2: while && threshold do
3: //Feed forward of each neural network
4:
5: for ; ; do
6: Compute
7: end for
8:
9: for ; ; do
10: Compute
11: end for
12:

13: if then
14:
15: end if
16:
17: //Compute the gradients using back propagation
18: Compute and by using

(19)+(27) and (20)+(28), respectively
19: for ; ; do
20: Compute and by using

(16) and (18), recursively
21: end for
22: Compute and by using

(21)+(29) and (22)+(30), respectively
23: for ; ; do
24: Compute and recursively

by replacing the speech DAE’s variables in (16)
and (18) with the noise DAE’s ones

25: end for
26: With the outputs and from

Line 21 and and from
Line 25, compute and by splitting (14)
into positive and negative parts

27: Compute and by applying (12) and (13)
28: for ; ; do
29: Compute and by using (23)

and (24), respectively
30: Compute and by replacing

with in (23) and (24)
31: end for
32: //Update the parameters
33: Update by using (9), (10) and (11),

respectively
34:
35: end while
36:
37:

NMF baseline and the SDAE method with the NMF constraint
in Section II-B. The speech bases were learned by NMF from
the training dataset as described in Section III-A. The number
of noise bases, i.e. the number of columns in , was chosen
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Fig. 3. The illustration of the performance of SDAE on pink noise at 0 dB SNR
level. Better noise removing and few musical noise introducing, was observed
in the output of SDAE than that from spectral subtraction. By contrasting the
two bottom figures, one can see the good performance of noise estimation of
SDAE.

Fig. 4. Demonstration of the performance on noise spectrum estimation. The
top figure shows the spectral envelopes at 156 Hz (corresponding to the 10th
frequency bin). The bottom figure shows the spectral envelopes at 3125 Hz (cor-
responding to the 200th frequency bin). The red lines are the oracle/true values
while the blue dashed lines are the results estimated by SDAE.

as 5. Experimental study showed more bases for noise modeling
would also contain some speech structures and could deteriorate
the model’s performance, which may be due to the non-discrim-
inative nature of the NMF.

Considering the HMM approaches presented in Section I-D,
we also compared our method with the performance of super-
Gaussian HMM reported in [17] on three noise types (babble,
factory1 and freeway). The comparison with respect to the adap-
tive HMM proposed in [16] was also conducted on the two noise
types (car+phone and formula1) in [16].

D. Visualization of the Noise Spectrum Estimation

Fig. 3 visualizes the performance of the proposed method on
pink noise at 0 dB SNR level. By comparing the bottom-left and
the bottom-right figures, we can see that SDAE’s good perfor-
mance on noise spectrum estimation, except the “holes” gener-
ated by subtracting the speech spectrum components. In fact, the
“holes” in the bottom-right figure are from the over-subtraction
happened in . For the frequency bins where speech

Fig. 5. The PESQ scores of SS/MMSE, NMF and SDAE at four different input
SNR levels. For each condition, the numbers are the mean values over all the
20 noise types.

Fig. 6. The SDR values of SS/MMSE, NMF and SDAE at four different input
SNR levels. For each condition, the numbers are the mean values over all the
20 noise types.

Fig. 7. The segmental SNR (SEGSNR) values of SS/MMSE, NMF and SDAE
at four different input SNR levels. For each condition, the numbers are the mean
values over all the 20 noise types.

spectrum performs a dominant role, the entries in might
be larger than those in . To avoid negative values, the ReLU
function forced them to zeros. However, this will not affect
the performance on speech enhancement. The involved PESQ
scores are: Noisy(1.49), SS(2.13), MMSE(2.12), NMF(2.30),
and SDAE with NMF constraint(2.47), respectively.
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Fig. 8. The PESQ scores of SS/MMSE, NMF and SDAE for the 20 noise types. For each noise type, the numbers are the mean values over four input SNR
conditions, i.e. from dB to 10 dB spaced by 5 dB.

Fig. 9. The SDR values of SS/MMSE, NMF and SDAE for the 20 noise types. For each noise type, the numbers are the mean values over four input SNR
conditions, i.e. from dB to 10 dB spaced by 5 dB.

Fig. 4 shows the spectral envelopes at 150 Hz and 3125 Hz
(corresponding to the 10th and 200th frequency bin, respec-
tively). One can observe the good fit of the noise spectrum
learned by DSAE compared to the oracle ones, especially for
the low frequency case in the top figure of Fig. 4.

E. The Method’s General Performance

The PESQ scores, SDR values and segmental SNR values
of the proposed methods as well as the SS/MMSE and NMF
baselines are given in Fig. 5, Fig. 6 and Fig. 7, respectively.
“SS/MMSE” denotes the better performance among SS
and MMSE for simplicity, a convention that is maintained
throughout this text. From the figures, we see that both SDAE
and NMF show significant improvements over SS/MMSE
at low SNR levels. However, with increasing SNR, NMF
deteriorates. SDAE demonstrates consistent and significant
improvements over the baselines at all the four SNR levels by
obtaining higher scores for PESQ, SDR and SEGSNR.

More units (i.e. larger ) in the noise DAE shows better per-
formance at the low SNR level of 5 dB. Extensive discussion
on the noise DAE’s performance on the model’s configuration
will be presented in Section IV-H.

F. The Model’s Performance per Noise Type

To better understand the methods’ performance on each noise
type, Fig. 8, Fig. 9 and Fig. 10 present the mean PESQ scores,
SDR values and SEGSNR values over the four SNR levels,
respectively. For the PESQ scores, from Fig. 8, we can see
SDAE outperforms SS/MMSE and NMF on most noise types,
except the structural transient ones, like machinegun, comput-
erkeyboard, eatingchips and phone. These noises hold low rank
repeated structures which are particularly suited for modeling
by NMF as also explored in [12]. A similar conclusion can be
drawn for the SDR metric from Fig. 9. However, the NMF ap-
proach seems not good at improving the segmental SNR, even
for the transient noise types as shown in Fig. 10. In [12], the
bird noise was classified as a kind of transient noise, but in our
experiments NMF did not show its expected superiority on this
noise type. This may be due to the frequency fluctuations in the
bird sounds which are difficult to be described by a couple of
bases.

For relatively stationary noise types like factory2 and volvo,
SS/MMSE also performed good by yielding high PESQ scores.
By considering all the three metrics, we conclude that significant
improvements are observed by using SDAE over the SS/MMSE
and NMF baselines.
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Fig. 10. The segmental SNR (SEGSNR) values of SS/MMSE, NMF and SDAE for the 20 noise types. For each noise type, the numbers are the mean values over
four input SNR conditions, i.e. from dB to 10 dB spaced by 5 dB.

TABLE I
COMPARISON OF THE PROPOSED METHODS AND THE SUPER-GAUSSIAN HMM

IN [17]. THE RESULTS ARE THE AVERAGES OVER THE THREE NOISE TYPES
BABBLE, FACTORY1 AND FREEWAY

TABLE II
COMPARISON OF THE PROPOSED METHODS AND THE ADAPTIVE HMM
IN [16]. THE RESULTS ARE THE AVERAGE IMPROVEMENTS ON PESQ
WITH RESPECT TO SPECTRAL SUBTRACTION OVER THE TWO NOISE

TYPES CAR+PHONE AND FORMULA1

G. The Method’s Ability on Modeling Non-Stationary Noises

Table I presents the improvements on PESQ and SDR of
SDAE and the super-Gaussian HMM [17] with respect to the
noisy speech. The results were mean values over three noise
types (babble, factory1 and freeway). SDAE outperformed
super-Gaussian HMM on the SDR metric for all the noise
levels. For the PESQ metric, SDAE showed superiority over
super-Gaussian HMM at low SNR levels of dB and 0 dB.

Table II presents the improvements on PESQ of SDAE and
the adaptive HMM [16] with respect to the noisy speech. The re-
sults are mean values over two noise types (car+phone and for-
mula1). SDAE outperforms adaptive HMM on the PESQ metric
for all the noise levels.

In Table III, we compared our method with a recently pro-
posed DNN approach in [30]. The DNN approach was trained
in a supervised way to learn a mapping function from noisy to
clean speech signals. A large noise collection containing 104
noise types was utilized to synthesize training data of noisy
speech. Given many possible combinations of speech and noise
types for training, the learned DNNs were expected to handle

TABLE III
COMPARISON OF THE PROPOSED METHODS AND THE DEEP NEURAL NETWORK

IN [30]. THE RESULTS ARE THE PESQ SCORES ON THE THREE NOISE TYPES
EXHIBITION, DESTROYERENGINE, AND HFCHANNEL REPORTED IN [30]

Fig. 11. The PESQ scores of the proposed SDAE with various parameter set-
tings. For each case, the numbers are the mean values over all the 20 noise types.

unseen noises in the enhancement stage. From Table III, we ob-
served that our method worked slightly better than the DNN ap-
proach at dB and 0 dB, but performed a bit worse than the
DNN approach at 10 dB. However, our approach did not rely on
any noise data collected beforehand, so its generalization ability
to any unseen noise types could be stronger.

H. The Method’s Sensitivity on the Configuration Parameters

of the Noise DAE

The PESQ scores, SDR values and SEGSNR values of the
SDAE with various parameter settings are given in Fig. 11, Fig.
12 and Fig. 13, respectively.

The number of units in SDAE_NMF performs a role only at
low SNR levels. units with units retained
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Fig. 12. The SDR values of the proposed SDAE with various parameter set-
tings. For each case, the numbers are the mean values over all the 20 noise types.

Fig. 13. The segmental SNR (SEGSNR) values of the proposed SDAE with
various parameter settings. For each case, the numbers are the mean values over
all the 20 noise types.

Fig. 14. The PESQ scores of the proposed SDAE with the regularization pa-
rameter . The SDAE contains units and takes top units
for each frame. For each case, the numbers are the mean values over all the 20
noise types.

gave the best performance at the dB condition. At low SNR
levels, the total volume of the noise is high, a large amount of
hidden units are required to cope with this. With the temporal
variation of the noise, different frames hold different spectral
properties which would thus reflected by activating a couple of
different hidden units.

Fig. 15. The SDR values of the proposed SDAE with the regularization pa-
rameter . The SDAE contains units and takes top units
for each frame. For each case, the numbers are the mean values over all the 20
noise types.

Fig. 16. The segmental SNR (SEGSNR) values of the proposed SDAE with
the regularization parameter . The SDAE contains units and takes
top units for each frame. For each case, the numbers are the mean
values over all the 20 noise types.

To evaluate the algorithm’s sensitivity regarding , we con-
ducted experiments on SDAE with units and acti-
vating top units for each frames. The results on PESQ
scores, SDR values and SEGSNR values are given in Fig. 14,
Fig. 15 and Fig. 16, respectively. From the figures, we see that

is a good choice. A larger one, say , will be
hazard; while smaller ones (e.g. or ) will not
improve the baselines so much.

V. CONCLUSION

Separable deep auto encoder (DAE) was proposed to esti-
mate unseen noise spectrum for speech enhancement. A DAE
was first trained for clean speech spectrum reconstruction. An
additional DAE was introduced to model the unseen noise spec-
trum with the constraint that the sum of the outputs of the two
DAEs is equal to the input noisy speech spectrum. To help the
inverse problem yield meaningful solutions, nonnegative ma-
trix factorization (NMF) was imposed to constrain the speech
spectrum reconstruction. New multiplicative algorithms were
investigated to optimize the problem of DAE with NMF con-
straints. Experimental evaluation on PESQ, SDR and segmental
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SNR on the TIMIT dataset contaminated by 20 types of unseen
noises demonstrated the superiority of the proposed approach
over the traditional baselines including SS/MMSE, NMF and
HMM. Due to the heavy computation budget, it is currently
difficult to apply the proposed method for real-time implemen-
tations. However, for post-processing of recorded audio files,
our methods can have advantages given the experimental results
presented in the paper.

REFERENCES

[1] S. Kamath and P. Loizou, “A multi-band spectral subtraction method
for enhancing speech corrupted by colored noise,” in Proc. ICASSP,
2002, pp. 4164–4167.

[2] K. Paliwal, K. Wjcicki, and B. Schwerin, “Single-channel speech en-
hancement using spectral subtraction in the short-time modulation do-
main,” Speech Commun., vol. 52, no. 5, pp. 450–475, 2010.

[3] Y. Ephraim and D. Malah, “Speech enhancement using a minimum
mean-square error log-spectral amplitude estimator,” IEEE Trans.
Acoust. Speech Signal Process., vol. ASSP-33, no. 2, pp. 443–445,
Apr. 1985.

[4] P. C. Loizou and S. Member, “Speech enhancement based on perceptu-
ally motivated Bayesian estimators of the magnitude spectrum,” IEEE
Trans. Speech Audio Process., vol. 13, no. 5, pp. 857–869, Sep. 2005.

[5] T. Gerkmann and R. C. Hendriks, “Unbiased MMSE-based noise
power estimation with low complexity and low tracking delay,” IEEE
Trans Audio, Speech, Lang. Process., vol. 20, no. 4, pp. 1383–1393,
May 2012.

[6] P. K. Ghosh, A. Tsiartas, and S. S. Narayanan, “Robust voice activity
detection using long-term signal variability,” IEEE Trans. Audio,
Speech, Lang. Process., vol. 19, no. 3, pp. 600–613, Mar. 2011.

[7] H. Sameti, H. Sheikhzadeh, L. Deng, and R. L. Brennan, “Hmm-based
strategies for enhancement of speech signals embedded in nonsta-
tionary noise,” IEEE Trans. Audio, Speech, Lang. Process., vol. 6, no.
5, pp. 445–455, Sep. 1998.

[8] S. Srinivasan, J. Samuelsson, and W. B. Kleijn, “Codebook driven
short-term predictor parameter estimation for speech enhancement,”
IEEE Trans. Audio, Speech, Lang. Process., vol. 14, no. 1, pp. 163–176,
Jan. 2006.

[9] Z. Ghahramani and M. I. Jordan, “Factorial hidden Markov models,”
Mach. Learn., vol. 29, no. 2–3, pp. 245–273, 1997.

[10] X. Lu, Y. Tsao, S. Matsuda, and C. Hori, “Speech enhancement based
on deep denoising autoencoder,” in Proc. INTERSPEECH, 2013, pp.
436–440.

[11] P. Smaragdis, “Non-negative matrix factor deconvolution: Extraction
of multiple sound sources from monophonic inputs,” in Proc. 5th Int.
Conf. Ind. Compon. Anal., Sep. 2004, pp. 494–499.

[12] Z. Chen and D. P. Ellis, “Speech enhancement by sparse, low-rank,
and dictionary spectrogram decomposition,” in Proc. IEEE Workshop
Applicat. Signal Process. Audio Acoust., 2013, pp. 1–4.

[13] C. Fvotte, J. L. Roux, and J. R. Hershey, “Non-negative dynamical
system with application to speech and audio,” in Proc. ICASSP, 2013,
pp. 3158–3162.

[14] N. Mohammadiha, P. Smaragdis, and A. Leijon, “Supervised and unsu-
pervised speech enhancement using nonnegative matrix factorization,”
IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 21, no. 10, pp.
2140–2151, Oct. 2014.

[15] D. Y. Zhao, W. B. Kleijn, A. Ypma, and B. de Vries, “Online noise es-
timation using stochastic-gain HMM for speech enhancement,” IEEE
Trans. Audio, Speech, Lang. Process., vol. 16, no. 4, pp. 835–846,
2008.

[16] J. Bai and M. Brookes, “Adaptive hidden Markov models for noise
modelling,” in Proc. 19th Eur. Signal Process. Conf. (EUSIPCO’11),
Aug. 2011, pp. 494–499.

[17] N. Mohammadiha, R. Martin, and A. Leijon, “Spectral domain speech
enhancement using hmm state-dependent super-gaussian priors,” IEEE
Signal Process. Lett., vol. 20, no. 3, pp. 253–256, Mar. 2013.

[18] Y. Xu, J. Du, L.-R. Dai, and C.-H. Lee, “A regression approach to
speech enhancement based on deep neural networks,” IEEE/ACM
Trans. Audio, Speech, Lang. Process., vol. 23, no. 1, pp. 7–19, Jan.
2015.

[19] J. Hershey, J. Le Roux, and F. Weninger, “Deep unfolding: Model-
based inspiration of novel deep architectures,” arXiv, Aug. 2014.

[20] M. Zeiler, M. Ranzato, R. Monga, M. Mao, K. Yang, Q. Le, P. Nguyen,
A. Senior, V. Vanhoucke, J. Dean, and G. Hinton, “On rectified linear
units for speech processing,” in Proc. ICASSP, 2013, pp. 3517–3521.

[21] T. Virtanen, “Monaural sound source separation by nonnegative matrix
factorization with temporal continuity and sparseness criteria,” IEEE
Trans. Audio, Speech, Lang. Process., vol. 15, no. 3, pp. 1066–1074,
Mar. 2007.

[22] P. Huang, M. Kim, M. Hasegawa-Johnson, and P. Smaragdis, “Deep
learning for monaural speech separation,” in Proc. ICASSP, 2014, pp.
1562–1566.

[23] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.
Salakhutdinov, “Improving neural networks by preventing co-adapta-
tion of feature detectors,” arxiv.org, 2014 [Online]. Available: http://
arxiv.org/abs/1207.0580

[24] [Online]. Available: http://www.zedge.net/ringtones/
[25] [Online]. Available: http://www.soundsnap.com/
[26] [Online]. Available: http://www.freesound.org/
[27] A. Rix, J. Beerends, M. Hollier, and A. Hekstra, “Perceptual evalua-

tion of speech quality (PESQ) - a new method for speech quality as-
sessment of telephone networks and codes,” in Proc. ICASSP, 2001,
pp. 749–752.

[28] E. Vincent, C. Fevotte, and R. Gribonval, “Performance measurement
in blind audio source separation,” IEEE Trans. Audio Speech Lang.
Process, vol. 14, no. 4, pp. 1462–1469, Jul. 2006.

[29] [Online]. Available: http://www.ee.ic.ac.uk/hp/staff/dmb/
voicebox2012

[30] Y. Xu, J. Du, L.-R. Dai, and C.-H. Lee, “An experimental study on
speech enhancement based on deep neural networks,” IEEE Signal
Process. Lett., vol. 21, no. 1, pp. 65–68, Jan. 2014.

Meng Sun received his Ph.D. degree from the Department of Electrical En-
gineering (ESAT), Katholieke Universiteit Leuven in November, 2012. He is
now a researcher at the Lab of Intelligent Information Processing of PLA Uni-
versity of Science and Technology, China. His research interests are speech pro-
cessing, unsupervised/semi-supervised machine learning and sequential pattern
recognition.

Xiongwei Zhang received his Ph.D. degree from the PLA University of Sci-
ence and Technology, China. He is now a professor in the Lab of Intelligent
Information Processing in the same university. His research interests are speech
coding, speech enhancement and image processing.

Hugo Van hamme (M’92) received the degree of electrical engineer from the
Vrije Universiteit Brussels, Brussels, Belgium, in 1987, the M.S. degree from
Imperial College, London, U.K., in 1988, and Ph.D. degree from Vrije Univer-
siteit Brussels in 1992. In 1993, he joined Lernout and Hauspie as a Senior Re-
searcher. Later, he headed the speech recognition research activities in Belgium
at this company. In 2001, he joined ScanSoft as a Manager of Research and
Engineering for the Automotive Division. Since 2002, he is affiliated full-time
as a Professor at Katholieke Universiteit Leuven, Leuven, Belgium. His main
research interests are robust speech recognition, computational models of lan-
guage acquisition, and computer-assisted learning.

Thomas Fang Zheng (M’99-SM’06) received the Ph.D. degree in computer
science and technology from Tsinghua University, Beijing, China, in 1997. He
is now a Research Professor and Director of the Center for Speech and Lan-
guage Technologies, Tsinghua University. His research focuses on speech and
language processing. He has published more than 230 papers. Dr. Zheng plays
active roles in a number of communities, including the Chinese Corpus Consor-
tium (council chair), the Standing Committee of China’s National Conference
on Man-Machine Speech Communication (chair), Subcommittee 2 on Human
Biometrics Application of Technical Committee 100 on Security Protection
Alarm Systems of Standardization Administration of China (deputy director),
the Asia-Pacific Signal and Information Processing Association (APSIPA)
(Vice-President and Distinguished Lecturer 2012- 2013), Chinese Information
Processing Society of China (council member and Speech Information Sub-
committee Chair), the Acoustical Society of China (council member), and the
Phonetic Association of China (council member). He is an Associate Editor
of the IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING
and the APSIPA TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING.
He is on the editorial board of Speech Communication, Journal of Signal and
Information Processing, Springer Briefs in Signal Processing, and the Journal
of Chinese Information Processing.




